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Naylor, Jayiene R., M.S., December 1999 Physics

A Radiation-Driven Wind Model for Massive Stars: The Effects of Non-Isothermal and
Finite Disk Assumptions

Director: David B. Friend OBF

Wind models for massive stars are of particular interest because we are unable to have a
complete picture of the evolution of these stars as well as the chemical composition of
our own galaxy without understanding these mass loss mechanisms. For massive stars.
the main force which drives the wind is the absorption and scattering of radiation from
the star.

In order to model such a radiatively-driven stellar wind, I begin with the “standard™
model of Castor, Abbott and Klein (CAK, 1975). Among the assumptions used in this
model when determining the equation of motion for the wind are the following:

1) the wind does not change in time (steady-state)

2) the wind is spherically symmetric

3) the temperature of the wind does not change with distance from the
star (isothermal)

4) the star is a point source of radiation

5) the star does not rotate

6) the star has no magnetic field.

The CAK predictions turn out to be too high for the mass loss rate of the star and too low
tor the velocity of the wind far from the star as compared to observations.

This work eliminates two of the simplifications in the CAK theory. First I treat the star
as a disk with finite size (as previously done by Friend and Abbott, 1986). Treating the
star as a finite disk reduces the radiation force near the star thereby bringing the mass loss
rai=s closer to the observed rates.

Second I assume the temperature of the wind does change with distance from the star. [
include a temperature distribution, which is a function of distance, in the equation of
motion.

The questions I seek to answer are, “Is the isothermal assumption acceptable?” Does a
temperature distribution complicate the equations unneccessarily? To answer these
questions, the non-isothermal, finite disk results are compared to the finite disk results of
Friend and Abbott as well as with observations to determine whether or not this
isothermal assumption is reasonable.
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Chapter'1

Introduction

Modeling the mass loss mechanisms of massive stars is integral to the
development of a complete picture of the evolution of massive stars as well as an
understanding of the chemical composition and evolution of our entire galaxy.
Radiation provides a mechanism by which a wind is driven when ions absorb the
momentum of photons and are propelled away from the star, thereby producing mass
loss. This work seeks to explain basic radiatively-driven wind theory, particularly in
the context of the modification I have made to the theory—the assumption cf a

temperature distribution in the wind.

What are massive stars?

Stars are divided into spectral types, based on their temperatures, using the

Harvard classification scheme below:

Spectral Tvpe Characteristics
O Hottest blue-white stars with few spectral lines.
B Hot blue-white stars.
A White stars.
F Yellow-white stars.
G Yellow stars. (Our sun)
K Cool orange stars.
M Coolest red stars.




Certainly not all O type stars- have the same temperature or radius, so each type is
also scaled from 0 to 9 (hottest to coolest) and is given a luminosity class:

I Supergiant

II Bright Giant

IIT Giant

IV Subgiant

V Dwarf or Main Sequence
For example, the hottest B giant would be classified as BOIIL.

The Hertzsprung-Russell Diagram is a standard way to illustrate the

relationships among spectral type, temperature, radius and luminosity.

Temperature (K)
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http.//imagine.gsfc.nasa.gov/docs/teachers/lifecycles/printable/LC_main_p8.html

Figure 1.1
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Massive stars are considered to be O and B type stars. They rangé in mass from 10
to 60 M, where 1 M_=1.998 x 10% g. Their effective temperatures (temperature at
the surface or photosphere) are anywhere from 20,000 to 60,000 degrees Kelvin
{cempare to Tegr of the sun at ~5800 K).

Where do we o‘bserve O and B stars? They tend to occur in open clusters and
associations, or loosely grouped arrangements, which are closely confined to the
plane of our galaxy. Rarely do we see any alone because their lifespans are
relatively short (less than 10 million years), hence they do not have time to wander
far from the nursery in which they were born. On the following pages are examples
of places we find O and B stars. Figure 1.2 shows the formation of massive stars
triggered by the winds of aault massive stars in the hub of the 30 Doradus Nebula in
the Large Magellanic Cloud. N81, a massive star cluster in the Small Magellanic
Cloud, is shown in Figure 1.3. The rapid and enormous mass loss from these young
massive stars is evident in the sculpting of the nebula’s gasses.

What are stellar winds and why should we study them?

Stellar winds are the expanding outer layers of a star’s atmosphere. Massive
stars may dump up to 50% of their initial mass back into the interstellar medium over
only several million years. This substantial mass loss gives rise to the following
important effects:

1) Possible induction of stellar formation. The star may lose so much mass
that another star is able to form from this matter.

2) The evolution of the mass-losing star is significantly altered.



30 Doradus Nebula in the LMC HST « WFPC2 « NICMOS
PRC99-33a « STScl OPO ¢« N. Walborn (STScl), R Barba (La Plata Observatory) and NASA

Figure 1.2



N81 in the Small Magellanic Cloud HST *WFPC2
PRC98-25 « ST Scl OPO - July 23. 1998
M. Heydah-Malayeri (Observatoire de Paris) and NASA

Figure 1.3
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3) Changes in the chemical makeup of the galaxy in which the star resides,
hence influencing galactic structure, chemistry and evolution.

How do we know thev exist?

The first evidence of stellar winds was discovered in the late 19" century.
Astronomers, analyzing the spectrum of a blue luminous variable star known as P
Cygni, discovered something very interesting. A P Cygni profile is characterized by
a broad emission peak centered on A, for example the H line at 4860 angstroms,
and a blueshifted absorption trough. Figure 1.4 shows a profile of P Cygni between
the wavelengths of 4800 and 5050 angstroms. How are these spectral lines
produced? A stellar wind can be thought of as a series of concentric shells

surrounding the star.

Figure 1.5

observer

Region 1 in Figures 1.4 and 1.5 represent the portion of the shell which is in our
direct line of sight. The approaching matter is cooler than the layers below it, thus
the photons coming from the star are absorbed and blue shifted. Region 2 is the front
portion of the shell which is approaching us. We do not see the photons being

absorbed in this region because they are scattered out of our line of sight. Instead we



[V] mauspaes

000% 0sar 0087t oyosay g0ud

0505

normalized flux

— Ny} ™M

-1 G0

BN S e R SR S S S AN M S R
% MII 20
SII o

«
TelI20]
[Feda.4]
NI

(Fam2n]
~ NI 28

1 1 b
, (Fall2o].
Sl 8
Chng-N
B [

- - Eel 41

= - NI 19

—_— NII 24

sa 7 4
Tl
Fall20
[FellZo]
' NI 24
—%h

4587

4954
5001 ]
5003
5007 _|
so11

NIO 4
? — Hel 47
L7

1 ! 1. !

aols_
028
5032

50411
5045
5048

3

Figure 1.4 P Cygni Profile

http: www.Isw.uni-heidelberg.de %7 Eostahl PCyg html

[ S DS B B SHN NN R B BN



observe emission produced by the hot diffuse matter. Region 3 is the rear portion of
the expanding shell. Similarly we observe emission here, except that it is redshifted,
indicating that it is moving away from us. Not until 1929 did Beals interpret these
effects as the ejection of high-velocity material from the star.

Soon after this discovery, astronomers found P Cygni-like profiles in the
spectra of O, B, G, K, and M stars confirming the presence of winds (Cranmer,
1997). From these spectra, we can infer terminal velocities and mass loss rates for
massive stars as well.

What is “radiation-driving"?

Radiative driving is thought to be the primary cause of continuous mass
outflows for main sequence, giant and supergiant stars that are hotter than-
approximately B5 (Cranmer, 1997). In an atmosphere, ions will absorb the
momentum and energy of photons that have come from below them (closer to the
center of the star) moving the ions generally outward. Ions can absorb only in a
limited frequency range and in a relatively short period of time would absorb all the
photons possessing those frequencies. No wind could be sustained this way.
However, since the ions are moving away from the star, the photon frequencies are
rcd-shiﬁed_, and at each radius (rl, r2, etc.) a different frequency is absorbed. Sece

figures 1.6 and 1.7.
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In this way, the ions in the stellar atmosphere may absorb many photons, acquiring
their momentum, and drive the atmosphere outward in a wind.

Overview of past research

In 1971 Lucy and Solomon revived the theories of Milne (1924,1926) and
Johnson (1925) which stated that the force on ions due to absorption could exceed
gravity and thus matter could be ejected from a star. Lucy and Solomon (1971)
applied this theory to explain the mass loss from O stars.

