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Holliman, Joseph M . , M.A. May, 1993 Economics
BOX-COX TRANSFORMATIONS OF A  TRAVEL-COST DEMAND FUNCTION 
FOR STREAM FISHING IN MONTANA (12 8 pages)
Director: John W. Duffield

The zonal-aggregate, regional travel-cost model (TCM) has 
become a widely accepted method to estimate the demand and 
net economic value for access to public lands for 
participation in outdoor recreation activities. In its 
traditional form, per capita trips are modeled as a function 
of the variable travel and time costs associated with 
traveling to and from a recreation site. The model is also 
used to evaluate changes in net economic values for public 
resources in cases when additional resources are made
available to the public or when resources are subjected to
changes in site attributes. The methods used to estimate 
net economic values and demand in such cases requires a well 
specified model resulting in accurate trip prediction across 
the sample.

Several alternative mathematical forms of estimated 
travel-cost demand functions have been investigated in 
attempts to enhance trip prediction and reliability of net 
economic value estimates. However, no definitive 
conclusions regarding the appropriate functional form of the 
model have been reached. Using two prior TCM studies on 
data collected in 1985 by the Montana Department of Fish, 
Wildlife and Parks for the Montana cold-water stream 
fisheries as a bench-mark, this study examines alternative
Box-Cox transformations of the basic bivariate demand
function.

A  comprehensive search of plausible functional forms 
suggests a model in which the natural log of per capita 
trips regressed on average round-trip distance raised to the 
.172 power maximized the log-likelihood function with 
significant values of all estimated parameters. This model 
was then discriminated from a previously proposed 
alternative form of the double-log model in which average 
round-trip distance was shifted outward at all observations 
by a constant. The J-test and adjusted-R^ revealed 
inconclusive results as to which model was most appropriate. 
It was concluded that the two models provide alternative 
means of describing the variation in per capita trip demand. 
However, a previously suggested theory supporting the 
double-log model appears to provide greater support for its 
use than the model in which distance is raised to the .172 
p o w e r .
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CHAPTER 1 
STATEMENT OF THE PROBLEM

The purpose of this paper is to examine the 
functional form of a statistically estimated, (first-stage) 
travel-cost model (TCM) demand function for cold-water 
stream fishing in Montana during 1985. The TCM is a widely 
accepted approach to estimating the demand for and net 
economic value of non—market resources. Applications of the 
TCM approach to resource valuation problems range from water 
and air quality to several consumptive use recreation 
activities.  ̂ However, the most common applications pertain 
to specific recreation activities in which natural resource 
sites are provided by governmental entities as public goods 
(see, e.g., McConnell (1985)). Since such activities are 
generally not sold in a market specifically as "recreation 
packages", no directly observable market prices are 
available from which economic values can be derived. Thus, 
TCM exploits the ability to observe actual expenditures 
associated with outdoor recreation trips which serve as the

 ̂ Walsh, et. al. (1988) identifies several activities 
such as camping and swimming (e.g., Sutherland, 1980)), 
picnicking, hiking, and hunting (e.g., Martin et. al., 1974 
(1981)), fishing (e.g., Sorg et. al., 1985), and wilderness 
use (e.g.. Smith and Kopp, 1980).
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price proxy for the demand function.
Economic theory provides little guidance on the 

mathematical form of a demand function {see e.g., 
Koutsoyiannis (1977) and Russell and Wilkinson (1979)). 
Accordingly, there is no a priori theoretical basis for 
specifying the form of the first-stage TCM demand function 
other than recognition of the inverse relationship between 
price and quantity.  ̂ Thus, researchers have identified the 
appropriate functional form using statistical inference 
(see, e.g.. Smith (1975), Zeimer, Musser, and Hill (1980), 
and McConnell (1985)) . The central topic of this paper is 
the functional form of the first-stage TCM demand function 
for fishing on Montana's rivers and streams during 1985.
The approach uses statistical inference to specify the form 
of this function. This study is a reexamination of the 
original and one of two subsequent analyses of the zonal 
aggregated data collected by the Montana Department of Fish 
Wildlife and Parks (DFWP) performed by Duffield, Loomis, and 
Brooks (1987) and Duffield (1988). Duffield's (1988 and 
1992) previous analysis of the stream fisheries data base 
has focused on the form of the demand function with respect 
to the price variable. The analysis in this study is 
limited to the same problem.

 ̂ As discussed below, one method of estimating the 
economic value of access to a recreation site using TCM is 
based on statistically estimating a first— stage demand 
function. This function is then used to derive a second- 
stage function from which consumer surplus is computed.
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Organization
The balance of this chapter is organized as follows. 

First, a general and intuitive description of the zonal 
travel-cost model is provided.^ This is followed by a 
review of the literature in which statistical determination 
of the form of the first-stage demand function has been 
estimated. This section describes the methods used in this 
paper to determine the functional form of the bivariate 
first-stage demand function. Included in this section is a 
brief overview of the findings of previous TCM demand 
estimation using the same data base used in this study. 
Finally, an outline of the remaining chapters of the paper 
is presented.

The Travel—Cost Model
A  wide variety of travel-cost models have been 

developed and are classified by Ward and Duffield (1992) as 
conventional travel-cost models, random utility models and 
hedonic models. However, the analysis in this paper focuses 
on the single equation zonal aggregate TCM which falls under 
the general classification of traditional travel-cost 
models. In this model, recreation demand or participation 
(per capita visits) for a site or region of sites, 
aggregated by origin zone, is statistically estimated as a

 ̂ Readers are referred to Appendix A for a more 
technical description of the TCM.
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function of the price for each trip. Average variable 
travel expenditures incurred to make a trip and foregone 
time (opportunity) costs associated with each trip for a 
specific activity serve as a proxy for price. Variables in 
the demand function other than price typically include 
income, price of substitutes, socio-economic and/or 
demographic variables and site attributes. From this 
function a second-stage demand relation can be derived on 
the assumption that recreationists would respond to site 
access prices in the same way as they respond to varying 
travel costs. The area under the simulated demand function 
above the costs actually incurred to make a trip is defined 
as the net economic value surveyed users hold for 
maintaining access to the recreation sites under study.^
This method requires the model to accurately predict trips 
across the sample. The first-stage demand function can be 
integrated to determine net economic value (Menz and Wilton 
(1983) in Duffield et al. (1987)). The resulting values 
represent Marshallian consumer surplus which serve as a 
reasonable proxy for net amount recreationists would be 
willing to pay to maintain access to a site  ̂ (see. Just et

See Dwyer, Kelly, and Bowes (1977) for an 
explanation of the mechanics of the travel cost model.

 ̂ Although TCM can be used to measure net economic 
values for environmental concerns other than to maintain 
access to a recreation site, the focus of this study is to 
limit the demand study to the access issue. It should also 
be noted that demand and economic values estimated with the 
zonal TCM pertain to consumptive use value. Other economic
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al. (1982)). Each facet of this process is summarized 
b e l o w .

Simplifying Assumptions. To simplify the zonal 
aggregate travel cost model, economic and demographic 
characteristics of recreationists are assumed to be 
homogeneous across and representative of each origin zone's 
population. Furthermore, only data for single-destination 
and single purpose trips are included in the data set. This 
mitigates problems with allocating costs among destinations 
and activities. The amount of time recreationists spend at 
each site is also assumed to be homogeneous for all 
recreationists in each origin zone. It is also assumed that 
the opportunity cost of travel time is constant or at least 
homogeneous for all visitors to the observed site or sites 
within the study region.

Quantity Measures. Generally quantity has been 
specified by two different measures: trips taken and user— 
hours at the site. User-days, a linear transformation of 
user days, has also been used (McConnell (1975)). However, 
McConnell (1975) argues, that the marginal cost of user-days 
is independent of travel costs. Since the utility 
maximization framework underlying the travel cost method is

values placed on an environmental resource include option, 
bequest, and existence values. These values pertain to the 
option to use a resource sometime in the future, the value 
associated with providing the resources as an endowment to 
future generations, and the value of knowing that the 
resource exists, respectively.
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based on the change in utility subject to a change in 
quantity, he argues that the demand for user-days does not 
fit in this framework. That is, the marginal cost of a 
user-day is independent of travel costs once a trip is made. 
He also argues that consumers' surplus computations require 
knowledge of the relationship of units costs and quantity 
demanded. This is consistent with the theory of TCM in a 
household production framework in which the demand function 
is similar to a derived demand for trips. Specifically,
Ward and Duffield (1992) note that the basis for the travel 
cost model in this framework is the weak complementarity 
between marketed commodities associated with travel to and 
from a site, among other inputs, and the non-marketed 
services provided by the site. Thus, travel is an input 
into the production function for the provision of recreation 
services.

Walsh (1985) notes that a precise definition of a 
user-day, in terms of person hours, can be problematic when 
different recreationists spend disparate amounts of time 
participating in the intended purpose of the trip. He 
suggests that when the length of stay is similar for all 
recreationists, per capita trips is a suitable measure of 
quant i t y .

Per capita trips is the quantity measure adopted in 
this study. The decision to use this definition is based 
primarily on maintaining consistency with the two previous
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demand studies using the Montana stream fisheries data base, 
noted above. Based on the above literature review per 
capita trips also appears to be the most logical measurement 
of quantity.

Pr ice. Since the market for outdoor recreation 
trips is non-commercial in nature, price is proxied by 
out-of-pocket travel and visitation expenditures (short-run 
marginal costs) and the opportunity cost of time en route to 
and at the site. Price in this model represents the rate of 
exchange (or the marginal cost) for producing the recreation 
trip, on average within the sample used for each study.
This proxy for price is advantageous since it allows price 
variation across origin—destination pairs to be observed 
cross— sectionally. Furthermore, there is usually more 
variation in this surrogate price measure than price 
variation generated in commercial markets (Burt and Brewer 
(1971) ) .

At the minimum, travel costs include the variable 
costs of operating a vehicle (see, e.g., WRC (1983) and Burt 
and Brewer (1971)). This information can be obtained from 
Department of Transportation statistics published annually. 
However, it has been suggested that reported costs or those 
costs perceived by the surveyed recreationists as the out- 
of-pocket costs associated with taking the trip more 
accurately represent true travel costs (Duffield et ai. 
(1987) ) .
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The price proxy also includes the opportunity cost 
of time in transit to and from the site. While no 
definitive way of measuring this cost has been developed, 
two methods are widely accepted. These methods vary between 
determining the recreationists' willingness to pay to reduce 
the travel time by one-half (see e.g. Duffield et al.

(1987)) to determining the value based on a ratio of the 
estimated travel cost and combined average family income and 
travel time (McConnell and Strand (1981)). One method 
adopted by the Water Resource Council (WRC (1983)) and based 
on analysis by Cesario (1976) measures the opportunity cost 
of time as one-third the wage rate for adults. One— fourth 
of this value would represent the opportunity cost of time 
for children-

The data used by Duffield et al. (1987) for the 
travel and time cost measures was gathered in a separate 
survey supplementing the Montana Statewide Angler Pressure 
Mail Survey (McFarland (1989)), the primary data source used 
in this study. Trip-weighted, average round-trip distance 
is specified as the price proxy in their first-stage demand 
function. The same practice is used in this study.

Data Requirements. The traditional (zonal) 
Hottelling-Clawson-Knetch TCM uses survey data aggregated by 
origin zone for a single site or a collection of sites for
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similar activities within a region.  ̂ Data are gathered 
from users whose primary purpose for taking their trip to a 
particular site was to participate in a single consumptive 
recreational activity, such as hunting or fishing. Although 
the TCM has been described as measuring the demand and 
benefits associated with an entire recreation trip, there is 
general agreement in the literature that the model should be 
limited to measuring such demand and benefits for the site 
and single purpose trips as noted above (Dwyer et al.

(1977)). Even though a method has been suggested to 
rationally allocate travel costs to several closely 
clustered destinations (Haspel and Johnson (1982)), the 
general consensus is that it is too difficult to 
consistently allocate the costs for trips taken for several 
purposes and destinations. Thus, only data for trips made 
with the sole intent to visit a single site for the purpose 
of participating in the activity under study (in this case 
fishing) are included in the analysis.

Examples of TCM applications. TCM may be used to 
estimate net economic values associated with status quo site 
environmental qualities  ̂ for specific recreation

® Two other methods rely on observations of individual 
recreationists; the quantity variable in these models is the 
number of trips per recreationist over a season, (see, e.g.. 
Brown, Sorhus, Chou-Yang, and Richards (1983)).

 ̂ "Status quo environmental quality" is defined here 
as the environmental quality existing prior to the 
implementation of a new policy or the occurrence of an
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activities. TCM may also be used to forecast site usage and 
changes (gains or losses) in net economic value due to 
several alternative policy directives affecting site usage. 
Such directives may affect site access prices (e.g. , by 
introducing or changing entrance or user fees or by 
taxation) or result in changes to the environmental quality 
of a site (Ward and Loomis, 1986). Such changes may be due 
to projects such as damming a river or permanently changing 
the water level of a reservoir. Changes may also result 
from an involuntary oil or hazardous material spill. The 
Water Resources Council (1983) provides guidelines for 
estimating changes in site usage and economic benefits.®
In some cases, it may be reasonable to use previously 
estimated relationships of valuation and non-price variables 
such as site attributes.

incident which changes a sites quality. The status quo 
would then most appropriately refer to the base-line 
condition similar to the definition provided in section
11.14 of Title 43 CFR. In this case it would be the cross- 
sectional "snap-shot" of the site quality at the time the 
data were collected.

® WRC recommends TCM as one of two preferred methods 
to evaluate changes in economic benefits and to forecast 
usage when assessing the impacts of water related projects. 
Additionally, federal regulations governing the methods used 
to assess economic losses due to oil or hazardous material 
spills adopt the WRC guidelines by reference (43 CFR Section
11.18 (a) (2)) as one means for determining economic losses
associated with such accidents.
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Statistical Determination of the Form of the First-Stage 
Demand Function

Based on the foregoing summary, it can be seen that 
several criteria should be met to obtain accurate estimates 
of consumer''s surplus. Other than sound and complete data 
collection, demand functions in general should be fully 
specified according to demand theory (Koutsoyiannis (1977)). 
Omission of key variables such as the opportunity cost of 
time and substitutes in a TCM demand function will generally 
result in biased net economic value estimates (see, e.g.. 
Strong (1983)). Since the magnitude of consumer's surplus 
relies heavily on price elasticities of demand, correct 
functional form plays a key role in the value of consumer's 
surplus estimate (see, e.g., Zeimer et al. (1980)).
However, it is also important that the model be able to 
accurately predict trips since predicted trips is a factor 
in estimating consumer's surplus (see, e.g.. Ward and Loomis 
(1986) and Duffield (1988)). This section reviews the 
literature regarding statistical procedures previously used 
to specify the form of the first—stage demand function.

A priori specification of the form of the demand 
function has provided less than optimal estimation of demand 
and consumer surplus (see, e.g., McConnell (1985)). As an 
example, McConnell (1975) shows that the functional form 
cannot be additive since price must be allowed to vary as 
income varies. This conclusion is based on analysis which
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shows the demand slope with respect to income depends on 
costs and that the symmetry of the cross partial derivatives 
with respect to all other prices and income is not equal to 
zero. Therefore, a linear functional form is theoretically 
incorrect.® The linear form has been used to estimate the 
first-stage TCM demand function (see, e.g. Bowes and Loomis 
(1980)). However, Vaughn, Russell, and Hazilla (1982) 
showed that Bowes and Loomis' data is more appropriately 
described by a semi-log from once heteroscedasticity is 
identified and corrected.

