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INTRODUCTION

Ecologists have studied populations of organisms 
in the field for a nvimber of years. Many of these 
studies have been concerned with rather small popula­
tions in which random fluctuations may be expected to 
be of more importance than in very large populations. 
Therefore, it should be helpful to study an arbitrary 
population which increases and decreases according to 
certain probability laws. In this paper, two different 
formulations of the problem will be considered.

111
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CHAPTER I
BIRTH AHD DEATH PROCESSES AND RELATED DISTRIBUTIONS

1, Poisson and Pure Birth and Death Processes
Consider first a system subject to instantaneous 

changes due to the occurrence of random events. All 
changes are assumed to be of the same kind. The only 
concern is the total number of changes. Each change 
occurs at some point on the time axis. Arrival of 
telephone calls and breakage of a chromosome under 
harmful irradiation are examples. These two physical 
examples have two main properties in common; forces 
which determine the process do not change (homogeneity 
in time), and future changes are independent of past 
changes. The number of changes is recorded by a count­
ing function N^ which enumerates the number of changes 
in the interval [0, t). The mathematical formulation 
of such physical processes is called the Poisson process.
The postulates are :
(a) Whatever the number of changes during [0, t), the
probability that during [t, t + h) a change occurs is
Xh + o(h), (b) The probability that more than one change
occurs is o(h). The term Xh + o(h) means Xh + "something
of smaller order than h". The "something" is a function
f(h) satisfying lim f(h)/h = 0 and one writes f(h) = o(h).

h -> 0
Prom these postulates alone one can prove that the probability
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2
of exactly r occurrences in the time interval [T, T + t) is 
e“Xt^ .\r
 p M '" . The reader is referred to Feller [53, pp. 400-
402, for details. A stochastic process is defined as a 
family of random variables, (X^, t e T); it is a random 
phenomenon arising through a process which is developing 
in time according to probabilistic laws. The Poisson 
process is an example.

In the Poisson process, the probability of a change 
during [t, t + h) is independent of the number of changes 
during [0, t). The pure birth process is a modification 
of the Poisson process. For the pure birth process, 
postulate (a) of the Poisson process becomes 
(a') When n changes occur during [0, t), the probability 
of a change during [t, t + h) is X^h + o(h).
In the Poisson process, past and future are independent.
In the pure birth process, past and future are not inde­
pendent, since the probability of a subsequent change, 
called a birth, depends on the cumulative size of the 
population through X^, called the birth rate. However, 
there is no effect of aging; the birth rate is not "age- 
specific”. For a discussion of the pure birth process the 
reader is referred to Feller [33, pp. 402-407.

The above mentioned processes provide models for 
systems, such as arrival of telephone calls, which can 
only undergo one type of change. Neither process can,
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however, serve as a realistic model for changes in popu­
lation size where individuals are not only horn, hut can 
also die. The pure hirth and death process provides a 
model for such a system. One additional postulate is 
needed along with a rewording so that the postulates for 
the pure hirth and death process become;
(i) Suppose that the system is in state n at time tj the 
prohability that the system changes to state n + 1 during 
[t, t + h) is l^h + o(h).
(ii) Suppose that the system is in state n at time t; 
the probability that the system changes to state n - 1 
during [t, t + h) is jî h + o(h).
(iii) The probability of any other kind of change is o(h). 
The functions and are called the birth and death 
rates respectively. The word "pure" refers to the fact 
that neither nor |î  is a function of time. Further 
discussion of the pure birth and death process may be 
found in Feller [3], pp, 407-411. In the rest of this 
paper, the birth and death functions will be allowed to
be time dependent; such processes are sometimes called 
generalized birth and death processes.

2. A Generalized Birth and Death Process
Population growth can be considered as a birth 

and death process in which the birth and death rates 
are arbitrary functions of time. This consideration
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leads to the non-homogeneous, integer valued process 
(N^, t > O) satisfying the following postulates:
(a) + l) = x(t)lT^h +"o(h) 3> ()
(b) P(N-t+h = :L) := ti(t)lT̂ h + o(h) ^t ^ ^
(c) = N^) = 1 - (x(t) + jx(t))U^h + o(h) 13̂. :> ()
(d) The probability of any other kind of change is o(h)
(e) The functions xCt), M-Ct), and the first derivative 
of x(t) are assumed to be continuous.

