
University of Montana University of Montana 

ScholarWorks at University of Montana ScholarWorks at University of Montana 

Graduate Student Theses, Dissertations, & 
Professional Papers Graduate School 

2005 

An estimation of distribution algorithm based on linkage An estimation of distribution algorithm based on linkage 

discovery and factorization discovery and factorization 

S. V. Pulavarty 
The University of Montana 

Follow this and additional works at: https://scholarworks.umt.edu/etd 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Pulavarty, S. V., "An estimation of distribution algorithm based on linkage discovery and factorization" 
(2005). Graduate Student Theses, Dissertations, & Professional Papers. 8347. 
https://scholarworks.umt.edu/etd/8347 

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of 
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an 
authorized administrator of ScholarWorks at University of Montana. For more information, please contact 
scholarworks@mso.umt.edu. 

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F8347&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/8347?utm_source=scholarworks.umt.edu%2Fetd%2F8347&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu


Maureen and Mike 
MANSFIELD LIBRARY

The University of

Montana
Permission is granted by the author to reproduce this material in its entirety, 
provided that this material is used for scholarly purposes and is properly 
cited in published works and reports.

**Please check "Yes" or "No" and provide signature**

Yes, I grant permission 

No, I do not grant permission

Author's Signature:

Date: ,, /  U s ______________

Any copying for commercial purposes or financial gain may be undertaken 
only with the author's explicit consent.

8/98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



An Estim ation of D istribution Algorithm Based on Linkage Discovery and

Factorization

by

S.V.RM.Sandeep Pulavarty

B.Tech, Jawaharlal Nehru Technological University, 2003

presented in partial fulfillment of the requirements 

for the degree of 

Master of Science

The University of Montana 

Missoula, Montana 

December, 2005

TOY!

p e rs o n

Dean, Graduate School

1 2 " I< 3-05^

Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: EP39148

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Oissartation Ajbtiahing

UMI EP39148
Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106 -1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pulavarty, S. V. P. M. Sandeep, M.S., December, 2005 Com puter Science

An Estimation of Distribution Algorithm Based on Linkage Discovery and Factor­
ization 'A

Chairperson: Alden H. Wright

Estimation of Distribution Algorithms (EDA) are a class of algorithms that con­
struct an explicit probabilistic model of distribution based on high fitness individ­
uals in the search space. New individuals are generated by sampling this distribu­
tion. The generated individuals guide in constructing the probability distribution 
for next iteration. For a black box function with A-bounded epistasis that satis­
fies a property called running intersection property, we show that it is possible 
to determine the optim um  with high probability. This is done by applying the 
linkage detection algorithm on the black box function, which gives an additively 
decomposable structure of the black box function. The Boltzmann distribution of a 
fitness function is the exponential of the fitness normalized to a probability distri­
bution. The factorization of the Boltzmann distribution for the additively decom­
posable structure is then com puted by using the factorization theorem proposed 
by Miihlenbein et al. The constructed factorization is then sampled to determine 
the optim um  with high probability. As the exponentiation factor in Boltzmann 
distribution is increased, the probability will be concentrated near optimal points.
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CHAPTER 1 INTRODUCTION

Introduction

Evolutionary computation is a set of programming techniques based on the con­

cept of evolution to solve complex problems. Evolutionary computation algo­

rithm s use a population to guide the search for high quality individuals in the 

search space. The quality of an individual can be determined by a fitness function, 

which can be defined as a function that takes an individual as input and returns a 

fitness value proportional to the quality of the individual.

Estimation of Distribution Algorithms (EDA) are a set of evolutionary algorithms 

that use explicit probability distributions to guide the search for good solutions. 

The probability distribution is constucted using the population to reflect impor­

tant characteristics. This distribution is then sampled to generate a new popula­

tion. This preserves all im portant characteristics from the previous propulation 

and introduces diversity into the new population. This process is repeated until 

the term ination criteria are met.

A fitness function is said to be a black box fitness function if we have minimum 

prior knowledge about it. The Additively Decomposed Function(ADF) structure 

of a black box fitness function with k bounded epistasis can be determined using 

the random ized algorithm described by Heckendom  and Wright in [5]. Muhlen-
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bein et al [11] proved a factorization theorem that gives a condition called the Run­

ning Intersection Property (RIP) under which the Boltzmann distribution of an ADF 

can be factorized. The factorized Boltzmann distribution can then be efficiently 

sampled to determine high fitness individuals.

Thesis Organization

The rest of this thesis is organized as follows:

• C hapter 2 provides an overview of related literature, key concepts, and soft­

ware elements used in this research.