While the linear form is inappropriate, theory 
provides little other guidance on the appropriate 
mathematical form of the first-stage TCM demand function. 
Much work has been devoted to the determination of the 
functional form using statistical methods. The following are 
three examples.

First, based on a study of general recreation usage 
in the Desolation Wilderness Area in Northern California, 
Smith (1975) suggests there does not appear to be any 
empirical justification favoring use of either the linear, 
semi-log, or the double-log (with log transformations in the

® Quirk (1976) also notes that if prices and income 
are homogeneous to degree zero a linear functional form is 
not possible.

All semi-log models in this paper refer to a form 
in which the dependent variable is transformed by the 
natural-log and the independent variable takes its linear 
form.
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dependent and independent variables) models. Further, using 
a discrimination test for non-nested models, namely 
Pesaran's N  statistic (Pesaran (1974)), Smith found that 
neither the semi— log or double—log forms represent the 
behavioral patterns of recreation usage described by the 
d a t a .

In another study of warm-water fishing in Georgia, 
Zeimer at ai. (1980) found that the semi—log versus the 
double-log form fit their data best (as determined by 
applying the Box-Cox method of model discrimination).
Third, based on the findings of Zeimer et. al,. Strong 
(1983) suggest that functional form is an important 
specification consideration when applying the TCM approach.

Study Methodology
The goal of this paper is to determine the 

mathematical form of the first-stage TCM demand function 
using the Box and Cox (1964) statistical method of 
discriminating alternative functional forms. As noted, this 
is done for the bivariate demand function. The 
determination of functional form is also limited by the 
bounds of the applicable economic demand theory:

“ Although Smith (1975) notes that the TCM approach 
is typically used for specific recreation activities and may 
not be valid for the application in his 1975 paper, he 
argues that demand for such diverse activities will be 
indirectly reflected in the derived demand for the sites 
services. Smith's analysis was based on a single site zonal 
aggregate travel cost model.
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specifically, the inverse relation of price and quantity.
The standard forms used to estimate first-stage 

outdoor recreation demand functions in the literature have 
been generally limited to the linear, semi-log (with a 
natural-log transformation of the dependent variable), 
double-log, and quadratic forms. Relatively little has been 
done in determining which of these forms is most appropriate 
in estimating recreational demand (see, e.g. Smith (1975); 
Strong (1983); and Zeimer, Musser, and Hill (1980)) or to 
further investigate forms other than those listed.

By applying the Box and Cox (1964) family of power 
transformations to the data collected for sport fishing on 
Montana cold-water streams, this paper examines possible 
functional forms for the first-stage demand function using 
Duffield's (1988) findings as a starting point. 
Transformations on the dependent and price-proxy variable 
are estimated using the Box-Cox family of power 
transformations given in equation (1):

(1) z X*0
I n  z  ; 1 = 0

Where z is either the dependent or independent variable and 
X is the Box-Cox transformation parameter. The general form
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of the demand function is presented in equation (2);

(2) P. -

Where is per capita trips taken from origin i to site j, 
Dij is average round-trip distance from origin i to site j,
Po and pi are estimated parameters, e is the error term, and 
(Xk) are the Box-Cox transformations of their respective 
variables. Much flexibility in the form of the estimated 
demand function is afforded by the Box-Cox transformation. 
For instance, if = 1 the function is linear. If,
however, A>v = 0 and A.̂ = 1 the form becomes the semi-log 
form (Spitzer ( 1 9 8 2 a ) T h e  form flexibility of 
equation (2) is discussed in greater detail in chapter 4.

As noted, this study is a reexamination of two of 
three prior studies on the stream fisheries data base using 
different specifications of the first— stage TCM demand 
function. The results of these studies are summarized here 
and discussed in more detail in chapter 4. In the first of 
these studies, Duffield et al. (1987) specified a double—log 
(log-linear) model in which per capita trips were regressed 
on average round-trip distance, total trout catch by site, 
and average years of fishing experience of anglers by origin 
zone. Due to this model's failure to produce homoscedastic

Kmenta (1986) shows that as A,̂ approaches zero, the 
B o x - C o x  transformation becomes the natural-log of z.
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residuals and its poor predictive power, Duffield (1988) 
examined several alternative forms of the first-stage demand 
function. In this study, it was found that a restricted 
form of the Box—Cox transformation suggested by Zarembka 
(1974) produced a model which satisfied the homoscedasticity 
and prediction concerns in the Duffield et al. (1987) model. 
Specifically, this model took a form similar to equation 
(2), except was replaced with (D̂ j + C) where C is a
constant added to average round-trip distance. Xy and 
were set equal to zero to produce the double-log form, and C 
was varied until trip prediction was within .1 percent of 
observed trips. This result was achieved at C = 90 miles 
for a multivariate m o d e l .

Based on Duffield's (1988) findings, Xy is expected 
to lie close to zero and should fall between zero and 
one. It is not expected that the value of X^ will be close 
to or greater than one, given the poor performance of the 
general polynomial, semi— log, and double—log forms estimated

" Homoscedastic residuals are those in which the 
variance of each residual is nearly constant across all 
observations. When the variance of the residuals are not 
constant across all observations, they are said to be 
heteroscedastic. The consequences of heteroscedasticity are 
inefficient parameter estimates and biased variance 
estimates yielding invalid hypothesis tests of the 
significance of parameters (see, e.g., Kmenta (1986)).

Another difference between equation (2) and the 
model estimated by Duffield (1988) for the entire sample was 
that the several other variables such as catch aggregated by 
site, a substitute index, and certain socio-economic and 
demographic variables were included in the function.
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by Duffield (1988).
Since there is little theoretical basis for 

determining the functional form of the TCM demand equation, 
the form must be found by experimentation. The model judged 
"best" will be determined through statistical inference. As 
an aside, and purely for illustration, the predictive power 
and own price elasticities of the model determined best in 
this study are compared with bivariate forms of the models 
estimated by Duffield et al. (1987) and Duffield (1988).

Study Outline
The balance of this paper is presented in four 

chapters. Chapter two provides a literature review of the 
use of the Box-Cox method of estimation of nonlinear 
regression parameters. The first section of this chapter 
compares two approaches used to determine the specification 
of a model. This is followed by a review of the methods 
used to estimate the parameters of a Box—Cox regression 
model. This section closes with a summary of the reasons 
maximum likelihood estimation was chosen to estimate the 
Box-Cox regression of the first-stage stream fisheries 
demand function. The next section summarizes the methods 
used to discriminate nested and non-nested rival models for 
purposes of determining model specification by statistical 
inference. The last section of chapter two summarizes 
several diagnostic measures used in conjunction with the
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model specification approach employed in this paper.
Chapter three summarizes the data used in this study 

and the methods used to gather this data. Descriptive 
statistics of the variables specified in each of the 
functions examined are also provided.

The results of applying the Box-Cox method of model 
discrimination to the DFWP streams fisheries data is 
provided in chapter four. Included in this chapter is a 
summary of models estimated in the two previous studies 
noted above. Next, five general Box—Cox regression models 
are estimated such that eight plausible forms could be 
attained using equation (2) as a basis. These models are 
then discriminated to determine which form contains the 
parameters which are most likely to describe the population 
from which the data are drawn. This model is compared with 
the bivariate models summarized at the outset of this 
chapter.

The study is summarized in chapter five. Included 
in this chapter is a summary of the limitations of the 
analysis and suggestions for future research.
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CHAPTER 2
LITERATURE REVIEW OF MODEL SPECIFICATION AND 

THE BOX-COX TRANSFORMATION

This chapter reviews the econometric and statistical 
literature regarding application of the general Box-Cox 
family of power transformations to model specification of 
functional form. First, general elements of model 
specification within the context of ordinary least squares 
(OLS) are reviewed. Second, two approaches to model 
specification are reviewed. Included in this review is a 
summary of the approach used in this study and a list of the 
tests used to select the most appropriate form of the 
Montana stream fisheries demand function. Third, the basic 
and extended (BCE) Box-Cox transformation and methods used 
to estimate a Box-Cox regression function are reviewed.
Next, a summary of the four methods used to estimate a Box- 
Cox regression function and a review of available 
econometric software is provided. This is followed by a

The Box-Cox extended regression equation 
(attributed to Savin and White (1978) by Seaks and Layson 
(1983)) includes variations of equation (2) in which Box-Cox 
transformations are applied to independent variables in 
addition to the dependent variable. (See also Box and Cox 
(1964).)

19
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summary of the likelihood ratio test for discriminating 
nested models and the j—test for discriminating non—nested 
models. Next, diagnostic tests used in this study are 
reviewed followed by a summary conclusions reached in this 
chapter.

General Elements of Model Specification For OLS Estimated 
Models

Although this study is focused on estimating the 
functional form of a first-stage TCM demand function using 
the Box-Cox transformation, the problem is couched within 
the more general problem of model specification. Kmenta 
(1986) describes specification for models using (OLS) as the 
use of an estimation technique which satisfies its general 
assumptions. Application of OLS estimators assume that the 
error term (residuals or disturbance term) is normally and 
independently distributed with a mean of zero and a constant 
variance (e ~ N ( 0 , ) ) ;  the covariance between any two 
errors is zero; each of the explanatory variables are 
measured without error, are nonstochastic, and no "exact" 
linear relationship exists between any two of these 
variables; and the number of observations exceeds the number 
of estimable coefficients in the model. Satisfaction of 
these assumptions results in best unbiased estimators (BUE) 
of the regression parameters. A  BUE estimator is one which 
has minimum variance among all linear unbiased estimators.
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An unbiased estimator is one in which the expected value of 
the estimator equals the true value of the parameter.

Kmenta (1986), narrows the definition of 
specification by noting that specification errors result 
from failures to include only the variables relevant to the 
model, to specify the "correct" mathematical form of the 
model, and correctly specify the way in which the error term 
enters the model. However, as indicated in the literature, 
complete model specification must include the above listed 
basic assumptions of OLS estimators. For instance, a non­
constant error variance (heteroscedasticity) may be the 
result of an poorly specified function form of the 
regression equation (Kmenta (1986)). Also, data outliers 
may be the result of a misspecified model (Kennedy (1992)). 
As noted, Duffield, Loomis, and Brooks (1987) found that the 
first— stage demand function estimated for the entire stream 
fisheries sample exhibited heteroscedastic errors. With 
this a priori knowledge, analysis of form specification 
would be incomplete without tests for and possible 
correction of any of the basic assumptions of the OLS 
estimator. However, the focus of this study is limited to 
specification of the mathematical form of the first-stage 
demand function. Therefore, analysis of possible tests of 
and corrections for heteroscedastic errors within the Box- 
Cox transformation framework are left for further analysis
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on the stream fisheries data b a s e .

Approaches to Model Specification
Kennedy (1992)” classifies state of the art 

approaches to model specification as 1) "Average Economic 
Regression (AER)", 2) "Test, Test, Test (TTT)", and 3) 
"Fragility Analysis'” ®. Collectively, the analysis by 
Duffield et a l . (1987) and Duffield's (1988) of the form of 
the Montana stream fisheries demand function would appear 
best, although not perfectly, classified as an AER approach. 
In this approach specific forms are determined by, 
"proceeding from a simple model and 'testing up' to a 
specific more general model" (Kennedy (1992)). The AER 
approach is marked by a process of applying diagnostic tests 
to the residuals of an estimated model known to be correct 
to determine if the assumptions of an OLS estimator have 
been met. If the a priori model fails to satisfy these 
assumptions, researchers using the AER approach turn first

See Gaudry and Dagenais (1979), Greene (1990), 
Lahiri and Egy (1981) for econometric treatment of 
simultaneous testing and correcting for heteroscedastic 
errors within the Box-Cox transformation framework. Also 
see Vaughn, Russell, and Hazilla (1983) for an application 
of the Lahiri and Egy (1981) method to a travel cost model.

This section relies heavily on Kennedy (1992), 
Chapter 5.

18 "Fragility Analysis" incorporates a Bayesian method 
to determine if estimated parameters of a model fall within 
an acceptable range. Since this study used classical 
statistical methods, a review and comparison of this 
approach to the AER and TTT approaches is omitted.
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to more sophisticated estimation techniques to resolve 
errors in the residuals. Failure of such methods to satisfy 
OLS assumptions then leads to tests of specification in 
which high R2 and significant t-ratios are used to select 
the best m o d e l .

In contrast, researchers using the TTT approach 
begin with a model more general than that believed correct. 
The general model is then subjected to several diagnostic 
tests regarding the assumptions of OLS. If such tests 
reveal unsatisfactory attainment of OLS assumptions, the 
analyst concludes that the model is misspecified. The model 
is then respecified and the testing procedure is repeated. 
The overall process is repeated until the model is 
considered "congruent with the evidence" (Kennedy (1992)). 
That is, the model has a logically plausible predictive 
power, is theoretically and parametricaly consistent, the 
residuals are completely random (i.e., they exhibit white 
noise), and the model successfully encompasses all rival 
specifications.^® The TTT approach is, therefore, 
considered a "testing down" approach.

Kennedy (1992) notes that neither the AER nor the 
TTT approaches are without criticism. Some criticisms

parametricaly consistent refers to a models ability 
to predict observations not used to specify the model. Such 
consistency could be attained using post-sample prediction 
tests in which a portion of the data is removed from the 
initial specification process and used to validate the 
specified model.
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directed specifically to the AER approach are 1) the use 
econometeric analysis to reinforce theoretical 
relationships; 2) the failure to conclude the existence of 
specification errors when diagnostic tests show 
dissatisfaction of OLS assumptions; and 3) maximizing Rz 
(i.e., data mining). Critics suggest, for instance, that 
reliance on adjusted Rz for model selection appeals to the 
unique features of the analyzed data, thereby allowing mere 
chance to become a determining factor in model specification 
(see Mayer (1975 and 1980) in Kennedy (1992)). Kennedy 
suggests this latter criticism supports the need for post­
sample prediction tests .

Both the AER and TTT approaches are criticized for 
their lack of a well-defined structural approach to model 
specification. Further, both approaches are criticized for 
the expected occurrence of type I errors, a result due to 
the multitude of diagnostic tests performed under each 
approach. Under the TTT approach, this result is also due 
to the loss of degrees of freedom for general model 
specifications .

Kennedy (1992) suggests the following principles for 
model specification: 1) economic theory should serve as the

Post-sample prediction tests were omitted from this
study.

Kennedy (1992) suggests reducing the critical 
region or the probability of a type I error to mitigate such 
results when the TTT approach is used.
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basis for model specification; 2) diagnostic tests revealing 
residuals not satisfying OLS assumptions should point to 
specification errors; 3) "testing down" is preferred to 
"testing up"; 4) tests for misspecification (e.g., tests for 
omitted variables, functional form, homoscedasticity, 
outliers, etc.) should be performed simultaneously to 
mitigate the possibility of erroneously selecting one 
misspecification over another (e.g., heteroscedasticity 
versus functional form); 5) a large number of
misspedf i c a t i o n  tests should be employed including post­
sample prediction tests; 6) models selected as correct 
should encompass rival models; and 7) limitations of the 
selected model should be reported along with the methods 
used to arrive at the selected the model. Because these 
principles compare more favorably with the TTT approach than 
the AER approach, Kennedy appears to lean toward suggesting 
a TTT approach to model specification.^^

Based on this review, an approach similar to the TTT 
approach appears to have the greatest merit in model 
specification analysis. Kennedy's literature review and 
comments are sufficiently compelling to use a TTT approach 
to recognize that unsatisfied OLS assumptions may mean the 
model is misspecified. Further, since this approach begins

Both Kennedy (1992) and Harvey (1990) note that the 
process of model selection is complex and that no generally 
accepted method has been adopted by econometricians in 
general.
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with the most general form of the model, which, as noted 
below, is the testable hypothesis of this study, and tests 
down to a specific form, it is the most applicable approach 
to model selection for this study. Consistent with the 
focus of the paper, diagnostic tests for functional form, 
parameter consistency, outliers, homoscedasticity, and the 
degree in which the selected model encompasses rival models 
are reviewed in this chapter for use in this study.
However, due to the narrow focus on functional form, 
simultaneous tests of misspecification such as 
heteroscedasticity versus functional form are omitted from 
the analysis in this study.