In this formulation, is a random variable which 
measures the size of the population at time t. The 
functions x(t) and p.(t) are called the birth and death 
rates respectively. We will be interested in small values 
of h; the first four postulates say that with overwhelming 
probability, the population size changes by at most one 
in a small time interval. The fifth postulate is a 
regularity condition which will permit certain formal 
manipulations. For the moment, suppose that the popula­
tion descends from only one individual so that = 1.
We seek the distribution of Our development follows
closely that of D. G r. Kendall [6] . The following result 
about the so-called Ricatti differential equation 
—  = Rz + Qz + p turns out to be essential.
THEOREM 1. Suppose that P, Q, R, and the first derivative
of R are continuous functions of x and that R(x ) / 0.

dz 2Then the equation = Rz + Qz + P has a solution; the
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general solution may be expressed in the form 
f,(x) + Afg(x)

z = f (x) + Af (x) A is an arbitrary constant. The

Ricatti differential equation is discussed in many standard 
treatises including the one of Ince C53» pp. 73-75» 293- 
295.
THEOREM 2, Under assumptions (a)-(e) with Nq * 1, has 
a geometric distribution with a modified zero term. A 
geometric distribution with a modified zero term is defined 
by:

Pq = r

if r = 0, the preceding defines the geometric distribution.
Proof: Define P^(t) = P(R. = n) for n > 0, t > 0. Wen u — —
have P^(o) = 1 and P^(o) = 0 for n / 1. Consider (for n > l) 
P^Ct + h) = » the probability is oCh) that is
other than n - 1, n, o r n  + 1. Hence, if n >_ 1,
(l) P^(t+h) = (n-l)\(t)hP^_^(t) + (l - (\(t) + p.(t) )nh)]^(t)

+ (n+l)p.(t)hP^^^(t) + o(h).

Thus, P^(t+h) - P^(t) = (n-l)x(t)hP^_^(t)

+ (n+l)M'(t)hP^^^(t) - n(x(t) + iJ-Ct))hP^(t) + o(h).
3Pj^(t)

Dividing by h and letting h ->0, we obtain — ^ --- -

(n-l)x(t)p^_^(t) + (n+l)|i(t)P^_^^(t) - n(x(t) + ji(t))P^(t).
If we define P_^(t) = 0, the above is also true for n = 0.
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6
The above is the right hand derivative of P^(t). Replacing 
t by t - h in (l) gives the same result for the left hand 
derivative since x(t) and p.(t) were assumed continuous and 
o(h) is independent of t . We wish to find the probability 
generating function of ; the reader is referred to Relier 
[3], pp. 248-267, for a discussion of generating functions. 
Define

CO
(2) y(z, t) = Pj^(t)z which converges for I zI < 1.

1 oo -, .Now, ^(yCz, t + h) - y ( z , t)) = ^(P^(t + h) - P^^(t))z .

The fact that equality holds as h 0 follows from an
application of the dominated convergence theorem to the 

oo -, -,
series h^^k^^ + h) - Pj^(t))z . To see that this
theorem applies, notice that

J(Pj^(t + h) - Pjj-(t)) = (k - l)x(t)P^_^(t) +

(k + l)|J.(t)Pĵ ^̂ (t) - k(x(t) + |i(t))Pĵ (t) + o(h)/h
from (l). Since x(t) and |i(t) are bounded, the above can 
be replaced by

“ (P^(t+h) - P^(t)) < n((k-l)P^_3_(t) +

(k+l)P^^^(t) + 2kPj^(t) + l)

for some constant M = max(lx(t)l, In(t)I, I — -|).
Purthermore, the above expression in parentheses is less
than or equal to 4k + 1. Therefore,

oo 1 . oo ,
kSo
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7
and for Izl <1, (4k+1 ) —  < co , Thus, the

hypotheses of the dominated convergence theorem are 
satisfied and the interchange of limits is justified.
Hence,
(3) _3T(z,t) _at
jj.gQC (k-l)x(t)Pj^_^(t) + (k+l)^i(t)Pj^^^(t) - k(x(t)+|i(t))Pj^(t)}z^=

