University of Montana

ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, & Professional Papers

Graduate School

1953

Asymptotic distributions for tests of contingency hypotheses

Frank Richard Marshall The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation

Marshall, Frank Richard, "Asymptotic distributions for tests of contingency hypotheses" (1953). *Graduate Student Theses, Dissertations, & Professional Papers.* 8336.

https://scholarworks.umt.edu/etd/8336

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

ASYMPTOTIC DISTRIBUTIONS FOR TESTS OF CONTINGENCY HYPOTHESES

by

FRANK RICHARD MARSHALL

B. A. Carrell College, 1952

Presented in partial fulfullment of the requirements for the degree of Master of Arts

MONTANA STATE UNIVERSITY

1953

Approved by:

UMI Number: EP39137

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI EP39137

Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code

ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346

ACKNOWLED CHENTS

The author is especially indebted to Professor George Marsaglia for the suggestion of the subject of this dissertation and for his generous assistance and constant guidance throughout the entire work.

J. R. M.

1. Introduction.

The tests of the hypotheses for "goodness of fit" and for independence in centingency tables are among the most well-known and most widely used in applied statistics. Unfortunately, while the number of "cook-book" applications is high, rigorous treatments of the subjects are quite scarce. It is the purpose of this thesis to present a rigorous development of these two theories and of the fundamental results upon which they depend. As the development of all the requisite theorems would require elaboration of the text-book proportion, only those definitions and theorems which are new or not well represented in the literature have been given in detail. Certain ether results that are well known and readily available are merely stated as needs require. In addition, many of the methods of probability theory are assumed without specific mention; for example, the one-to-one correspondence between a density function and its moment generating function, providing the latter exists in the neighborhood of the origin.

2. Proliminary Results.

Theorem 1: If the m.m matrix A is symmetric there exists an orthogonal matrix P such that

(1)
$$PAP^* = D = \begin{pmatrix} a_1 & \cdots & a_n \\ & & & \ddots \\ & & & & a_n \end{pmatrix}$$

where the d_1 are the characteristic roots of A. We note that, from equations (1)

(2)
$$D^{-1} = (PAP^{*})^{-1} = PA^{-1}P^{*} = 1/d_{1} \circ \dots \circ 0$$

$$0 \quad 0 \quad 1/d_{n}$$

Theorem 2: Let A and B be matrices of rank r and a respectively such that the product AB is defined and has rank t.

Then

$$t \le \inf \{r, o\}$$

Theorem 3: If the m-n matrix B is of rank r, and if

5 = (s₁, . . . , s_n); then the number of linearly independent solutions
to

18 m - r.

The following theorem does not appear in the literature, so that a proof is given here.

Theorem 4: Let A be a matrix of order men and of rank r.

Then AL* is of rank r.

Proofs Since $(A^*A)^* = A^*A$, we see that A^*A is symmetric and apply theorem 1 to find P so that

Let the columns of P be (P_1, \dots, P_n) , then the columns of AP are (AP_1, \dots, AP_n) . Now

$$d_k = (AP_k)'(AP_k) = \sum_{j=1}^{m} (\sum_{i=1}^{n} a_{ji}P_{ik})^2$$

bence

implies that

Now since P^{-1} exists, P_1 , . . . , P_n are independent, and by theorem 3, the number of linearly independent solutions to

cannot exceed n-r. The number of d's such that d=0 is n-s, where s is the rank of A'A, hence

and

but, by theorem 2

hence

where r is the rank of A and s is the rank of A'A.

Preliminary remarks to theorem 5: Let x1: . . . xn be random variables with $\mathbb{K}(x_1) = u_1$, i = 1, i = 1, n. Let f be the vector (x_1, \dots, x_n) , and define E(f) as the vector (u_1, \dots, u_n) . In particular, if $\alpha = ((x_1 - u_1), \dots, (x_n - u_n))$ E(at) = (0, . . . 0).

Then the covariance matrix of the vector f is

$$s = eov(f) = (\sigma_{ij}) = (E(x_i - u_i)(x_j - u_j))$$

Theorem 5: Let x1. be random variables, let $f = (x_1, \dots, x_n)$ and let M be an n.n matrix. Define the random variables in $\mathcal{N} = (y_1, \dots, y_n)$ by

Then

$$\mathbf{z}(\gamma) - \mathbf{z}(\varsigma)\mathbf{z}$$

(5.2)
$$\operatorname{cov}(7) = \operatorname{Mcov}(f)H^*$$

Lemma 1:
$$\int_0^\infty e^{-1/2} e^{x^2} dx = \sqrt{2\pi}$$

Proof: Let

$$\int_{-\infty}^{\infty} e^{-1/2y^2} dy = 1$$

then

$$\int_{0}^{\infty} -1/2 y^{2} \qquad \infty -1/2 z^{2}$$

$$\int_{0}^{\infty} dy \int_{0}^{\infty} dz = 1^{2}$$

Let y = r sin 0 , s = r cos 0 then

0 5 8 5 2 T.

