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INTRODUCTION

Often problems in Markov chains can be extended in such a way
that one may think of waiting times between changes of states. The
purpose of this paper is to show how this can be done in some cases by
redefining the states so that we still have a Markov chain and the
calculation of unknowns can be done in terms of Markov chain theory of
the original states and the probability function describing the distri-
bution of waiting times in the various states.

In the first part of this paper we review the notions of Markov
chains and prove the theorems we need. Following Feller[ZB] we define
recurrent events and develop an expression for the probability that an
event occurs in terms of the probability that it occurs for the first
time in some trial (Theorem 1). Lemmas 2 and 3 are taken in part from
Niven and Zuckerman [L]. Armed with Theorem 1 and the definition and
classification of Markov chains, we give Feller's proof of Theorem |
which characterizes irreducible, aperiodic Markov chains in terms of
their transition probabilities and their mean recurrence times.

We then leave Feller and follow Anselone [ 2] who develops the
notion of semi-Markov chains. First of all we extend the Markov chain
by introducing the idea of waiting times in the states. We use the
waiting times to define a semi-Markov chain. We then define the sub-
state chain by pairing each state from the semi-Markov chain with the
time the process will remain in that state. The substate chain is a
Markov chain., It is this extension of the semi-Markov chain that

1
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2
ylelds the information we seek, that is, characterizes our problem.
In a straightforward way we arrive at Anselone's results in Theorems
11 and 12, which are more or less analogous to Theorems 2 and L for

Markov chains.
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SOME LEMMAS FROM NUMBER THEORY
We begin by stating and proving three lemmas from number theory.

Lemma l: From any set {aig of positive integers with greatest common
divisor one, it is possible to choose a finite subset with greatest

common divisor one.

Proof: Choose ays the smallest element of {ai}. If ay #1, choose a,,
the smallest element of {ai} such that al"‘ aq (i.e., aj does not divide
ag). Let gy = (aj,ap). If gy #1, choose ay, the smallest element of
{ai} such that ng‘aB. Let g, = (a.l,az,a3). Then g,<g,, but since
g2’a3 and ngaB, go< gy We continue in this fashion, obtaining a
monotone decreasing sequence of positive integers. There exists, for
some positive interger n, a g, = (ay, a5, « « ., a,41) = 1,for if gy> 1

we can obtain a Ene1 < Bp*

Lemma 2: If a, b, and ¢ are positive integers such that (a,b)!c, and
(a,b)c > ab, then there exists at least one positive solution to

ax + by = c.

Proof: There exist intergers X, and Yo such that ax, + by 0 * (a,b).
~ A1l integral solutions r,s of ax + by = ¢ can be written in the form
r = cx,/(a,b) + bt /(a,b)
and

s = cyo/(a,b) - at /(a,b).
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L

For a solution to be positive it is necessary and sufficient

that

cX, C¥o

-Tp <R

We have cax_ + cby, = (a,b)c> ab and,dividing by ab,we obtain

cX cy

) (o)
—t A cm—

- = >1

or,

ex cx, ¢y
-2l -2 <-—‘3‘

b a

CXo cyo

Thus the length of the interval (-~ = e ) is greater than one so
that there exists at least one integer t such that

ex Yo
- <t<= .

Lemma 3: If {aig is a finite sequence of distinct positive integers
with greatest common divisor one, and k is an integer such that

k:>-rrai, then there exist positive integers x; such that k = zi: a

i=1 f1 1

Proof: From the equation z:: asxy = k we first derive the equation
i=]

a1X; + byy; = k in such a way that b17’0, (al’bl) = 1, and a,b,<k.
This will imply, by Lemma 2, that there exists at least one positive
integral solution to aj;xy + byy; = k. Using an xq from one of these
solutions, we construct the desired solution for the equation

n

z: aixi = Kk,

i=1
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5

n
SUPPOSG 12-‘; a;x; = k. Let 3= -an/(an_l,an) and J = an—l/(an-l’an)°

Then (B,d) = 1 so that there exist = and ¥ such that «d -7 = 1.

Let u = an-l -3 Xp and v = = ¥x, 4 +X x, so that Xpq =X U +3 v
and x, = Ju + dv. We claim that

n n-2

g_ aixi = igl aixi * (an-ld * anéf Ju.