Q OD -I -1
[\(t)z - (x(t) + tx(t))z + î(t) ] ^̂ gĵ kP̂ (t)z ~ =

Cx(t)z2 - (x(t) + ti(t))z + _

Since P^(o) = 1, y ( z , O) = z. We wish to look at the 
subsidiary equations of (3) and obtain two independent 
integrals of the former; suppose these are u = a, v = b.
Then an integral of (3) is given by u = <t)(v) where 4) is 
an arbitrary function. For further details, the reader 
may consult Forsyth [4], pp, 392-394, The subsidiary 
equations areŸ Consider

(5) ^  = - (J-(t) + (x(t) + ^(t))z - x(t)z^; we wish to find

an integral of this equation. Now, (5) is a Hicatti equa­
tion so the general solution is given by theorem 1, i.e.

f^(t) + Af2(t)
 ̂= f tl"" + Af^Ct)- Therefore,

f (t) - zf^(t) , ,
^ = af:TbT:r f" y = A« , Thus,
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8
f,(t) - ZfzCt)

C6) Y = A' = q)C  ^     which is the general solution

of (3). We now want to determine the precise form of d).
From y (z , O) = z,

, , ^ fi(0) - zf,(0)z = t (z , 0) = _ fg(o). Now put
f^(o) - zf^(o) ...

^ ' zf^Ioy- f2(o)
or

f^(0) + ufgCo)
 ̂" f^io; + uf^io;
where u = u ( z,  t, y ) = constant is an integral of (5). Hence

f.(O) + ufp(o)
(7) (b(u) = z = f (q ) + (o)» Combining (6) and (7) gives.3VV.y T UX^

f^(o) + v(z,t)f2(o) 
y (z , t) - + vCz,t^f^CO>)
where

f,(t) - Zfz(t)
- fgltJ-

So y
bf^(t) - afgCt) + z(af^(t) “ f^ (t)) 

y (z , t) - d.f̂ (t) - cfgCt) + zlcf^lt^ - df^lt^^
where
a = f^(o), b = f2(o), c = f^Co), d = f^(o)« Expansion 
shows that
(8) Pg(t) = r(t) and P^(t) = (l - PQ(t))(l - s(t))s(t)^"^(n>l) 
where

bf^(t) - af2(t)
P  ^  j  _ cf^(t)

cf^(t) - dfz(t) 
' df^t; - cfpCt)
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9
But this is exactly the conclusion of the theorem.

Determination of the functions r(t) and s(t) will 
complete the solution. From (s),
(9) Y(z,t) = r(t) + (l-r(t))(l-s(t))z

+ (l-r(t))(l-s(t))s(t)z^ +
00 

k k
r(t) + (l-r(t) - s(t))z

(JU T
r(t) + z(l-r(t))(l~s(t)) , S„(s(t)z)

1 - sCt) z
Thus,
3 Y _ (l~s(t)z)(r' (t)-r' (t)z-s' (t)z)-f(r(t) + (l-r(t)--sCt))z)3* (t)z 

* (l-s(t)z)2
and
3 Y _ (l-s(t)z)(l-s(t)-r(t)) + (r(t) + (l-r(t)-s(t))z)s(t)

(l-s(t)z)2
where
r'(t) - and s'(t) =

Substitution of the expressions for and in (5) gives
(l-s(t)z)(r'(t) - r®(t)z - s'(t)z) +

(r(t) + (l - r(t) - s(t))z)s'(t)z =
(x(t)z^ - (x(t) + p.(t))z + |x(t))((l-s(t)z)(l-r(t) - s(t)) + 

(r(t) + (l-r(t) - s(t))z)s(t))or,
(r*(t)s(t)-r(t)s’(t)+s*(t))z^ + (r(t)s'(t) - r'(t) - s'(t) - 

r'(t)s(t))z + r'Ct) = 
x(t)(l-r(t))(l-s(t))z^ - (x(t) + ii.(t))(l-r(t))(l-s(t))z +