The Box-Cox Family of Power Transformations
As noted in chapter one, demand theory lacks 

sufficient a priori theoretical guidance for complete 
mathematical form specification of the demand function. 
Kmenta (1986) suggests that in such circumstances the form 
becomes a testable hypothesis and lists several methods for 
testing the form specification of an econometric model. Two 
of the methods suggested by Kmenta to determine functional 
form use the Box-Cox family of power transformation 
described in equations (1) and (2) in chapter one. One use 
of the transformation is to test a linear form against an

See the comments regarding limitations of the 
analysis presented herein regarding simultaneous tests for 
m i s  s p e d  float ions in chapter five, infra.
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alternative in which all Ày and Xp, in terms of equation
(2), are estimated with equal value (see, e.g., Kmenta 
(1986) and Zarembka (1968)). In this case, the linear and 
Box-Cox transformed models are discriminated using a 
likelihood ratio test (described b elow). Similarly, a 
double-log model, in which = 0, may also be tested
against a form in which X^ and X^ are estimated with equal 
value.

A second use of the Box-Cox transformation is 
suggested when the model's general form is questioned. In 
terms of equation (2) Xy and X^ are varied independently.
The model's form in this approach is termed "flexible" and 
is used to test a priori specifications against a form 
determined by the data. Use of this approach allows any 
number of form restrictions on Xv and Id as testable 
hypothesis against the flexible form determined by the data.

As noted in chapter one, Duffield (1988) found that 
several specifications of the form of the demand function 
failed to accurately describe variation in per capita demand 
for trips. Furthermore, it was found that a double-log 
model with a constant added to the price-proxy variable 
(average round-trip distance) significantly enhanced the 
predictive power of the model. Given the results of the

Duffield (1992) improved this approach by replacing 
round-trip distance with predicted total trip costs based on 
functions for resident and non-resident anglers that were 
developed by Duffield, Loomis, and Brooks (1987) to estimate 
variable travel costs.
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specifications examined, Duffield (1988) suggested searching 
a family of power transformations on the price-proxy 
variable. Thus, the general form of the first-stage Montana 
stream fisheries demand function becomes the testable 
hypothesis in this study. This is consistent with 
McConnell's (1985) suggestion that functional form should be 
tested when using the TCM framework.

Purpose and Assumptions of the Basic and Extended 
Box-Cox regression. The Box-Cox transformation was 
initially intended for use on the dependent variable to 
achieve a simple model structure, constant error variance 
(homoscedasticity), and normal distribution of the errors 
(Box and Cox (1964)). However, in the initial and 
subsequent applications it has been suggested that the 
transformation can also be applied to the independent 
variables, resulting in the extended Box—Cox model. The 
extended Box—Cox regression allows flexibility in 
determining functional form by estimation of the 
transformations of the variables in the model according to 
the data. The continuous nature of the Box-Cox 
transformation allows one to estimate both intrinsically 
linear and nonlinear forms.

Econometric models are classified as either 
intrinsically linear or nonlinear. An intrinsically linear 
function is linear in the estimated parameters but nonlinear
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in the variables. Functions specified with polynomials, 
interaction terms, and as either multiplicative or additive 
generally qualify as intrinsically linear forms. Such forms 
are also marked by the error term specified as additive. 
Alternatively, an intrinsically nonlinear function is 
nonlinear in the variables and estimated parameters. While 
such functions may also be multiplicative or additive, they 
are marked by an error term specified as multiplicative in 
the m o d e l . OLS can be used to estimate all intrinsically 
linear and some nonlinear forms by transforming the 
variables into linear forms (although nonlinear forms are 
generally estimated using maximum likelihood). However, 
when the error term is specified as multiplicative in 
nonlinear models, transformations of the variables leads to 
a nonlinear distribution of the error term and OLS 
estimation of the function is appropriately termed nonlinear 
least squares estimation (see, e.g., Kmenta (1986)).

As noted below, OLS could be used to estimate a Box- 
Cox regression such as that specified in equation (2). 
However, the Box-Cox transformations are considered a priori

fixed in this process. In an AER approach to model
specification, the form of the model is determined 
incrementaly. However, the Box-Cox method allows
flexibility in determining the form of the model in terms of
how each variable enters the model, i.e., linearly or 
nonlinearly. The intuitive appeal of the Box-Cox method is
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that greater flexibility is allowed to determine the form of 
the model by allowing variable linearization in conformation 
with the data and not a priori expectation. Thus, testing 
down from the most general to a specific form using a TTT 
approach is made possible with the extended Box—Cox model.

Methods Used to Estimate a Box-Cox Regression. 
Spitzer (1982a and 1982b) lists four approaches to 
estimating a Box-Cox regression including maximum likelihood 
and concentrated maximum likelihood, nonlinear least 
squares, and iterative OLS. This review shows that maximum 
likelihood or concentrated maximum likelihood estimation 
provides the most accurate and least costly estimates of the 
parameters in a Box-Cox regression equation for purposes of 
hypothesis testing, assuming the software is available. For 
illustrative purposes, these methods are presented in terms 
of equation (2). Each of the above listed methods are 
summarized in turn.

Maximum likelihood estimation (MLE) can be described 
by comparison with OLS estimation. Regression coefficients 
estimated using OLS are estimated by minimizing the sum of 
the squared errors of the regression function from their 
mean. Further, to attain best unbiased estimators and 
determine confidence intervals for the estimated parameters, 
the residuals are assumed to satisfy the classical OLS 
assumptions summarized at the outset of this chapter. In 
contrast, parameters estimated using MLE are those which are
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more likely to describe the population from which the data 
are drawn then by any other set of parameters describing a 
different population {Kennedy (1992)). When the regression 
variables are not subject to transformations or 
transformations are assumed fixed, MLE and OLS produce 
identical estimated regression coefficients.

Kennedy (1992) summarizes MLE in four steps. These 
steps are summarized assuming the Box-Cox regression 
function given in equation (2). First, the distribution of 
the error term in the regression equation is specified. One 
common specification, and that used in this study, is that 
the error terms are assumed to be independently, 
identically, and normally distributed (e - N ( 0 , ) ) .
Second, the relationship of the error terms are specified in 
terms of the variables in the regression function. Third, 

given the above specification of the error terms, namely 
their independence, the likelihood function equals the 
product of f(e^) across the sample or the joint probability 
distribution function of the error terms. Since the natural 
log of the likelihood function is a monotonie transformation 
of the likelihood function, the log-likelihood function is
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stated as follows :

N
(3) InL = ln{2na^)- T  ( - P^- )2 20 ^

N
+ (Ay-1) ^  InVj

i = l

The last term in equation (3), (Xy - 1) i=i In V̂ , is the 
jacobian determinant of the transformation. This term 
accounts for possible differences in the probability 
distributions (probability density functions) of the error 
term and the dependent variable when the latter is 
transformed. The log— likelihood function is specified in 
terms of the unknown, assumed distribution of the error 
terms. However, known observations of the dependent 
variable are used to estimate the parameters of the 
function. Absent the jacobian determinant, the log- 
likelihood function assumes the distribution of the error 
terms and the dependent variable are the same. This is true 
when the dependent variable is not transformed (i.e., Xy =

1) , thus the jacobian determinant in this case would be zero 
(see equation (3)). Differences in the probability 
distribution of the error terms and the dependent variables 
will occur for all transformations on the dependent

See Kennedy (1992), chapter 2 for details of the 
general development of this function.
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variables when X̂ r ^ 1. Thus the jacobian determinant is 
included in the log-likelihood function to adjust for the 
differences in the probability distributions of the 
dependent variable and the error terms {see Kennedy (1992) 
and Kmenta (1986) for further explanations).

The fourth step is estimation of the parameters po, 
Pi, X̂ , X-D, and in equation (3) . Estimates of these 
parameters can be found by maximizing equation (3) with 
respect to each parameter. Necessary and sufficient 
conditions for a local maximum requires the first and second 
order conditions (first and second derivatives) of equation
(3) to be equal to zero and negative definite, respectively. 
Theoretically, the negative of the inverse of the expected 
value of the second order conditions yields the variance- 
covariance matrix. However, due to the complexities 
involved in this computation, Spitzer (1982a) maintains the 
negative of the inverse of the second order conditions 
produce acceptable results.

A second approach to estimating the parameters of a 
Box-Cox regression function exploits the fact that the 
estimate of , given in equation (4), reduces equation (3)
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to equation (5) (see Greene (1990) and Spitzer (1982a) .

N
(4) e^

^ i = l

N
(5) InL^ = (ln(27t) + 1) - Inû^ + (1_-1) V  Iny.2 2 1^1

That is, <Ĵ  is concentrated out of the log-likelihood 
function. Spitzer (1982a) shows that the first and second 
order conditions for maximization of equation (5) are 
identical to those produced by equation (3).

In a third approach to estimating equation (2),
initially attributed to Zarembka (1968) , data are rescaled 
by the inverse of the geometric mean of the dependent 
variable raised to the power of Spitzer (1982a) shows 
that the resulting concentrated log— likelihood function 
reduces the estimation problem to non-linear least squares. 
Optimal values of the estimated regression parameters are 
obtained by minimizing the standard error of the estimate of 
the scaled model. However, different from the MLE
approaches, the negative of the inverse of the second order
condition of the NLS concentrated log-likelihood function

Based on the literature regarding simultaneous 
tests of function form and heteroscedasticity, the 
specification of in equation (4) assumes the error terms 
are homoscedastic (see, e.g., Kmenta (1986) and Greene 
(1990)).
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does not provide the variance-covariance matrix directly due 
to the rescaling of the data. Thus, the variance-covariance 
matrix must be estimated by means of converting the 
estimated scaled coefficients to their original form (see 
Spitzer (1982a) for the appropriate adjustment) . Thus, p,,.
Pi, A.V, kg, and are not a direct result of minimizing 
of the scaled model.

Estimates of the regression parameters may also be 
made using an iterative OLS/grid-search method. According 
to Spitzer (1982a) a series of regressions are estimated for 
Po, Pi, and 02 using the scaled model described for the 
third approach above is one approach. In terms of equation 
(2), each regression would differ according to each of the 
values of and assumed for each estimation. The
combination of Xy and Xq which minimizes the sum of the 
squared errors for the scaled model, found by scanning a 
grid of these values, yields the same results as if any of 
the above three methods were used. However, since the data 
are scaled and Xy and X^ are assumed fixed for the 
regression function minimizing the sum of the squared 
errors, the estimated coefficients must be rescaled and, 
more importantly, the variance-covariance matrix must be 
adjusted. Spitzer (1984) and Kmenta (1986) note that the 
standard errors of the estimated coefficients will be biased 
downward, yielding inflated t-ratios resulting in possible 
errors in hypothesis testing. Thus, similar to the scaled-
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model approach summarized above, the variance-covariance 
matrix must be adjusted to validate hypothesis testing (see 
Spitzer (1982a) for details).

There are several advantages to using the MLE 
approaches to estimating the Box-Cox regression parameters 
over the alternative methods listed here. Foremost is that 
there is currently available software to compute a valid 
variance-covariance matrix directly from the second order 
conditions of the log-likelihood functions without 
adjustment.^’ Second, Kennedy (1992) notes MLE has several 
attractive large-sample asymptotic properties. Namely, 
maximum likelihood estimators are asymptotically unbiased, 
consistent, and efficient. These features are particularly 
attractive when compared to OLS in that each may be 
considered comparable to unbiasedness, efficiency, and BUE, 
respectively, which are results of satisfaction of the 
classical assumptions of OLS for large samples.
Additionally, in terms of the mechanics of estimation the 
OLS is limited to internal estimation of only the constant 
and slope coefficients, whereas MLE produces estimates of 
these parameters in addition to the variance and Box-Cox 
transformations (see e.g., Kmenta (1986)). Finally, the MLE 
approach does not require additional adjustments to 
variance-covariance matrix as does an NLS or OLS approach.

For instance SHAZAM (White (1990)) and LIMDEP 
(Greene (1990) are two econometric programs featuring 
estimation of Box-Cox regressions.
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Based on this analysis, software in which a Box-Cox 
regression is estimated using the full or concentrated log- 
likelihood approach would provide the best parameter 
estimates, thereby mitigating erroneous hypothesis testing. 
However, should an lOLS/grid-search approach be necessary, 
it would be desirable for the software to incorporate the 
appropriate adjustments to the variance-covariance matrix as 
noted by Spitzer (1982a and 1982b). LIMDEP, version 6.0 
(Greene (1991)) uses algorithms which satisfies both of 
these constraints. Thus, LIMDEP was chosen for the software 
to estimate the first-stage demand function. Moreover, 
Spitzer (1982b) notes that computer programs using 
optimization algorithms which are limited to use of the 
first derivative of the log-likelihood function provide 
larger variances than do programs using first and second 
order conditions. Greene (1991) specifically states that 
first and second order conditions are used for MLE in the 
BOXCOX procedure in LIMDEP.

It appears the lOLS/grid-search method provided in 
LIMDEP makes the appropriate adjustments to the variance- 
covariance matrix as suggested by Spitzer (1982a). The 
magnitudes of the estimated t-ratios resulting from the 
LIMDEP lOLS procedure appear similar in magnitude to those 
resulting from the full MLE procedure (compare models 3.a 
and 5, table 6, chapter four).

Several issues regarding estimation of a Box-Cox 
regression have been identified. For instance, the 
distribution of the error terms will be truncated since the 
data for transformed variables must be positive (Smith 1975) 
and the equation must contain a constant term (Schlesselman 
(1971) in Spitzer (1982a)). The last of these concerns is 
satisfied in this study since the demand function is
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Methods of Model discrimination
As noted, the model specification determined best 

using the TTT approach should encompass all rival 
specifications. The methods used to discriminate such 
models depends on whether one model can be nested in the 
alternative. That is, discrimination tests of nested models 
may not be applicable for non-nested models (see e.g.,
Kmenta (1986)) . A  model is nested in another model if it is 
a restricted case of the more general model in which it is 
nested. For instance, if in equation (2) = 1, this
form would be considered nested in a form in which Xy 
were allowed to vary independently . This section briefly 
summarizes two approaches used to discriminate nested and 
non-nested models in this study: the likelihood ratio test 
and Davidson and MacKinnon's J—Test.

The Likelihood Ratio Test. The likelihood ratio 
test is used to discriminate general (unrestricted) Box-Cox 
regressions with their restricted counterparts. The concept 
of the test is that the value of the maximized likelihood 
function for the restricted and unrestricted models will be 
similar if the restricted model is correct (Kmenta (1986)). 
Thus, the ratio of the likelihood function for the 
restricted and unrestricted models would converge to a value 
of one. More specifically, the ratio of the estimated

specified with a constant term. The remaining concerns are 
not considered in this study.
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regression variances would be nearly equal. Thus, as noted 
by Kmenta (1986), the null hypothesis in a likelihood ratio 
test is that the restrictions imposed on the unrestricted 
model are correct and the alternate hypothesis is that the 
restrictions are not correct. If the null hypothesis is 
true, then the values of the maximized log-1ikelihood 
functions for the restricted and unrestricted models are 
similar. This results in a log-1ikelihood ratio given in 
equation (6):

(6 ) L R = - 2 [ L i k ^ )  - L i X ^ ) ] ~ x l

In equation (6) L (Xp) and L(?i„) equal the values of the log- 
likelihood function when the Box—Cox transformations are 
restricted and unrestricted, respectively, and m equals the 
number of parameter restrictions. In terms of a test 
between the linear and most general form of equation (2), 
for example, L(X,r) and L (X̂ ) would be replaced with values 
of the maximized log-1ikelihood function when = ^ 0 = 1  

and when X^ and were allowed to vary either together or 
independently, respectively. As noted in equation (6), the 
log-1ikelihood ratio is asymptotically distributed as a chi- 
squared (%2) distribution with degrees of freedom, m, equal 
to the number of restrictions in the restricted model.