the Jacobian of the transformation is r. and

$$I^2 = \int_{0}^{2 i \Gamma} \int_{0}^{\infty} r e^{-1/2 r^2} dr d\theta$$

$$= 2\pi \int_{0}^{\infty} re^{-1/2} r^{2} dr$$

$$= -2\pi e^{-1/2} r^2 \Big|_0^{\infty}$$

- 217

hence

(3)
$$1 = \int_{-\infty}^{\infty} e^{-1/2} y^2 dy = \sqrt{211}$$

Let y - Vox. then

$$\int_{-\infty}^{\infty} e^{-1/2} e^{x^{2}} dx$$

$$= \frac{1}{\sqrt{c}} \int_{-\infty}^{\infty} e^{-1/2} y^{2} dy$$

$$= \sqrt{2\pi} \int_{0}^{\infty} e^{-1/2} e^{x^{2}} dx$$

Lemma 2:
$$\int_{-\infty}^{\infty} e^{-1/2} cy + ay$$
 $dy = e^{2/2c} \sqrt{2\pi/c}$

Proof:
$$-c/2 y^2 + ay$$

$$= -c/2 \left[y^2 - 2a/c y + a^2/c^2 - a^2/c^2 \right]$$

$$= -c/2 \left[(y - a/c)^2 - a^2/c^2 \right]$$

then

$$-\int_{-\infty}^{\infty} -c/2 (y - a/c)^2 + a^2/2c dy$$

$$= e^{2/2c} \int_{-\infty}^{\infty} e^{-c/2} (y - e/c)^{2} dy$$

Let x = y = a/c, then, by lemma 1

$$a^{2}/2c = -c/2 (y - a/c)^{2}$$
 dy

3. The Multinomial Distribution.

The random variables x1. xk have the multinomial distribution if their density function has the form

$$f(x_1, \dots, x_k) = \frac{n!}{x_1!x_2! \dots x_k!} p_1^{x_1} \dots p_k^{x_k}$$

where $\sum_{i=1}^{k} x_i = n$, and $\sum_{i=1}^{k} p_i = 1$. In order that $f(x_1, \dots, x_k)$ be a density function for discrete variables, it is necessary that

We see that this condition is satisfied since, by the multinomial theorem

(4)
$$z = \frac{n!}{x_1! + \cdots + x_k!} p_1 + \cdots + p_k = (p_1 + \cdots + p_k)^n$$

$$0 \le x_i \le n$$

and by assumption

We now develop the moment generating function $m(t_1, \dots, t_k)$ for the multinomial distribution.

$$a(t_1, \dots, t_k) = E(e^{inl})$$

$$= \sum_{\substack{\sum x_1 = n \\ 0 \le x_1 \le n}} \frac{n!}{x_1! \cdot \cdot \cdot \cdot x_k!} (\cdot^{t_1} p_1)^{x_1} \cdot \cdot \cdot (\cdot^{t_k} p_k)^{x_k}$$

hence, by (4)
(5)
$$\mathbf{z}(t_1, \dots, t_k) = (e^{-1}p_1 + \dots + e^{-k}p_k)^n$$

4. The Multivariate Normal Distribution.

The variables x₁. . . . x_n have a joint normal distribution if their density function has the form

$$-1/2 \sum_{j=1}^{n} \sum_{j=1}^{n} a_{ij}(x_{i} - u_{i})(x_{j} - u_{j})$$

$$f(x_{1}, \dots, x_{n}) = ce$$

where the matrix $A = (a_{1j})$ is positive definite and symmetric and the constant c is such that

(6)
$$c \int_{\mathbb{R}} \int ... \int e^{-1/2 \int A \int t} dt = 1$$

where

$$f = (x_1 + u_1)_+ \cdot \cdot \cdot \cdot \cdot (x_n - u_n)_+$$

and

$$f(x_1, \dots, x_n) = ce^{-1/2 f A f}$$
.

Now, by theorem 1. there exists an orthogonal matrix P such that

then

(7)
$$|P|^2 = 1$$

$$|A| = d_1 d_2 \cdot \cdot \cdot d_n$$

We transform the integral in (6) according to the relation f = 7P where $7 = (y_1 \cdot \cdot \cdot \cdot y_n)$, the Jacobian of the transformation being $|P| = \pm 1$, so that its absolute value is 1.

Thus, by equations (7) and lemma 1,

$$\int_{\mathbb{R}_n} \int \dots \int e^{-1/2} \int A \int dx_1 \dots dx_n$$

$$= \int_{\mathbb{R}_n} \int \dots \int e^{-1/2} \int PAP' \partial dx_1 \dots dx_n$$

Hence

(8)
$$|A|^{1/2}/(2\pi)^{n/2} \int_{\mathbb{R}^n} ... \int_{\bullet}^{-1/2} \int_{\mathbb{R}^n} ... \int_{\bullet}^{-1/2} \int_{\mathbb{R}^n} ... \int_{\bullet}^{-1/2} \int_{\mathbb{R}^n} ... \int_{\mathbb{R}^n}^{-1/2} \int_{\mathbb{R}^n} ... \int_{\mathbb{R$$

and this determines the constant c.

We now develop the moment generating function $\mathbf{m}(\mathbf{t_{1}},\dots,\mathbf{t_{n}}) \text{ for the multivariate normal distribution.}$

Suppose that x_1 , . . . x_n are random variables such that $E(x_1) = 0$, 1 = 1, . . . n. Let $T = (t_1, \dots, t_n)$, then

Let $7 = (y_1 + \cdots + y_n)$ and P be such that

Make the substitutions f = ?P and T = PP where $f = (z_1, \dots, z_n)$. Then, by equation (8), lemma 2 and theorem 1.

Thus, if $E(\xi) = (0, ..., 0)$.