Noting that (a ;o + a,¥) = $ (aps2)x =@ (a 4,3 )%
= (dx -mY ap1s2ap)
= (apqsap)
we have a _, & + a, ¥ > O. Since (al, Bpe o s -y By oy (an-l’an)) =
(al, 0y o o oy an) we have obtained an equation whose coefficients are
positive integers with greatest common d;j.visor one, and the number of
coefficients is one less. We may contimue in this manner obtaining
a1Xy + by = k where b, = (ay, a3y + + oy a )>0 and (a,b) =
(ay, apy « « « 35) = 1. Also
n
aqbq <€ TT a; < k.
i=1
Hence a;x; + blyl = k has at least one positive integral solution.
Now we wish to show that for sultable choice of Xy
asX, + b2y2 =k - 2% has a positive integral solution and, in general,

that
r-1
apXp * bzyr =k -g a3%y

where r = 2 and b, = (aﬁ_l, 3,05 o o s an) hags a positive integral

solution.
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6
Since the ai's are all distinct we may suppose that a, is the
least aj. Also, from the positive integral solutions of ayx) + b.ly-1 = k,
we shall choose the smallest x.l. This means that %y < 'b1 since other-

wise a;(x) -by) + by + a)) =k and 0< x; - by < x;.

n
Having reduced Z a;%; = k to a1% + blyl = Kk, we take as an

i=1
induction hypothesis that 51
agXy * byg = k - Z a4%;5
i=1
has positive integral solutions fors =1, 2, . « o5 * = 1<n. Each Xg
is taken as the least positive solution. In order to find positive
integral solutions to
r-1
apXp + by, = k - %;—.; 2s%3
we need to show that o1
apby < (ag,b )k = 2 agxy).
- i=1
For this it will suffice that
r-1
a,bn. + i'Z-_'.:L aixi< k.
Since x5 £ by fori=1,2, . ¢« «3 r -1 we have
r-1 r-1
j; a;xXy & g aibi’
Also, since (24,15 35,05 » » »5 3)) £ (25,05 35,35 = = a ) -- i.e.,

bi £ bi-l-l ~= we have

r-1 r r
brar + E ajx3 £ Z aibi £ b Z aje.
i=1 i=1l i=]
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7

If any of the a; = 1, it is a_, and since r< n we have

n
' S e <1l
a —‘- a..
=1 1 a1 1
Hence
r r
er ai,z._brTl' ai_.ng— ay < ke
i= i=1 i=1
So we have
r-1
arbr +Z aixi < ko
j=]
By hypothesis we have 1
T
br1¥p.q = k - zz:-a:'t."':i.
i=1
r-1 -
so that b,_; divides k - izzl ajxj. Since b,y = (a., b,), we have satis-

fied the conditions of Lemma 2. Therefore,
r-1

has at least one positive integral solution.
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RECURRENT EVENTS AND MARKOV CHAINS

Suppose we have a sequence of experiments each with possible -
outcomes By, E5 . « +, E , « . . . We speak of an attribute & of
some finite sequence of trials. That is, anmy finite sequence of trials
either possesses the attribute £ or it does not. To say that E

occurs at the nth

place of the sequence Ejl’ Ejz’ o o oy Ejn means
that this sequence possesses the attribute & . For example, if the
outcomes Ej are the pogitive integers, a particular attribute & might
be "an even integer occurs on the fifth trial." In particular, we

wish to speak of recurrent events.

Definition 1: The attribute E defines a recurrent event provided

that:
1) & occurs in the nth place and the (n + m) %P pilace of the
sequence (Ejl’ Ejz’ o o o Ejn-rm) means that £ occurs in the last

place of each of the two subsequences (Ejl’ E NIRRT E, ) and
n
(E3n+1’ In+2’ ’ jm—m)

2) Whenever this happens

P{Ejl’ Ejz, . .’Ejn-pmz‘ =

P {Ejl, Eyys + « +» By 3 P{Ejml, By 00t e Ejmmk.

We shall adopt the following notation:
u, = Pi& ocours on the nbh trial} ’

u, = 1,
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9
fn = P f € occurs for the first time on the nth trial‘g s

fo = 0, and
o0

f = Z: fnc
n=1

We note that

un = flun_l + fzun_z + o o o * fnuo, nélo

Definition 2: A recurrent event 6 is called Bersistent if £f =1 and

transient if £< 1.
a

Theorem 1: Suppose 0 £ g, < 1, Z g, = 1, gy = 0, and
n=1

Xp ™ 83Xpq * 8oXpo t e e .+gnxo,n=1, 2y o o o
If g.c.d. {nl g, > 0} = 1, then

& -1
Lin x, = ngl ngy)

o0
if Z ng, is finite, and
n=l
lim x_ =0

o n
o0
if Z ng,, diverges.
n=1
Proof: Let
3 > >
ro= 2 Enei = g and M = 2 ng
nT g Bl T BT S
8o that ke n
=Z r.. We have then, r = r -Z g
ATE™ e gt
and therefore Tpl = Tn = Bpe Substituting into

xn = gixn-l + gzxn_z + 4, . 4 F gnxo’
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10
-we obtain
Xp = (rg = r)x, 7 + (r] = rodxp o+ o o o+ (rpq - rplx,.
Thus

-+ + o + + + e o * .
YoXp + MXpa * 0 T TXo T ToXpnay Y M Xpo t o Tn-1%0

This shows inductively that

n

1l = roxo= e o =Z rixn_i
i=o

for all n., Now X = 81X, £ 1 since Xy = 1 and g1 £ 1.