Two rival models can be discriminated using a log- 
likelihood ratio test providing the restricted model can be 
nested as special cases of the unrestricted or less
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restricted model (Greene (1990)). However, the likelihood 
ratio test cannot be used to discriminate two functions in 
which neither can be nested in the other. For instance, a 
semi— log cannot be discriminated from a double— log model 
using a likelihood ratio test. In such instances other 
tests such as the J-test are applicable, which is summarizes 
be l o w .

Tests for Non-nested M odels. Generally, if two 
rival models are non-nested, traditional methods of model 
discrimination such as an analysis of variance (nested F- 
test) or adjusted-R2 are not applicable (Kmenta (1986)).^° 
Kennedy (1992) lists several methods for statistically 
discriminating rival non-nested models which are classified 
as variants of either Cox's test or Davidson and MacKinnon's 
J—t e s t . The J—test consists of model discrimination 
based on whether the predictive power of one model is 
enhanced by the predictive power of a rival mod e l . The 
complete test examines how each pairwise combination of 
rival models encompasses each other's predictive power. 
Details of application of the J-test are summarized in 
appendix B.

Model discrimination using is applicable when 
the dependent variables are equally defined and transformed.

For the readers information, variants of Cox's test 
are used to discriminate models based on their variances.
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Diagnostic Tests Useful for Model Specification
One aspect of the TTT approach to model 

specification is to subject an estimated model to a series 
of diagnostic tests. The diagnostic tests used in this 
study summarized below include tests for normality and 
homoscedasticity assumptions of the residuals and detection 
and measurement of the influence of data outliers.

Methods for Testing the Normality of Residuals.
Neter et al. (1989) suggests the use of normal probability 
plots as one means of determining whether the residuals are 
normally distributed. A normal probability plot consists of 
plotting the residuals (or standardized residuals) against 
the expected values of the residuals under normality. Large 
deviations of the residuals from a straight, forty— five 
degree line representing the expected values of the 
residuals when conforming precisely to normality suggest 
deviations from normality.

Detection of Homoscedasticity. Tests for 
homoscedasticity consist of visual examination of residual 
plots and formal statistical tests. Neter et ai. (1989) 
suggests examination of residuals (or standardized 
residuals) plotted against the predicted or fitted values of 
the dependent variable to determine whether the variance of 
the residuals are constant. If the scatter of the plotted 
residuals tends to flair either to the right or left, the 
residuals display a monotonie non-constant variance.
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Bulges, either at the left and right of the plot or around 
the center of the plot may mean that the residuals are non­
constant and non-monotonic. If the plotted residuals appear 
evenly distributed around a value of zero along the residual 
axis, the variances are considered homoscedastic.

Although detection of and corrections for 
heteroscedasticity in conjunction with the Box-Cox 
regression model is beyond the scope of this study, it is 
important to note whether the Box-Cox model satisfies the 
assumptions of OLS, including the homoscedasticity of the 
residuals. Two tests for heteroscedasticity are used in 
this study.

First, White's test (see Kmenta (1986)) provides a 
means of detecting heteroscedasticity without knowledge of 
the form of the non-constant error variance such as required 
by the Glejser test. Moreover, the test does not require 
the residuals to be normally distributed. White's test 
consists of regressing the squared errors of the model being 
tested on the variables in the model in their modeled form 
plus the square of each variable and interaction variables 
for each paired combination of the variables in the m o d e l . 
The null hypothesis of White's test is that the variances of 
the residuals are constant. Failure to reject this 
hypothesis also implies that any heteroscedasticity is 
caused by sampling error. The asymptotic, large-sample 
statistic is computed by N(R^„) which is distributed as a
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with p  degrees of freedom. A complete description of the 
regression function used in White's test is provided in 
Appendix C .

Additionally, the Glejser test is used in cases when 
the degree of colinearity prohibits use of White's test.
The Glejser test consists of determining whether a 
significant correlation exists between the absolute value of 
the residuals and the variable assumed to be the cause of 
heteroscedasticity using a regression model. This 
determination is made by choosing from an array of presumed 
forms of heteroscedasticity as reflected in different 
regression equations (see Koutsoyiannis (1977)).

Methods for Detecting and Measuring the Influence of 
Outliers. One approach to detecting data outliers is 
done by visually examining scatter plots. Neter et al.
(1988) identify several useful scatter plots, two of which 
are summarized here. First, plotting observations of the 
dependent with an independent variable can reveal 
observation lying outward of the cluster of observations 
around the estimated regression line (see also Weisberg 
(1980)). Second, in a plot of the standardized residuals 
against an independent variable or predicted values of the 
dependent variable observations appearing isolated from 
remaining residuals might be considered outliers.

This section is based largely on Neter et al
(1989).
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Neter et ai. (1989) suggest use of DFFITS and 
DFBETAS measure to detect influential observations, both of 
which make use of leverage values. DFFITS measures the 
influence a particular case has on the fit of a regression 
equation. DFBETAS measures the influence a particular 
observation has on each of the regression coefficients. In
large data sets, the absolute value of DFFITS values 
exceeding the 2 (k/n) statistic, where k and n are the 
number of estimated coefficients and n equals the sample 
size, indicates an influential case affecting the fit of a 
model. Absolute values of DFBETAS values exceeding 2/(n)'" 
indicates cases which affect the estimated constant or 
coefficient of the particular variable under evaluation. 
Details of the equations making up the DFFITS and DFBETAS 
measures are summarized in Appendix C.

Once data outliers are identified, specification of 
the function with dummy variables can be used to assess the
collective impact a group of outliers has on certain 
coefficients including the intercept. Kmenta (1986) shows 
how this can be done using a dummy variable specified in the 
function as variable affecting the intercept and as an 
interaction term with any of the variables in the function 
thereby affecting the slope of these variables. Details of 
such an application are summarized in Appendix C.
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Conclusions and Summary
This chapter showed that a TTT, versus an AER 

approach to model specification is preferred for purposes of 
mitigating type I errors in the process of selecting an 
appropriate specification of an econometric model. Thus, a 
TTT approach to statistical determination of the functional 
form of the first-stage TCM demand function is used in this 
study. However, due to the information presented in 
previous analyses of the DFWP stream fisheries data base 
(namely, Duffield et ai. (1987) and Duffield (1988) the 
approach resulting from this study and prior studies would 
more accurately be labeled as an AER/TTT hybrid approach.

Second, use of a full MLE method was found 
preferable to the NLS or lOLS/grid-search approaches. This 
is due largely to the bias in variance estimates resulting 
in the use of these latter two methods. Third, log- 
likelihood ratio test for discriminating restricted Box—Cox 
regression models from more general specifications, non— 
restricted forms was reviewed. Also reviewed was the 
Davidson and MacKinnon J-Test for discriminating non-nested 
m odels.

Finally, in accordance with the TTT approach to 
model discrimination, several diagnostic tests useful for 
determining functional form by statistical inference were 
reviewed. These tests included, 1) methods to determine 
whether the residuals satisfy the OLS assumption of
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normality, including visual examination of normal 
probability plots, 2) methods to determine whether the 
residuals satisfy the OLS assumption of homoscedasticity, 
including White's and Glejser's tests, and 3) methods for 
identifying outliers such as plots of the data and of 
residuals and analytical methods such as DFFITS and DFBETAS 
measures.
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CHAPTER 3 
DATA SOURCES AND DESCRIPTION

As noted in chapter one, this study is a 
reexamination of the original TCM demand analysis performed 
by Duffield et al. (1987) and Duffield (1988) on Montana 
cold water stream fisheries. This chapter provides a 
description of this data base (or the cold-water stream 
fisheries data bas e ) . First, a description of the sites 
included in the study is provided. Second, a list and 
description of the sources of data used in this study from 
the cold-water streams fisheries data base is provided. 
Last, the methods used to gather, organize, and aggregate 
all primary data included in the data base and used in this 
study are summarized.

Description of the Sites Comprising the Montana 
Stream Fishery

The data set used in this paper contains TCM data 
for 28 tributaries and/or watersheds and 20 "unique waters" 
in Montana identified by the Montana Department of Fish,

The data used in this study were developed for 
estimation of demand and net economic values for cold water 
fishing by Duffield et ai. (1987). No alterations were made 
to the untransformed data used in that study.

47
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Wildlife, and Parks (Duffield et ai. (1987)). The 28 non- 
unique waters include tributaries to unique waters or 
watersheds comprised of a river and its tributaries.
These streams and tributaries define the regional stream 
fishery used in this p a p e r . T a b l e s  1 and 2 list the 28 
non-unique waters and the 20 unique waters, respectively.

A  regional TCM is generally used to analyze demand 
for a collection of recreation sites for a specific 
recreation activity such as hunting or fishing. Thus, site 
specific models pertain only to one site.
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TABLE 1. —  Montana Stream Fisheries: Non-Unique Waters.

T3CD River3(/)' Code River Definition
o'

8

CD

33"CD
CDT3OQ.Cao3T3O
CDQ.

T3CD
(/)
(/)

11
12
14
15

16

17
21

22
23
24
25
31
32
33
34
35
36
37
41
42
43
44 
52

56
61

62
71

Flathead, South Fork 
Flathead, Middle Fork 
Flathead, North Fork 
Flathead

Lower Clark Fork

Kootenai Tributaries 
Upper Clark Fork Tributaries

Blackfoot Tributaries 
Rock Creek Tributaries 
Bitterroot Tributaries 
Middle Clark Fork Tributaries 
Upper Yellowstone Tributaries 
Gallatin Tributaries 
Upper Missouri (Region 3) 
Madison Tributaries 
Jefferson
Beaverhead Tributaries 
Big Hole Tributaries 
Middle Missouri 
Smith Tributaries 
Upper Missouri (Region 4) 
Marias
Middle Yellowstone Tributaries

Stillwater Tributaries 
Boulder Tributaries 
Lower Missouri

Mi Ik
Lower Yellowstone

Entire drainage 
Entire drainage 
Entire drainage
River and tributaries below confluence with south fork and 

excluding river 89 
River and tributaries below confluence with Flathead 

(Paradise)
Excludes mainstem river 91
Above confluence with blackfoot (Milltown) and excluding 

mainstem river 86 
Excludes mainstem river 83 
Excludes mainstem river 94 
Excludes mainstem river 82
Paradise to Milltown excluding mainstem river 87 
Springdale to Gardener excluding mainstem river 98 
Excludes mainstem river 90 and 88
River and tributaries from Threeforks to Canyon Ferry
Excludes mainstem river 92
Entire drainage
Excludes mainstem river 80
Excludes mainstem river 81
River and Tributaries below Marias River and above Fort Peck 
Excludes mainstem river 95
Canyon Ferry to Marias River excluding mainstem river 93 
Entire drainage
Springdale to confluence with Bighorn excluding rivers 99,
84, 85, 96, 55, and 56 

Excludes mainstem river 96 
Excludes mainstem river 84
River and tributaries from upper end of Fort Peck Reservoir 

to North Dakota Border 
Entire drainage
River and tributaries below confluence with Big Horn

Source: Duffield et. al. (1987, table 1.)
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■DCD
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8
ci'

3
3"CD

CD■DO
Q.CaO3"OO
CD
Q.

River
Code River Definition

80 Beaverhead Mainstem
81 Bighole Mainstem
82 Bitterroot Mainstem to confluence with East and West Forks
83 Blackfoot Mainstem
84 Boulder Mainstem
85 Bighorn Mainstem
86 Upper Clark Fork Mainstem above Milltown
87 Middle Clark Fork Mainstem Milltown to Paradise
88 East Gallatin Mainstem
89 Upper Flathead Mainstem above Flathead Lake to confluence of South Fork
90 Gallatin Mainstem
91 Kootenai Mainstem
92 Madison Mainstem
93 Missouri Mainstem, Bolter to Cascade
94 Rock Creek Mainstem near Missoula
95 Smith Mainstem
96 Stillwater Mainstem near Absarokee
97 Swan Mainstem
98 Upper Yellowstone Mainstem Springdale to Gardener
99 Middle Yellowstone Mainstem Springdale to confluence with Bighorn

Source : Duffield et. al. (1987, table 1.)
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Data Sources Included in the Cold-Water Stream Fisheries 
Data Base

The cold-water streams data base used in this study 
is comprised of three sources. Chief among these sources 
are the survey data collected by the Montana Department of 
Fish Wildlife and Parks (DFWP) through the Montana Statewide 
Angling Pressure Mail Survey for the 1985 license year 
(McFarland, 1989, henceforth fisheries survey) and a 
supplemental telephone survey conducted in 1985. These data 
sources provided information regarding sites fished, 
anglers' origins, distance to the site, harvest rates, 
socio-economic data, and travel and time costs. These two 
data sources were supplemented with estimated map distances 
in cases where the reported distance traveled were found to 
be in error (Duffield (1988)), Distances in these cases 
were computed from the Rand McNally Road Atlas: U.S.,.

Canada, Mexico (1977).

Data Preparation for First—Stage TCM Demand Function 
Estimation

Collection of Survev Data. DFWP conducted the 
fisheries survey during each of the license years of 1982 
through 1985 beginning spring 1982 (see, McFarland, p. 2). 
Questionnaires were mailed monthly to resident and non­
resident licensed anglers within one month of the angler's 
purchase of his or her license. Approximately 1,500 and 100
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surveys were sent to resident and non-resident anglers per 
month, respectively, during 1982 through 1984. Beginning 
with the 1984 license year the frequency of survey 
distribution was generally increased to biweekly mailings 
for the months of March through October, corresponding with 
high fishing pressure months. This increase in the 
distribution rate for the same number of monthly surveys was 
implemented to mitigate memory bias. Non-resident anglers 
who purchased 2—day licenses were surveyed on an annual 
b a sis.

A  random drawing of anglers was ensured by using a 
stratified sampling procedure (see, McFarland (1989), pp. 3 
and 144-145). Questionnaires sent during 1985 sought 
detailed information for each fishing trip taken during the 
particular sampling period for which the survey was made. 
This information can be noted from a copy of the surveys 
sent provided in Appendix D.

The number of monthly fisheries surveys was 
increased to about 3,000 and 250 monthly mailings for each 
of resident and non-resident license holders, respectively, 
in 1985. This increase in frequency was made to accommodate 
the data needs for the purposes of the Montana Bioeconomics 
Study. Of the 36,000 surveys sent during 1985, 92% were 
sent to resident and 8% were sent to nonresident anglers.
The overall response rate was 54% or 19,271. (Duffield et 
al. (1987)).
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For the purposes of TCM analysis the data sample 
collected through the fisheries survey were reduced as 
follows. First, respondents that had not fished during the 
month or two-week time period specified on the survey were 
excluded. Additionally, those who were determined to have 
been on multi-purpose and/or multi-site trips and those 
making over-night trips were also purged from the data set. 
Fishing sites were then coded according to DFWP management 
designations. Thus, data for the cold-water stream analysis 
includes those who had fished in the trout stream designated 
in tables 1 and 2.