(9)
$$m(t_1, \ldots, t_n) = n^{1/2} T A^{-1} T$$

How suppose $E(x_i) = u_i$, 1 = 1, ..., n. Let $\xi = (x_1 - u_1)$, ..., $(x_n - u_n)$, so that by (6)

$$= c \int_{\mathbb{R}_{n}} \cdots \int_{e^{i=1}}^{n} \frac{1}{e^{i}} \frac{1}{e^{i}} \int_{i=1}^{n} \frac{1}{j=1} \frac{1}{i} \int_{i=1}^{n} (x_{i} - u_{i})(x_{j} - u_{j}) dx_{1} \cdots dx_{n}$$

$$-1/2 \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}(x_i - u_i)(x_j - u_j)$$

$$dx_1 \cdot \cdot \cdot dx_n$$

$$Te^{\frac{n}{\Sigma}} u_{\underline{1}} t_{\underline{1}} \qquad Te^{\frac{n}{2}} -1/2 \in A \in \mathbb{R}$$

$$= e^{\frac{1}{2}} \qquad e \int_{\mathbb{R}_{\underline{n}}} \cdots \int_{\mathbb{R}_{\underline{n}}} \cdots$$

Thus, if $E(f) = (u_{1} + ... + u_{n})$

(10)
$$\mathbf{a}(\mathbf{t_{1}}, \dots, \mathbf{t_{n}}) = \mathbf{e}^{\sum_{i=1}^{N} \mathbf{u_{i}} \mathbf{t_{i}}} \mathbf{e}^{1/2 T \mathbf{A}^{-1} T}$$

We now show that $cov(f) = A^{-1}$. From the properties of the moment generating function

$$\sigma_{hk} = \left(\partial^2 m/\partial t_h \partial t_k\right)_{t_i=0} = \left(\partial m/\partial t_h\right) \left(\partial m/\partial t_k\right)_{t_i=0}$$

In this case, letting $A^{-1} = (a^{1j})$, from equation (10)

$$= e^{\frac{n}{1-1}} u_1 t_1 \frac{1/2 \sum_{i=1}^{n} \sum_{j=1}^{n} a^{ij} t_i t_j}{a^{i+1}} \left(u_h + \sum_{i=1}^{n} a^{ih} t_i \right)$$

= uh

Furthermore

$$(a^2m/at_hat_k)$$

$$= e^{\frac{n}{2}u_1t_1} e^{\frac{n}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}a^{i,j}t_1t_j} \left(u_h \left(u_k + \sum_{i=1}^{n}a^{i,h}t_i\right) + \left(a^{hk} + \sum_{i=1}^{n}a^{i,h}t_i\right) + a^{hk} + a$$

$$\sum_{i=1}^{n} a^{ih} t_{1} \sum_{i=1}^{n} a^{ik} t_{1} + u_{k} \sum_{i=1}^{n} a^{ik} t_{1}$$

then

$$\sigma_{nk}$$

$$= u_h u_k + a^{hk} + u_h u_k$$

Hence

(11)
$$cov(\xi) = (\sigma_{ij}) = (a^{ij}) = A^{-1}$$

5. The Chi-Square Distribution.

The chi-square distribution is well known and extensively discussed in the literature, however, we will be concerned with the moment generating function of the chi-square distribution rather than with the density function, hence we will define the

chi-square distribution in terms of its moment generating function.

A random variable y has the chi-square distribution with a degrees of freedom if its moment generating function is

$$n(t) = (1-2t)^{-n/2}$$

We will demonstrate an example of a random variable with the chi-square distribution. Let $\mathbf{x_1},\dots,\mathbf{x_n}$ be independent standard normal variables, let

$$y = \sum_{i=1}^{n} x_i^2$$

then

$$n_y(t) = E(e^{ty})$$

=
$$1/\sqrt{2\pi} \int_{-\infty}^{\infty} e^{-1/2(1-2t)x_1} dx_1 ... 1/\sqrt{2\pi} \int_{-\infty}^{\infty} e^{-1/2(1-2t)x_n} dx_n$$

which product of integrals is, by lemma 2, equal to

$$(1 - 2t)^{-n/2}$$

and we summarize in the following lemma.

Lemma 3: Let x_1 x_n be independent standard normal variables, let $y = \sum_{i \ge 1} x_i^2$, then the random variable y has the chi-square distribution with a degrees of freedom.

Theorem 6: If x1 x are jointly normal.

$$f(x_1, \dots, x_n) = |A| / (2\pi)$$

$$\frac{n}{n} = \sum_{i=1}^{n} \sum_{j=1}^{n} (x_i - u_j)(x_j - u_j)$$
then the quantity

$$y = \sum_{i=1}^{\Sigma} \sum_{j=1}^{\Sigma} u_{ij}(x_i - u_i)(x_j - u_j)$$

has the chi-square distribution with a degrees of freedom.

Proof: Let
$$\xi = (x_1 - u_1)$$
, . . . $(x_n - u_n)$, then

and, by (11), $cov(\xi) = A^{-1}$. Choose P orthogonal so that

and let $\zeta = \xi P$ where $\zeta = (z_1, \dots, z_n)$, then the z_1 as

linear combinations of normal random variables, are normally distributed. Further, by theorem 5.

$$E(\zeta) = E(\xi)P = 0$$

and

Hence $s_1/d_1^{-1/2}$, . . . , $s_n/d_n^{-1/2}$ are independent standard normal variables and by lemma 3

$$v = \sum_{i=1}^{n} z_i^2/d_i^{-1}$$

has the chi-square distribution with m degrees of freedom.
But

hence

$$\xi A \xi^{\dagger} = \sum_{i=1}^{\Sigma} \sum_{j=1}^{\Sigma} a_{ij} (x_i - u_i) (x_j - u_j)$$

has the chi-square distribution with a degrees of freedom.