(i(t) (l-r(t) ) (l-s(t) ) .
Thus,
(lO) r'(t)s(t) - r(t)s'(t) + s'(t) = x(t)(l-r(t))(l-s(t))
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10
and
(11) r* (t) = ti(t)(l - r(t))(l - s(t))

2are obtained by equating coefficients of z and constants. 
Now let U = 1 - r(t), V = 1 - s(t). Then (ll) becomes 
U' = -M.(t)UV and (lO) becomes U'(V - l) - V'U = \(t)UY. 
Substitution of the former into the latter gives
V  = C[i(t) - x(t))V - n(t)V^ which is a Bernoulli equation 
and which can be solved by writing W = ^ so that
V  + (|i(t) - x(t))W = n(t). At t = 0, Pq (0) = 0 = r(0)| 
for n = 1, P^(O) = 1 = (l - r(0))(l - s(o)) = 1 - s(o) 
s o s ( o ) = O o  So, U = V = W = l a t t = 0 ,  Thus the 
solution is
(12) W = e-^(t)yt ^ ^-A(t)

where A(t) = |J.(x) - x(x)dx.

From the above, = - p.(t)V = - = - y— -= A‘(t),

Therefore, ^  - A'(t) so that

—A(tj
or log(UV) = “A(t)o Hence, 1 - r(t) = U = =— tî— — or

-A(t)  ̂ 1
r(t) = 1 -   Tr-— „ Since l-s(t ) = V =

(13) ^  "
s(t) = 1 - Combining (l3) with (8) and (l2)

determines the P^(t) as functions of t .
It is now possible to find expressions for the

oo
mean and variance of N.. E(n ,) = Z^nP (t) =u TJ D = V H
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11
(l - r(t))(l - s(t))

= Cl - r(t))(l -

= (l - r(t))Cl - s(t)) --- ----- P = since js(t)|< 1.
(l-s(t))^

Similarly, an expression for the variance is
Var(Nt) = - E(N^)2.

Now,
OO p = (1 - r(t))(l - sCt)) ^g^n^sCt)^-^

= ( 1 “ r(t))(l - sCt))s(t) X n 2 s ( t ) “-2

= ( 1 — r(t))(l - s(t))s(t) X n 2 s ( t ) “-2 -

(1 - r(t))(l - sCt))s(t)

(l - r(t))(l - sCt))s(t) J , n s ( t ) - 2

= (l - r(t))(l - s(t))s(t)
CO

^g^n(n-l)sCt)^

= ( 1 — r(t))(l - s(t))s(t) C 1 \
ds(t)2

2s(t)(l-r(t)) , 1 - rCt)
(l-s(t))2 

Thus,
Var(M_) = + s(t))

■ • ÿ
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12
These foiTQulas hold provided Nq = 1. If Nq > 1, the usual 
assumption is that sub-populations of coexisting individuals 
are independent. The above formulas for the mean and var­
iance are then multiplied by the number of ancestors to 
give the mean and variance of .

It is also of interest to find the probability of 
extinction of the population.
THEOREM 3. When Hq = H > 1, the probability of ultimate

Iextinction of the population is (-j- ^ j) where 
I = e'^^®VCs)ds.

, . / \ -A(t)Proof : When Hq - 1, PgCt) = r(t) = 1 - — g  =
^-A(t)/^e"^^® V(s)ds VCs)ds

e - À C t )  ^  e - M t ) y t ^ A ( s ) ^ ( ^ ) ^ g  =  1  +

Tso that the probability of ultimate extinction is ^ ^
Since coexisting populations were assumed independent,

T ^this becomes if Nq = N > 1.
Prom the above, it is also seen that a necessary

and sufficient condition for ultimate extinction of the
population (in the sense of being an event of probability
l) is that /®e"^^®^ti(s)ds diverge to + oo .