Suppose that x,, X1s o o 3 X are all at most one. Then
Xpel ™ E1X +* ¢ 0 o * BpXo £ 8 B v . . +gk+1 < 1.
Therefore, there exists a A = 1lim sup X5 i.e., for every €> 0, there
exists an M such that n> M implies that x, < A +€ ,  Also, there
exists a sequence {ny} such that lim x, =X . Choose an integer

Ny

j> 0 such that gJ> 0. Then we assert that '.Lim xnv y =

Suppose that this were not true. Then for any € > 0 and each N
there exists an n.v> N such that either xnv_j {N =€ or_xnv_j> N +E,
If N>M, then the latter is impossible so that there exists a A\ ! such

t =
that Xpg-j < A'¢ N - Since %:‘i;_mm X A 5 if we take N large enough we

n,
also have xnv> A -€. For every5 > O there exists an R> j such that

r, < 4 for all n>R, since Z g, converges. Since o = 0 and X £ 1,
n=1
we take § = € 80 that
xnv_x, RN + glxnv-1|+ o e s * ngnv-R + €
for n>R. Also n>M + R implies that x < A + € 8o that
Ty < (Bo* gy + v o ot gy g Byt e o o BRINRE) g s
£(1-g)(A +€)+gnt +e
S+ 2€¢ - g5 (A =Aan).
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Choose € such that 3e€ < gj( A - A1') so that x - €, a contra-

n, < A
diction of x“v> A —-€.

Similarly we see that gy > 0 and %inl’ u, =) implies that
v

o Ny
xnv_zj_..h » xn'v_3j""A s & o o
Consider, first, the case where gy > O. We take j = 1 and con-

clude that x, _, —~ A for all k. Since
v
I‘oxn + r]‘xn_.l + 4 0 ot I'nxo = 1’
we have
roxn + I‘lxnv 1 . . - + ran.v_N .‘-:- 1
for n = n,., For fixed N, xnv_k-v-k for all kN, so that
(ro+r1+ . e .+rN):’:1.

_ :
Since N is arbitrary, AM€lord< 1ju. If u = 2_ r, diverges,
n=0

then 1im x, = O. If/u< © , let ¥ = 1im inf x,. The same argument
n-»o
as above shows that for every sequence f nv} for which }13111’ cw:rcnv =Y we

have %%_rgm xnv-k = ¥ for all k. If N is large enough so
o
Z rn< € , then
r=N

léroxnv + .. ot ranv_N +€,
so that
1€(ry + ry + .« .+rN)3’+E .
Hence 1/u =¥ , so that A £ 1/« £ ¥ . But lim inf x, < lim sup x,.
Therefore, lim x, = 1/ s
Consider, now, the case where g = 0. By lLemma 1, we can choose
from the set of integers j for which g 3 > 0 a finite collection {ai} ’

1 - 1, 2, s s o3 Ny S'I.lch that g.C.d. {313 = 1, We know that when
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H&wx“v = , also E}&wxnv“aiyi = A for every fixed ¥y 0. By

In

Lemma 3, :E: ajyq4 = k, where k is a positive integer, has positive
' i=1
n
integral solutions provided that Tr ai< k. Hence xnv_k-a—x . The
i=l

remainder of the proof follows as in the preceding case.

In the theory of Markov chains we consider outcomes whose proba-
bilities depend only upon the outcome of the preceding trial. Hence,
knowing the outcome of any particular trial, say Ek’ we may neglect any
further information about earlier states in making a probability state-
ment about Ek+1'

Definition 3: A sequence of trials with possible outcomes (states)

Eys Epy o o o is called a Markov chain provided that the probabilities

of sample sequences are given by

P E 'Y e s e E. - . 'Y * & s .
i Jo’ EJ]_’ Jn)?’ %30 Pioiy pjljz pan..lan

in terms of an initial probability distribution { a, § for the states
E, at time zero and transition probabilities Py = Pﬁ:Ekl EB] (i.e.,

the probability that Ek occurs, given that E, occurred on the preced-

J
ing trial).