6. The Multinomial Distribution with Specified Parameters.

Let x_1, \dots, x_k have the multinomial distribution with parameters $p_1, \dots, p_k : \sum_{i=1}^{L} x_i = n, \sum_{i=1}^{L} p_i = 1$. In applications involving the multinomial distribution, the simplest hypothesis that may be tested is that which specifies the probabilities p_1, \dots, p_k . Accordingly, we seek a function of x_1, \dots, x_k and p_1, \dots, p_k , whose distribution is one of the well known types. To this end, let $y_i = x_i = np_i/n$.

We shall show that the joint distribution of y_1 . . . , y_k is normal. We first establish some lemmas.

Lemma 4: Let f(n) be a function of the integer n, such that $\lim_{n\to\infty} \inf(n) = 0$, and let n and n be independent of n. Then $\lim_{n\to\infty} \left[-\sqrt{n}a + n \log (1 + a/\sqrt{n} + b/n + f(n)) \right] = b - a^2/2$

Proof: Let $z = (a/\sqrt{n} + b/n + f(n))$, then by the MacLaurin expansion of log (1 + n).

$$n \log (1 + a / /n + b/n + f(n))$$

$$= n \left[(a/\sqrt{n} + b/n + f(n)) + 1/2(a^2/n + b^2/n^2 + (f(n))^2 + 2ab/n^{3/2} + 2af(n)/\sqrt{n} + 2bf(n)/n + \dots \right].$$

Then

$$\lim_{n \to \infty} \left[-\sqrt{n}a + n \log (1 + a/\sqrt{n} + b/n + f(n)) \right]$$

$$= -\sqrt{n}a + \sqrt{n}a + b + a^2/2 + O(nf(n))$$

Lemma 5: Let C be the covariance matrix of $x_1 \cdot \cdot \cdot \cdot x_{k-1}$ where $x_1 \cdot \cdot \cdot \cdot x_{k-1} \cdot x_k$ are multinomially distributed with parameters $p_1 \cdot \cdot \cdot \cdot p_{k-1} \cdot n$; and let $y_1 \cdot x_1 \cdot x_2 \cdot p_{k-1} \cdot n$; and let

(12)
$$c^{-1} = \begin{pmatrix} \frac{1}{p_1} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{p_k} & p_k & \vdots & \vdots \\ \frac{1}{p_k} & \frac{1}{p_k} & \frac{1}{p_k} & \frac{1}{p_k} \end{pmatrix}$$

=
$$(\sigma_{ij}/p_i + 1/p_k)$$
,

and

We shall show that C times the matrix in equation (12) yields the identity matrix. We have

$$cc^{-1} = (\delta_{ij}p_i - p_ip_j)(\delta_{ij}/p_i - 1/p_k)$$

then

$$a_{ss} = -\left[\frac{p_s p_1}{p_k} + \cdots + \frac{(p_s^2 + p_s)(p_s + p_k)}{p_s p_k} + \frac{p_s p_{s+1}}{p_k} + \cdots + \frac{p_s p_{k-1}}{p_k}\right]$$

$$= \frac{p_{s}^{2} \sum_{i=1}^{\Sigma} p_{i} + p_{s}^{2} p_{k} - p_{s}^{2} - p_{s} p_{k}}{-p_{s}^{2} p_{k}}$$

$$= p_s^2(1-p_k) + p_s^2p_k - p_s^2 - p_sp_k$$

$$-p_sp_k$$

$$= -\left[\frac{p_{r}p_{1}}{p_{k}} + \cdots + \frac{p_{r}^{2} + p_{r}}{p_{k}} + \cdots + \frac{p_{r}p_{s}(p_{s} + p_{k})}{p_{s}p_{k}} + \cdots + \frac{p_{r}p_{k-1}}{p_{k}}\right]$$

$$= \frac{p_{r}p_{s}(1 - p_{k}) - p_{r}p_{s} + p_{r}p_{s}p_{k}}{-p_{s}p_{k}}$$

Hence

To establish (13):

$$\frac{\mathbf{k}}{\mathbf{i} = 1} \frac{(\mathbf{x}_{i} - \mathbf{n}\mathbf{p}_{i})^{2}}{\mathbf{n}\mathbf{p}_{i}}$$

$$= \frac{\sum_{i=1}^{2} (x_i^2 - 2nx_ip_i + n^2p_i^2)}{np_i}$$

$$= \frac{\sum_{i=1}^{\Sigma} x_i^2}{np_i} - 2 \sum_{i=1}^{\Sigma} x_i + n \sum_{i=1}^{\Sigma} p_i$$

$$= \frac{\sum_{i=1}^{\infty} \frac{x_i^2}{np_i} = 2n + n$$

$$= \frac{\sum_{i=1}^{\infty} \frac{x_i^2}{np_i} - n}$$

$$\mathcal{C}^{-1} = \left(\frac{x_1 - np_1}{\sqrt{n}} \cdot \cdot \cdot \frac{x_{k-1} - np_{k-1}}{\sqrt{n}} \right) \left(\frac{p_1 + p_k}{p_1 p_k} \cdot \frac{1}{p_k} \cdot \cdot \cdot \frac{1}{p_k} \right) \\
\frac{1}{p_k} \cdot \frac{1}{p_k} \cdot \cdot \cdot \frac{p_{k-1} + p_k}{p_{k-1} p_k} \right)$$