A few years later Castor, Abbot and Klein (CAK, 1975) produced the
seminal work of radiation-driven stellar wind theory, the goal of which was to
predict the phenomenon we observe, namely the mass loss rate and terminal velocity
of the wind. The main details of this theory, which is the basis of this thesis, will be
left for chapter 2. However, a brief discuséion of the assumptions and shortfalls of
CAK theory is merited.

Assumptions:

1.) Momentum is transferred from the radiation (photons) to the gas.

2.) The wind may be treated as an ideal fluid since it is highly ionized.

3.) The wind is isothermal (does not change in temperature).

4.) The wind is steady-state (does not change in time).

5.) The wind is spherically symmetric.

6.) The star is not rotating.

7.) The star has no magnetic field.

8.) The star is treated as a point source of radiation.

10



CAK theory predicts mass loss rates that are 100 times greater than those predicted
by Lucy and Solomon. These rates compare much better with observation. The
CAK terminal velocities are lower than observations by a factor of two or three for
hotter stars and compare fairly well for the cooler O and B stars.

The shortfalls of CAK theory are found in the assumptions. Take for
example the spherically symmetric assumption. Upon examination of this image of

our own sun, it is apparent that the wind is not spherically symmetric.

Figure 1.8

http://umbra.nascom.nasa.gov/images/latest _eit 1 7J.gif

Il
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The observations of our own sun indicate not only that the solar wind is not
spherically symmetric, but that the temperature does change as a function of the
radius, and the wind rotates. We also know that the sun has a magnetic field and is
not a point source. Regardless of its shortcomings, CAK theory was an excellent
beginning to our understanding of radiation-driven stellar winds.

Several modifications have been made to the CAK theory. These include:

1.) Abbott (1977,1979) and Caétor(l979) incorporated a much larger sample
of spectral lines and a more correct treatment of the equations of radiation
transfer to improve predictions.

2.) Friend and Abbott(1986) included the “finite disk factor™ to compensate
for the fact that the star is not a point source, but has some dimension. If
the star is considered to be a point source, the line force is overestimated
near the star and underestimated far from the star. This correction alone
reduces the mass loss rate and increases the terminal velocity, bringing
the results in better alignment with observations.

3.) Other additions or modifications to the theory have addressed many of
the original assumptions and include rotation, magnetic fields, time-
dependence, pulsations, oscillations, photospheric perturbations,
asymmetries, and so on.

Overview of my research

In this work, 1 have used the original CAK model, with the assumptions that the

wind is not isothermal and that the star is not a point source. Being that the solar

wind is driven by thermal gradients, we may expect that a much hotter star would
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drive it’s wind in the same fashion. I have chosen an adiabatic temperature

distribution which I derive in Chapter 2:

) -1
| G |
_ star
T=T,|
r'v

where T, is the temperature where the velocity of the wind is equal to the sound

speed, rswr is the radius of the star to the photosphere, and y is ¢cp/cv . In chapter 3, my
results will be compared with those of the Friend and Abbott finite disk model and
with observations of terminal velocity and mass loss rates for a sample of stars. And
finally, Chapter 4 summarizes this work and discusses the effects of the non-

isothermal assumption upon the theory.



Chapter 2

Derivation of Equations and Method of Solution

The basic equation of fluid motion is derived from the Navier-Stokes equation

—

13_:"_+(v-\‘7)V=-lv1>+vvzv+36(v\7)+£ (2.1)
ct p 3 m

where v is velocity, P is pressure, p is density, v is viscosity, F is force and m is
mass.

The terms on the left-hand side of the equation represent the fluid acceleration,
the last term on the right-hand side represents body forces on the fluid, such as gravity,
and the remaining terms represent surface forces, such as pressure and viscous forces.
The first step in the derivation is to incorporate the assumptions mathematically. Recall

the assumptions as introduced in Chapter 1:

—

1) Steady-state flow: & = ‘e =0

ct ot
2) Inviscid flow: v=0
3) Irrotational flow: Vxv=0
4) Spherically symmetric flow
5) Isothermal flow
6) No magnetic field
The Navier-Stokes equation then becomes

yav_ 1P GMA-D) MLy o)
dr p dr r r

where the following definitions apply:

14
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1) M(t) is the force multipl;er involved in the force per unit mass due to the
radiation force provided by a number of spectral lines (Friend, 1982).
Abbott(1977, 1982) calculated the force multiplier and found that it may be
approximated by M(t)=kt™. In this work the values used for k and ¢. are 0.18
and 0.61 respectively, as found by Abbott. The function t is the optical depth

in the wind (CAK, 1975)

dv)™
t=0C.pvy [EI—J (2.3)

where . is electron scattering opacity (0.2 cmz/g in this model) and vy, is the
mean thermal velocity of the protons in the wind with a temperature equal to the
effective temperature of the star.

2) P is the pressure.

3) G is the universal gravitational constant.

4) ris the radius.

5) T is the ratio of the star’s luminosity to the Eddington luminosity at which the

radiation pressure force equals the force of gravity.

_ oL
T 4nGMc

(2.4)

Substituting for M(t) and t in equation 2.2 we obtain

Ve— = ——— =

dv. 1dP GMI-T) GMI (dv 1 \°
9 + 9 k
dr p dr re r-

dr c.pvy,
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We may combine this momentum equation with the mass continuity equation to
eliminate p, the density, from the last term. The continuity equation states that no
material is created or destroyed in the static wind, so the same amount of mass flows per

second through a sphere at any distance r from the center of the star.

ﬂ-—M 4nrlpv
dt
M

4nrlv

Substituting this in for p in the last term of the momentum equation, we obtain

dv_ 1dP GM(1-T) GMI |dv 4nr’y
Ve = — — + k| ———
dr  pdr r? r? dr

Mcr eVin

Combining terms and allowing

a

C=GMIk| — (2.5)

c. vy M

the general form of the CAK equation becomes

dv_ 1dP GM(-T) (rzvd_v)a 2.6)
r? -

V—==— 4+
2 dr

dr p dr r



To progress further towards solving equation 2.6, we must write the pressure P using an
equation of state. CAK uses P=pa® where a is the isothermal sound speed. I choose P to
have a temperature dependence by using the ideal gas equation of state:

_kpT

pmy

P

(2.7)

where k is Boltzmann’s constant, T is temperature of the wind, my is the mass of

hydrogen, and p is the mean molecular weight of gas particles in the wind which can be

approximated as the following:

1 ox+2v+lz (2.8)
4 2

1
where X, Y, and Z are the mass fractions of hydrogen, helium and heavy elements in the
wind. For O and B star models, these fractions are assumed to be X=0.73, Y=0.24,
Z2=0.03 (Cranmer, 1996)

The temperature distribution for equation 2.7 is derived from the adiabatic

relation as follows:

P=k,p" =k,pT where k| and k, are constants
p! =kpT
T=kp"" (3

Using the continuity equation

2
dnrlp vy =4mrypyv,

17



We get

P2 v

If we write (a) as

T,
T,

substitute equation (b) into it, we get

b y-1
T, (r{v, )
—_ = 7 9
T, ry V3

Which can be rewritten as

in which r« is the radius to the star’s photosphere, and T, is the temperature at the star’s

photosphere. Hence, I substitute

2 !
r, a -
P=kaO[—2~} (umy)™ (210)
T Vv

into equation 2.6 with the new variable A=k/umy and obtain

2 v-1 y-1 , .
—2AToy[r'2a} r—AToy(--——J Y 4w+ GMI =T) = C(r2w)* =0 (2.11)
r'v v

18
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where dv/dr = v’. Combining the r terms and defining W as W=ATy(r.2a)"" , I obtain

~2W Wy,
F= A —+ W+ GM(1-T) = CE(r, v, V)(©?wW)* =0 (2.12)

R IV - Y
r2f3yrt o gty

where I have included the finite disk factor of Friend and Abbott(1986).