N^ may assume various integer values in [0, t^).
Suppose that N. = n; call n the state of the process

^1
(N^, t > O) at time t^. We may ask how long it will be 
until the process first leaves state n. Thus, we wish
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13
to find the distribution of the time spent in state n by
the process until it first leaves state n. To this end,
define T^ to be the time until the process first leaves
state n, given that Nj. * n. The next theorem gives the

^1
distribution of T^.n
THEOREM 4, Under the assumptions about the process

-n/^\(t, +s)+|JL(t. +s)ds 
(N^, t > 0), P(T^ < t )  = l -  e ° ^

Proof: Define F^(t) = P(T^ > t). Now for h > 0,
P^(t) - P^(t+h) = P(t <2 < t+h) which is the probability
that the process first leaves state n in the time interval
[t^ + t, t^ + t + h), given that = n. The process may
leave state n by means of a birth or a death. Since P^(t)
is the probability that the process has not left state n in
Ctf, t^ + t), we have
p(t < T < t + h) = ((x(t, + t) + p.(t-, + t))hn + o(h))P_(t). n -L -L n
So,

F (t+h) - F^(t) ,  ̂  ̂  ̂  ̂ ^
lim —  r —---  = - (x(t, + t) + ti(t, + t))nF (t).h ->0 ^ ± ± n

Replacing t by t - h in the above and using the fact that
x(t) and M-(t) are continuous,

F^Ct) - F^(t-h) , , , ,  ̂ ,
lim  r— ^-----  = - (x(t, + t) + M.(t,+ t)nF (t) , soh ->0 ± X n

F^(t) = (x(t^ + t) + n(t^ + t))nF^(t). The solution of
-n/^xCt,+s) + p.(t,+s)ds 

this differential equation is F^(t) = e °
-n/^x(t,+s) + |i(s)ds 

Now, P(T^ < t) = 1 - F^(t) = 1 - e °
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CHAPTER II 
AH INTEGRAL EQUATION

Population growth as a hirth and death process
may also be formulated in the following way. The state
of the process at time t will be described by the integer
valued function N(x , t) which will specify the age dis-
tribution of the population in the sense that / dN(x, t)

1
is the number of individuals in the age group (x^, X2).
The Stieltjes integration is with respect to the age var­
iable X. The postulates for this formulation are as follows
(a) The sub-populations generated by two coexisting in­
dividuals develop independently of one another.
(b) An individual of age x existing at time t has a 
chance x(x)h + o(h) of producing a new individual of 
age zero during the time interval (t, t + h). The 
function x(x), called the birth rate, is not a function 
of t, and is assumed to be continuous.
(c) An individual of age x existing at time t has a 
chance p.(x)h + o(h) of dying during the time interval
(t, t + h ) .  The function n(x), called the death rate, is 
not a function of t, and is assumed to be continuous.
Also, n (x , 0) will be supposed given.

Consider the random variable dN(x, t) which 
enumerates the individuals in the age group (x, x + h) 
where x < t. The function dN(x, t) is really a function
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15
of X, t, and h. One wants to consider this function for 
small h. Now, introduce the function a(x, t) by assuming 
that

dN(x, t) = 0 with probability 1 - a(x, t)h + o(h)
dN(x, t) = 1 with probability a(x, t)h + o(h)
dN(x, t) ^  2 with probability o(h).

The function a(x, t) is required to be bounded in every
finite rectangle. Hence, E(dN(x, t)) = a(x, t)h + o(h). 
Also, P(x, t) = Var(dN(x, t)) = a(x, t)h - a^(x, t)h^ + 
o(h) = a(x, t)h + o(h). Suppose that initially there is 
just one member of the population of age A so that 
N(x, O) = 0 if X  < a and N(x, Q) = 1 if x _> A.

In Kendall's [73 discussion of this model, he 
assumed p.(x) to be a constant function. In the following, 
î(x) is only required to satisfy (c).

Define a random variable z(t) by 
z(t) = 1 if the single ancestor is still alive 

at time t 
z(t) = 0 otherwise.