$$a_{1s} = \frac{\sum_{i=1}^{\Sigma} \frac{x_i - np_i}{\sqrt{n}p_k} + \frac{x_e p_e + x_e p_k - np_e (p_e + p_k)}{\sqrt{n}p_e p_k}}{\sqrt{n}p_e p_k}$$

$$= \frac{p_{s}(n - x_{k}) - np_{s} + x_{s}p_{k}}{\sqrt{n}p_{s}p_{k}}$$

$$= \frac{\mathbf{x_s} \mathbf{p_k} - \mathbf{x_k} \mathbf{p_s}}{\sqrt{n} \mathbf{p_s} \mathbf{p_k}}$$

Then

$$\frac{x_{1}p_{k}-x_{k}p_{1}}{\sqrt{n}p_{1}p_{k}} \cdot \cdot \cdot \frac{x_{k-1}p_{k}-x_{k}p_{k-1}}{\sqrt{n}p_{k-1}p_{k}} \left(\frac{x_{1}-np_{1}}{\sqrt{n}} \right)$$

$$= \frac{\sum_{i=1}^{k-1} \frac{x_i^2 p_k - n x_i p_i p_k - x_k x_i p_i + n x_k p_i^2}{n p_i p_k}}{n p_i p_k}$$

$$= \frac{k-1}{2} \times \frac{2}{np_1} = \frac{k-1}{2} \times \frac{k-1}{np_k} \times \frac{k-1}{2} \times \frac{k-1}{2}$$

$$= \frac{x_{-1}}{1-1} \frac{x_{1}^{2}}{np_{1}} = \frac{x_{-1}}{1-1} \frac{x_{1}}{np_{k}} = \frac{x_{k}}{np_{k}} (n - x_{k}) + \frac{x_{k}}{p_{k}} (1 - p_{k})$$

$$= \sum_{i=1}^{k-1} \frac{x_i^2}{np_i} - (n - x_k) - \frac{x_k}{p_k} + \frac{x_k^2}{np_k} + \frac{x_k}{p_k} - x_k$$

$$= \sum_{i=1}^{k} \frac{x_i^2}{np_i} - n.$$

Hence

$$7c^{-1}7 \cdot = \sum_{i=1}^{k} \frac{x_i^2}{np_i} - n = \sum_{i=1}^{k} \frac{(x_i - np_i)^2}{np_i}$$

Theorem 7: Let x_1 x_k have a joint multinomial distribution with parameters p_1 p_k : $\sum_{i=1}^k x_i = n$: $\sum_{i=1}^k p_i = 1$. and let $y_i = (x_i - np_i) / / n$. Then the random variables y_1 y_{k-1} are asymptotically jointly normally distributed and the quantity $\sum_{i=1}^k (x_i - np_i)^2 / np_i$ is asymptotically

chi-square distributed with k-1 degrees of freedom.

Proof: We seek the moment generating function

$$M(t_{1}, \dots, t_{k-1})$$
 of y_{1}, \dots, y_{k-1} . We have

$$= \sum_{\substack{\sum a_1 = n \\ 0 \le k_1 \le n}} (a_1 - np_1 / / \overline{n}) t_1 \cdots (a_{k-1} - np_{k-1} / / \overline{n}) t_{k-1} \cdots p_k$$

$$= \sum_{\substack{i=1\\ 0 \le a_i \le n}} \frac{\sum_{i=1}^{k-1} t_i / n}{\sum_{i=1}^{n} t_i / n}$$

$$= \sum_{\substack{i=1\\ 0 \le a_i \le n}} \frac{n!}{a_1! \cdot \cdot \cdot a_k!} \left(p_1 e^{t_1 / n} \right)^{a_1} \cdot \cdot \cdot \left(p_{k-1} e^{t_{k-1} / n} \right)^{a_{k-1}} a_k$$

$$= \sqrt{n} \sum_{i=1}^{k-1} p_i t_i \left(p_i t_1 / \sqrt{n} + \dots + p_{k-1} t_{k-1} / \sqrt{n} + p_k \right) n$$

This last quantity, by use of the MacLaurin expansion for each

$$p_{i}$$
,
$$p_{i}$$

$$p_{$$

$$= \int_{\mathbf{x}}^{\mathbf{x}-1} \frac{\sum_{i=1}^{2} p_{i} t_{i}}{\sum_{i=1}^{2} (p_{1} + p_{1} t_{1}) / n + p_{1} t_{1}^{2} / 2n + p_{1} t_{1}^{3} / 6n^{3/2} + \dots)}$$