The second major data source used in this study is 
taken from a supplemental survey to the 1985 fisheries 
survey. The data in this set were gathered by a telephone 
survey of 2,000 resident and nonresident angler. This 
survey was administer by DFWP during September and October 
of 1985. This sample consisted of 1,600 resident and 400 
non-resident anglers and produced a response rate of 80% for 
residents and 52% for nonresidents. The same criteria noted 
above was used for selecting qualified respondents for TCM 
analysis. Three types of data were collected in this 
survey: 1) socio-economic data, such as fishing experience,
age, income, and education; 2) data characterizing site use 
behavior, such as time spent at the site, time spent 
fishing, and equipment used; 3) and travel cost data such 
as, expenditures, travel time, and distance. Socio-economic
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data from the supplemental survey were appended to the 
fisheries survey by origin. Site characteristic data were 
appended by site. Travel costs data were appended by 
origin/destinâtion pairs. (See Duffield et ai. (1987) and 
McFarland (1985a and b ) ).

Aggreaation of the Supplemented Fisheries Survev 
D a t a . As noted, the demand functions estimated in this 
study are based on zonal aggregations of fishing trips for a 
given region. Thus, individual survey responses for trips 
taken to a given site were aggregated by origin zones. 
Responses are aggregated by zones of nearly equal distant 
origins, using the following rules :

1. An origin zone consists of a single county if 
the county contains the destination site or 
is contiguous to the county or counties 
containing the site.

2. Several counties were lumped together to 
define a zone of intermediate distance 
observations. This was done to prevent 
concentric gaps which would otherwise result 
from zero observations from counties of 
intermediate distances. Therefore, observed 
trips from these "super-counties" represents 
the population of counties where no trips 
were recorded within the sample.

3. Contiguous counties of states bordering 
Montana were treated as individual zones.

4. Five nonresident market regions were defined 
to allow nonresident trips to represent the 
population of their home state and that of 
all states they traveled through to get to 
the site, providing no trips from these 
states were included in the data base. These 
market regions were constructed as spokes 
extending outward from Montana throughout the 
continental United States. Again, this 
method of aggregation was used to avoid any
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concentric gaps in the surrounding market 
zones between the site and the non-resident's 
origin.

Independent variables were summed together and the 
aggregation process resulted in 839 origin-destination pairs 
for the cold-water stream fisheries data base. Aggregation 
methods of origin-destination data by site presented 
problems with regard to the accuracy of distance traveled. 
Cases were found in which anglers who traveled to a 
particular site from the same origin zone may have traveled 
disparate distances. In fact, the survey data on distance 
were found unreliable for 50% of the origin-destination 
pairs. In these cases, map distances were used in lieu of 
reported distances and population weighted average distances 
were recomputed (Duffield, 1988) .

The sample size for the estimated demand functions 
presented in chapter four is 741 origin-destination pairs. 
This size is the combined result of two adjustments made on 
the stream fisheries data base. First, to remain consistent 
with previous studies on this data set four tributaries 
regions (river codes 11, 23, 56,and 61) were excluded from 
the complete set of DFWP administrative regions {see table 
1). The sample was further reduced to origin-destination 
pairs with complete information on socio-economic and 
demographic variables as was the case for samples used for 
previous modeling efforts. Table 3 provides descriptive 
statistics for the variables specified in the models
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presented in Chapter 4.
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Table 3.—  Descriptive Statistics for the Variables Specified in the Models Presented

in Chapter 4.
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Variable Mean
Standard
Deviation Min Max Label

TRIPS 6.79 16.89 1.0 153.00 Zonal Aggregated Trips

POP 4.324 E6 9.966 E6 1.0 E3 7.809 E7 Zonal Aggregated Population

TRIPCAP 2.71 E-4 1.02 E-3 1.58 E-8 1.51 E-2 Per Capita Trips

LTRIPCAP -11.71 3.04 -17.96 -4.19 Natural Log of Per Capita Trips

CAVEDIST 1119.55 1196.89 4.00 4937.50 Average Round-Trip Distance

LCVEDIST 6.21 1.54 1.39 8.50 Natural Log of Average Round-Trip Distance

LKVEDIST 6.49 1.18 4.22 8.52 Natural Log of Average Round-Trip Distance plus 64

TRIP3A -11.59 2.98 -17.70 -4.18 Box-Cox of Per Capita Trips at .0016

CDIST3A 11.54 4.16 1. 56 18.99 Box-Cox of Average Round-Trip Distance at ..169

TRIP3B -9.34 1.97 -13.02 -3.87 Box-Cox of Per Capita Trips at .038

CDIST3B 7.06 1. 91 1.42 10.04 Box-Cox of Average Round-Trip Distance at .038

TRIP4A -13.05 3.70 -21.00 -4 .34 Box-Cox of Per Capita Trips at -.017

TRIP4B -9.78 2.16 -13.88 -3.94 Box-Cox of Per Capita Trips at .03

CDIST5 11.70 4.25 1.57 19.33 Box-Cox of Average Round-Trip Distance at .172

The sample size for all of the ■variables listed in this table is 741.
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CHAPTER 4
ESTIMATION AND ANALYSIS OF DEMAND FUNCTIONS

This chapter provides a summary of the mathematical 
form analysis performed on the bivariate first-stage TCM 
demand function for the stream fisheries data.
As noted in Chapter 2, this study takes a model 
specification approach which combines the AER and TTT 
approaches. The AER aspect of this analysis consists of the 
use of two prior studies performed on the stream fisheries 
data base. The TTT aspect consist of several diagnostic 
tests on the bivariate forms of the two previously estimated 
demand function summarized below, estimation and diagnostic 
testing of the Box-Cox forms of the TCM demand function, and 
comparison of this model with the bivariate forms of the 
previously estimated models. This chapter is organized as 
follows.

The first section reviews the principles applied by 
Duffield et al. (1987) and Duffield (1988) to estimate two 
different functional forms of the TCM demand function. 
Bivariate models based on these principles were estimated 
and are presented in this section. The fit of these models 
is summarized along with an analysis of adherence to certain

58
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assumptions of OLS. This section serves as a starting point 
for the analysis of the regional, zonal aggregate TCM demand 
functions presented in this paper.

Based on the foundation set in section one, a 
determination of the most statistically sound and practical 
functional form(s) of the bivariate TCM demand function is 
presented in section two. This section includes a synopsis 
of the a priori theoretical expectations of the signs and 
magnitudes of the parameters estimated using various 
specifications of the original Box-Cox and extended Box-Cox 
regression approaches. This is followed by a summary of 
five models estimated using various combinations of the Box- 
Cox transformations on the dependent and independent 
variables. These models are then discriminated to determine 
the form which best satisfies the maximum likelihood 
principle from this field. An analysis of this model's 
adherence to certain OLS assumptions is also summarized.

Finally, comparisons between the optimal Box-Cox 
estimated model and the bivariate forms of the two 
previously estimated models review in section one are 
continued in the last section. This includes a comparison 
of the predictive power of each model and a conclusion 
regarding which model describes per capita trip demand best. 
As an aside, the elasticities resulting from each model are 
provided in this section.
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Bivariate Estimates Two Previously Estimated Demand 
Functions

As noted in chapter 1, two functional forms were 
used to estimate the first-stage demand function in two 
previous studies. In the first of these studies, Duffield 
et al. (1987) specified a multivariate, double-log (log- 
linear) form. This form was specified primarily to satisfy 
the constraint of economic theory that there be diminishing 
marginal value for each additional fish caught. This form 
was also selected to avoid the possibility of predicting 
negative per capita trips from distant origin zones and to 
minimize heteroscedasticity of the residuals expected to 
occur when population varies across origin zones. Both of 
these latter two problems were expected to occur with the 
linear form. However, as noted, the model estimated by 
Duffield et al. (1987) failed to produce homoscedastic 
residuals and overpredicted observed trips by about 60 
percent. The overprediction was found to be largely 
influenced by trips taken from origins within 20 miles of a 
site. The model also underpredicted trips from intermediate 
distances and overpredicted trips form longer distances.

Driven primarily by the concerns of 
heteroscedasticity and prediction, Duffield (1988) examined 
three general alternative functional forms including 
polynomial, semi— log, and double-log forms. Although the 
polynomial specifications, including additions of distance
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squared and cubed terms and a hybrid double-log-polynomial 
form enhanced trip prediction, demand was positively sloped 
for distances greater than 3,000 miles. The semi-log 
specification also enhanced trip prediction. However, 
converse to the double-log model, the semi-log model 
overpredicted trips at intermediate distances and 
underpredicted trips at short and long distances. Further, 
the coefficient of determination for the semi-log model was 
less than that of the double-log function (.22 for the semi­
log versus .78 for the double-log form). A hybrid 
polynomial semi-log function was also estimated, but did not 
correct the heteroscedasticity problems noted above. This 
model also showed a positive slope at about 3,000 miles, an 
unacceptable theoretical result.

As a result of the above summarized analysis,
Duf field (1988) found that a multivariate, double—log form 
in which average round-trip distance was shifted by constant 
of 90 enhanced trip prediction to within .1 percent of 
observed trips and satisfied the assumption of homoscedastic 
residuals .

Table 4 summarizes estimated bivariate models based 
on the forms specified by Duffield et al. (1987) (model 1) 
and Duffield (1988) (model 2). However, different from

A constant variance of the residuals in this model 
was concluded based on visual examination of a plot of the 
residuals versus the predicted values of the model (Duffield 
(1988)).
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Duffield"s (1988) analysis, the shift parameter added to 
average round-trip distance was found to be 64 for the 
bivariate model.

The optimal shift parameter of 64 miles was found 
by searching a range of parameters until adjusted-R^ was 
locally maximized.
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Table 4.—  Bivariate Specifications of Models Specified by Duffield et ai
(1987) (Model 1) and Duffield (1988) (Model 2).

Model Log-Likelihood Po Pi R2 F

1 .
(t-ratio)
(p-value)

0(R) 0(R) 7,331.34 -1.03
(-4.53)
(<.001)

-1.71
(-48.32)
{<.001)

. 759 2,335.68
(<.001)

2. 0(R) 0(R) 7,372.34 3.09 
(10.68) 
(.000)

-2.28
(-51.91)
(<.001)

.784 2,695.48
(<.001)

Pi is the estimated parameter for average round-trip distance and average 
round-trip distance plus 64 in each of models 1 and 2 respectively. The 
critical values for t and F at a 5 percent probability of a type I error 
1.6471 and 3.854, respectively. The sample size for both models is 741.
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Diagnostic Tests on Models 1 and 2 . The following 
summarizes the fit and statistical significance of the 
estimated parameters in models 1 and 2. Also OLS 
assumptions of a normal distribution of the residuals and 
their variance consistency are examined. Further potential 
outliers resulting from models 1 and 2 are summarized.

As can be noted in table 4, both the double-log and 
double-log, shifted distance models have high adjusted-R2 
values suggesting the majority (75.9 and 78.4 percent, 
respectively) of the variation in the natural-log of per 
capita trips are described by the independent variables in 
each model. Further, with a critical value of 3.854, with 
degrees of freedom equal to 1 and 739, the hypothesis that 

is zero is rejected at a 5 percent probability of a type 
I error. Thus, each model constitutes a good fit. It is 
also noted that the signs of Pi are accepted as correct at a 
5 percent probability of a type I error.

Examination of the normal probability plots of the 
residuals resulting from models 1 and 2 (figures 1 and 2, 
respectively) suggest these models yield nearly normally 
distributed residuals. Moreover, model 1 appears to yield 
greater normality in the residuals. Figures 3 and 4 are 
standardized scatter plots of the residuals and predicted 
natural-log of per capita trips produced by each of Models 1
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and 2 (table 4).^^ Four general conclusions can be made 
from these plots. First, the residuals of the double­
log, shifted distance model appear more evenly distributed 
around the center of the plot than the residuals produced by 
the double-log model (even though there appear more points 
in the south-west quadrant then any other quadrant). Thus, 
the double-log, shifted distance model appears to yield less 
heteroscedasticity in the residuals than the double-log 
model. However, the results of White's test for 
homoscedasticity with a null hypothesis of constant variance 
and alternate hypothesis of non-constant variance across the 
residuals suggests that at a 5 percent probability of a type 
I error the residuals in both models 1 and 2 are not 
constant.

Secondly, the inverted—U shape of the 
residual/prediction plot in figure 3 suggests a misspecified 
functional form. That is, the double-log functional form 
does not achieve complete linearity. In contrast, figure 4 
displays less of an inverted-U shape suggesting the double-

The plots in all of the figures in this chapter 
were produced using SPSSX software which were uniformly 
resized in WORDPERFECT 5.1.

This analysis relies heavily on Neter, Wasserman, 
and Kutner (1989).

nR2 for each of models 1 and 2 are 42.66 and 44.43, 
respectively. The p-values for each of these 
distributions with 2 degrees of freedom are .54513 E-9 and 
,22498 E-9, respectively. Further, the 95% critical value 
is 5.9915.
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log, shifted distance model achieves greater linearity/'’
Third, as noted by Duffield (1988) , the double-log 

model tends to overpredict per capita trips at short and 
long distances and underpredicts at intermediate distances. 
This can be readily seen in figure 5 which is a standardized 
scatter plot of the residuals resulting from model 1 and the 
natural-log of average round-trip distance."” In contrast, 
the shape of a similar plot for model 2 in figure 6 suggests 
that model 2 mitigates these prediction errors although this 
model continues to overpredict at short distances and 
underpredict at intermediate distances.

The standard for linearity used in this analysis is 
that a completely random distribution of the points on the 
standardized residuals/prediction plot means the function is 
linear.

Points on figure 5 and 6 falling below zero-valued 
residuals not counter weighted by points above zero-valued 
residuals suggest net over-prediction. The opposite is true 
for under-prediction.
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Figure 1.—  Normal Probability (P—P ) Plot of Standardized 
Residuals for Model 1.
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Figure 2.—  Normal Probability (P-P) Plot of Standardized 
Residuals for Model 2.
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Figure 3.—  Scatterplot of the Residuals and Predicted 
Natural—Log of Per Capita Trips Produced by Model 1.
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Figure 4.—  Scatterplot of the Residuals and Predicted 
Natural— Log of Per Capita Trips Produced by Model 2.
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Finally, in each of figures 3 and 4 there appear to 
be several observations lying outward from the general 
cluster of points in each plot. Thus, a formal analysis of 
outliers was conducted using DFFITS and DFBETAS measures on 
models 1 and 2. The DFFITS measure revealed several 
observations affecting the fit of the models for shorter 
distance (2 to 30 miles from various sites). Similarly, 
most of the observations influencing the constant and slope 
parameters in these models, as measured by DFBETAS, were 
observations with one-way distances of 2 to 50 miles. Most 
importantly, however, all three measures (DFFITS and the two 
DFBETAS measures) identify trips taken from Alaska as 
observations influencing the fit and constant and slope 
parameters of the two models. These 20 observations 
represent all of the trips made from Alaska in the 741 
observation aggregated sample and are the only observations 
which were aggregated using a method different from that 
summarized in Chapter 3. The exception is due to a physical 
gap in the defined market between Montana and Alaska, namely 
Canada. Recall that when trips from states not contiguous 
with Montana in which there were no trips made to a site 
from states between the state of origin, these trips carried 
the population of the intervening states. Thus, since 
Canada was excluded from the non-residential market, trips 
from Alaska carry only the population of Alaska, whereas 
trips from origins of similar distances to the east coast
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carry greater populations. Another reason for the Alaska 
trips to standout is that distances traveled by 
recreationists from Alaska were all corrected to a uniform 
d i s t a n c e . D u e  to this anomaly in application of the 
aggregation rules presented in chapter 3, an effort was made 
to model trips from Alaska with a dummy variable. The 
results of this effort are summarized in Appendix C.