Suppose we let pjk(n) designate the probability that Ek occurs
on thé ntB trial after E; occurred. Thus we see that pjj(n) = u if
a recurrent event occurs on the zeroth trial. (&£ = Ej).

Definition L: A Markov chain is irreducible provided that for all (j,k)

there exists an n such that pjk(n)> 0. (Every state can be reached

from every other state).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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A gtate Ej is said to be periodic with period t+ > 1 if pjj(n)

whenever n is not divisible by t and t is .the smallest integer with this

=0

property.

Definition 5: An aperiodic Markov chain is a Markov chain in which no

states are periodic.

Definition 6: A state Ej of an aperiodic Markov chain is a transient

state provided that Z ij )<ao .

Definition 7: A state Ej of an aperiodic Markov chain is a persistent

hull state provided that Z p;j;j( n) = o0 gnd }li_{nw P34 (n) = 0,

Definition 8: A state EJ of an aperiodic Markov chain is an ergodic

state provided that it is neither transient nor mull.

Theorem 2: If a state E, is ergodic, then

J

Lim pij /Z nf

1im
n=1

where flj is the probability that, starting from state Ei’ the system
" ever reaches state E s and fj(n) is the probability that state Ej is

reached for the first time on the n'P trial. The probability f (n)

plays the role of f defined on page 9..

Proof: Let hij(n) represent the probability that, starting from state

Ey, the system reaches state Ej for the first time on the nbh step.

Clearly, fi3 = Z hi . Also,

n=1
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(n) (n) , (¢ (O)Pj (n) , fj(l)p:lj(n-l)+ L. s f‘_j(n)

'pij = hij (O))’

i P P13

where we define fj(°) = 0, hij(") = 1. Thus

a0 o (524 J- )
z:: pi.(n)sn . ;Z: hi_(n)sn . 2{: ¢ (n)gn 2{: pij(n)sn.
n=0 1Y n=0 *J n=0 n=0

We now define the following generating functions:
oo

Pi(s) = Z Pij(n)sn’

n=0

oo

F(s) = zz: fj(n)sn, and

n=0
oo

Hi(s) = ZZ: hij(n)sn-
n=0

By comparison with the geometric series these series converge at least
in the open interval (-1, 1). Also |F(s)| < 1 on the open interval
(-1, 1). .,

Pi(s) = H;(s) + F(s)P;(s) or Py(s) = H;(s) [ 1 - F(s)] L.

Since F(s) has a power series expansion and [7(s)] < 1 on (-1, 1) we can
00

-- . v : _1
write l:l - F(s)] = K(s) = 2{? K(ndgn, Rewriting what we have,
n=0

K(s) = 1 + F(s)X(s),
and in particular, equating coefficients of sn, ,
K@ L WD) g i) g (00,

By Theorem 1 we have, then,
) oo
1im k(M) . 1/Z ni'j(n).
n—>ot n=1

Since

-1
P(s) = H(s)[ 1 - F(s)] = H(s)K(s),
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we have

pij(n) = k(n)hij(c’) + k(n"l)hij(l) +...%k

For my fixed r,

14m  klP" r)hl - by (r)/Z nf

n-»oco n=1
and
1m (P 13(") R L
) by "/ > nt, ().
n=1 n=1

Pherefore, given ¢ > O there exists an N large enough so that

w(n). (o) (n N) (n) (n)
|knhij Y ...tk ;Lhij /an ,<€/3.
-
Further, since Z hij(n)< co and the k(n)are bounded we have, for large
n=0
enough N,
(n-r) (1)
k < €/3,
r=N+1 hi‘j

or, in other words,

(n) _ (k(n)hij(O) P k(n'N)hij(N))l< € /3.

I P; 3
If we further choose N sufficiently large that

[ee) N oD
L/ ) ne,™ 23w, /2w, ®l< ep,
n=1 n=1 n=1

we have, for n>N

\pij( 'H(l)/Z: nf(n)‘<6-

n=1

Therefore,
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Theorem 3: In an irreducible aperiodic Markov chain all states belong
to the same one of the three classes defined above.

Proof: Let Ej be a fixed non-transient state and let Ek be some other

state that can be reached from it in no less than N steps, and let

pjk(N)> 0. A return from B to E% must have positive probability since

(1)

the chain is irreducible. That is, for some M, pkj > 0. Clearly

N) M
pjk( Pkk(‘n)pkj( ) < pyy ", ana
(M, (n), (W) (M+n+N
Pej’ Pj3 ‘Pjk % Py )
for all n.
Therefore, z P33 (n) | © implies Z Pic (n) = © , and
n=1
p () _ o implies 1im pu ™ = 0. Hence if . is persistent mill
n-»ao 33 Ao © KK . 3 p ’
80 is Ek'

Suppose Ej is a transient state. Then any other state, say E s
that can be reached from it must be transient also,ffor if it were not,
by the above, Bj would have to be non-transient also.