+
$$(p_2 + p_2 t_2 / \sqrt{n} + p_2 t_2^2 / 2n + \cdots) + \cdots$$

+
$$(p_{k-1} + p_{k-1}t_{k-1})/n + p_{k-1}t_{k-1}^2/2n + \cdots + p_k$$

$$= e^{-\sqrt{n} \sum_{i=1}^{\Sigma} p_i t_i} \left[1 + \sum_{i=1}^{K-1} p_i t_i / \sqrt{n} + \sum_{i=1}^{\Sigma} p_i t_i^{2} / 2n + f(n) \right] n$$

where $\lim_{n\to\infty} nf(n) = 0$,

Honce

=
$$-\sqrt{n} \sum_{i=1}^{K-1} p_i t_i + n \log \left[1 + \sum_{i=1}^{K-1} p_i t_i / \sqrt{n} + \sum_{i=1}^{K-1} p_i t_i^2 / 2n + f(n) \right]$$

and by lemma 4:

$$n^{\frac{1+n}{2}} \log H = \sum_{i=1}^{k-1} t_i^2 / 2 - (\sum_{i=1}^{k-1} p_i t_i)^2 / 2$$

and

$$\frac{\lim_{n \to \infty} M(t_1, \dots, t_{k-1})}{1/2 \frac{k-1}{2} p_i t_1^2 - \frac{\sum_{i=1}^{k-1} k-1}{2} p_i p_j t_i t_j}$$

$$k-1$$
 $k-1$

1/2 Σ Σ $(\sigma_{ij}p_i - p_ip_j)t_it_j$

= 4

where $T = (t_1, \dots, t_{k-1})$ and $C = (\sigma_{ij}p_i - p_ip_j)$. Hence, with reference to equations (9), we have

$$\lim_{n\to\infty} f(y_1, \dots, y_{k-1}) = e^{-1/2} ? c^{-1} ?$$

Now according to theorem $6.70^{-1}?$ has, in the limit, the chi-square distribution with k-1 degrees of freedom, and from lemma 5 we see that

$$7c^{-1}7* = \frac{k}{2}(x_1 - np_1)^2/np_1$$
.

This completes the proof of the theorem.

To illustrate the use of theorem 7, we consider the following examples:

Example 1: Suppose we wish to test the hypothesis that a die is true. A sample of n throws of the die is observed. Let x_1 be the number of times the value 1 occurs in the n throws;

6
1 = 1, 2, . . . 6; $\sum_{i=1}^{6} x_i = n$. Let the probability of the inl

occurrence of the value 1 be p_i , Σ p_i = 1, then the probability of obtaining x_i occurrences of value i in n throws of the die is

$$\frac{n!}{x_1! \cdot \cdot \cdot x_6!} p_1^{x_1} \cdot \cdot \cdot p_6^{x_6} \cdot$$

Thus we see that x_1 , ..., x_6 are jointly multinomially distributed with parameters p_1 , ..., p_6 , $\sum_{i=1}^{2} x_i = n$, $\sum_{i=1}^{2} p_i = 1$. The hypothesis that the die is true is the hypothesis that $p_1 = 1/6, i = 1, ..., 6.$ By theorem 7 our statistic is $X^2 = \sum_{i=1}^{6} (x_i - np_i)^2/np_i, \text{ with 5 degrees of freedom.}$

characteristic i if the sample were from the known genus. By theorem 7, we use, as our statistic, $\chi^2 = \frac{k}{\Sigma} (x_1 - np_1)^2/np_1$, with k-l degrees of freedom.

Example 3: A classical example arises from one of Hendel's experiments. He observed, simultaneously, the shape and color of hybrid peas obtained by crossing two types of peas.

Among n = 556 peas he observed

Round and yellow - - - - 315 Round and green - - - - 108 Angular and yellow - - - 101 Angular and green - - - 32

The Mendelian theory of inheritance states that the frequencies should be in the ratios 9:3:3:1. the hypothesis, then, is $p_1 = \overline{p_1}$ where $\overline{p_1} = 9/15$, $\overline{p_2} = 3/16$, $\overline{p_3} = 3/16$, $\overline{p_4} = 1/16$, by theorem 7 we test this hypothesis with $\chi^2 = \frac{4}{12} (x_1 - np_1)^2/np_1$ with 3 degrees of freedom.

7. The Multinomial Distribution with Unspecified Parameters.

We now consider another well known test concerning the multinomial distribution, the test for independence in contingency tables. A contingency table is a rectangular table formed in this fashion: we have characteristics $A_1 \cdot \cdot \cdot \cdot A_r$ and $B_1 \cdot \cdot \cdot \cdot B_s$, the light entry in the table is the number of items having characteristics A_1 and $B_1 \cdot \cdot \cdot \cdot \cdot B_s$. For example:

Example 1: A survey is taken in which members of designated professions are questioned as to their opinions on a controversial political issue. A sample of size n=1000 is obtained, the classification by profession and by opinion gives the contingency table:

	Favor	Oppose	Undecided	
Lawyers	207	142	45	392
Doctors	98	114	69	281
Educators	129	150	48	327
	434	406	160	1000

Example 2: A surgeon in a military base wishes to test the effectiveness of a cold preventive serum. One group of servicemen is treated with the serum; a control group is not treated. Both groups live under identical conditions for an observed period of time, at the end of the period the health records are checked and the tabular information for testing the effectiveness of the serum is:

		No colds	One cold	More than one co	14	
Group A		*11	*12	×13	× ₁ .	
Group C	Control	* 21	× ₂₂	*23	×2.	
		×.1	*.2	*.3	N	

Example 3: Three instructors have taught the same course for several years. In an effort to determine whether or not the instructors give significantly different percentages of grades, the grade distributions as given by the instructors is

tabulated as follows:

		A	13	C	D	F	
Professor	X	42	78	256	38	46	460
Professor	X	70	104	424	43	56	704
Professor	Z	30	84	356	40	34	544
		142	266	1036	126	138	1708

Let x_{ij} be the number of elements in the 1jth cell, and p_{ij} be the probability that an element will fall in the 1jth cell, that is, that an element will have characteristics A_i and B_j where $\sum_{i=1}^{T}\sum_{j=1}^{B}p_{ij}=1$.