• C hapter 3 describes a new evolutionary computation algorithm that was de­

veloped using linkage detection and factorization.

• C hapter 4 describes the implementation, test data sets, and results.

•  C hapter 5 contains conclusion remarks, as well as an outline for future work.
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CHAPTER 2 OVERVIEW

Notation

In this paper, individuals are represented by strings of length £ defined over the 

binary alphabet B — {0 , 1}. The set of string positions is denoted by C: {0 , 1, . . . , ^ — 

1} and the set of all possible bit strings is denoted by X. Some bit strings are 

interpreted as masks that specify sets of bit positions. If a and b are interpreted 

as masks then a Ç 6 iff =  1 implies hi ~  I. The bitcount function bc{x) denotes 

the num ber of bits set to 1 in bit string x. For any given string m e X ,  Xm denotes 

the set {a: G X : a: Ç m], and m  is the compliment of m. We use binary operators A 

and © over bit strings, where A denotes bitwise AND, and © denotes EXCLUSIVE- 

OR. The projection operator tt  ̂ : X —̂ X« projects a string to the bits specified by s. 

For example, -n{i^z}XoXiX2 X2, =  2:12:3.

Background

An Additively Decomposed Function (ADF) is a function which can be written as a 

sum  of simpler sub-functions each of which depends on a smaller num ber of string 

positions. An ADF is called k-epistatic if each sub-function depends on at-most k
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string positions. For example, consider a fitness function g which is defined as

q { X qX i X2 X ^ )  =  g i { X Q X i )  +  g 2 { X 2 )

where g\{xQXi) = xq* xi, 52(^2) =  ^2 and xq,xx,X 2 ,x^ are bits at different string 

positions. In this function, g takes 4 bits as input, whereas gi and 52 take fewer 

num ber of bits as inputs.

If Si =  {0,1} and S2 =  {2}, then the above defined ADF can be w ritten using 

projection as

g { ^ )  =  gi iT^siX)  +  g2(7T,aZ)

In general, an ADF can be written as a sum of n simpler sub-functions as

n

/(^ )  =  (2 .1) 
i= l

where x is a bit string of length £, and s* is a set of bit positions on which sub­

function fi depends on.

A bit position is said to contribute to fitness function /  if there exists a background 

string x  ( i.e. xoXi...xe-i) such that flipping that bit in x  changes the fitness value. 

In other words, if

f{xoXi...Xi...Xi-i) ^  f{xoXi...x~i...xe-i)

then bit position x, is said to contribute to / .

The support of a function is the set of bit positions that contribute to the function. 

For example, in order to determine whether position 2 contributes to the above 

defined function g, calculate the difference between g(zzOz) and g{zzlz), where z ’s 

represent a constant background m ade up of O's and I's, that doesn't change from
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evaluation to evaluation. If there exists a background such that the difference is 

non-zero, then position 2 is said to contribute to the fitness function. In the above 

example, it is easy to see that positions 0,1 and 2 contribute to g, whereas 3 does 

not. So the support of g is {0,1, 2}.

The contribution of a bit position m ight depend not only on its bit value, bu t also 

on the state of other bits in the domain w ith which it interacts. This dependency 

among bits is called epistasis. In order to determine whether two bits epistatically 

interact in a function / ,  let o and b be masks w ith bc{a) =  bc{b) =  1 that specify 

singleton sets consisting of these bit positions, and c be a constant background 

such that bc{c Aa) — bc{c A 6) =  0. Then we compute

/(c) -  /( c  © a) -  f{c  © 6) -f /( c  © a © 6)

If the result is non-zero for some background string c, then the two bits are epista­

tically linked. Epistasis for a general set of bits can be determined using a probe [5] 

which is defined as

=  (2.2)
î GXth

where /  is the fitness function, m € X is a mask specifying the set of bits to be 

tested for epistasis, is the set {x e X : x Ç m) and c is a background with the 

property bc{c A m ) — 0.

A set of bits are epistatically linked if the contribution of a bit position depends 

on the state of other bits in the set. The string m represents an epistatic block if there 

exists a background c such that P ( / ,  m, c) ^  0. In other words, the set of bits in an 

epistatic block are epistatically linked. The order of the probe P ( / ,  m, c) is bc{m).
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Using the probe recursion theorem in [5], it can be shown that any subset of an 

epistatic block is also an epistatic block. A function /  has k-hounded epistasis if the 

num ber of elements in an epistatic block can be at most k.

A  schema is a string of fixed length which contains special asterisk (*) characters 

that can denote any string symbol at that position. The order of a schema is the 

num ber of defined (non-asterisk) positions, and a schema is contiguous if all the 

defined positions are adjacent to each other.