’ a
v

v

f= 5 (2.13)
(1+o¢)csr$2
r
where
c—icb—/-l and pu_ = l—r':
vdr r-

(all the required derivatives of the functions f and F may be found in appendix A).
Equation 2.12 may be written in a simplified form to assist in the graphical analysis to

follow:

N(r, v)v'+H(r, v) = Q(r, v)v'® (2.12a)

Equation 2.12 is nonlinear, so for a given r and v there is not a unique solgtion for v’ and
there is no analytic solution. In order to determine the solution numerically, I follow the
graphical solution technique of CAK (see figure 2.1). For equation 2.12, we find that

there can be zero, one or two solutions depending on the values (positive or negative) of

N, H and Q in equation 2.12a (Friend, 1982).
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—

‘Region 1 in ﬁ.gure 2.1 represents the area where r<r, and v>a. This region is the
only area in which two solutions are possible—N and H are both positive. In region 1 is
also the singular locus, defined by equation 2.15 below, which separates the area of no
solutions from this area of two solutions.

Region 2 represents the area where r>r, and v>a, or where H<0 and N>0, and
there is only one solution possible. Region 3 is the area where r<r, and v<a, H>0 and
N<0, and once again there is only one solution possible. Region 4 has no solutions for
subsonic velocities at radii far from the star (r>r, and v<a).

Examining figure 2.1 leads us to the conclusion that our unique wind solution
must progress smoothly from subsonic to supersonic velocities and must graze the
singular locus. How do we determine this solution analytically? The condition that the
solution touch the singular locus in region 1 tells us that equation 2.12 has only one
solution at this singular or critical point given by the singularity condition—equation
2.15. The condition that the velocity gradient be continuous at the critical point gives us
the regularity condition—equation 2.16 (derived from dF/dr=0). Combining the

momentum equation (2.12) with the singularity and regularity conditions we have

F=0  (2.19)
F oo @is)
ov

oF  OF

+—v'=0 (216
—~ (2.16)

These equations enable us to solve forr, v, and v’ at the critical point. This is the only

point through which the correct solution for the wind will pass (figure 2.1 )



FINDING THE CRITICAL POINT

There are several steps necessary to solve forr, v, and v’ at the critical point:
(The Fortran code used to solve for the critical point and find the entire wind
solution may be found in Appendix B)
1) Solve equation 2.12 for C.

2) Calculate the derivative of equation 2.15 and substitute in for C to get

| — - c
f, = T +r2v—(fv,f |+—,]N=0 (2.17)
e’y v
where
-2W Wy’ 2. .
N= P23yl - I‘27‘4VY +r°vw +GM(1-1)

3) Calculate the derivatives of equation 2.16 and substitute in for C to get

COW(2y+3) W(=2y+4)v’ SOW(—y D) YW
t, = - +2rvw'+ v’ + +r
r27—2vy—l r27—3vy rZ*{—va r2~,--—4vy+l
£
-Nf"(v'fv-r-a v +fr+2—afJ=0 (2.18)
v r

4) Solve the two equations, f; and f>, using coupled iterations as follows.
The total derivatives of f; and f> will be equal to zero. With x=v and

y=v’, we obtain
pe
0=f, +—'dx+@dy
ox oy

e
0=1, +%—dx+—2-dy
ox

d
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Let us rewrite these equations in matrix form with the definitions
We know f| and f;, and we can calculate a, b, ¢, and d (partial derivatives

of the finite disk factor). Consequently we can solve for dx and dy:

of, of, _o, _of

a:—-—-—, b:——l, = —

dx dy ox dy

I ERMIN

bf, —df dy =
ad-bc( 2 ) Y ad - bc

dx =

(cf, —af,)

5) To find x and y (or v and V') at the critical point, we do the following:
a) Select a critical .radius Terit-
b) Make initial guesses for x and y (Veric and v'erit)
¢) Solve for dx and dy.
d) Calculate dx/x and dy/y. If one or both of these is greater thﬁn
1 x 107, then increment x by dx and y by dy and solve for dx
and dy again.
e) When both dx/x and dy/y are less than 1 x 107, Verie and Vet
have been found for the-given critical radius.
The critical point analysis also allows us to determine the mass loss rate by
solving equation 2.5 (as long as the correct value for the critical radius was

chosen. How we know this is discussed in the next section).

. 4n (GMIk )/«
M = . (2.19)

O'::Vlh
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in which C is calculated from equation 2.12.
FINDING THE COMPLETE WIND SOLUTION

Upon examination of figure 2.1 we see that the correct wind solution passes
through the critical radius. Our equation of motion (2.12) may now be numerically
integrated outward and inward from this critical radius. In order to be certain we are on
the correct solution branch, we begin with the velocity gradient calculated in the critical
point subroutine and step outwards along a solution branch. If we do not step “steeply”
enough, the integration will “crash.” Initial step size adjustments must then be made in
the computer code to ensure progression along the correct solution branch. The
integration continues outwards to a specified radius (~40 stellar radii). The integration
then returns to the critical point and continues inwards to the photosphere, or “surface”
of the star. We define the photosphere (r=1 stellar radius) to be at the point where the
optical depth is 2/3 (this is in fact how the photosphere is defined). If the calculated
value for the radius does not equal unity when the optical depth is 2/3, we know that our
critical radius was either too far from or too near the star. If this is the case, we simply
adjust r.r; and run the integration again until r=1 when optical depth=2/3. We have then

found a complete stellar wind solution.



Chapter 3

Results

The results of the numerical solution of the wind equation of motion will now be
discussed for a variety of stellar parameters. Of primary interest is the comparison
between this non-isothermal, finite-disk model and the finite-disk model of Friend and
Abbott(1986). I am particularly curious whether or not the isothermal assumption is
valid for these very hot stars.

What does a stellar wind solution look like? Figure 3.1 shows how the velocity
changes with radius for an O9.5I11 star (the general shape of the curve remained the
same for all stars I examined). Note that the velocity asymptotically approaches a value
known as the terminal velocity.

Figure 3.1a displays a typtcal temperature vs. radius curve for the same star.
Note that the temperature increases rapidly as we approach the star’s surface, but that we

find the effective temperature to be very near the photosphere.
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TEMPERATURE VARIATION FOR FIXED STELLAR PARAMETERS

As a first test of the non-isothermal code, I have looked at several different stellar
types holding their parameters constant while varying the temperature for each case.
The parameters used are given in table 3.1 (Drew, 1989). The wind solutions for two of
these stars are illustrated in Figures 3.2 and 3.3. The temperature variation makes a

difference in the terminal velocity of the star’s wind on the order of 10%.



Spectral Type

Supergiants
0851

09l

07.51

06.51

O N

041

031

Giants
a5l
o9 1
07.51
06.511
06 1l

Temp (K)

30000
32500
35000
37500
40000
45000
50000

30000
32500
35000
37500
40000

Main Sequence Dwarfs

BOV
o9V
o7V
o8V
06.5V
o5V
o3V

30000
32500
35000
37500
40000
45000
50000

{/Lsun

3.0E+05
4.1E+05
6.3E+05
9.4E+05
1.2E+06
1.3E+06
2.0E+06

1.2E+05
1.7E+05
2.3E+05
3.7E+05
4.8E+05

5.4E+04
7.5E+04
1.0E+05
1.8E+05
2.3E+05
4 9E+05
7.5E+05

Table 3.1
Basic Stellar Parameters

R/Rsun

20
20
22
23
23
19
19

13
13
13
14
14

8.5
8.5
8.5
10
10
1
11

log g

3.0
3.3
3.3
3.5
3.5
4.0
4.0

3.5
3.8
4.0
4.0
4.0

3.5
3.8
4.0
4.0
4.0
4.0
4.0

dM/dt
(Msun/yr)

4.8E-07
8.3E-07
1.8E-06
3.5E-06
5.5E-06
6.0E-06
1.2E-06

1.0E-07
1.8E-07
3.0E-07
7.0E-07
1.1E-06

2.6E-08
4 5E-08
7.5E-08
2.0E-07
3.2E-07
1.1E-06
2.3E-06

Vierm (kmMY/s)

1800
1800
1800
2300
2300
2900
2400

2900
2900
2900
2900
2900

3200
3200
3200
3200
3200
3200
3000
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TERMINAL VELOCITY AND MASS LOSS VS EFFECTIVE TEMPERATURE

Figures 3.4 and 3.5 summarize the effects of temperature variation for fixed
parameters on the terminal velocity and mass loss rate of the star. Mass loss was found
to increase as the temperature increased, while the terminal velocity of the wind
decreases as the temperature increases (the more mass the star is trying to expel, the
slower the wind may go). The terminal velocity decreases on the order of 7% and the

mass loss increases on the order of 5% over the range of temperatures in these samples.
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MASS LOSS VS. LUMINOSITY

For the second exploration, I have calculated the mass loss rate versus luminosity
for each spectral type listed in table 3.1. The calculations are made for both my model
and the finite disk model and are presented graphically in figure 3.6. Friend and Aboott
(1986) sought to show this important correlation between mass loss and luminosity.
Observationally, mass loss rate increases with the luminosity, roughly as a power law.
Both the Friend and Abbott model and my mode! show such a correlation. There are
few discrepancies between the results of the two models, and the slopes of the linear fits

are within 4%.
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Chapter 4

Conclusions

The field of radiatively-driven wind studies has grown immensely in its
complexity since the days of Castor, Abbott and Klein. Most of today’s current
theories are based on the original CAK theory in which the researchers whittle away
at its simplifying assumptions.