Let F(t) be the probability that the ancestor is dead 
by time t . Then
F(t + h) - F(t) = (|x(t)h + o(h))(l - K(t)) by postulate
(c). Dividing by h and letting h ->0, we obtain 
1 - F(.t) " . Actually, this computation only shows
differentiability to the left; however, replacing t by t - h
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in the preceding also gives differentiability to the right 
since ji(t) is assumed to be continuous and o(h) is inde­
pendent of t. The above differential equation has the

-/^M'(s)ds
solution P(t) = 1 - e . Hence,

P(z(t) . ]).
Consider the random variables X. and X. „ of thet t—s

stochastic process (X^, t > O) where t > 0, s > 0, s < t .
Ve may ask for E(X^|X^_^ = x) which is the expected value 
of X^ given that X^_^ has assumed a certain value. This 
type of question involves the idea of conditioning by a 
random variable which is discussed by Parzen [9], pp.
41-53. Further, we may allow x to assume all possible 
values and ask for the expected value of E(X^|X^_^ = x). 
Lemma. Given the preceding conditions, E(X^) =
E(E(X^|X^_g = x)) where E(E(X^|X^_g = x)) means taking 
the expected value of X^ given that X^_^ = x and then 
taking the expected value of the latter quantity over all 
possible X,
Proof: E(E(X^|X^_g = x)) = /E(X^|X^_g = x)dP(x) where F
is the distribution function of X^_^ and integration is 
Eiemann-StieltJes. But /E(x^lx^_g = x)dF(x) = E(x^).
Thus, the lemma states that E(x^) can be calculated in 
two steps ; first calculate E(x^lx^_g = x) and then 
calculate the expected value of this quantity over all x.
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Consider cLK(x , t) given the conditions at time t - x 

where x < t. We form E(dN(x, t)ldlî(0, t - x) = n) which
is np since dN(x, t), given the value of dN(o, t - x), is

-/^ti(s)ds
binomial. In this case, n = dNCO, t - x) and p = e
We then find the expectation of e CcLNCx ,t) 1 dlîCo, t-x) = n) = np
Now, dN(0, t-x) = (x(A + t-x)z(t-x) + /^"^x(y)dN(y, t-x))h

-/*-^|x(s)ds
so that E(np) = E(dN(0, t-x)p) = p(x(A + t-x)e +

/^"^x(y)a(y, t-x)dy)h.

According to the discussion in the preceding paragraph, 
the last quantity equals E(dN(x, t)) which we know to be
a(x, t)h + o(h). Hence, we obtain

-/^“^M-(s)ds - /̂ (J-(s)ds
(l4) a(x, t) = x(A + t-x)e o

-/^li(s)ds t-x 
e f o x(y)a(y, t-x)dy.

/^p,(s)ds
Now, let ©(t-x) = aCx, t)e so that

-/^ti(s)ds -/^|i(s)ds
(15) ®(v) = x(A + v)e + /^x(y)e ° ®(v-y)dy.

The above is a Volterra integral equation which is 
discussed by Feller [2]. The above functions satisfy the 
conditions of his Theorem 2} the conclusion is that there 
exists a unique non-negative solution which is bounded in 
every finite interval. In some cases, one can find the 
explicit solution of (l5); one method of solution is by 
means of the Laplace transform [2]. However, there are
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many cases in which, an explicit solution of (l5)» and hence
of (l4), is difficult to obtain; in these cases, it would
be helpful to know if a(x, t) ->a(x) as t -> oo . Theorem 5
adopted from I'eller [2] gives such information.
THEOREM 5. Suppose that we have ©(v) = g(v) + (v-y)f(y)dy
where f and g are non-negative continuous functions. Sup- 

oo oo
pose that / f(x)dx = 1, / g(x)dx = b < oo . Suppose further
that there exists an integer n > 2 such that the moments 

00
k ~ ô
functions f(x), xf(x), x^~^f(x) are of bounded total
m,_ = / x^f(x)dx, k = 1, ,.. , n, are finite, and that the

variation over (O, oo ). Suppose finally that 
lim x^~^g(x) = 0 and lim x*^~^/ g(s)ds = 0. Then

X 00 X 00
lim 0(v) = b/m,.