Estimation of Distribution Algorithms (EDA's)

EDA's can be classified into three categories based on the interaction between 

string positions. The first category of EDA's assume that there are no interde­

pendencies between string positions. Some of the examples in this category are 

Population Based Incremental Learning (PBIL)[1], Univariate Marginal Distribu­

tion Algorithm (UMDA)[7], Compact Genetic Algorithm (cGA)[4] etc. This class 

of EDA's works well on linear problems and often fails on problems where there 

are strong interactions between variables. The second category of EDA's allows 

pairwise interaction between variables. Examples for this category include M utual 

Information Maximizing Input Clustering (MIMIC)[2], Bivariate Marginal Distrib­

ution Algorithm (BMDA)[13] etc. As this class of EDA's take order two interactions 

into account, they works well for linear and quadratic problems and often fails 

for problems with higher order interactions. The third category deals w ith m ul­

tivariate dependencies and they construct complex models for the problem to be 

solved. The probability distributions for this category can be constructed based on 

different approaches such as Bayesian Optimization Algorithm[12], Factorization 

of Distribution Algorithms[10] etc.
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One approach to consider multivariate dependencies is to use the principle of 

maximum entropy, which states that the distribution should agree with w hat is 

known and at the same time it should express maximum uncertainty. This gives 

the flexibility to adjust the distribution when new data is available. Wright et al 

[17] constructed the probability distribution based on the maximum entropy prin­

ciple constrained by schema frequencies of contiguous schemata. This distribution 

is sam pled on each iteration to obtain a new population which undergoes the se­

lection process based on fitness of the individuals. The more highly fit individuals 

obtained from selection are used to construct a new distribution. This process is 

repeated until the termination criteria is met.

Another approach to construct the probability distribution is to take the Boltz­

mann distribution of a fitness function, which is the exponential of the fitness nor­

malized to a probability distribution. As the exponentiation factor increases, the 

probability distribution concentrates near optimal points. Thus the Boltzmann dis­

tribution w ith high exponentiation factor can be sampled to determine optimal 

points, bu t the normalization process is not feasible for higher string lengths, as it 

requires the fitness of all strings to be enumerated.

Walsh Coefficients

To determ ine the structure of a blackbox fitness function, a change of basis from 

standard basis to Walsh basis provides an intuitive insight on the interaction of 

bitwise nonlinearities w ithin the function. The Walsh basis is powerful and func­

tionally complete in that it can represent any real-valued function that can be de-
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fined over the space of boolean strings. The fitness function /  : ^  5R can be

represented as an ADF using Walsh functions as

f ( ^ )  = (2.3)

where is the Walsh function, and wj is the Walsh coefficient.

The Walsh function can be defined as:

So a Walsh function can return either -1 or 1 based on the value of hc{j A x). It is

not hard to show that j  is the the mask of support set ipj. It can be shown that the

jth \/Vaish coefficient can be com puted from /  by [3]

^  (2.4)
X

For example, if the bit string is of length £ — 4, then woooo represents Walsh co­

efficient for the mask 0000, wqooi for 0001 and so on. A maximal non-zero walsh 

coefficient is a Walsh coefficient Wm such that Wm fi  0 and Wj = OV j  D m.

Equation 2.3 can be represented using vector notation as

/  =

where ^  is the transformation vector w ith =  ipi(j) that maps walsh coefficients 

vector w onto the function space / .  To change from Walsh basis to standard basis 

back, we perform  inverse transformation. As 'ipi(j) =  ^  will be symmetric.

8
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The inverse of ^  can be written as

Equation 2.4 can be written in vector notation as

^

Lemma 1. I f m ^ k ,  then P{'ipk, ni, c) =  0/or all c with bc{c A m ) = 0.

Proof. Let u =  k A m  and v  =  u A m ,  so that m =  u 0  v. Using probe recursion 

theorem in [5], we can write

m, c) =  P{ipk, m © w, i © c)
iCu

06c(u)
iC u

From equation 2.2

P{'ipk,v,i®c) =
j 6X„

The last step is justified as doesn 't depend on any bit positions set to 1 in v, 

and as j  € X̂ , the probe is independent of /  In the summation, as the num ber 

of positive terms equals the num ber of negative terms, o, î © c) =  0. Hence 

proving the lemma. □

Lemma 2. In m  is the mask of an epistatic block of a function / ,  then 3a such that m Q  a

9
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and Wa  7̂  0.

Proof. This lemma can be proved by contradiction. Lets assume that m  C a, implies 

Wa — 0. As the bits specified by m  forms an epistatic block, probing on m should 

return a non-zero value, ie. there exists a background c such that P{f ,  m, c) f  0. 