Although the methods used to model trips from Alaska 
improves the fit and satisfaction of normality in models 1 
and 2, it is not known with certainty that adding the 
interactive dummy variable is consistent with the general 
heteroscedasticity prevalent in models 1 and 2 and la and 2a 
(Appendix C ) . Thus, correction for the anomaly in the 
aggregation process for trips originating in Alaska has not 
been fully explored. Therefore, the adjustment to the 
bivariate models for trips originating in Alaska is omitted 
from the primary portion of this study. However, for the 
readers information, the results of modeling trips from 
Alaska as noted above in the model proving best among the 
Box-Cox models estimated (model 5) is presented in Appendix 
C.

Distances traveled from Alaska to sites in Montana 
were among those found to be in error as noted by Duffield 
(1988a). These distances were corrected using the distance 
from Anchorage, Alaska to Great Falls, Montana, via the 
ALCAN highway.
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General Model Specifications for the Box-Cox Regressions 
In the next step of the analysis, 8 alternative 

functional forms were specified based on the general 
specification of equation (2). Table 5 summarizes these 
plausible general forms and the different restrictions on
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Table 5.—  Plausible Forms of Equation (2) Other than the 
Double-log, Semi-log and Linear forms."

Plausible Forms Restrictions : _2iv_ __

(a) ^ =Po~Pi---; ^ N/R N/RA. y Aq

X
ib) lnl/=Po - ^ +e 0 N/R

vlj -1(c) — \ =Pq -p^lnDjj+e m /R
A y

(d) y^j=pQ-p^:^{.- +e 1 N/R

(e)  - j.^ =po-PiD^^ + e N/RAy

(f) In =Po-p^lnP^j+e

(g) In ^j=Po + e 0

(h) y^j=Po-p,ZPjj + e 1

The error term in all plausible forms estimated was 
assumed to enter addictively. Thus, the functional form is 
limited to intrinsically linear forms.

Restrictions of 0 and 1 refer to a natural-log 
transformation and a linear restriction, respectively. N/R 
refers to an estimated Box-Cox transformation parameter.
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and Xq required to obtain these forms. As noted in chapter 
1, the primary theoretical constraint on equation (2) is 
that the signs and sizes of the estimated parameters Po, 

and À.D result in a function in which per capita trips 
are inversely related to average round-trip distance 
traveled (the price proxy) from origin i to site j. With 
one exception, this constraint is satisfied in all of the 
forms listed in table 5 when is less than zero. This 
exception occurs in plausible form (b) in which must be
positive if is negative. An additional constraint for 
the models to be considered demand functions is that the 
estimated parameters in equation (2) must yield a positive 
intercept or constant term. As one may note this term will 
not always be Pq due to the specification of the Box-Cox 
transformation. For instance, consider plausible form (a) 
(table 5) is expressed in its reduced form as shown in 
equation (7):

(7) V=X,

If the absolute value of Pi/^d > Po + 1 and Xy and po are 
positive, the intercept term in plausible form (a) will be 
negative. The combinations of possible values and signs of 
Pô  Pi, Xy, and Ip contributing to the sign of the intercept 
term in each of plausible forms (a) through (e) (table 5)
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are too numerous to analyze and list here. Thus, the 
intercept terras in each of the estimated forms presented 
below are independently assessed for theoretical 
acceptability.

Form Analysis of the Bivariate First-Stage TCM Demand 
Function

This section presents the estimation and model 
discrimination performed on the first-stage TCM demand 
functions estimated using the plausible forms summarized in 
table 5. First, each of the models estimated in this 
section are generally reviewed. This includes a summary of 
models^ adherence to the theoretical constraints, an 
overview of the fit of models, and review of the 
significance of the Box—Cox transformation parameters.
Next, the results of discriminating these models using the 
log-likelihood ratio test is summarized. This is followed 
by a review of the results of applying several diagnostic 
tests to model 5.

Estimated M o d e l s . Table 6 summarizes the results of 
estimating five forms of the bivariate first-stage TCM 
demand function listed in table 5 . Based on Duf field's 
(1988) findings specific estimates of the semi-log and 
linear forms (f) and (h) (table 5), respectively, were

Collectively, the approach used to estimate the 
models in table 6 was designed to allow all of the plausible 
forms listed in table 5 to result.
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omitted from this analysis.

At the outset only models 3.a, 3.b, 4.a, and 4.b 
were estimated. However, due to the failure of A,v in model 
3.a to be significantly different from zero at a 5 percent 
probability of a type I error, model 5, in which Xy is 
restricted to a value of zero, was also estimated. Aside 
from the insignificance of Xy, the hypotheses that the 
remaining
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Maximum Likelihood Estimates OLS

Model 4 0̂ Log-Likelihood Po Pi R2 F

3. BCE*
a , / X-ju .0016

(.172)
.169

(6.78)
7,361.84 -4.30

(-11.57)
-.629
(-7.01)

.778 2, 601

b . X.0 .038
(5.45)

.038
(5.45)

7,345.91 -2.92
(-11.32)

-.907
(-8.56)

.775 2,550

4. BC**
a • X-y -.017

(-6.68)
1 (R***) 7,129.75 -13.59

(-16.20)
-.0045
(-7.35)

.592 1,076

b. .030
(3.35)

0(R) 7,337.43 -2.15
(-7.50)

-1.22 
(10.25)

.768 2,451

5. Xa (BCE) 0(R) .172
(6.87)

7,361.82 -4.33
(11.49)

-.630
(-6.99)

.778 2,599

BCE stands for use of the Box-Cox extended estimation method.
BC stands for use of the classical Box-Cox estimation method.
HRt. signifies a restriction of the Box-Cox transformation parameter at the indicated value.
Pi are the estimated coefficients for per capita trips transformed by the respective value of h  .

The p-value for in model 3.a is ,4317. All other p-values are less than .001. The critical values 
for t and F at a 5 percent probability of a type I error are 1.6471 and 3.854, respectively. T-ratios 
were computed from the variance-covariance matrix resulting from the maximum likelihood estimation of 
each of models 3.a, 3.b, 4.a, and 4,b. Model 5 was estimated using an OLS/grid-search method. 
Adjusted-R2 and F-statistics were computed using OLS regression with the appropriate transformations on 
the dependent and independent variables as listed in columns 2 and 3.



7 8

estimated coefficients in table 6, equal zero is rejected 
at a 5 percent probability of a type I error. Further, the 
hypothesis that no relationship exists between the 
independent and dependent variables are rejected at a 5 
percent probability of a type I error for all of the models 
presented in the same table.

The signs on pp in each of the models listed in 
table 6 are theoretically correct. With the exception of 
model 3.a, the signs and magnitudes of all estimated and 
restricted parameters in the models presented result in 
positive intercept terms in each model. in Model 3.a is
not significantly different from zero at the 95 percent 
confidence interval thereby yielding the intercept term in 
model 3.a equal to zero.

Model Discrimination. Discrimination of the models 
presented in table 6 was performed using a series of 
likelihood ratio tests, as summarized in Chapter 2. There 
are several combinations of models in table 6 that satisfy 
the restriction that only models that can be nested in their 
non— restricted counterparts may be discriminated with this 
counterpart using a likelihood ratio test. However, based 
on the likelihood principle and the methods used to estimate 
the models in table 6 (see table 6 and preamble), only four 
combinations of models need to be tested. These 
combinations consist of models 3.b, 4.a, 4.b, and 5 as 
restricted models of model 3.a . Likelihood-ratio tests for
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these combinations is summarized in table 7. The null 
hypothesis in this table is that the restricted models 
listed in column one are similar to the general model listed 
in column two. The alternative hypothesis is that the 
restricted and general models are dissimilar.

Table 7.—  Likelihood Ratio Tests of Bivariate Models with 
Model 3.a. as the General, Unrestricted Case

Restricted
Model

General
Model

Degrees of 
Freedom

Likelihood 
Ratio (% 2 )

P-Value

5. 3 . a . 1 . 04 . 841
3 .b. 3 .a. 1 31. 86 <.0001
4 . b . 3. a . 1 48. 82 <.0001
4 . a . 3. a . 1 464.18 . 000
1. 3. a . 2 61 .00 <.0001

It can be concluded from this analysis that only 
model 5, of the models presented in table 6, is not 
significantly different from the most general model at a 5 
percent probability of a type I error (the critical %  ̂ value 
with one degree of freedom is 3.8415). Thus, according to 
the maximum likelihood principle, model 5 consists of those 
parameters which, among the parameters estimated for the 
remaining models in table 7, best describe the population of
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per capita demand for fishing trips during 1985. It can be 
further concluded that model 5 is statistically superior to 
the remaining models in table 7.

Since the double—log model, presented in table 4, 
can be nested in model 3.a, a likelihood ratio test was 
performed with the same null hypothesis as that established 
for the remaining tests summarized in table 7. The results 
of this test, summarized in table 7, suggest that the null 
hypothesis could is rejected at a 5 percent probability of a 
type I error (the critical value with two degrees of 
freedom is 5.9915).

Diagnostic Tests on Model 5 . Figure 7 is the normal 
probability (P-P) plot for model 5. As can be seen, model 5 
produces fairly normal residuals. In comparison with models 
1 and 2, model 5 appears to produce slightly more normally 
distributed residuals, although they are slightly skewed 
left. Figure 8 is the standardized residual plot for model 
5. In comparison with the similar plots for models 1 and 2 
(figures 3 and 4), model 5 appears to result in a greater 
distribution of the residuals around the center of the plot 
than do models 1 and 2, thereby suggesting less 
heteroscedasticity of the residuals produced by model 5. It 
is noted however, that the results of White's test for 
homoscedasticity suggests the residuals in model 5 are
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heteroscedastic.
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Figure 7.—  Normal Probability (P—P ) Plot of the 
Standardized Residuals for Model 5, Table 6.
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Figure 8. Standardized Scatterplot of predicted Per Capita 
Trips and Residuals for Model 5, Table 6.

nR2 for model 5 is 52.74 with a p-value of this 
distribution with 2 degrees of freedom less than .0001. 
Further, the 95% critical value is 5.9915.
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Figure 9 is a standardized scatterplot of the 
residuals produced by model 5 and average round-trip 
distance transformed by the Box-Cox transformation parameter 
for the same model. Although the inverted-U shape present 
in similar plots for models 1 and 2 appears less evident for
model 5 than it does for model 1, the shape continues to
suggest the functional form may not be correctly 
specified.'*^ Comparison of figures 6 and 9 also suggests 
further resolution of the over/under trip prediction problem 
encountered in model 1. This is evident by the wider
dispersement of points around the center of figure 9 verses
the dispersement of points in figure 6. The predictive 
performance of models 1, 2, and 5 are further discussed 
below.

As noted in chapter 2, the trade-off between 
heteroscedasticity and functional form is omitted from this 
study. It may be the case that the inverted-U shape in 
figure 9 is partially due to the lack of correction for 
heteroscedasticity.
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Figure 9.—  Standardized Scatterplot of Round-Trip Distance 
Transformed by the Box-Cox Parameter listed for Model 5, 
Table 6, with the residuals from the same model.

Lastly, examination of figures 8 and 9 suggest the 
presence of several outliers. Thus, outlier analysis was 
conducted using the same measures used for models 1 and 2. 
The results of this analysis for model 5 and a model in 
which trips from Alaska were modeled as an interaction term 
with average round-trip distance are presented in Appendix 
C.

Discrimination of Models 2 and 5.
The last step in the analysis consists of 

discriminating between model 2 and 5, the two remaining.
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models considered in this paper. Since these two models are 
non-nested, a J-test was used for discrimination. The 
results of the hypothesized models are summarized in table 
8 .

Table 8 Results of J-Test for Discrimination Between 
Models 2 and 5.

Model 
(Hypothesis) {io Pi* P2** R2 F

2 . (Null) 4 . 724 -3.508 -.541 .785 1, 352
(t-ratio) (4.793) (-4.932) (-1.728)
(p-value) {<.0001) (<.0001) ( .042)
5. (Alt) 2 . 308 . 341 1. 523 . 785 1, 352

(1.703) (1,728) ( 4.932)
( - 044) (.042) (<.0001)

Pi are the estimated coefficients of average round-trip 
distance plus 64 and average round-trip distance subjected 
to the Box—Cox transformation with X,= .172.

P2 are the estimated coefficients of the predicted 
values resulting from estimating models 5 and 2 with OLS, 
respectively.
The sample size is 741 and t*=1.647 and F =3.007 at the 5 
percent probability of a type I error.

In terms of the method summarized in Appendix B, 
models 2 and 5 are considered the null and alternate
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hypothesis models (for general specifications see equations 
(B-1) and (B-2)), respectively. The estimates of models 2 
and 5 parallel the general specifications of equations (B-4) 
and (B-3). The hypotheses that the estimated coefficients 
of p2 in both models 2 and 5 (table 8) are different from 
zero are rejected for both hypothesized models at the 5 
percent probability of a type I error. The decision 
criteria summarized in table 10 (Appendix B) suggests that 
neither model 2 or 5 is acceptable or sufficiently explains 
the variation in the natural-log of per capita trips when 
compared to the other. Unfortunately, however, this test 
provided inconclusive results. That is, their is 
insufficient evidence at a 5 percent probability of a type I 
error to reject the null hypotheses that each models' 
predicted values of the natural-log of per capita trips adds 
to the fit of the rival model. This result is one of the 
drawbacks of the J-test. Specifically, the J-test does not 
provide conclusive evidence that either model 2 or 5 is 
statistically superior over the other. This is caused by 
insufficient information regarding the comparison of the 
conditional distributions of the dependent variables in the 
two models (see Maddala (1992)) .

Madalla (1992) suggests supplementing the J-test 
with an analysis of variance in which the models are 
combined and the coefficients on the differing variables are 
tested for significance. However, due to strong colinearity 
between the independent variables in models 2 and 5, such 
analysis was unsuccessful. Additionally, Maddala cites 
Mizon and Richard (1986) for a means to overcome the lack of
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An alternative means of discriminating models 2 and 

5 is to compare their adjusted-R^s. These values are .784 
and .778 for models 2 and 5, respectively. The slight 
difference of .006 between these values (i.e., model 2 
explains less than 1 percent more of the variation in the 
dependent variable than model 5) suggests the two models may 
be considered statistically comparable.

Based on the analysis in this chapter, although 
models 2 and 5 may be considered statistically comparable in 
terms of slight differences in adjusted— , it may also be 
concluded that model 5 provides an alternative means of 
adjusting for prediction errors primarily due to measurement 
error at shorter distances (see Duffield (1988)). A 
comparison of figures 11 and 10 (see subsection discussing 
scatter plots below) shows that both models 2 and 5 enhance 
the linear price/quantity relationship of model 1. However, 
unlike model 2, model 5 achieves this enhancement without 
shifting the entire demand function to the right as noted by 
Duffield (1988). Furthermore, model 5 suggests a degree of 
nonlinearity not specified in model 2. It is also important 
to note that both models suggest that the relationship of 
per—capita trip demand for varying distances from a site is 
not a one-to-one relationship as suggested for a 
multivariate specification of model 2 by Duffield (1988).

information on the conditional distributions in the null and 
alternate hypothesis models.
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It is also noted that the theoretical basis for a 
multivariate specification of model 2 suggested by Duffield 
has greater merit than a possible theoretical basis for 
model 5. Specifically, the constant in model 2 may be a 
measure of the fixed costs associated with making a trip. A 
theoretical basis for model 5 might be that it describes the 
degree of marginal diminishing returns for per-capita trips 
as distance increases more accurately than model 1.
However, at least, models 2 and 5 appear to capture 
characteristics of per— capita trips demand not captured in 
model 1.