My graphical results are summarized as follows:

1) Increasing the effective temperature for a particular star decreases the

wind’s terminal velocity and increases the mass loss rate of the wind.
Certainly increasing the temperature of the star's photosphere results in
more mass being expelled. This increase in mass loss has the net effect of
slowing down the wind, thus reducing the terminal velocity.

2) The mass loss rate is found to grow, nearly, as a power law with the
luminosity of the star. My mass loss-luminosity results compare quite
well with those of the Friend and Abbott model.

Comparisons of the non-isothermal, finite disk model and the finite disk
mode! of Friend and Abbott clearly demonstrate, for the data analyzed, that the
isothermal assumption, which maﬁy theories use, is a reasonable approximation.
Initially, it seemed that the winds of these very hot stars should be affected by such
extreme temperatures. I expected that the mass loss rates would rise and the terminal
velocities drop in comparison with the isothermal, finite disk results. It turned out

that the terms in the equation of motion (2.12) which are affected by the -
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temperature—the first two terms—were consistently several orders of magnitude

smaller than the last term in equation 2.12, the radiation force term. After examining

these terms, [ was certainly not surprised that the temperature dependence had a

negligible effect.

My results match some observations more closely than the Friend and

Abbott model (see below), but our results rarely differ by more than a few percent.

The observational data in the chart below has been taken from Drew (1989).

Star Vierm (km/s) Vierm (km/s) Vierm (km/s)
Non-Isothermal Finite Disk Model | Observation
Model
0751 2120 2277 1800
07.5111 4334 4378 2900
o7V 3705 3719 3200
HD 37043 2345 2440 2430
HD 37128 1867 1692 1500

My results indicate that the inclusion of a temperature dependence is not a

rnecessary complication in order to improve the accuracy of results. Allowing the

wind to be isothermal reduces complexity in the equation of momentum, thus easing

(a bit) the computations of additional effects such as magnetic field, rotating winds,

pulsations and a variety of other phenomena.




Appendix A
Derivatives of
F and {
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Appendix B
The Model’s
Fortran Code
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C CAK MODEL WITH FINITE DISK FOR STAR
USE MSFLIB

COMMON/IDAT/DMDTDO,SIGE,ONEMAL,ALOIMA,TWOALP,VTH,GAMGMK,TWOMAL,GAM
2,GM, F5, GAMC
COMMON/DERM/FLAG, ALPHA, RALP,C,F7,F3,R2, ARP, CNEPAL, VPLAST, FC,
2RPORS, TNOT, WN, rccrit, vpcguess

DIMENSION V(2),VP(2),WORK(20), IWORK(5),RORP(100),VKMS(100),
2RDUM(50),VDUM(5Q)

EXTERNAL DER

LCCZICAL FLAG

Real L

INTEGER(4) frequency, duration
frequency = 1000
duration = 333
A=3.E6
RA2=A*R
AKMS=A/1.ES
VTH=A
ALPHA=.61
RALP=1./ALPHA
ONEPAL=1.+ALPHA
ONEMAL=1.-ALPHA
TWOMAL=2.-ALPHA
ALO1MA=ALPHA/ONEMAL
F7=-1./0ONEMAL
F8=ALPHA*ONEMAL** (1./ALO1MA)
TWIALP=2 . *ALPHA
XK=.18
OPEN (UNIT=7,FILE='finite2.dat', STATUS='REPLACE',ERR=110)
PRINT 9000

9000 FORMAT ('INPUT DATA: rcfac,rpors,mass')
READ(*, *)rcfac

5200 ve=1.3

vpe=100.
L=1.*%10**5.70
RPORS=11.
o] GRAV=10**(4.0)
c XM= (GRAV/1.E2* (RPORS*6.9599E8)**2/6.67E-11)*1.E3/1.989E33
xm=52. ‘ .
c tnot=((L*3.9%e33)/(4*3.14159* (rpors*6.96el0)**2+*5.67e-5))**.25
rpOrsSun=rpors
PFAC=.2
GAMC=1.6666667
TMOT=46400.
SIGE=.2

GM=XM*1.3273E26
GAM=SIGE*L*1.035E22/GM
GAMGMK=GAM*GM*XK
F5=GM* {gam-1.)
RP=RPORS*6.96E10
RP2=RP*RP



2300

2301

2000

AORP=A/RP
ARP=A*RP
ARPZ=A*RP2
A2RP=A2*RP
BOLT=1.38E-16
HYDROGEN=1.67E-24

WN=(BOLT/ (16.65e-1*HYDROGEN) ) *TNOT*GAMC* (RPORS*6.96E10) /a2rp
ITER=1

DR=1.E-2*RCFAC

HDR2=.5*DR**2

CALL CRITPT(RCFAC,VC,VPC,V2)
open(4,FILE='FIN33.DAT',status="replace',err=110)

Write(4,*)'rc, vc, vpc',rcfac, ve, vpe

DMDT=DMDTDO*1.39928E-25

VCRC2=VC*R2

IT=1

WRITE(7,2300)

FCEMAT (53X, 'L/Lsun’', 8%, 'R/Rsun', 7X, '"M/Msun', 7X, 'PFAC', 94, 'CMDT")

write(4,*)'This is CAK with finite disk for the following values:'
write(4,*)1, rpors,xm,pfac,drdt, tnot

write(4,2301)
Format (6X, 'r/R*',8X, "V(KM/3) ', 68X, 'VP(/S5)"', 6%,
3'RHO(G/CM3)',6X,'TAU', 11X, 'F")

WRITE(7,2000)L, RPORS, XM, PFAC, DMDT

RHO=DMDTDO/VCRC2/ARP2

VKMS (1) =VC*AKMS

VBEPS=VPC*ACRP

V(2)=0.

RORP (1) =RCFAC

rov=sqgrt{r2)/vc

RVPOV=ROV*VPcC

SIGMA=RVPOV-1.

onepal=1.+alpha

U2=1.-1./R2 _
Fc=r2* (RVPOV-(1.+SIGMA*U2) **ONEPAL/RVPOV**ALPHA) /ONEPAL/SIGMA

TEMP=TNOT* (1./ (RCFAC**2+*VC) ) ** (GAMC-1.)
WRITE(4,2000)RCFAC,VKMS (1), VPPS,RHO,V(2),FC

open(22,file='rvoutput.dat',status='replace',err=110)
write (22, *)rcfac,vkms (1), TEMP

FORMAT (1X, 6E13.5)

FLAG=.TRUE.

F1=VC+HDR2*V2

DRVPC=DR*VPC

F2=-DMDTDO*SIGE*dr/ (VCRC2) /ARP

R=RCFAC+DR .