Since E

J
mull, and Ej transient implies any other state Ek is transient, it

persistent nmull implies amy other state Ek is persistent

follows that Ej ergodic implies any other state Ek is ergodic.

Definition 9: A probability distribution { g is called stationary

——

with respect to {pijl provided that vj = }glvipij.

Theorem Lt An irreducible aperiodic Markov chain belongs to one of the
following two classes:
1) The states are all transient or all mull states, in which case

there exists no stationary distribution.
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2) The states are all ergodic, in which case { u, | 1s a unique
stationary distribution where v, = 1lim pjk(n)> 0.

1 - OO

Proof: Suppose all states are ergodic., Then for fixed j and n,
© N
Z pjk(n) = 1 g0 that Z . < 1.
k=1 k=1

In the equation oo
(m+1) (m)
Pik = Z Psv  Pyk

v=1

let m approach infinity. Then 1lim pjk(m+1) = w_so that

I -» 0o
Lim | pjv(m)pvk = Dy }n:yprjv(m) = P U
For all finite t we have
- 1
O ; ORI > s @y

and o
U = Z UePyice
v=1
We suppose that oo

u > Z UyPyi
=1

o=

and sum both sides over k obtaining

o0 a0 o0
D w2 2 o
1 7 % vuluv"k

Since we have absolute convergence we can interchange the order
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of summation so that
U, > Z_ Z p Z
k = 55 vk Uy s

a contradiction. Hence
o0

Uy = Z UyPyke
v=1

Let o0
vk = uk/ Z u
j=1
Then 00
v, = Z u _z u
51 a=1 J
oo

3; /Zu)p
Zvjpjk

J=1

]

so that {Vk} is a stationary distribution,

Let [vkl be any stationary distribution. Then,

and o
RN S N
j=1 J j=1 i 1
so that ©
(2)
Vi T Z ViPix -
i=1
We proceed, inductively, by supposing
5 ™
m
'V'- = V-p. - -]
J =1 153j
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Then

@ L. o
(1) (1) (m)
jz,i Pae V3T JLl ‘Z‘i P ViPig

Absolute convergence allows us to interchange limits so that we have
[> 2]

V. = Z V., - .(m+1)o
I
Letting n approach infinity in
82
v =-§ vu., = U_.
r w1 vV °T r

Hence the distribution is uniqgue.
If the states are transient or null states and S'“kg is a

stationary distribution, then

Vp = :E: v&pvr(n)

v=1

and 1lim Pvr(n) = 0, so that no stationary distribution exists.
n —» o0

Example: Three chess players, Adams, Berlyov, and Schultz have a
tournament in which the last player to win a game is champion. Adams
and Schultz don't get on together so they never play one another.
Therefore, whenever Adams or Schultz is champion he remains champion
ﬁntil dethroned by Berlyov. Eérlyov, however, never wins two games in
succession. Whenever Adams is champion, Berlyov has probability three-
fourths in favor of defeating him. Whenever Berlyov has the choice of
opponents he chooses to play Adams three-fourths of the time. Whenever
Schultz is champion, Berlyov regains the championship only one-fourth
of the time,

If we let the integers a, b, and s represent the states of Adams,
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Berlyov, and Schultz, respectively, being champion, we may write the

transition matrix as follows:

a b s
a1/ 3/L O Paa Pab Pag
bl 3/h 0 1/h | = | Pyy Ppb Pog
s 0 1/h 3/11 Pga psb Pss

This is an example of a Markov chain in which all states are
ergodic. It is easy to verify that the vector whose entries are LA is

a b c

(1/3 1/3 1/3).
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SEMI-MARKOV CHAINS

We adopt the following notation:
T-f0,1,2,...%,

I represents some fixed set of intergers, and A denotes a Markov
chain with random variables A, and the A, take on values in I. Initial
probabilities will be denoted by P{A, = ig and transition probabili-
ties by

Pim ="P {Aysy =~m|a =~ 1.
We would like to introduce the notion of random waiting times in

guccessive states.
We agsume that the random variables (A, By,), k€T, define a

Markov chain A' with transition probabilities

P{Agsy = M, Byp = nf Ay = 1, By = 3§ = pyp amne

Definition 10: For any fixed sequence of events in A', we define t.

by t, = O and recursively by t,,; - tk = By.