From equation 2.3,

P ( / ,  m, c) =  ^  Piwk-ipk, m, c)
k € X

and from previous lemma

P{wk'!pk, m, c) =  0 i f  m<^k

so we are left w ith only Wa probes, where m Ç a. We assumed that all Wa — 0 

implies P{f ,  m, c) = 0, which is a contradiction. □

Lemma 3. Given a function f  and a mask m such that Wm 7  ̂ 0, then m is an epistatic 

block for f .

Proof If Wm 7  ̂ 0 then we know that 3 a maximal walsh coefficient Wa such that 

Wa 0 and m Ç a. [5] proved that, if Wa is the maximal walsh coefficient, then

Vc €

-P{/) c) =  Wa 7̂  0

As the probe on mask a is non-zero, the bits specified by a forms an epistatic 

block. Any subset of an epistatic block is an epistatic block. As m C a, m  forms an 

epistatic block. □

10
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Factorization of Probability

The following summerizes the material from [11]. The Gibbs or Boltzmann dis­

tribution^ of a function /  is defined for w ^  1 by

where for notational convenience

E x p J { x )  =  ^  Expufiy)  (2.6)
y

In general, the com putation of this distribution requires 2̂  parameters, which is 

not efficient for large values of £.

If /  is an ADF, then

P(x) = ^ f [ e i { x )  (2.7)
t i

where

ei{x) = Expufi{7^siX)

Notice that takes a string of length t  as argument, where as fi  is a function only 

of the bits specified by s,.

Let p(7Ta.z) denote marginal probability. In other words,

p { 7 T s , x )  = ^  p{xs^ © y) (2.8)
yeXc\3̂

where Xsi € X̂ . such that iTs.x = Thus, Xŝ  is a string of length £ whereas

^Remark : The Boltzmann distribution is usually defined as / Z .  The term g{x)  is called the
energy. Setting g ( i)  =  —f { x)  and 1 /T  — ln{u)  gives the above equation.

11
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is a string of length s*. Under conditions given below, the Boltzmann distribution

p{x) of an ADF can he factorized so that p{x) can be computed efficiently from sub­

functions of the ADF [11]. Given a fitness function /  that can be written as an ADF 

w ith sub-functions f ' s  whose support masks are g/s, then we compute new sets 

di,bi and c, as

i

4  := I J  Sj (2.9)

bi : =  Si \  ( 2 . 1 0 )

Q  : =  S i n  d i _ i  ( 2 . 1 1 )

we set do := 0 . Sk is called the successor of Si, if Ç Sj.

Theorem  1 (Factorization Theorem [11] ), Let f  — X)r=i fii'^siX) be an ADF andp{x)

be its Boltzmann distribution, if

6i ^  0 V z =  1 , . . . ,  n; dn = C (2.12)

V 2 ^  2 3j < i such that Ci Ç Sj (2.13)

Then
n

P(^) = (2.14)
i = i

where p{'ïïĥ x\TTciX) is the probability of 7ri,.x given Tr^x.

The assum ption in  equations 2.12 and 2.13 is called the running intersection prop­

erty.

It follows from [11] that if /  can be written as an ADF with running intersection

property and 5(i) is the successor set of S{, then for any x e X

12
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e,(w ® :r J  n , e 5(i) Z .ex .. «/.(^ ® » )

Factorized Distribution Algorithm (FDA)

FDA[11] is an EDA which assumes that the function to be optimized is an ADF 

and uses factorization of the distribution computed using individuals selected 

based on fitness. It allows nonlinear interaction between variables in the fitness 

function. A portion of the initial population is generated based on local approxi­

m ation of the conditional marginal distribution and the rest is generated randomly.

S tep  0 : Set t *— 0. Generate (1 — r) * A  )$> 0 individuals randomly and r * N  

individuals according to equation 2.15

S tep  1 : Select high fitness individuals using a selection method

S tep  2 : Com pute conditional probabilities p®(7r{,.x|7rc,a:, t )  using the individ­

uals selected in Step 2.

S tep  3 : Generate a new  population based on p{x, t+ 1 ) = nr= i t)

S tep  4 : If termination criteria is met, FINISH

S tep  5 : Add the best individual from previous generation the to population 

generated in Step 3.

S tep  6 : Set t ■(— £ -H 1. Go to Step 2.

Any popular selection m ethod can be used w ith FDA and the factorization can 

be either exact or approximate factorization.