V{1l)=.985* (F1+DRVPC)

a7



22

23

4000

12

3000

V(2)=F2

RND=R+PFAC/ (VPC/VC+2./R)

IFLAG=1

VPLAST=VPC

eps=1.0e-3

epsa=1.0e-6

CALL RKFN(DER,2,V,R,RND, eps, epsa, IFLAG, WORK, IWORK)
IF(IFLAG.GE.3)WRITE(7,*) 'IFLAG=", IFLAG

R=RND

CALL DER(R,V,VP)

RHO=DMDTDO/V (1) /R**2/ARP2

IT=IT+1

RORP(IT)=R

VKMS (IT)=V (1) *AKMS

VPPS=VP (1) *AORP

rov=r/v{l)

RVPOV=ROV*VP (1)

SIGMA=RVPOV-1.

onepal=1l.+alpha

U2=1.-1./R**2

Fc=R2* (RVPOV-(1.+SIGMA*U2) **ONEPAL/RVPOV**ALPHA) /ONEPAL/SIGMA
TEMP=TNOT* (1./(R**2*V (1)) )** {(GAMC-1.)
WRITE(4,2000)R,VKMS (IT),VPPS,RHO,V(2),FC
open{22,file="'rvoutput.dat’',status="replace',err=110)
write(22,*)r,vkms(it), TEMP

RNO=R+PFAC/ (VP (1) /V(1)+2./R)

IF(R.LT.40..AND.IT.LT.75)GO TO 22
IMAX=IT

VINF=VKMS (IT)/SQRT{(1.-1./R)

WRITE (4,4000) VINF

FORMAT (/' TERMIMAL VELOCITY = ',6E13.5/)
FLAG=.FALSE.

dr=1l.e-4*rcfac

drvpc=dr*vpc

hdr2=.5*dr**2

fl=vc+hdr2+*v2

R=RCFAC-DR

V{1l)=.995* (F1-DRVPC)

V(2)=F2-V(2)

RND=R-PFAC/ (VPC/VC+2./R)

IFLAG=1

IT=0

CALL RKFN(DER,2,V, R, RND, eps, epsa, IFLAG, WORK, IWORK)
IF(IFLAG.GE.3)WRITE({7,*) 'IFLAG=",IFLAG
FORMAT (X, "IFLAG= ',Il)

R=RND

CALL DER(R,V,VP)
RHO=DMDTDO/V (1) /R**2/ARP2

IT=IT+1

RDUM(IT)=R

VDUM(IT)=V (1) *AKMS

VPPS=VP (1) *A0ORP

rov=r/v{l}
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20

5000

110
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RVPOV=ROV*VP (1)

SIGMA=RVPOV-1.

onepal=1l.+alpha

U2=1.-1./R2

Fc=R2* (RVPOV-(1.+SIGMA*U2) **ONEPAL/RVPOV**ALPHA) /ONEPAL/SIGMA
WRITE(4,2000)R,VDUM(IT),VPPS,RHO,V(2),FC

TEMP=TNOT* (1/(R**2*V(1)))**(GAMC-1.)
open(22,file="rvoutput.dat',6 status="'replace’',err=110)
write(22,*)r,vdum(it), TEMP

IF(V(2).GE..B67)GC TO 20
IF(RHO.GE.1.E-8)GO TO 2C
RND=R-PFAC/ (VP (1) /V(1)+2./R)

GO TO 12

RCFACL=RCFAC

RCFAC=RCFAC-R+1.

WRITE(4,5000) RCFACL, RCFAC
ifi(abs{rcfacl-rcfac)).gt.le-4)go to 5200

FORMAT (X, '"RCFAC= ',2E14.5)
open(unit=6,file="mdotvslumdata.txt', status='o0ld’', access="'append'
2,err=110)

write (6, *)tnot,l,xm,rpors,dmdt,vinf, rcfac

CALL BEEPQQ(frequency, duration)

STOP
END



SUEROUTINE CRITPT(RC,VC,VPC,V2)

COMMON/IDAT/DMDTDO, SIGE, ONEMAL, ALO1MA, TWOALP, VTH, GAMGMK, TWOMAL, GAM
2,GM, FS,GAMC '
COMMON/DERM/FLAG, ALPHA, RALP,C, F7, F8,RC2, ARP, ONEPAL, VPLAST, FC,
2RPORS, TNOT, WN, rcerit, vpcguess

real(4) n,m,nv,nvp
LOGICAL FLAG

onenal=1.+alpha

VCe=VC*VC

AR=3.E6

R2RP={(3.e6) **2*rpors*6.96el0
GAMC=1.6666667

BOLT=1.38E~-16

HYDROGEN=1.67E-24

RC2=RC**2

UC2=1.-1./RGC2

F1=ONEPAL/RC2

WRITE(7,2000)

ITER=0

WRITE(7,1000) ITER, VC, VEC

ONEOV2=1./VC/VC

RCOVC=RC/VC |

R2VVP=RC2*VC*VEC

RVPOV=RCOVC*VPC

SIGMA=RVPOV-1.

Fl=3c2* (RVPOV~- (1. +SIGMA*Uc2) * *ONEPAL/RVPOV**ALPHA) /ONEPAL/SIGMA
F9=F1*EC

VSIGMA=VC*SIGMA

ROVSIG=RC/VSIGMA

F11=1.+SIGMA*UC2

F12=(F11/RVPOV) **ALPHA
FVPOF=RC/VSIGMA* ((1.-F12* (ONEPAL*UC2-ALPHA/RVPOV*F11))/F9-1.)
ALPOVP=ALPHA/VPC
FVP20F=-ROVSIG* (ALPOVP*F12* (1. /RVPOV-UC2/F11) /EC+2. *FVPOF)
VPOVSG=VPC/VSIGMA

R3VPOV=RC2 *RVPOV

TWOSIG=2.*SIGMA

F14=UC2+TWOSIG/R3VPOV

F14F11=F14/F11

FROF=VPOVSG* ( (3.-F12* (ONEPAL*F14~TWOMAL/RVPOV*F11)) /F9-1.)
ALPOVC=ALPHA/VC

F15=UC2-ALPHA/R3VPOV

FVOF=-VPOVSG*RCOVC* ((1.-F12*F15) /F9-1.)

F16=ALPOVC+EVOF

F17=2. *RVPOV*RC*ONEOV2

F18=F12* ( (ALPHA-4.) /RVBOV+ALPHA*F14F11) /FC
FRVOF=-VPC/SIGMA*ONEOV2* (F18+VC*FVOF-RC* FROF)
F19=1./RVPOV-F15/F11

FVVOF= (2.* (RVPOV/SIGMA-1.) *EVOF-ALPHA/FC/ONEPAL/VSIGMA*F12*RVPOV
2+F19)/vC

RCVC=RC*VC
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Defining fvpvof

F66=RC/ (VC*SIGMA)

F67=(1+ALPHA) /RC**2

Fe8=~ (VC/(RC*VPC) ) **ALPHA*ALPHA*F11** (ALPHA-1.) *UC2* (-RC*
2VPC/VC**2})

F69=0ONEPAL*UC2-ALPHA*VC/ (RC*VPC) *F11

F70=-(VC/ (RC*VPC}) **ALPHA*F11**ALPHA

F71=ALPHA*VC/ (RC*VPC**2) *F11-ALPHA*VC/{RC*VPC) *UC2* (-RC*
2VPC/VC**2)

F72=RC* (SIGMA+VC* (-RC*VPC**2/VC**2)) / (VC*SIGMA) **2
F73=1.-(VC/ (RC*VPC) ) **ALPHA*F11**ALPHA* ( (1.+ALPHA) *UC2~
2ALPHA*VC/ (RC*VPC) *F11)

FVPVOF=F66* (F67* (F68*F69+F70*F71) /F67**2-FVOF)-F72*F73/F67

EVVPOF=ROVSIG/VC* (ALPHA/ONEPAL*F12*F19/FC+VPC*FVPOF-VC/RVPOV*EVQOF)
FRVPOF=(F18-VPC*FVPOF-VC/VPC*FROF) /VSIGMA

F3=FVOF*FVPOF-FVVPOF

FRROF=~VPOVSG/RC* (F12/FC/ONEPAL/RVPOV* (4. *RVPOV*ONEPAL-TWOSIG* (2. *
ZALPHA+S . ) +TWOMAL+ALPHA* (TWOSIG-1.)* (ONEPRL*RVPOV*F14F11-TWCOMAL) ) +
32.*RC*FROF* {1.+SIGMA/RVPOV}+2.)

Beginning cf my changes

WN=(BOLT/(16.65e-1*HYDROGEN) ) *TNOT*GAMC/a**2

split up N into parts so that I can see where the flcating point error is
F5=GM* (gam-1.)