Overview of Models 1, 2, and 5
The balance of this chapter provides an overview 

comparison of the bench-mark models (1 and 2) and model 5. 
Included in this section is a comparison of models 1, 2, and
5 in terms of scatterplots and line-plots of the three 
models and their predictive performance across the sample. 
This section is closed with a summary of the elasticities of 
each m o d e l .

Scatter and Line Plots. Figures 10, 11, and 12 are
scatter plots of the natural log of per-capita trips versus

The model estimation and discrimination analysis 
presented above is considered sufficient for a conclusion 
that models 2 and 5 are statistically similar in describing 
the variation in the natural-log of per-capita trip demand. 
The plots, predictive performance and elasticities of each 
model are provided for illustrative purposes only.
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the transformations of average round-trip distance applied 
in each of models 1, 2, and 5, respectively. 50

When comparing figures 10, 11, and 12 it should be 
noted that the horizontal scale in figure 12 is more 
compressed then that of figures 10 and 11. This was done to 
maximize the scatter of observations across the plot and to 
include the mean of the independent variable in figure 12.
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As one can see in these plots, models 2 and 5 result 
in three improvements over model 1. These include, a 
tighter cluster of observations around the regression line, 
fewer outlying observations at shorter distances (this is 
confirmed by comparison of the DFFITS and DFBETAS for these 
two models), and greater linearity in the price—quantity 
relationship. The first two of these improvements can be 
considered as improvements of the intended use of the 
double-log model. Specifically, the double-log model was 
selected by Duffield et al. (1987), in part, as a means of 
mitigating heteroscedasticity which results from compressing 
the range of observations by means of the double— log form 
(see, e.g. Gujarati (1988)).

If one were to plot models 1, 2 and 5 on one graph 
with per-capita trips on the y-axis, using a continuum of 
data points across the range of average round-trip distance, 
models 2 and 5 would appear most similar. Although the 
plots for all three models are non-linear, model 2 shows the 
least amount of nonlinearity and model 1 the most.
Further, at round-trip distances less than 48 and 64 miles, 
the plots of models 2 and 5 are below model 1, respectively. 
These plots remain above model 1 up to distances of about

This plot was omitted from the text due to 
illegibility.

The functions used for these plots were roughly
Model 1 
Model 2 
Model 5

- 1.71V = .357 D
V = 21 , 977 (D + 64)
V = exp (-.667 - 3.663 D-̂ "̂ )
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1,200 and 1,500 miles for each of models 2 and 5, 
respectively. Thus, models 2 and 5 dampen the curvature of 
model 1 (particularly at shorter distances) providing 
greater linearity in the price/quantity relationship in the 
transformed form of these models. This illustrates models'
2 and 5 mitigation of the over/under trip prediction problem 
with model 1.

Predictive Power. The resulting predictive power of 
models 1, 2, and 5 provide additional information regarding
the performance of these models. As expected, model 1 
overpredicts the 5,029 aggregated trips in the sample by 
2,820 or 56.1 percent. However, model 2 underpredicts trips 
by 287 or 5.7 percent and model 5 overpredicts trips by 72 
or 1.4 percent.

Elasticities. As an aside and purely for 
illustrative purposes, table 9 summarizes the elasticities 
evaluated at the mean of average round-trip distance 
(1,119.5) for each of models 1, 2, and 5.
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Table 9.—  Estimated Own-Price Elasticities of Demand
for Models 1, 2, and 5

Model
Estimated Own-Price 

Elasticity of Demand
1 . -1.718
2 . -2 .281
5 . -2.115

The own price elasticity for model 5 is computed by 
Pi (D^) .
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CHAPTER 5 
CONCLUSIONS

This chapter provides a summary of this study, its 
limitations and suggestions for further research. Each are 
addressed in turn.
Summary

The purpose of this study has been to examine the 
form of the first-stage demand function for the cold-water 
stream fisheries in Montana during the 1985 season. Chapter 
one provided an overview of the travel cost methodology.
This included a summary of the pertinent economic theory 
underlying the TCM methodology, simplifying assumptions, 
definitions of the price and quantity variables, data 
requirements, and examples of TCM applications.
Additionally, the literature regarding determination of the 
functional form of the TCM demand function supporting the 
use of statistical inference to determine the correct form 
was reviewed.

Chapter two outlined the approach to model 
specification used in this paper. It was concluded that the 
best approach was to test down from a general to a specific 
functional form. However, due to the information regarding 
the form of the first-stage TCM demand function as

95
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investigated by Duffield et al. (1987) and Duffield (1988), 
an hybrid of a testing down and up (AER/TTT) approaches was 
concluded as the best approach to use in this study. That 
is, the study relied on the findings of the two prior 
studies noted to limit the field of plausible forms of the 
demand function.

Chapter two also provided an overview of the Box-Cox 
methodology. Included in this review were four possible 
approaches to estimating a Box-Cox regression function, of 
which the full maximum likelihood method was deemed best due 
to the ability to estimate the variance—covariance matrix 
encompassing all estimated parameters. Next, two methods of 
model discrimination were reviewed, including the likelihood 
ratio test, which was used to discriminate five plausible 
Box—Cox regression models and the double-log model initially 
proposed for the data base by Duffield et al. (1987). 
Davidson and Mackinnon's J-test for discriminating non­
nested models was also reviewed. Finally, in accordance 
with the TTT approach to model specification, several 
diagnostic tests on the assumptions of OLS used in this 
study were reviewed.

The results of the econometric analysis performed in 
this study were reported in chapter four. As a bench-mark 
for the analysis in this study, two bivariate models were 
estimated and subjected to several diagnostic tests 
regarding certain assumptions of OLS. These models followed
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the principles used by Duffield et al. {1987) (a double-log 
model) and Duffield (1988) (a double—log, with shifted 
distance model) to estimate multivariate counterparts to 
these models.

Based on the results of prior studies, five Box-Cox 
regression models were estimated such that eight plausible 
forms could result. These models were tested for their 
adherence to generalities regarding a priori expectations of 
the signs and magnitudes of the estimated regression 
coefficients and Box-Cox transformation parameters. Only 
the most general form failed to meet these requirements. 
Using a series of likelihood ratio tests, it was found that 
a form consisting of the natural log of per-capita trips 
regressed on average round-trip distance raised to the .172 
power (model 5) was the only form statistically similar to 
the most general form (model 3.a) of the TCM demand function 
investigated in this study. A likelihood ratio test 
comparing the most general form with Model 1, based on the 
findings of Duffield et ai. (1987), was also conducted.
This model was also dissimilar to the most general form at 
the 95 percent confidence interval, thus eliminating model 1 
from the field of statistically acceptable models.

An attempt to discriminate Model 5 and the bivariate 
specification of the double-log, shifted distance model with 
a shift factor of 64 (model 2) using a J-test provided 
inconclusive results. Thus, these two models were compared
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based on their adjusted— statistics. Because the values 
of these statistics were found to be close (.784 and .778 
for models 2 and 5, respectively), it was concluded that the 
two models are statistically comparable. Moreover, model 5 
was found to provide more information regarding the 
characteristics of the per-capita demand for stream fishing 
in Montana during 1985 than the does the double-log model.

Comparisons of the scatter plots of models 1, 2, and 
5 revealed that models 2 and 5 result in five improvements 
over model 1. These include greater linearity in the 
price/quantity relationship, a tighter cluster of data 
points around the regression lines, further mitigation of 
heteroscedasticity (compare figures 3, 4, and 8), mitigation 
of outliers for shorter distances (possibly related to the 
mitigation of heteroscedasticity), and enhanced predictive 
power. As regards the latter of these improvements models 2 
and 5 predicted trips within 5.7 and 1.4 percent of observed 
trips, whereas model 1 overpredicted trips by 56.1 percent. 
Limitations and Suggestions for Further Research

This section highlights four limitations to this 
study, three of which may merit further research. Each of 
these issues include heteroscedasticity of the residuals, a 
truncated distribution of the residuals in model 5, errors 
in measurement of round-trip distance, and omitted variable 
bias. An additional suggestion for further research 
includes estimation of the demand function to account for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9 9

possible segments in the market by use of a spline function. 
Each of these issues are summarized in turn.

Heteroscedasticit v . As previously noted, no 
attempts were made to measure or correct heteroscedasticity 
in any of the models presented in this study. Moreover, 
while models 2 and 5 appear to mitigate heteroscedasticity, 
as is evident in the plots of the models" residuals against 
their predicted values. White's test suggests the residuals 
are not homoscedastic. Thus, the estimated coefficients in 
these model are neither best or linear estimates, nor can 
they be considered efficient (see Kmenta (1986)). A 
possible solution to this limitation may be determined by 
reestimating the models presented in this paper by 
specifying likelihood functions capable of simultaneously 
estimating the Box—Cox parameters for functional form, the 
shift parameter (model 2), and the form of 
heteroscedast icity .

Truncated Distribution of the Residuals in Model 5 . 
Smith (1975) notes that use of the Box-Cox transformation on 
the dependent variable does not allow for negative values in 
this variable resulting in a non-normal distribution of the 
residuals. As a consequence, he notes that estimates of the 
parameters in a Box—Cox regression model using a likelihood 
function specified with a normal distribution of the

See footnote 19, Chapter 2 for pertinent citations 
of literature addressing this issue.
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residuals results in approximations of these parameters.
The likelihood function specified for estimates of the Box- 
Cox models presented in table 6 assumed the residuals were 
normally distributed. Therefore, models 3.a, 3.b, 4.a, 4.b, 
and 5 are considered only approximations of the models that 
would be estimated given the same restrictions (or 
latitudes) capsulated in each of these models when the 
truncated distribution issue is incorporated in the 
analysis. No further analysis on this issue was conducted.

Errors in Measurement of the Distance Variable. As 
noted in chapter 3, several of the reported distances were 
found to be in error and were replaced in the data base with 
map distances. These distances were measured by assuming 
trips originated from the population centers of each county 
or state. Duffield (1988) notes this is a result of the 
small sample size in the data set. He also notes that 
aggregation of trips with disparate distances within origin 
zones to a common site add to the effect of the distance 
measurement error occurring largely in the range of shorter 
distances. He suggests that shifting distance by a constant 
appears to mitigate the effects of the measurement error at 
shorter distances by shifting the demand function away from 
these shorter distance.^'*

Duffield (1992) further refined the shifted 
distance, double-log model by transforming average-round 
trip distance for resident and non-resident anglers by the 
total cost functions estimated for each class in Duffield et 
al (1987).
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Conversely, model 5 adjusts for the nonlinearity not 
captured by model 1 , which can be seen by comparison of 
figures 10 and 12. However, an explicit examination of an 
error-in-variables model or other means of correction for 
errors in measurement within the framework of the Box-Cox 
regression models were not examined in this study. Thus, 
further analysis of this sort may provide a further 
enhancement to the analysis.

Omitted Variable B i a s . Since the scope of this 
study was limited to determining the functional form of the 
bivariate TCM demand function, the models estimated in this 
study are prone to omitted variable bias. Thus, further 
examination of the functional form of the demand function 
for stream fishing in Montana might include the addition of 
non-price variables. These variables might include site 
attributes, a measure of substitutes, and several 
socio-economic / demographic variables designed to 
approximate tastes and preferences. Failure to include 
these variables in the model would result in biased 
parameter estimates and thereby biased estimates of consumer

A general Box-Cox model similar to model 3.a was 
estimated for model 2. However, it was found that the Box- 
Cox transformation on the dependent and independent 
variables both converged to zero, yielding the initial 
double-log form as that which maximized the likelihood 
function.
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surplus (see, e.g., Dwyer et al. (1977) and Walsh 
( 1 9 8 6 ) ) . These non-price variables are intended to 
explain potential shifts in demand. These variables can be 
used to evaluate the effects on demand and net economic 
benefits of adding a new site to or deleting an existing 
site from a region, changing the attributes of one or more 
sites, or changing a site's access costs.

In this regard, the reader is advised to examine 
Duffield (1988) in which he lists three additional concerns 
or limitations to the stream fisheries data set. Other than 
the measurement error issue, these issues include 
misspecification of the substitute variable, use of socio­
economic/demographic variables limited to the representation 
of the angler's of an origin zone.

Market Segmentation. Another suggestion for further 
research regarding functional form would be to estimate per- 
capita trip demand using a spline function (Greene (1990)). 
Duffield et al. (1987) found that their double-log model 
overpredicted trips for short and longer distances and 
underpredicted trips for medium range distances. Also, 
analysis of the residuals versus average round-trip distance 
plots in figures 6 and 9 for models 2 and 5, respectively.

Such bias consumer surplus is expected to occur if 
the bivariate demand function presented in this paper is 
used to compute consumer surplus values. Readers are 
reminded that the purpose of this paper is to examine the 
functional form of the bivariate model. Thus, the non—price 
variables listed in this section are intentionally omitted 
from the specification presented in chapter four.
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reveals the this poor prediction problem was not entirely 
addressed. Simply stated, a spline function could be used 
to segment the market by increments in distance, thereby 
testing whether different distance intervals represent 
different market segments. In a broader scope, the dummy 
variables delimiting market segments could be estimated with 
a log— likelihood function, as suggested by Greene (1990), 
which also accounts for functional form and 
heteroscedastistic effects.
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APPENDIX A
TECHNICAL DESCRIPTION OF THE TRAVEL-COST MODEL

As noted in chapter one, the zonal TCM consists 
of statistically estimating a demand function for use of a 
recreation site. Although the TCM has been justified in 
terms of household production, the following provides a 
justification in terms of utility maximization. McConnell
(1985) provides the following general development of the 
first— stage TCM demand function based on the following 
quasi-concave utility function subject to income and 
time constraints:

(A-1) u(x, z) s. C. y  = cx + pz , T = h  ̂xi + t:̂)

Where
X = Number of trips to a given site
z = Hicksian composite commodity
h = Time spent working
tj = travel time per trip
tz = time spent on site per trip
T = total available time
y  = exogenous income
c = out-of-pocket costs per trip
p  = Price of the composite commodity
y  = yo + wh
w = the wage rate
This model assumes recreationists can trade between

Henderson and Quandt (1980) show the utility 
function must be strictly quasi-concave in terms of the 
utility and price space.
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work and leisure at a constant rate which means t2 f and
h are all measured in the same units. When the income and
time constraints are combined utility maximization becomes;

(A-2 ) u(x, z) + [y* - c*x - pz]

Where
(A—3) y* = y + wT
(A-4) c* = w + t2 ) + c

With first order condition of:

which results in demand given by:

(A-6 ) XT = f i c \  p, y*)

which reduces to:

{A-1 ) X  = f {c*, y*)

when p is assumed constant in the cross section, the time 
frame typically used for TCM demand function estimation. 
Thus, demand is a function of full income and full costs. 
Full costs generally constitute out-of-pocket costs and the 
opportunity cost of travel time. According to general 
demand theory these variable would be inversely related to 
the quantity of recreation trips demanded.
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APPENDIX B 
OVERVIEW OF THE APPLICATION OF 

THE DAVIDSON AND MACKINNON J-TEST^®

The Davidson and MacKinnon J—test is a joint test of 
the predictive power of two rival, non-nested models. The 
following summarizes the methodology for a general case 
which may include Box—Cox transformations in the regression 
variables. The null and alternate hypothesis models are 
specified as in equations (B-1) and (B-2) in which the error 
term of each is assumed normally and independently 
distributed with zero mean and constant variance:

K
( B- l)

k=l

K
iB-2) y=Yo+E 1ft

k=l

The test is based on an artificial nesting of the two models 
and is performed in two stages. In the first stage, the 
null hypothesis model (equation (B-l)) is artificially 
nested in the alternate hypothesis model (equation (B-2)).