V -> 00
In an example to be considered later, we shall use this 
theorem to help find the limiting value of a(x, t).

In the formulation of the problem in Theorem 2, one 
is really looking at the population in a broad sense; the 
birth and death functions are the population birth and 
death functions. In the prior formulation, a much closer 
look is taken at the population; the birth and death 
functions here describe what happens to an individual.
The preceding gives a loose idea of the different inter­
pretations of the birth and death rates in the two formu­
lations. In a situation in which the population is the 
members of a species, the second formulation may be the
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more accurate one. In many cases of interest in biology, 
it is possible to write down an expression for the Laplace 
transform of the solution of the integral equation occurring 
in the second formulation. However, it seems to be diffi­
cult to choose functions for x(x) and |i(x) which would be 
considered realistic by a biologist and at the same time 
allow an explicit solution of the equation. Two examples 
are given below. The first one is quite unrealistic; the 
second one is typical of some organisms.
Example 1. Suppose x(x) and p-(x) are the constant functions 
X and [I, Equation (l5) then becomes

Thus
v) = Xe + x/^e ^^0(v - y)dy.

' i - h i  +
where L denotes the Laplace transform or

L ( e )  ^ so that 0(v) =
1 -   --s + p.

This method of solving for ® is standard Laplace transform 
procedure; the reader may consult Churchill [l], pp. 36-37. 
Since v = t - x and e~^^0(t-x) = a(x, t), then 
P(x, t) = a(x, t) = )t-Xx x < t.

A constant death rate corresponds to what is usually 
called a type III survivorship curve in population study.
A type IV survivorship curve, which shows high infant 
mortality, is considered to be the more usual case. A
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constant birth rate over all time does not occur in a
living population.

Since x(x) is the chance of an individual aged x
-/Jp.(s)ds

producing another individual and e is the chance
that an individual will live to age x, we see that
CO -/^(J.(s)ds

/^X(x)e dx = R is the contribution of an individual
to the population of which he is a member. Ve infer that 
the population size is increasing if R > 1, decreasing if 
R < 1, and remaining constant if R = 1. Biological popu­
lations that exist for a very long period of time must 
show an approximate zero rate of increase in size as a 
long term average; the condition R = 1 is equivalent to a 
zero rate of increase,

-/^p.(s)ds
Example 2. Let V(x) = x(x)e . Instead of
specifying the form of x(x) and î(x) which would then 
determine V(x), we may bypass x(x) and p.(x) and simply 
specify the form of V(x). For some organisms, there 
have been experimental determinations of the function 
V(x)j it is approximately triangular in shape (see 
Lewontin [8], pp, 77-94). Ve define V(x) by the following 
diagram:
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0 B T W

B, T, and V are the age of first reproduction, the age of 
peak reproduction, and the age of final reproduction,

00 f w ___ *D
respectively. We have that 1 = /^V(x)dx = -— ^— ^V(t ), 
that V(t ) = 2/(W - b ). From similar triangles,

Y(x) YCt )

so

X - B 

V(x)

T - B 

V(T)
V X V T

“ ct-b k w -b ; 

" cw-t k v -b ;

B < X  <  T

T ^ X ^ V so that 

B < X < T 

T X  ^ V

V(x) = 0 otherwise.
We wish to use Theorem 5 to find @(v) as v -> oo . Now,

00
/^xV(x)dx = 1/3(B + T + W) which is m^ of Theorem 5. If A

is approximately zero and \(v) and e °-/YM'(s)ds
are such
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-/^^i(s)ds 00

that x(v + A)e = V(v + A), then /^V(v + A)dv =

”• g ^ (T - a ). Thus, Theorem 5 asserts that
3(V-B)V({
ïïTb+t+w T

2
©(v) - > as V -> OO . But V = t - X and

/„P'(s)ds
®(t - x) = a(x, t)e ; hence, for fixed x as t oo ,

P(x. t) = a(x. t) If there le
more than one individual, the means and variances add 
since sub-populations are assumed independent. In 
practice, one may be able to assume that t is large enough 
for the above formula to be approximately correct.
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