N==2.*WN/ (RC** (2.*GAMC-3.) *VC** (GAMC-1.))-WN*VPC/ (RC** (2. *GAMC-
2 4.)*VC**GAEMC)+R2VVP-F5/a2rp

Pl=-WN/ (RC** (2*GAMC-4) *VC**GAMC) +Rc2*vc~ (FVPOF* (1/FC) +ALPHA/VPC) *N
Since p2(f2)is so long, I am going to divide it up into parts labkeled g

QI=-2.*WN* (-2 . *GAMC+3.)/(RC** (2. *GAMC-2.)*VC** (GAMC-1.})
Q2=WN* (-2 .*GAMC+4.) *VPC/(RC** (2. *GAMC-3.) *VC* *GAMC)
Q3=2.*R2VVP/RC

Q4=-2.*WN* (-GAMC+1) / (RC** (2.*GAMC-3.) *VC**GAMC)
Q5=GAMC*WN*VPC/ (RC** (2.*GAMC-4.) *VC** (GAMC+1.))
Q6=R2VVP/VC
Q7=VPC*FVOF+ALPHA*fc*VPC/VC+FROF+2*ALPHA*FC/RC

P2=Q1-Q2+Q3+VPC* (Q4+Q5+06) -N* (1/FC) *Q7

Now for a,b,c,d terms of the matrix. a=flx, b=fly, c=£f2x, d=fly
Each matrix term is broken down into parts labeled matal, etc

NV=-2*WN* (-GAMC+1.) / (RC** (2*GAMC-3.) *VC**GAMC) +WN*VPC*

2 GAMC/ (RC** (2*GAMC-4.)*VC** (GAMC+1) ) +R2VVP/VC
NVP=-WN/ (RC** (2*GAMC-4.) *VC**GAMC-4.) +R2VVP/VPC

tMATAL=WN*GAMC/ (RC** (2*GAMC-4.) *VC** (GAMC+1.))



tMATA3=(NV/FC-N*FVOF/FC**2) *FVPOF

tMATA4=N*FVPVOE/FC
tMATAS=ALPHA* (NV/VEC)

AMAT = tMATAl+rc*rc-tMATA3-tMATA4-tMATAS

tMATBl=NVP/EFC-N*EVPOF/FC**2
tMATB2=N*FVP20F/FC
tMATB3=ALPHA* (NVP/VPC-N/VPC**2)

BMAT = -tMATB1-tMATB2-tMATB3

tMATCl==-2*WN* (-2*GAMC+3) * (-GAMC+1) / (RC** (2*GRMC-2.) *VC**GAMC)
tMATC2=WN* (-2*GAMC+4.) *GAMC*VPC/ (RC** (2*GAMC-3.) *VC** (GAMC+1) )
tMATC3=2*RC*VPC

tMATC4=2*WN* (=GAMC+1.) *GAMC/ (RC** (2*GAMC-3. ) *VC** (GAMC+1.))
tMATCS=GAMC*WN*VPC* (-GAMC-1.)/ (RC** (2*GAMC-4.) *VC** (GAMC+2.))
tMATCE=NV/FC-N*FVOF/FC**2
tMATC7=FROF+2*FC*ALPHA/RC+VPC*FVOF+FC*ALPHA*VPC/VC
tMATC8=FRVOF+2*FVOF*ALPHA/RC+VPC*FVVOF+ALPHA*VPC* (FVOF/VC-
2FC/VC**2)

CMAT=tMATCLl+tMATC2+tMATC3+VPC* (tMATC4+tMATCS) -tMATC6*tMATCT - (N/FC)
Z*tMATCS

tMATD1=-WN~* {-2*GAMC+4) / (RC** (2*GAMC-3.) *VC**GAMC)
tMATD2=2*RC*VC

tMATD3=2*WN* (~GAMC+1.)/ (RC** (2*GAMC-3.) *VC**GAMC)
tMATD4d=2*GAMC*WN*VPC/ (RC** (2*GAMC-4.) *VC** (GAMC+1.))

tMATDS=2*RC2*VPC

tMATD6=NVP/FC-N*FVPOF/ (FC*FC)
tMATD7=FROF+2*FC*ALPHA/RC+VBPC*FVOF+FC*ALPHA*VPC/VC

. tMATD8=FRVPOF+2*FVPOF*ALPHA/RC+FVOF+VPC*FVVPOF+ (ALPHA/VC) *
2 {FC+FVPCF*VPLC)

DMAT=tMATD1+tMATD2-tMATD3+tMATD4+tMATD5~tMATD6*tMATD7 - (N/EC)
2*tMATDS

Now rewriting terms det, dvc, dvpc to get new dx and dy

DET=AMAT*0OMAT-BMAT*CMAT

DVC= (BMAT*P2-DMAT*P1) /DET

VC=VC+DVC

DVPC=(CMAT*P1-AMAT*P2) /DET

IF(VC.LT.0)VC=1.

VPC=VPC+DVPC

IF(VPC.LT.0)VPC=1.

ITER=ITER+1
WRITE(3,1000)ITER,VC,VEC, (dvpc/vpc), (dvc/ve), rc

IF(ITER.GT.80 GO TO 1500



1500

12

IF(ABS (DVPC/VPC).GT.1.E-5)GO TO 8

IF(ABS(DVC/VC).GT.1.e-5)GO TO 8

IF( (ABS(DVPC/VPC) .1t.1.E-5).and. (ABS(DVC/VC).1t.1.e~-5))GO TO 9
attempt to iterate on r,v,vp so i don't have to manually
change them to get critpt to converge

iter=0

it=it+l

il=1t/350.

i2=int (il)

IF(((DVC/VC).LT.5.E-4) .AND. ( (DVPC/VPC) .LT.5.E-4))GO TO 12

ve=1l.3+12*%.,1

iterate=iterate+l

i3=mod{iterate, 350)

if(i3.eqg.0)iterate=0.

vpc=100.+.1*iterate

if((vec.gt.6).and. (vpc.gt.700))gc to 60 .
if(it.gt.10000)go to 60
writé(7,*)'vc,vpc,iter=',vc,vpc,it,(dvc/vc),(dvpc/vpc)
go to 8

VC=VC+.01

VPC=VPC+.2

go to 8

write(7,*)'Final convergence:vc,vpc ',vc,Vec
Cl=-2*WN/(RC** {2*GAMC-3. ) *VC** (GAMC-~1))

C2==-WN*VPC/ (RC** (2*GAMC—-4.) *VC**GAMC) +R2VVP-FS/alrp
C3=(R2VVP) ** (ALPHA) *FC ’

C=(Cl+C2)/C3

DMDTDO= (GAMGMK*A2RP** (ALPHA-1.) /C) **RALP/ (SIGE*VTH)

Now doing v". Must first write Fv'v', Frr,Frv,Frv'EFuv'.
As before break each of these down, labeling them as dblvpvgl, etc

DBLVPVP=-C*R2VVP**ALPHA* (FVP20OF+2. *ALPHA*FVPOF/VPC+ALPHA~FC™
2{ALPHA-1.)/VPC**2)

DBLRR1=-2*WN* (-2*GAMC+3.) * (-2*GAMC+2.)/ (RC** (2*GAMC-1) *VC** (GAMC-1
2.))

DBLRR2=WN* (=2*GAMC+4.) * (=2*GAMC+3.) *VPC/ (RC** (2*GAMC-2.) *VC* *GAMC)
DBLRR3=2*VC+*VPC

DBLRR4=FRROF*R2VVP**ALPHA

DBLRRS=FROF*2*ALPHA*R2VVP**ALPHA/RC
DELRR6=2.*FC*ALPHA*R2VVP**ALPHA* ( (2. *ALPHA-1.)/RC**2)

DBLRR=DBLRR1-DBLRR2+DBLRR3-C* (DBLRR4+2*DBLRR5+DBLRR6)
DBLRV1=-2*WN* (-2*GAMC+3.) * (-GAMC+1) / (RC** (2*GAMC-2.) *VC**GAMC)
DBLRV2=WN* (=2 *GAMC+4 . ) *GAMC*VPC/ (RC** (2*GAMC-3.) *VC** (GAMC+1.) )
DBLRAV3=2*RC*VPC
DBLRV4=FRVOF+FVOF*ALPHA/VC+2 . *FVOF*ALPHA/RC+2. *FC*ALPHA**2/VC
DBLRV=DBLRV1+DBLRV2+DBLRV3-C*R2VVP**ALPHA* (DBLRV4)

DBLRVP1=-WN* (~2.*GAMC+4.) / (RC**(2.*GAMC~3.) *VC* *GAMC)