The By's are interpreted as waiting times in the states A, . For
any sequence of events we interpret the successive elements of T as
*running time," and label the time of the kP transition in A by .
That is, we label the time of the transition from Ak—l to Ay by ty.
Clearly

0= t,{ty <« & '<tk<tk+1< o« o o

We have the following conditions:

P{B = 3| Ac =143 = asy,

21
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The following theorem shows us that the introduction of waiting

times still leaves us with a Markov chain.

Theorem 5: P{Ak‘"l = mle, Al’ e » o3 Ak = i, BO, Bl, e o oy Bk = jg
AP A mmae =1

(Note that Ag, Ay, - . +, A = 1 is an abbreviation of A, = iy, & = i,

o o sg Ak = 31 )o

PI'OOf: p{Ak_'.'l = mle, Al’ e o oy Ak - i, BO’ Bl, s & ey B-k = Jg

[+ =]

= Z P{Ak""l = m, Bk""l = nlAO, Al,ooo, Ak = i’ Bo, Bl’ooo, Bk bl j}

n=1

m, Bk+l*n,Ak’i:Bk’j}

]
™M
bao)
o~
=3
w
+
-
]

B Z Pim 2mpn = Pim = P{Akﬂ_ = “I'Ak= i%

Theorem 6: P{Bk-f-l = m,AO, Ays « « o5 Ayyq = 1, By, Byy o o 4y By = s}
= P{Byy = mlAgq = 1.
Proof: P{By, =mlAg, A1y o « «5 Ay = 1, Boy By o o o5 By = s}
_ P{Bea = m A =3, (osdy, - e ey Ay By Bys o « «5 By = 8)]
P{Ays1=1 (A0sA7500058=35B0sBysess sBy=s)] P{AnsAyseeeshymIsBysBysees sByms]

) P{Biey =m"Ayq = 1| (A Ayy o o oy Ap = 3, Byy Byy o o oy By = s)}
T G A R kL
P {Ags1 = 15 By = m [ Ay = J,6B = 5]

Py = 1| A = 32 -
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= Pji 2qq /Pyi = 2qn = P{B = m| Ay = 1} .

Definition 11: For any fixed sequence of events in A, the sequence

{xtg s t€T, defined by x = A, provided that tk.t-.t<tk+1, is called

a semi-Markov chain.

Theorem 7: For any subset I,of I

Un P{xyeTolx, =1} = lim P{AeT |a - il .

Proof: Let §t =P{x, eI [x,= i‘g and o = PEAke IO‘AO - i}. ,
and note that {"(kz is a subsequence of {étg « Therefore, if {é t}
converges to L, then fe(k'g converges to L.

Suppose that {O{kg converges to L. That is, for all €5 O,
there exists a positive integer N such that N<k implies that
|°(k - L[(G . If ét = X K? then mino(j_f.-_ éié_maxcxj, whenever
k<j and t<1i, so that N¢k<t<i implies that |§i - Ll<e . Hence,
if fo(k'g converges to L, then {gt} converges to L.

Therefore 1im = 1lim o, .
t»ow ét k-»o0 K

Definition 12: For a fixed sequence {Akg we define a substate chain

{(xt, yt).ﬁ s t€T, where y, is given by:

1) yy=0uf t=t,, and
This means that if Ty = 0, then the semi-Markov process has just reached
Xt. If yy = m>O0, then m represents the time the process will remain
in x,.

The transition probabilities for the substate chain are given by

p{xt-o-l =My Vi1 T n| Xy = i, Ty = j} = qijmn
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where i,m€I and j,neT. We note the following cases.
le If j = n= 0, then qijmn = 35541 Pjme This is simply the
probability of waiting in state i for one unit of time times the prob-
ability of going from i to m.
2. If j=1 and n= 0, then qijmn = Psn
the last unit of waiting time before a change of state, j = 1, we have

. EKnowing that this is

the probability of going from i to m.

3. Ifi=mandn=21 and j = 0, then qijmn = 84 41 Gven
that the procéss is in'state i = m, this is the probability that it
waits here n + 1 units of time.

Le If j22 andn=3 -1 and i = m, then 9 jpp = 1. If the
process is going to wait in state i = m J= 2 times clearly the next
state of the substate chain is (i, j - 1).

5. Otherwise, % 5mn ™ 0
6. P’{xo'i,yosj}={

Since the transition probabilities for the substate chain are

P{x, = i} ifj:-o‘g

0 if §> 0

well defined in terms of probabilities that depend only upon the pre-

vious state, the substate chain is a Markov chain.

Examples Turning to our chess players again, suppose we introduce the
following complication: Berlyov never plays more than one game in a
day, and on any given day he is as likely to play as not.