58 This summary relies heavily on Maddala (1992).
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This is done by specifying the predicted values of equation 
(B-l) resulting from OLS estimation as an additional 
variable in equation (B-2) to form equation (B-3).

K
{B-3) y=Yo+E

ic=l

Vo represents the predicted values of the null hypothesis 
function and ct is the estimated parameter. A secondary 
hypothesis test is then established in which Hg: a = 0 and 
Ha : (X 0. If this test shows the null hypothesis is 
acceptable, it is concluded that the null hypothesis 
function (equation (B-l)) does not add any further 
description of the variation in Y then that provided by the 
independent variables in equation (B-2). However, this 
information is insufficient to determine whether the null 
hypothesis model encompasses the alternative hypothesis 
model. Thus, the second stage of the test consists of 
artificially nesting the alternative hypothesis model 
(equation (B-2)) in the null hypothesis mode (equation (B- 
1)). Similar to the first stage of the test, this is done 
by specifying the predicted values of equation (B-2) 
resulting from OLS estimation as an additional variable in 
equation (B-l) to form equation (B-4).

K
(5-4) +

k=l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 1 3

Ya represents the predicted values of the alternate 
hypothesis function and ô is the estimated parameter. The 
secondary hypothesis test is then H,, : 5 = 0 and H,: 8 # 0.
If this test shows the null hypothesis is acceptable, it is 
concluded that the alternate hypothesis function {equation 
(B-2)) does not add any further description of the variation 
in Y then that provided by the independent variables in 
equation (B-l).

Maddala (1992) summarizes the possible outcomes of 
the J-test in a table similar to that provided in table 10 
be low.

Table 10.—  Possible Outcomes of The J-test.

Hypothesis: a = 0

Hypothesis : 
8 = 0 Not Rejected Rejected

Not Rejected Both Ho : and H^ : 
are acceptable

Hg : is acceptable 
Ho : is not acceptable

Rejected Hq : is acceptable 
H3 : is not acceptable

Neither H q : nor 
Hg : are acceptable

Source: Maddala (1992)
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APPENDIX C

TECHNICAL DESCRIPTION OF DIAGNOSTIC TESTS
AND MODELING OF OUTLIERS

This appendix provides technical descriptions of 
several of the diagnostic tests summarized in chapter 2 . 
Technical descriptions of White's test for homoscedasticity, 
DFFITS and DFBETAS measures for detecting outliers, and a 
method of modeling the effects of outliers using dummy 
variables are summarized in turn. This is followed by a 
summary of preliminary modeling efforts designed to address 
the anomaly in the data aggregation process presented by 
trips originating in Alaska noted in Chapter 4. Alternative
specifications of models 1, 2 (table 4), and 5 (table 6 ) are
presented in t u r n .

White's Test for Homoscedasticity
White's test for homoscedasticity consists of 

regressing the squared errors on the variables in the 
regression model being tested using the general form in 
equation (C-1).
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(C-1 ) e| = 5 o + E
p=l

In this equation are the residuals, Ô are estimated 
regression coefficients, Ẑ , and p is determined by the 
number of independent variables in the regression function 
being tested using the following example taken from Kmenta
(1986) . When there is one independent variable (X) , p = 2 
and = Xij and Z^2 ~ ■ When there are two independent
variables, p = 3 and = X̂ j, Ẑ  ̂ = X̂ ,̂ Zĵ  = X̂ jX̂ ,̂ Ẑ  ̂ =

, and Zj5 = X^^^. Regressors in equation (C-1) are 
determined likewise for regressions with more independent 
variables.

The null hypothesis of White's test is that the 
variances of the residuals are constant. Failure to reject 
this hypothesis also says that any heteroscedasticity is 
caused by sampling error. The asymptotic, large-sample 
statistic is computed by n (R^J which is distributed as a 
with p  degrees of freedom.

DFFITS and DFBETAS Measures
The general approach to detecting and measuring the 

impact of outliers on a regression function used in this 
study is based on the leverage a single observation or group 
of observations has on the mean and variance of the
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remaining observations. These methods can be divided into 
those in which observations on the dependent and independent 
variables are examined as outliers influencing the fit of 
the regression and those which identify cases influencing 
the fit of the regression equation or the values of 
estimated coefficients. Both methods utilize leverage 
values (ĥ )̂ which consist of the diagonal elements of the 
hat matrix stemming from the data for the independent 
variables (see, e.g. Neter et al. (1989), Kmenta (1986) or 
Greene (1990) for development of the hat matrix). An 
explanation of the second of these general methods 
classified here and use of leverage values in each are 
summarized below.

Neter et al. (1989) suggest use of DFFITS and 
DFBETAS measure to detect influential observations, both of 
which make use of leverage values. DFFITS measures the 
influence a particular case has on the fit of a regression 
equation. This measure may be computed for each case by 
equation (C— 2):

(C-2) DFFITS, = JiZliUL

In this equation is the fitted value of Y (the dependent 
variable) for the ith case, Ŷ (,, is the predicted value of Y 
for the ith case when it is omitted from the estimated 
regression equation, MSE^ is the mean squared error when the
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ith case is omitted, and is the leverage value of the 
ith case. Thus, DFFITS^ is a standardized measure of the 
deviation of the regression fit when all data are used and 
when the ith case is removed. In large data sets, the 
absolute value of DFFITS values exceeding the 2 (k/n)' 
indicate an influential case. k and n are the number of 
estimated coefficients in the regression equation and the 
sample size, respectively.

DFBETAS measures the influence a case has on the 
slope parameter of a particular variable or on the constant 
term. DFBETAS values are computed using equation (C-3):

(C-3) D F B E T A S ^ ^
yjMSE~c^

In this equation [3̂ is the estimated coefficient when all N 
cases are included for the ith case, is the estimated
regression coefficient when the ith case is omitted from the
estimated regression equation, MSE^ is the mean squared 
error when the ith case is omitted, and is the kth 
diagonal element of the (X'X)~^ matrix. D F B E T A S i s  a 
standardized measure of the difference between the estimated
regression coefficient when the ith case in included and
when it is omitted. In large data sets Neter et al. (1989) 
recommend that absolute values of DFBETAS values exceeding 
2 / (n)^ should be considered influential.
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Modeling the Effects of Outliers Using Dummy Variables
Once data outliers are identified, specification of 

the function with dummy variables can be used to assess the 
collective impact a group of outliers has on certain 
coefficients including the intercept. Kmenta (1986) shows 
how this can be done using a dummy variable specified in the 
function as variable affecting the intercept and as an 
interaction term with any of the variables in the function 
thereby affecting the slope of these variables. For 
instance, preliminary analysis of the first— stage demand 
function estimated in this study shows that aggregation of 
per capita visits from Alaska do not follow the rules used 
to aggregate the balance of the origin—destination pairs in 
the stream fisheries data set (see Chapter Four). To 
account for this difference equation (2 ) could be specified 
as

(C-4) Po - PiD^j + ^2AK + p,AK(D,j) + e

where A K  is a dummy variable in which AK = 1 for
observations of trips originating in Alaska and AK = 0 for 
all trips from all other origins. This specification then 
allows analysis of how trips from Alaska influence the 
constant term (p̂ ) and price coefficient (pj .
Specifically, if A K  = I then equation (C-4) would reduce to
equation (C-5) in which the impact of trips taken from
Alaska would influence the constant and slope coefficients
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of equation (2 ) in its linear form.

(C-5) V^j= (po + Pa) + (p3 - Pi)£>ij + e

However, if A K  = 0, equation (C— 4) would reduce to equation 
(C— 6 ) in which there would be no impact on either the 
constant or slope coefficients due to trips from Alaska.

(C-6) y,- Po - PiD^j + e

The impact of trips from Alaska on the constant and slope 
coefficients can be determined from hypothesis tests of the 
statistical significance of and P̂ , respectively. 
Expansion of the analysis to incorporate the Box-Cox 
transformation on and as specified in equation (2 ) 
would result in equation (C-7) where the Box-Cox 
transformation on average round-trip distance is the same 
for both occurrences of this variable in equation (C-7). 
Thus, inclusion of AK in this way allows adjustment of the 
Box-Cox transformation according to the influence of
trips from Alaska.

(C-7) + PzAAT + p 3AfC(Dy°’) - e
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Analysis of Modeling Trips from Alaska as a Dummy Variable 
in Models 1 and 2

To understand the affect of the Alaska trips on each 
of models 1 and 2, an attempt to include a dummy variable 
for trips from Alaska affecting the model both as a shift 
and slope parameter {i.e., as an interaction term between 
Alaska trips and the log of the distance variables) in one 
equation for each model failed due to high colinearity 
between these two variables. Thus, two models, one 
including a dummy variable for Alaska trips affecting the 
intercept and another the slope parameters were estimated 
for each of the double-log and double-log, shifted distance 
models, holding the functional form and shifted distance 
constant. The analysis of variance of these new models with 
their original counterparts (table 4) showed the additional 
variables to be significant additions. Further, the 
adjusted-R2 for each model was enhanced. The most 
significant result of these new models is that the two 
different dummy variable specifications impacted the slope 
and intercept parameters equally. However, since the Alaska 
trips represent relatively extreme distances in the data set 
(versus a more uniform dispersement across the range of 
distances) it was decided to model Alaska trips as a dummy 
variable affecting the slope parameter using an interaction 
variable. The resulting equations are presented in table 

11 .
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Table 11.— Estimates of Models 1 and 2 with Alaska Modeled as an 
Interaction Parameter Dummy Variable.

Model Log-Likelihood Po Pi P2 R 2 F

1 . a . 7,386.29 -.587 -1.805 .418 .792 1,411
(t-ratios) (-2.72) (-53.10) (1 0 .8 6 )
(p-values) (.003) (<.0 0 1 ) (<.0 0 1 ) (<.001)
2 .a. 7,446.27 4 .01 -2.44 .508 .832 1,840

(15.24) (-60.64) (14.59)
(<.0 0 1 ) (.0 0 0 ) (<.0 0 1) (<.001)

Po, Pi, and P2 are the estimated parameters for the intercept, average round-trip 
distance (plus 64 in model 2.a) and the dummy variable for Alaska trips times the 
natural log of distance (plus 64 in model 2.a), respectively. The dummy variable 
for Alaska trips was set equal to one for trips made from Alaska and zero 
otherwise. The critical values for t and F for both models are 1.6471 and 3.0079, 
respectively, at a 5 percent probability of a type I error. Finally, the sample 
size for both models is 741.
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Although not provided in this paper, the normal 
probability plots for models la and 2 a show less negative 
skewness than models 1 and 2 {i.e. observed points are less 
bowed to the left than those in figures 1 and 2 ). 
Furthermore, the residual versus predicted value plot for 
models la and 2 a show greater dispersement of points around 
the center of each graph and model 2 a appears less 
heteroscedastic in the residuals. However, Glejser tests 
with a linear form reveal a negative and significant
correlation of the distance terms in each of models la and
2 a suggesting the residuals continue to be heteroscedastic
in these models. Finally, model la continues to show the
same over and underprediction pattern observed for model 1 . 
Yet, the overprediction for longer distances in model 2a 
appears mitigated when compared to model 2 .

Analysis of Modeling Trips from Alaska as a Dummy Variable 
in Model 5

Outlier analysis was conducted for model 5 using the 
DFFITS and DFBETAS measures. Collectively and similar to 
models 1 and 2, the DFFITS measure and the two DFBETAS 
measures on the constant and slope parameters revealed 
influential observations for one-way distances of 2 to 50

The Glejser test for heteroscedasticity was chosen 
for models la and 2 a due to a high degree colinearity among 
the squared and interaction terms including the Alaska dummy 
variables required for White's test.
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miles. Additionally, all three measures again revealed 
trips from Alaska as influential observations. Thus, model 
5 was reestimated with a dummy variable for trips from 
Alaska specified as an interaction term with average round- 
trip distance transformed by the Box-Cox transformation as 
shown in table 6 . This model is designated as model 5.a. 
This model is presented in table 12. The analysis of 
variance between models 5 and 5.a shows that inclusion of 
the interaction Alaska—trip/ Box—Cox transformed average 
round-trip distance variable enhanced the fit of model 5.
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Model Log-Likelihood Po Pi P2 R 2 F

5.a. 7, 540.69 
(t-ratios)
(p-values)

-3.900
(-28.29)
(<.0 0 1)

-.677
(-60.1)
(<.0 0 1 )

.235
(15,02)
(<.0 0 1 )

.830 1,807

(<.0 0 1 )

§1 ^0/ Pi/ and p2 are the estimated parameters for the intercept, average
 ̂ round-trip distance transformed by the Box-Cox parameter estimated for

-g model 5 (table 6 ) and the interactive dummy variable for Alaska trips. The
§. dummy variable for Alaska trips was set equal to one for trips made from
a Alaska and zero otherwise. The critical values for t and F in this model

are 1.6471 and 3.854, respectively, at a 5 percent probability of a type I 
error. The sample size is 741.
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APPENDIX D 
SURVEY FORMS
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FISHERIES SURVEY

n  YES
DID YOU FISH IN MONTANA DURING THE MONTH OF MAY ? Q  IF YES, HOW MANY DAYS DID YOU FISH IN MAY 7

n  FISH 7
IF YOU ARE A PIONEER («2 OR OLDER) OR A YOUTH <12 T 0 14). DO YOU PLAN TO USE YOUR CONSERVATION LICENSE TO Q  ^  ^

□  BOTH?

PLEASE REFER TO THE MAPS TO HELP US IDENTIFY THE WATERS YOU FISHED. IF YOU NEED MORE SPACE. PLEASE USE A SEPARATE 
PIECE OF PAPER AND RETURN IT WITH THIS SURVEY. THANK YOU FOR YOUR TIME AND COOPERATION.

DATE
FISHED

IN
MAY

NAME OF LAKE 
OR STREAM 

FISHED

SECTION 
NUKCERF 
INDICATED 
ON MAP

NEAREST TOWN AND/ 
OR POINT OF access 
OR LANDMARK

TOTAL
TOTAL NUMBER OF 

FBH CAUGHT PER DAY
TOTAL Nl 
FKHIŒPl

IMBEROf 
r PER DAY

WAS THE 
PURPOSE 
OF YOUR 
TRIP TO 
FISH? 
(YorN)

o o Y a
STAY
OVER­
NIGHT?
(YorN

ROOM)
TRIP

DBTANCE
TRAVELED

HOURS 
FISHED 
PER DAY

TROUT
AND

SALMON

OTHER
SPORT

FISH'

TROUT
AND

SALMON

OTHER
SPORT
FISH*

ENTER EACH DAY AND EACH WATER FISHED ON A SEPARATE UNE. LIST ALL FISHING IN MONTANA. NOT JUST WATERS WDICATED ON MAPS.

5/ /e<

SI m
St m

SI 166
SI
St I6(
SI 161
SI tSf
SI m
St mt
SI I6i
SI mt

• SUCH AS: THE NUMBER OF WHITEFtSH, PERCH, BASS, ECT. "  IF YOU STAYED OVERNIGHT, PLEASE MAKE A SEPARATE ENTRY FOR 
EACH FISHING TRIP. THIS INFORMATION WILL BE HELD IN STRICT CONFIDENCE AND USED FOR MANAGEMENT PURPOSES ONLY. K)m
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