13
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Determining ADF Structure

A hypergraph G is defined as a pair (V, E) where V  is the set of vertices and E  is a 

set of hyperedges between vertices. Each hyperedge is a set of vertices in V. Heck­

endom  and Wright [5] presented two algorithms Traverse Hypergraph and Compute 

Walsh Coefficients that can be used in conjunction to determine the ADF structure 

of the blackbox function /  w ith k bounded epistasis. The Traverse Hypergraph al­

gorithm constructs a hypergraph for the function f ,  in which a vertex represents a 

string position, and a hyperedge represents a set of positions that form an epista­

tic block. It detects hyperedges by doing a breadth-first traversal on all possible 

masks starting w ith em pty mask, then order-1 mask, order-2 mask etc. A mask is 

tested by probing only if all subsets of that mask have already been determined to 

be epistatic blocks. It detects all order-j hyperedges, by probing N  times (Theorem 

9 in [5]) w ith different backgrounds. N  is chosen using

ln{l — i f  j  < k
A  > < (2.16)

1 i f  j  ^ k

where J  is the num ber of order-j hyperedges and <5<1 is the probability w ith which 

all order-j hyperedges are to be detected. Note that 5<1, so this phase is not guar- 

enteed to determine all order-j hyperedges. S can be made close to 1 (like 0.9999) 

such that it determines order-j hyperedges w ith high probability.

The Compute Walsh Coefficients algorithm takes a list of hyperedges and their cor­

responding probe values that are com puted by Traverse Hypergraph as arguments, 

and determines the Walsh coefficient for each hyperedge. Each maximal Walsh co­

efficient represents a sub-function in the ADF structure of function /  (Theorem 22 

in [5]).

14
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If the determ ined ADF structure has the running intersection property, then it 

can then be used to determine the probability of the optim um using Factorization 

of Probability introduced in section 2. By increasing the exponentiation factor in 

Boltzmann selection, the probability of selecting high fit individuals increases. So 

if the exponentiation factor is sufficiently large, then the optimal string will have a 

very high probability w hen compared to other strings.

Complexity Analysis:

The complexity of algorithm shows the way in which it behaves for larger prob­

lems. In this thesis, the complexity is measured in terms of the num ber of functions 

evaluations required to execute the algorithm. For example, if the complexity of an 

algorithm is defined as 0 (£), it means that the num ber of computataions required 

to execute that algorithm is proportional to L It can be defined more formally as:

The complexity of a function /  is 0{g{i)), if 3 ci > 0 , i o > 0  such that 0 < /(^) < 

Cl X g{tj V  ̂ > ^0- In other words, w hen ^ > 4 , ci x g{£) will be the upper bound 

of /(£). The complexity of a function /  is 6 {g{€)), if 3 ci > 0, C2 > 0 and 4  > 0 such 

that 0 < Cl X g{i) < f{£) <  cg x g{£) V £ > 4 - In other words, when £ > £q, ci x g{£) 

will be the lower bound of /(£) and cg x g{£) will be the upper bound of /(£).

If the num ber of maximum Walsh coefficients in Compute Walsh Coefficients al­

gorithm is 0(£), then the expected num ber of function evaluations of Traverse Hy­

pergraph and Compute Walsh Coefficients algorithms is 0(£^ log £) (corollary 21 in 

[5]).

15
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CHAPTERS METHODS

EDA Based on Linkage Discovery and Factorization

Wright and Pulavarty [18] devised an algorithm with three phases to determine 

the high fitness individuals for a given black box fitness function with k bounded 

epistasis and RIP. The first phase determines the ADF structure of the black box 

function w ith Ar-bounded epistasis. The linkage detection algorithm proposed by 

Heckendom  and Wright [5] is applied on the given black box fitness function. It 

determines w ith success probability arbitrarily close to 1, the complete epistatic 

structure in terms of Walsh coefficients of the black box function as outlined in 

Determing ADF Structure section of chapter 2. As each maximal Walsh coefficient 

represents an epistatic block (lemma 3 in chapter 2), an additively decomposable 

structure of the given black box function can be determined easily. The fitness 

values of sub functions can be determined by performing inverse Walsh transform 

on the determined Walsh coefficients. As the linkage detection algorithm works 

w ith a success probability # < 1, this phase is not guarenteed to determine the 

ADF structure. 5 can be increased to a value close to 1 (like 0.9999) such that the 

algorithm works w ith high probability.

The second phase computes the exact factorization of the Boltzmann distrib­

ution for an additively decomposable structure determined in first phase. This 

phase leverages the factorization theorem outlined in Factorization of Probability

16
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section chapter 2. to determine the exact factorization w ith less num ber of com­

putations. It is im portant to note that the factorization theorem assumes RIP for 

the additively decomposable structure determ ined phase one. If the RIP is not sat­

isfied, the factorization of the Boltzmann distribution can be approximated either 

by choosing only a subset of sub functions of the additively decomposable struc­

ture or by merging sub functions or a combination of both. If the RIP is satisfied, 

this phase doesn't have any point of failure. In this thesis, we assume that the 

determ ined ADF satisfies RIP.