53



54
DBLRVP2=2., *RC*VC

DBLRVP3=FRVPOF+ALPHA*FROF/VPC+2 . *ALPHA*FVPOF/RC+
22 . *ALPHA**2*FC/ (RC*VPC)

DBLRVP=CBLRVP1+DBLRVP2-C*R2VVP**ALPHA*DRLRVP3

DBLVV1=2. *WN*GAMC* (-GAMC+1.) / (RC** (2. *GAMC~3.) *VC** (GAMC+1.))
DBLVV2=GAMC* (~GAMC-1.) *WN*VPC/ (RC** (2. *GAMC-4 . ) *VC** (GAMC+2. ) )
DBLVV3=FVVOF+2. *ALPHA*FVOF/VC+ALPHA*FC* (ALPHA-1.) /VC*+*2
DBLVV=DBLVV1+DBLVV2~C*R2VVP**ALPHA*DBLVV3

DBLVVP1=WN*GAMC/ (RC** (2.*GAMC-4.) *VC** (GAMC+1.))
DBLVVPZ=RC*RC
DBLVVP3=FVVPOF+ALPHA*EFVOEF/VEC+ALPHA*FVEQOF/VC+
2ALPHA**2*FC/ (VC*VPC)

DBLVVP=DBLVVP1+DBLVVP2-C*R2VVP**ALPHA*DBLVVP3

DBLV1==2*WN* (-GAMC+1.)/ (RC** (2*GAMC-3.) *VC**GAMC)
DBLVZ2=GAMC*WN*VPC/ (RC** (2*GAMC-4.) *VC** (GAMC+1.))
DBLV3=RC*RC*VPC

DELVA=FVOF+ALPHA*FC/VC

DBLV=DBLV1+DBLV2+DBLV3-C*R2VVP**ALPHA*DBLV4
o Now rewriting B and Fé6

B=DBLV+2* (DELRVP+VPC*DELVV?P)
RSQRT=(R**2-4*DRLVPYVP> (DELRR+VPC* (2*DBLRV+VPC*LCBLVV) ) )
if(bsqrt.1lt.0)go to 70

V2= (-B+SQRT( (B**2-4*DBLVPVP* (DBLRR+VPC* (2*DBLRV+VPC*DBLVV) ) )) )/ (2*
2DBLVEVE)

rccrit=rc
ITER=0
IT=0
ITERATE=0

RETURN
60 IT=1
WRITE (7,4000) IT
STOP
70 IT=2
WRITE (7,4000) IT
1000 FORMAT (X,I12,6E12.4)
2000 FORMAT ('CAK MODEL WITH TEMPERATURE DISTRIBUTION AND FINITE DISK
2FACTOR'//'CRITICAL POINT ITERATION:'//' #',5X,'VC',11X,'VEC'")
4000 FORMAT(/' V',Il,'CALCULATION IS WRONG it too big')
STOP
END

c FUNCTION F(RVPOV, SIGMA,R2Z2,02)



0 a

000

COMMON/DERM/ FLAG, ALPHA, RALP,C, F7, F8, RC2, ARP, ONEPAL, VPLAST, FC,
2RPORS, TNOT, WN, rc

LOGICAL FLAG

F=R2* (RVPOV=- (1.+SIGMA*UZ) **ONEPAL/RVPOV**ALPHA) /ONEPAL/SIGMA
RETURN

END
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SUBROUTINE DER(R, VA, VPA)
THIS IS THE NEW DER SUBROUTINE

DIMENSION VA(2), VPA(2)

COMMON/IDAT/DMDTDO, SIGE, ONEMAL, ALO1MA, TWOALP, VTH, GAMGMK, TWOMAL , GAM
2,GM, FS, GAMC

COMMON/DERM/FLAG, ALPHA, RALP,C, F7,F8,R2, ARP, ONEPAL, VPLAST, FC,
2RPORS, TNOT, WN, VPC1

LOGICAL FLAG
if(r.gt.rc)flag=.true.

V=VA(l)

VPA(2)=-DMDTDO*SIGE/ (V*R**2) /ARP
aZ2rp=(3.e6)**2*rpors*6.96el0

HR=2*WN/ (R** (2*GAMC-3) *V** (GAMC-1) ) +F5/a2rp

U2=1.-1./R**2
IF(U2.LT.0)02=0.
ITER=0

VP=VPLAST

QTEST=WN/ {R** (2*GAMC=-2.) *V** (GAMC+1.
IF((HR.GT.O) .AND. {(QTEST.GE.1))GO TO
if((hr.le.0).and. (gtest.ge.l))go to
if((hr.le.0).and. {gtest.lt.1l))go to
if((hr.gt.0).and. (gtest.1lt.1l))go to
R2VVP=R*R*V*VP

R2=R*R

GRMC=1.6667

RVPOV=R/V*VP

SIGMA=RVPOV-1.

F1=ONEPAL/R2

F11=1.+SIGMA*U2

QTEST=WN/ (R** (2*GAMC-2. ) *V** (GAMC+1.})
F12=(F11/RVPOV) **ALPHA

FC=F (RVPOV, SIGMA,R2, U2}

F9=F1*FC :

W -0~
JUS B

VSIGMA=V*SIGMA

fvp=(r/v)/sigma*((1l.-(f11/rvpov)**alpha* (onepal*u2-alpha/rvpov*
2f11)) /onepal*r2-fc)

yl=c*fc*r2vvp**alpha/abs (hr)
y2=abs (l-gtest) *r2vvp/abs (hr)

bf=-yl-y2+1
bfvo=-y2/vp-c*r2vvp**alpha/abs (hr) * (fvp+talpha*fc/vp)

DVP=~bf/bfvp
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VP=VP+DVP
ITER=ITER+1

IF(ITER.GT.35)GO TO 99

IF(abs (DVP/VP}.GT.1.E-4)GO TO 5
VPA(l)=VP

RETURN

rvpov=r/v*vp
sigma=srvpov-1l.
fc=f(rvpov, sigma,r2,u2)
ff=(abs(hr)/c)**ralp
ffovr2=£ff/v*r*r
b=ff*abs{{l~gtest) /hr)

vp=ffovr2
if(flag)vp=(b/fc**ralp)**(-1./(1l.-alpha))*ffovr2

R2VVP=R*R*V*VP

R2=R*R

GAMC=1.6667
RVPOV=R/V*VE
SIGMA=RVPOV-1.
F1=ONEPAL/R2
F1l1=1.+SIGMA*U2
QTEST=WN/ (R** (2*GAMC-2.) *V** (GAMC+1.))
Fi2=(F11/RVPOV) **ALPHA
FC=F (RVEOV, SIGMA,R2,U2)
F9=F1+*FC

VSIGMA=V*SIGMA

fvp=(r/v)/sigma*((l.-(fll/rvpov)**alpha* (onepal*u2-alpha/rvpov*
2f11)) /onepal*r2-£fc)

yl=c*fc*r2vvp**alpha/abs (hr)
y2=abs (l-qtest) *r2vvp/abs (hr)

bf=-yl+y2+1
bfvp=y2/vp-c*r2vvp**alpha/abs(hr)* (fvp+alpha*fc/vp)

DVP=-bf/bfvp
VP=VP+DVP
ITER=ITER+1

IF(ITER.GT.35)GO TO 99

IF (abs(DVP/VP).GT.1.E-3)GO TO 7
VPA(1l)=VP

RETURN

R2VVP=R*R*V*VP
R2=R*R
GAMC=1.6667
RVPOV=R/V*VP
SIGMA=RVPOV-1.
F1=ONEPAL/R2



F11=1.+SIGMA*U2

QTEST=WN/ (R** (2*GAMC-2.) *V** (GAMC+1.))
F12=(F11/RVPOV) **ALPHA

FC=F (RVPOV, SIGMA, R2,U2)

FO9=F1+*FC

VSIGMA=V*SIGMA

fvp=(r/v)/sigma*((l.-(fll/rvpov)**alpha*(onepal*u2-alpha/rvpov*
2f11)) /onepal*r2-fc)

yl=c*fc*r2vvp**alpha/abs (hr)
yv2=abs(l-qtest) *r2vvp/abs (hr)

bf=-yl+y2-1
bfvp=y2/vp-c*r2vvp**alpha/abs (hr)* {(fvp+alpha*fc/vp)