A state in the substate chain might be the event that Schultz
wins the championship by defeating Berlyov on the eighth day after the
tournament began. This is represented by (x8, ys) = (s, o). The

probability that he will be champion the following day only is
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represented by

P{(s,1)1(s,008 = a g1 = 8.4 Pgg = (1/2)(3/0) = 3/8.
The probability that Berlyov regains the championship the day following
that is represented by

P {(b,O)I(S,l)} - qSlbO = pr = 1/)4'
The probability that Berlyov will then retain the championship for
three days is represented by

h
P {(0,3)](0,0)8 = apqpg = 3y, = (1/2)* = 1/16.
Letting i€ 1 and je T we adopt the following notation:

b1y = Z #4n’

mj
oo [20)
& = E{Bk‘Ak = ig = j'—'—ZO bij = szOj aij’

m =lim PfA =i},

k —-c0
myy(t) = P {(xy y,) = (1, 3}
e %T_l_Ele {(xt’ Yt) = (4, j)g » and
™ = (i, §)] d1e1, by > ol.
Notice that
P {(X.b, yt)e I* I te T} = 1.
Recall that A represents the Markov chain defined on page 21. We let

A% represent the substate chain where (xt, yt) e I*.

Theorem 8: 1) A¥ non-mull implies that {mij 1 (1, .‘])GA*} is the

unique solution of the system

00 0
vy >0, Z v =1, Z v s PR = Vo
J 301 ij 1,51 i3 *ijmn mn

2) A¥ mull implies that this gystem has no solution.
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Proof: This is a consequence of Theorem L.

T

ap

Lemma l4: If 1im b, = b = = .
L tiﬁn % s and g;% a, = a, then %ET«; ELO a, bt-n ab

Proof: Given € >0, we wish to show that if t is large €nough then
t

lza b-“ab'<€o
o n “t-n

N=

We note that

t a0
a by_, - ab} = 2&: a b -b 2 a }
n;; n "ten n0 0 tn Tim o
> )
= a (b -b)-bZa
=0 o t-n n=t+1 "
&0
t .
si;lanl |by_p = Bl + b ) anl
n= n=t+1

)
M
o

Y]
=
I
ct
1
ta

1

=

+
:

+
I
3
—
o'
c+
o
+
o
Me
4]
o
P il
»

We choose N sufficiently large so that

t
,)_N_I]an\]bt_n -bl< €/31f t>N.
n=N+

o0
This can be done since ‘bt-n - b‘ is bounded and 2{: lan\ is convergent.
n=0

The choice of N is independent of t as long as t>N.

Next we choose Ny= N sufficiently large so that

(s ]
| b %:lan\ < €/3 if t>N,
n= 1+

and also large enough so that t ~ N is sufficiently large to insure that

N
g;%lan} | o4p - ] < /3.
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This can be done since ‘bt-n - bl converges to zero for each fixed n,
Therefore we have for the choice of t

t
I;anbtn'abl‘(e/i“* €3+ €/3=e.
n=

Theorem 92 mij = bij m; o

Proof: Since

P { (xesve) = (1,30}
P(xy_q s¥4-1)=(Lo 3+ D Cxpo74)= (2, 3) | (eg1 s341)=(4, 3418
+ P {0y g0y, 1) = (1,00 P{Crg,ye) = (1,0} (rpoq s7pg)= (4,00

my 4 (t = D)y 541 335 *+ Mot - Dazosy
= my 541t = 1) + 25 juq myglt - 1)

for 1£j and 1<%, we have

mij(t) =y j+1(t -1) + a3y j+1 myo(t - 1).

We note that

mij(l) = my j+1(0) + a3 541 m; 5(0)
where

my 34100) = P (xg,yp) = (1,3+1) = o. )
Since

t) = ms ODcmsn(t)e 1 for all teT, and
lim myo(t) = myg, 0£myo(t) s

..}

2 j+n = P33= 1L,
n=1
we have, by Lemma b,

1im mij(t) = 12“@ Z 35 jen mio(t - n) = bij my e
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Theorem 10: If A* is non-null, then {m,|iec I} 1s the unique solution

of the system

[+ 24 oD
vi>0,Zev=1,va = V .
=1 11 s R

There is no solution of A¥* is null.

Proof: Since 0< ms 3 and 11_—bij, we have O<mio‘

Also - o o - -
geivi-g_;)bijvizj;_;)mij’l'

Suppose n = 0, then

o0

Zl Z "3 9jmn = >— Z bi5 ™0 Um0

i=1 j=1

&0 [0 4]
= Z bjo M0 831 Pim * :.Zl bio Mo 831 Pin

o0
= lg (agy + 239) Wy Py

1

i
= m p -
= 0w

By Theorem 7 we have
i l\g.:

. q .
i=1 j=0 mi'] 1jmn "m0

This solution is unique since another solution would contradict the

uniqueness of

53wy e,

i=1 3=0 1jmn®
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Theorem 11: Suppose A(and therefore A¥) is aperiodic.