The final phase samples the factorized Boltzmann distribution to determine high 

fitness individuals. As the exponentiation factor increases, the probability will be 

concentrated near optimal points. During the sampling process, we can guarentee 

(assuming phase one works) that the individuals w ith maximum probability are 

optima if we can find n  distinct individuals each with a probability X  such that 

1 — n X  < A. In other words, the total probability of n individuals is n X  and the 

probability of rest of the individuals in the search space is 1 — nX .  If this value is 

less than X ,  then the determined points will be the optima.

The following example demonstrates phases 2 and 3 of our algorithm:

As the phase 2 of our algorithm assumes that the ADF structure with RIP will be 

determ ined by phase 1 of our algorithm, let's say that the determined ADF struc­

ture that satisfies RIP for the given black box function with ^-bounded epistasis 

is

f{x )  = +  f 2 {'rrs2 x) +  / 3(7Ts3^) (3.1)

W here si =  {0,1}, «2 =  {1,2} and S3 =  {2,3}.

17
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A (^^3 a;) Exp^fliTTs.x) Exp^h{n S2 ^) Exp^fsiws^x)
00 2.36 0.73 1.49 10.5910 2.0751 4.4371
01 0.69 0.14 0.14 1.9937 1.1503 1.1503
10 0.95 0.27 0.94 2.5857 1.3100 2.5600
11 1.64 0.41 1.08 5.1552 1.5068 2.9447

Table 3.1 Fitness Values.

Also, let's assume that the values tabulated in Table 3.1 represents the fitness 

values of sub functions obtained by performing inverse Walsh transform. The ex­

ponent values in Table 3.1 are com puted using v =  1.

For example, the probability of selecting an individual x =  0110 can be computed 

using equation 2.7 as

p(OllO) = ExpufijOl) * Jgxp /̂2(11) * ExpuMlO) 
Fu

1.9937*1.5068*2.56
 347:8374--------- =

(3.2) 

(3 3)

The probability of an individual can also be computed using factorization theo­

rem, which is used in phase 2 of our algorithm. The first step in the factorization 

theorem is to construct the required sets as shown below:

We set do =  0, and the other d /s, 5 /s and c /s  are computed using equations 2.9, 

2.10 and 2.11 as

di =  {0 , 1}

d2 =  ( 0 , 1, 2} 

da =  {0 , 1, 2 ,3}

=  {0, 1} 

h  =  {2}
63 =  {3}

Cl =  {} 

C2 =  {1} 

C3 =  {2}

18
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P{X3 = 0 \X2 ) p{x3 =  1 \X2 )
0 0.7941 0.2059
1 0.4651 0.5349

Table 3.2 Distribution for p{xz\x2 ).

Xi p{x2  = 0 |zi) p{X2  = Ijxi)
0 0.6468 0.3532
1 0.4688 0.5312

Table 3.3 Distribution for p(z2|æi).

XqXi P(2o2 i)
00 0.5458
01 0.0895
10 0.1333
11 0.2314

Table 3.4 Distribution for p {xqXi ).

As the sets 6i, &2 and 63 are not em pty and C2 Ç sj, C3 Ç S2, running intersection 

property is not violated. So the factorization theorem holds. It is easy to see that 

the successor of Si is S2 , and the successor of S2 is S3, and there are no successors 

for S3. The conditional probability tables can be computed using 2.15.

For example.

p { x z  =  0 | X 2 =  1 )
63(0 0 0 0 0 0 0 1 0 )

63(0000 © 0010) +  63(0001 © 0010)
0.4651

and

p{X2  = l|T i =  1) =
62(0010 © 0100) * 63(2 © 0010)

62(w  ©  0100) * E z e x ,  63(2 ®  w )Jw€.Xi

=  0.5312

The probability distributions p(x31x2) ,p(a:2la;i) and p {xqXi ) are tabulated in tables 

3.2,3.3 and 3.4 respectively.

19
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From equation 2.14, the probability of selecting an individual x  — xqXiX2 Xz is 

given by

p{x) =  p{xqXi)p{X2  )p(%3 ̂ 2) (3.4)

For Example,

p(OllO) — p{xq =  0,Xi =  l)p{X2  =  l|x i =  1)59(3:3 =  0|Z2 = 1)

=  0.0895 * 0.5312 * 0.4651 =  0.02211

This value matches w ith the value that is directly computed in equation 3 .2, 

which verifies the factorization theorem.