Let
$$\sum_{j=1}^{\Sigma} p_{i,j} = p_{i,j}$$
 and $\sum_{j=1}^{\Sigma} p_{i,j} = p_{i,j}$, then
$$\sum_{j=1}^{\Sigma} p_{j,j} = 1 \text{ and } \sum_{j=1}^{\Sigma} p_{j,j} = 1.$$

The test for independence in the contingency table is Hypothesis: $p_{1j} = p_{1} p_{1}$

We seek a random variable whose distribution is known if the hypothesis is true. The classical statistic for this test is that first proposed by Earl Pearson:

where
$$x_i$$
, $= \sum_{j=1}^{\infty} x_{ij}$, $x_{ij} = \sum_{j=1}^{\infty} x_{ij}$

and
$$\Sigma \times_1 = x \times_2 \times_3 = x \times_4$$

By an extension of the methods used in proving theorem 7, one can demonstrate that (14) has the chi-square distribution with (r = 1)(s = 1) degrees of freedom. However, we shall make use of a theorem of Cramér to establish our result. We first make some preparatory remarks.

Suppose, for simplicity, the parameters p_{ij} are redesignated p_1, p_2, \dots, p_r . Let p_1, p_2, \dots, p_r be functions of the variables d_1, \dots, d_s . Suppose the true values of the d 's were known, then we could apply theorem 7

(15)
$$\chi^{2} = \sum_{i=1}^{r} \frac{x_{i} - np_{i}(\alpha_{1}, \dots, \alpha_{n})^{2}}{np_{i}(\alpha_{1}, \dots, \alpha_{n})}$$

Now suppose the values of the α_j are unknown and must be estimated from the sample, then the p_i are not constants as in theorem 7, but are functions of the sample values of the α_j . We wish to estimate the values of the α_j so that (15) will be a minimum; to this end we will let

$$\frac{\partial \chi^2}{\partial \alpha_j} = 0, \quad j = 1, \dots, s,$$

¹ R. Cramér, Mathematical Methods of Statistics, Princeton University Press, (1946), pp. 426-434.

and solve the resulting equations for G . This process is called the chi-square minimum method of estimation. Thus, from (15) we have

$$\frac{\partial \chi^{2}}{\partial a_{j}} = \sum_{i=1}^{p} \left[\frac{-2n(x_{i} - np_{i}) - (x_{i} - np_{i})^{2}}{np_{i}} - \frac{(x_{i} - np_{i})^{2}}{np_{i}^{2}} \right] \frac{\partial p_{i}}{\partial a_{j}} = 0.$$

then

(16)
$$-1/2 \frac{\partial \chi^2}{\partial \alpha_j} = \sum_{i=1}^{p} \left[\frac{x_i - np_i}{p_i} + \frac{(x_i - np_i)^2}{2np_i^2} \right] \frac{\partial p_i}{\partial \alpha_j} = 0.$$

We note that, in (16), the second member in brackets approaches zero as a approaches infinity, hence we will consider the effect of large m and modify (16) to

Further, if we impose the condition that

$$\sum_{i=1}^{p} p_i(\alpha_i, \dots, \alpha_n) = c$$

where e is a constant, then

$$\begin{array}{cccc}
\mathbf{r} & \partial \mathbf{p}_1 & = \mathbf{0}, \\
\mathbf{i} & \mathbf{i} & \mathbf{0} & \mathbf{0}, \\
\end{array}$$

hence under this condition equations (17) reduce to

(13)
$$\sum_{i=1}^{r} \frac{x_i}{p_i} \frac{\partial p_i}{\partial d_i} = 0.$$

With these remarks we proceed to Cramer's theorem.

Cramér's Theorem: Suppose that we are given r

functions $p_1(a_1, \dots, a_s), \dots, p_r(a_1, \dots, a_s)$ of s < rvariables a_1, \dots, a_s such that, for all points of a non
degenerate interval A in the s-dimensional space of the a_j , the p_j satisfy the following conditions:

a)
$$\sum_{i=1}^{r} p_i(a_i, \dots, a_s) = 1.$$

b)
$$p_1(q_1, ..., q_s) > e^2 > 0$$
 for all 1.

e) Every
$$p_i$$
 has continuous derivatives $\frac{\partial p_i}{\partial a_j}$ and $\frac{\partial^2 p_i}{\partial a_j \partial a_k}$.

d) The matrix
$$D = \begin{pmatrix} \partial p_1 \\ \partial a_j \end{pmatrix}$$
, where $i = 1$, ..., r and $j = 1$, ..., e , is of rank s .

Let the possible results of a certain random experiment

be divided into r mutually exclusive groups, and suppose that the probability of obtaining a result belonging to the ith group is $p_{1}^{o} = p_{1}(q_{1}^{o}, \dots, q_{s}^{o}) \text{ where } q_{s} = (q_{1}^{o}, \dots, q_{s}^{o}) \text{ is an inner}$ point of the interval A. Let x_{1} denote the number of results

belonging to the ith group, which occur in a sequence of n

repetitions of the experiment, so that $\sum_{i=1}^{r} x_{i} = n$.