1) A non-mill and A% non-null imply that
m; 5 =biJm1/Z e, my 5 (i, J)e I

2) A non-nmull and

>

e m_ < oo
<5 “n 'n
imply that A* is non-null.

3) A non-mull and A¥ null imply that

mg5 = lim by mi/z ep M » (1, ) e TF.

n—o

L) A non-null and

imply that A¥* is rfull.

5) A mill implies that A¥ is null.
Proofs 1) A non-mull and m; = lim P{ A = 1{ , 1€ T imply that m; #0.
A* non-mull and m;q = lim P { (x.b, v4) = (i, 0)} imply that my,# 0.

Hence there exists a X) O such that my = N my4. Since
o ——
Zenmn0=1’)‘=7\2—- n Mho-
n=1 n=1

Hence o ®

my = (A Z‘l en M) Mo = mij/bij Zl en()mno)'

That is, »
mij = bij IT&/ nZ_]_ en mn.
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2) Since A non-null implies that mi% O we have that

oo
n;/ Z e, m, > 0.
n=1

Also
«© o o 0
Ze.(./Zem)uZe.m./;em=1
ol S BRCRE B
and o - .
Z (my /Zen mp) Py = mn-/z ®p Wpe
i=1 n=1 ' n=1

Hence A* is non-null.

3) By 2) A* mull implies that

D

lim e = .
o %. nMh =%

Hence, since bij’é O and m,# 0, we have

m
i
N —> o n

[-2]
n=1

Therefore,

i

®
mijs}ljfabijmi/% e, W, 0.

L) By 3) and 1) we have

t

©
%jg}ljfaobijmi/z enmn-o

n=1
so that A¥ is mull.

5) Suppose A¥ is non-mull. We have that 1< ey implies

00 [+¢]
O<Z mnosz e, Mo = 1
n=1 n=1

Hence, for all 1
¢
0« m.io /Zl mno -
N
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Also
1Z=1 mlo/%; Mo = Zmio/;
and -
Z(mio/): no) Pin = g /Zlm
n=

Hence A is non-null.

Since mij(t) = P{(Xt, Yt) = (i9 j)g s

P = iy = . .
{xt g jéo mig(t)

Alao, bjo =1 and

byy = 2 4n

n>j
and
mij(t) = ‘il i j+n mya(t-n), 1£ 3, 14,
N=
give us

Zm (t)=ib . (t - n).
P £ Pin MO
Theorem 12: Suppose A is aperiodic and e;< .
1) A mull implies that
>
1im P3x; = 1 = 0 = cse
i fxy = 1% e M3

2) A non-null and

11mZem=m

N~ ,___,

imply that

0D
%j;t’nmPfxtziE =O=j§)mi
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3) A non-mull implies that

 eam -
%:HnmP{xt=i§ = eimi/Z & My = £ Myje
n=1 j=0
Proof:
o
1) For all k, O< my (k)4 1 and %:.L_r’nm mio(k) = myq and th bin = €

imply that

20
lim ZO bsp mio(t -n) = e my,
n=

t-—&m

by Lemma 3. Also, A mull implies A¥ is null and My = O for all j20

so that
>
= O,
o 1 . .
Hence .

%;Obij Mi0 = O

implies that e; Mg = O. Therefore, we have
t

lin Pf{x, = if - %"i“mg;o bin Mot ~ n) = ey mq = O.
2) A non-mull and
t
1im Z_—_ e, M, = @
t e n=1

imply that A* is mull and the above argument applies.

3) A non-mull implies
“&j’bi;;“&/%:_—-lenmn

so that

@ 0 oo o0
Xj;g‘ij = (g / nZ=1 ®n Tn) 2;0"15 e e ! /Zn\;l €y Une
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Examgle: Conasider the example of the chess tournament. Suppose we wish

to know the probability that Schultz is champion for three days. We
make the following computations.
Lin P (xy 73) = (s, 27 = myp,

20

&5 = ) i(1/29*1) =1,
3=0

by, = Z 172"t o1 -1/2 - 1/4 - 1/8 = 1/8,

n>2
Z enmn=Z mn=1/3+1/3+1/3=1’
n=1 n=1 t

go that

Bgp = bgp Mg / ;Z: en My = 1/2k.
n=1
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