The third phase of our algorithm samples the Boltzmann distribution based on 

equation 2.14. In order to sample this Boltzmann distribution, we consider ̂ (ToTi) 

first as xo^i does not depend on any other bit positions. We then select values for 

xqXi based on the probabilities tabulated in table 3.4. Lets say 00 is selected as it 

has a probability of 0.55. Now we need to determine the value of X2 using p{x2 \xi). 

As the value of x\  is already known, we are only left with two choices in Table 

3.3. p(z2|0) can be selected w ith probability of either 0.65 or 0.35. Lets assume that

0.35 is selected, which gives a value of 1 to X2 - The next step is to determine X3  

using 59(3:313:2). As the value of X2 is 1, X3  can be assigned a value of 0 or 1 with 

probabilities 0.47 and 0.53 respectively. Lets assume that X3  is assigned a value of

1. So the values of xi, X2  and X3  are 0,1  and 1 respectively, and the value of x  that is 

determ ined by sampling becomes 0011. This process is repeated until the required 

num ber of individuals are sampled.
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Estimating the Number of Optima

In an exact Boltzmann distribution, the probability of an optimal point will be 

the same as any other optimal point. Let /opt and fsubopt be the fitnesses of optimum 

and suboptim um  respectively. Probability of an optim um point is

pufopi
p{Opt) =

r  u

Probability of an subptim um  point is

p ^ f s u b o p t

p{SubOpt) =
Fu

where u is the inverse temperature, and F u  is the summation as described in equa­

tion 2 .6 .
p{Opt) ê fopi

p{SubOpt)

If K  is the ratio of the probabilités of optim um and suboptimum, then

p ' ^ i f o p t f a u b o p t )

I n K  — rt(/opt fsu b o p t)

InK
fo p t  fsu bopt

In general, if the ratio of probabilities of optim um  and suboptimum is K, then the 

tem perature should be atleast

u > — -----  (3.5)
Jopt Jsubopt
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An optimal point and its corresponding probability can be determined under 

certain conditions by applying the algorithm using factorization that we described 

in chapter 2. If an optimal point is known, then f„pt can be determined using the 

fitness function. For some fitness functions, the fitness values are constrained to lie 

in a discrete set. For example, sometimes fitness values are known to be integers.

In a Boltzmann distribution, as the inverse temperature increases the probabil­

ity concentrates near optimal points. If the inverse temperature is sufficiently high 

[18], then the difference between the probabilities of optim um and suboptimum 

will be high. If a  is the probability of the optimal set of points, then the number 

of optima can be com puted by a/p{Opt). The inverse temperature can be made 

sufficiently high using equation 3.5 such that a  tends to 1. So the upper bound 

on the num ber of optimal points can be determined using 1/P{0pt). It is hard to 

determine the lower bound on the num ber of optima, as there can be less num ­

ber of optim a and m ultiple suboptima, or multiple optima and less num ber of 

suboptima. For example, let P{Opt) = Q.\,P{SuhOpt) = 0.001. In this case, the 

difference between probabilities of optim um  and suboptimum is more. It is pos­

sible that there m ight be only 1 optim um  and 900 suboptima, or 9 optima and 1 

suboptima.
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CHAPTER 4 RESULTS

Pulavarty implemented the proposed EDA and ran a couple of experiments us­

ing the code that was developed by Wright to implement linkage detection algo­

rithm, The experiments that were conducted evaluates and verifies some of the 

core concepts of this thesis.

Experiment 1 : Effect of inverse temperature on optimal points

To experimentally show that in a Boltzmann distribution, as the inverse temper­

ature increases the probability will be concentrated near optimal points.

We used concatenated trap functions as subfunctions in this experiment. A con­

catenated trap function /  of order A: is a function which can be written as an ADF 

of trap subfunctions fi's, and each fi  is of order k. A  trap function fi of order-A: is 

defined by

I bc(x) i f  bc(x) /  0 

I A: -I- 1 i f  bc{x) =  0

We used A: =  3 and k = 4. The supports of each of the sub-functions are the ones 

that are discovered using linkage detection algorithm. The factorization of proba­

bility is then applied on these sub-functions to reduce the number of computations.

Figure 4.1 shows the average (over 1000 runs) probability of getting the maxi­

m um  fit individual for varying exponents in Boltzmann distribution. We experi-
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Figure 4.1 Prob. of maximum fit individual over different string lengths

mented on string lengths of 10,15 and 20 w ith num ber of components as 4, 5 and 

7 respectively.