The equations (17) of the modified chi-square minimum method then have exactly one system of solutions $d = (d_1, \dots, d_s)$ such that d converges in probability to d as a approaches infinity. The value of χ^2 obtained by inserting these values of the d_j into equations (15) is, in the limit as a approaches infinity, distributed in a chi-square distribution with r = s - 1 degrees of freedom.

We now show that Cramer's Theorem may be used to establish the asymptotic distribution of (14).

To review the situation, the variables x_{ij} have a multinomial distribution with parameters p_{ij}.

Let $\sum_{j=1}^{\infty} p_{i,j} = p_{i,j} = \sum_{j=1}^{\infty} p_{j,j} = p_{j,j}$. We are concerned with the hypothesis

We apply Cramer's Theorem in the following manner:

Let $\alpha_1 = p_1, \dots, \alpha_r = p_r, \alpha_{r+1} = p_{,1}, \dots, \alpha_{r+s} = p_{,s}.$ Our hypothesis then takes the form

H:
$$p_{ij} = \alpha_i \beta_j$$
 .

where the p_{ij} are redesignated p_{k} , k = 1, 2, ... rs and $\beta_{j} = \alpha_{k+j}$, j = 1, ...

Further, we have

(19)
$$\sum_{i=1}^{p} \sum_{j=1}^{p} = 1$$
, $\sum_{j=1}^{p} p_{i,j} = p_{i,j} = \alpha_{i}$, $\sum_{i=1}^{p} p_{i,j} = p_{i,j} = \beta_{j}$.

(20)
$$\sum_{\substack{\Sigma \\ i=1 \ i=1}}^{\infty} \sum_{\substack{x_{i,j} = n, \quad \Sigma \\ i=1 \ i=1}}^{\infty} \sum_{\substack{x_{i,j} = x_{i,j} =$$

Then

where

$$\alpha_{x} = 1 - \frac{x-1}{2} \alpha_{1}, \ \beta_{B} = 1 - \frac{x-1}{2} \beta_{1}.$$

Hence we have rs functions p_1 , p_2 , . . . , p_{rs} of r-s-2 variables α_1 , . . . , α_{r-1} , β_1 , . . . , β_{s-1} .

Clearly, conditions a, b, c of Cramer's Theorem are satisfied.

We now obtain the solutions to equations (18). By

(19) and (20) equations (18) become

(21)
$$\sum_{j=1}^{2} \left(\frac{x_{jj} - x_{rj}}{p_{j*}} \right) = 0 \quad i=1, \dots, r-1.$$

(22)
$$\sum_{i=1}^{r} \left(\frac{x_{i,i} - x_{i,s}}{p_{i,s}} \right) = 0 j=1, ..., s-1.$$

Then (21) becomes, on summing over je

(23)
$$\frac{x_1}{p_1} - \frac{x_r}{p_r} = 0$$

which, on summing over 1, 1 = 1, . . . r, becomes

$$\frac{n}{1} - \frac{x_{p_*}}{p_{p_*}} = 0$$

or

then, by (23), we have

$$p_i$$
 * $\frac{x_i}{n}$.

Likewise

Hence by the modified chi-square minimum method

$$p_{1j} = q_1 \beta_j = p_{1,p_{+j}} = \frac{x_1, x_{+1}}{n^2}$$

and equation (15) becomes

$$\chi^2 = \sum_{\substack{i,j \\ \frac{x_{i,j} - \frac{x_{i,x}}{n},j}{n}}} \left(\frac{x_{i,j} - \frac{x_{i,x}}{n},j}{x_{i,x}}\right)^2$$

There remains only to show that the rank of D is r - s - 2, where

But according to Theorem 4, it will suffice to show that the rank of D'D is r - s - 2. One readily obtains upon multiplication, D'D

By dividing the first row of D*D by d_1 , the second row by d_2 , . . . the rth row by β_1 , . . . the r - s - 2nd row by β_{s-1} ; and by dividing the first column by d_1 , the r - s + 2nd column by β_{s-1} ; we see that D*D has the same rank as

where A and C are $(r-1) \times (r-1)$ and $(s-1) \times (s-1)$ diagonal

matrices of rank r + 1 and s + 1, respectively and B is an $(r - 1) \times (s - 1)$ matrix consisting entirely of l's. From Laplace's development of the determinant of (24), it is clear that $|A| = |A| \cdot |C| \neq 0$ and hence that rank D'D is equal to the rank of D and is r - s + 2. We have thus proven our final result:

Theorem 9: Let x₁₁, x₁₂, ..., x_{rs} be a sample from a multinomial population with the mutually exclusive classes

A₁B₁, i=1, ..., r, j=1, ..., s, in which the probability associated with A₁B₁ is p₁₁. Let

$$\chi^2_6 = \sum_{\substack{1,1 \ \frac{x_1,x_{-1}}{n}}} \left(\frac{x_{11} - \frac{x_1,x_{-1}}{n}}{\frac{x_1,x_{-1}}{n}} \right)^2$$

Then the limiting distribution of X_c as $n \to \infty$ is the chisquare distribution with (r-1)(s-1) degrees of freedom.

PIDLIOGRAPHY

- CRAMER, H. Mathematical Methods of Statistics. Princeton University Press, Princeton, New Jersey 1946.
- MOOD, A. M. Introduction to the Theory of Statistics. McGraw-Hill Book Company, Inc., New York, New York 1950.
- WILKS, S. S. Mathematical Statistics. Frinceton University Press, Princeton, New Jersey 1944.