DVP=-bf/bfvp
VP=VE+DVP
ITER=ITER+1

IF(ITER.GT.35)GC TO 99
IF(abs(DVP/VP).GT.1.E-4)GO TO 9

VPA(1l)=VP
RETURN
WRITE (4, *)'NO SOLUTION FOR VP--R,V= ', R,V

RETURN

END



10

- 20

25
40

45
55

60

65

70

22

59

SUBROUTINE RKEN(F,NEQN,Y,T,TFIN,EPSREL, EPSARS, IFLAG, WORK, IWORK)
IMPLICIT DOUBLE PRECISION(A-H,0-2)

DIMENSION Y (NEQN),WORK{15), IWORK(S5)
EXTERNAL F
DATA U26/1.5E-6/,REMIN/1.E-6/,2ER0Q/0Q./
KIM=NEQN+1
Kl=K1M+1
K2=K1+NEQN
K3=K2+NEQN
K4=K3+NEQN
K5=K4 +NEQN
K6=KS+NIQN
IF(NEQN.LT.1)GC TO 10
IF((EPSREL.LT.0.).0OR. (EPSABS.LT.0.))GO TO 10
MFLAG=IABS (IFLAG)
F((MFLAG.GE.1) .AND. (MFLAG.LE.7))GO TO 20
IFLAG=7
RETURN
IF(MFLAG.EQ.1}GO TO 55
IF(T.EQ.TFIN)GO TO 10
F{MFLAG.NE.2)GO TO 25
IF(IWORK(3).EQ.0)GO TO 45
F(IWORX(5) .EQ.3)GO TO 40
IF((IWORK(5).EQ.4) .AND. (EPSABS.EQ.0.))G0O TO 22
IF((IWORK(5).NE.5).0R. (EPSREL.GT.WORK (K6)) .OR. (EPSABS.GT.WORK (K6+1
2)))GO TO 55
IFLAG=IWCRK (%)
RETURN
IF(IFLAG.EQ.3)GC TO 40
IF((IFLAG.EQ.4) .AND. (EPSABS.GT.0.))GO TO 45
IWORK(1l)=0 ’
IF(MFLAG.EQ.2)GO TO 55
IFLAG=IWORK{4)
IWORK (4)=IFLAG
WORK(K6)=EPSREL
WORK (K6+1)=EPSABS
RER=MAX {EPSREL, REMIN)
DX=TFIN-T
IF(MFLAG.EQ.1)GO TO 60
IF{IWORK(3).EQ.0)GO TO 65
H=WORK (K1M)
GO TO 80
IWORK(1)=1
IWORK(2) =
IWORK(3)=0
A=T
CALL F(T, Y, WORK)
IF(T.NE.TFIN)GO TO 65
IFLAG=2
GO TO 100
IWORK(3)=1
YMAX=0,
YPN=0.
DO 70 K=1,NEQN
YPN=MAX (ABS (WORK (K} ), YPN)
YMAX=MAX (ABS (Y (K} ), YMAX)
ETN=RER*YMAX+EPSABS



g0

100

25

5G

100

130
200

220

240

250

60
H=ABS (DX)
IF (ETN.GE.YPN*H**5)GO TO 80
H=MAX ( (ETN/YPN) **.2, U26*MAX (ABS (T), H) )
WORK (K1M)=SIGN (H, DX)
CALL RKENS (F,NEQM,Y, T, TFIN, RER, EPSABRS, IFLAG, WORK(l),WORK(KlM),
2WORK (K1) , WORK (K2) , WORK (K3) , WORK (K4 ) , WORK (K5) , IWORK (1) )
IWORK (5) =IFLAG
RETURN
END

SUBROUTINE RKENS (F,NEQN,Y,T,TFIN,EPSREL, EPSABS, IFLAG, YP,
2H,F1,F2,F3,F4,F5,NFE)

LOGICAL HFAILD,QUTPUT

DIMENSION Y (NEQMN), YP(NEQN), F1 (NEQN), F2 (NEQNM) , F3 (NEQN) ,
2F4 (NEQN), F5 (NEQN)

EXTERNAL F

DATA U26/1.5E-6/,ZERO/0./

DATA MAXNFE/6000/

DX=TFIN-T
IF(ABS{DX).GT.U26*ABS(T) GO TO 50

DO 25 K=1,NEQN

Y (K) =Y (K} +DX*YP (K)
A=TFIN

CALL F(A,Y,YP)
NFE=NFE+1
GO TO 300
OUTPUT=.FALSE.

SCALE=2./EPSREL
AE=SCALE*EPSABS

HFAILD=.FALSE.

HMIN=U26*ABS (T)

DX=TFIN-T
IF(ABS(DX).GE.2.*ABS(H))GO TO 200
IF(ABS(DX) .GT.ABS(H))GO TO 150
QUTPUT=.TRUE.

H=DX

GO TO 200

H=.5*DX

IF(NFE.LE.MAXNFE)GO TO 220
IFLAG=3

RETURN

CALL FEHLR(F,NEOQN,Y,T,H,YP,F1,F2,F3,F4,F5, F1l)
NEFE=NFE+5

EECET=0.

DO 250 K=1,NEQN

ET=ABS (Y (K) ) +ABS (F1 (K)) +AE
IF(ET.GT.2ZERQ)GO TO 240

IFLAG=4

RETURN

EE=ABS ( (-2090.*YP (K)+(21970.*F3(K)-15048.*F4(K)) )+
2 (22528.*F2(K)=-27360.*F3(K)))

EEOET=MAX (EEQET, EE/ET)

ESTTOL=ABS (H) *EEQET*SCALE/752400.



260

270

290

300

221

222

223

224

OPEN (10, FILE='TEST.DAT')
write (10, *) ESTTOL
IF(ESTTOL.LE.1.)GO TO 260

HFAILD=.TRUE.

OUTPUT=.FALSE.

S=.1
IF(ESTTOL.LT.59049.)S=.9/ESTTOL**.2
H=S*H

IF(ABS(H) .GT.HMIN)GO TO 200

IFLAG=5

RETURN

T=T+H

DN 270 K=1,NEQN

Y (K)=F1(K)

A=T

CALL F(A,Y,YP)

NFE=NFE+1

IF(HFAILD)GO TO 290

S=5.
IF(ESTTOL.GT.1.889568E-4)S=.9/ESTTOL** .2
H=SIGN (MAX (S*ABS(H), HMIN) , H)
IF(OUTPUT)GO TO 300
IF(IFLAG.GT.0)GC TO 100

IFLAG=-2 '

RETURN

T=TFIN

IFLAG=2

RETURN

END

SUEROUTINE FEHLR(F,NEQ,Y,X,H,YP,F1l,F2,F3,F4,F5,S)

DIMENSION Y (NEQ), YP(NEQ),F1(NEQ),F2(NEQ), F3(NEQ), F4 (NEQ)
2S (NEQ)

CH=.25*H
DO 221 K=1,NEQ

FS (K) =Y (K) +CH*YP (K)

CALL F(X+.25*H,F5,F1)

CH=.09375*H

DO 222 K=1,NEQ

FS5 (K) =Y (K) +CH* (YP (K) +3. *F1 (K) )

CALL F(X+.375*%H,F5,F2)

CH=H/2197.

DO 223 K=1,NEQ

FS (K) =Y (K) +CH* (1932. *YP (K) +(7296. *F2 (K) =7200. *F1(K)))
CALL F(X+12./13.*H,F5,F3)

CH=H/4104.

DO 224 K=1,NEQ

FS (K) =Y (K) +CH* { (8341.*YP (K)~845.*F3(K) )+
2 {29440.*F2(K)-32832.*F1(K)))

CALL F(X+H,FS,F4)

CH=H/20520.

+ES(NEQ),
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230

2

2

DO 225 K=1,NEQ

F1(K)=Y (K)+CH*((-6080,*YP (K)+(9295.*F3(K)-5643.%F4 (K)) ) +
(41040.%F1(K)~28352.*F2 (K)))

CALL F(X+.5*H,Fl,F5)

CH=H/7618050.

DO 230 K=1,NEQ

S (K) =Y (K) +CH* ( (902880.*YP(K) +(3855735. *F3 (K)-1371249.*F4 (K) ) )+
(3953664 .*F2 (K)+277020.*F5(K) ) )

RETURN

END
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