It is evident from that graphs that the probability of optimum increases as the 

exponent increases for a given string length.

Experiment 2 : Complexity of linkage detection algorithm

H ypothesis : The num ber of function evaluations required by linkage detection 

algorithm in phase one of our algorithm is Q(£^ log i). Note that the complexity of 

this algorithm has been shown to be log £) [5].

If g is a function and c is any non-zero constant such that

P i J g  e  ^ (4.1)

is true, then the complexity of g is 8 ( ^  log ^). If c =  0, then the complexity of g is

not log £).

In other words, if we can evaluate equation 4.1, then our hypothesis can be
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proved or disproved based on the value of c. Note that g{£) is the number of func­

tion evaluations required to compute linkage detection algorithm in phase one of 

our algorithm with string length £.

To test this hypothesis we used Needle-in-the-haystack function. A Needle-in- 

the-haystack function is a function in which its value is 1 for all strings except for 

one random ly chosen string. The value of that randomly chosen string is either 1-f-e 

or 1 -  e based on w hether positive or negative needle is selected. Each subfunction 

is chosen to have an epistasis of k and there will be £ -  k + 1 subfunctions. The 

support set of subfunction f i i s  . . , i+ k - 2 } .  So there is an overlap of A: - 1

bits between /, and /i+i. For example, the support sets of /g and /s are {1,2,3,4} 

and (2 ,3,4,5} respectively, then the overlap is {2,3,4}.

We used order-2 hyperedges with A: =  4 and e =  0.1 for this experiment. All 

order-2 hyperedges are detected by probing N  times, which is determined by the 

formula in equation 2.16 w ith a success probability of 0.9999.

Figure 4.2 plots ratio of g{£) and P  log I  for different values of It is obvious 

from the graph that the ratio decreases as the string length increases. If this pattern 

continues, as I tends to oo, the ratio becomes 0. It implies that the complexity of 

g{i) does not appear to be log i).

Experiment 3 : Estimating on the number of optima

This experiment dem onstrates how to approximate the number of optimum 

points for a function w ith multiple optima as outlined in chapter 3.

In this experiment we used Needle-in-the-haystack functions as subfunctions 

that w e described in experiment 2. As there will be  ̂— A: -f 1 subfunctions, the 

optim um  for this function lies somewhere between  ̂— A: 4-1 and (  ̂— A: 4-1)(1 4- e).
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Figure 4.2 Num ber of function evals

As the subfunctions overlap, it m ight not be possible for the optimum to have all 

needles set. This is because of the fact that the overlap might be in such a way that 

only some needle can be set at a time and others cannot be set. It is most likely 

that the difference between optim um and suboptimum is e because the difference 

between needle value (1 +  e) and the rest of the values(l) in a subfunction is e.

We experimented w ith  ̂ =  20, A: =  4, e =  0.1 and exponentiation factor of 

100. There were 17 subfunctions, among which 9 were positive needles and 8
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were negative needles. So, in this experiment optim um  lies between 17 and 18.7, 

and the suboptimum is 0.1 less than the optimum. We calculated the optimum 

probability using direct method (enumerating all strings) and by using factoriza­

tion approach. The probability of optim um  as determ ined by factorization was 

7.01528 X 10""t which suggests that the num ber of optima would be 1/(7.01528 x 

10“ )̂ =  1425. The num ber of optima found when calculated by enumerating all 

strings was 1424. We increased the exponentiation factor to 1000, which gave the 

new probability of optim um  as 7.02247191009 x 10“"̂ using factorization approach. 

As 1/(7.02247191009 x 10“^) =  1424, increasing the inverse temperature u gave a 

more accurate result.
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CHAPTER 5 CONCLUSIONS A N D  FUTURE DIRECTIONS

Conclusions

In this thesis, we presented an algorithm with three phases to determine high 

fitness individuals for a given black box fitness function. Phase one determines 

the additively decomposable structure of the given black box fitness function by 

using linkage detection algorithm proposed by Heckendorn and Wright[5]. The 

factorization of the determ ined additively decomposable structure is computed in 

phase 2 of our algorithm by applying factorization theorem [ll]. The factorization 

theorem can be applied only if the determined additively decomposable structure 

satisfies a property called Running Intersection Property. The final phase samples 

the factorized distribution. We implemented this algorithm and ran a couple of 

experiments as shown in the experimental section.

Future Directions

This thesis can be extended by analyzing the effectiveness of the proposed algo­

rithm  if the RIP is violated. If it is not satisfied, then an alternative method can be 

proposed to consider only subfunctions that satisfy RIP and leave other subfun- 

tions.
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