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Holliman, Joseph M., M.A. May, 1993 Economics

BOX-COX TRANSFORMATIONS OF A TRAVEL-COST DEMAND FUNCTION
FOR STREAM FISHING IN MONTANA (128 pages)

Director: John W. Duffield 6QAK3’/

The zonal-aggregate, regional travel-cost model (TCM) has
become a widely accepted method to estimate the demand and
net economic value for access to public lands for
participation in outdoor recreation activities. 1In its
traditional form, per capita trips are modeled as a function
of the variable travel and time costs associated with
traveling to and from a recreation site. The model is also
used to evaluate changes in net economic values for public
resources in cases when additional resources are made
available to the public or when resources are subjected to
changes in site attributes. The methods used to estimate
net economic values and demand in such cases requires a well
specified model resulting in accurate trip prediction across
the sample.

Several alternative mathematical forms of estimated
travel-cost demand functions have been investigated in
attempts to enhance trip prediction and reliability of net
economic value estimates. However, no definitive
conclusions regarding the appropriate functional form of the
model have been reached. Using two prior TCM studies on
data collected in 1985 by the Montana Department of Fish,
Wildlife and Parks for the Montana cold-water stream
fisheries as a bench—mark, this study examines alternative
Box—Cox transformations of the basic bivariate demand
function.

A comprehensive search of plausible functional forms
suggests a model in which the natural log of per capita
trips regressed on average round-trip distance raised to the
.172 power maximized the log—likelihocod function with
significant wvalues of all estimated parameters. This model
was then discriminated from a previously proposed
alternative form of the double-log model in which average
round-trip distance was shifted outward at all observations
by a constant. The J-test and adjusted—-R? revealed
inconclusive results as to which model was most appropriate.
It was concluded that the two models provide alternative
means of describing the variation in per capita trip demand.
However, a previously suggested theory supporting the
double—log model appears to provide greater support for its
use than the model in which distance is raised to the .172

power.
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CHAPTER 1

STATEMENT OF THE PROBLEM

The purpose of this paper is to examine the
functional form of a statistically estimated (first-stage)
travel—-cost model (TCM) demand function for cold-water
stream fishing in Montana during 1985. The TCM is a widely
accepted approach to estimating the demand for and net
economic value of non—market resources. Applications of the
TCM approach to resource valuation problems range from water
and air guality to several consumptive use recreation
activities.' However, the most common applications pertain
to specific recreation activities in which natural resource
sites are provided by governmental entities as public goods
(see, e.g., McConnell (1985)). Since such activities are
generally not sold in a market specifically as "recreation
packages", no directly observable market prices are
available from which economic values can be derived. Thus,
TCM exploits the ability to observe actual expenditures

associated with outdoor recreation trips which serve as the

1 Walsh, et. al. (1988) identifies several activities
such as camping and swimming (e.g., Sutherland, 1980)),
picnicking, hiking, and hunting (e.g., Martin et. al., 1974
(1981)), fishing (e.g., Sorg et. al., 1985), and wilderness
use (e.g., Smith and Kopp, 1980).

1
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price proxy for the demand function.

Economic theory provides little guidance on the
mathematical form of a demand function (see e.g.,
Koutsoyiannis (1977) and Russell and Wilkinson (1979)).
Accordingly, there is no a priori theoretical basis for
specifying the form of the first—-stage TCM demand function
other than recognition of the inverse relationship between
price and quantity.? Thus, researchers have identified the
appropriate functional form using statistical inference
(see, e.g., Smith (1975), Zeimer, Musser, and Hill (1980),
and McConnell (1985)). The central topic of this paper is
the functional form of the first—stage TCM demand function
for fishing on Montana’s rivers and streams during 1985.
The approach uses statistical inference to specify the form
of this function. This study is a reexamination of the
original and one of two subsequent analyses of the zonal
aggregated data collected by the Montana Department of Fish
Wildlife and Parks (DFWP) performed by Duffield, Loomis, and
Brooks (1987) and Duffield (1988). Duffield’s (1988 and
1992) previous analysis of the stream fisheries data base
has focused on the form of the demand function with respect
to the price variable. The analysis in this study is

limited to the same problem.

2 As discussed below, one method of estimating the

economic value of access to a recreation site using TCM 1is
based on statistically estimating a first—stage demand
function. This function is then used to derive a second—
stage function from which consumer surplus is computed.
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Organization

The balance 6f this chapter is organized as follows.
First, a general and intuitive description of the zonal
travel-cost model is provided.’ This is followed by a
review of the literature in which statistical determination
of the form of the first—-stage demand function has been
estimated. This section describes the methods used in this
paper to determine the functicnal form of the bivariate
first—stage demand function. Included in this section is a
brief overview of the findings of previous TCM demand
estimation using the same data base used in this study.
Finally, an outline of the remaining chapters of the paper

is presented.

The Travel—-Cost Model

A wide variety of travel—-cost models have been
developed and are classified by Ward and Duffield (1992) as
conventional travel—-cost models, randcom utility models and
hedonic models. However, the analysis in this paper focuses
on the single equation zonal aggregate TCM which falls under
the general classification of traditional travel-cost
models. In this model, recreation demand or participation
(per capita visits) for a site or region of sites,

aggregated by origin zone, is statistically estimated as a

> Readers are referred to Appendix A for a more

technical description of the TCM.
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function of the price for each trip. Average variable
travel expenditures incurred to make a trip and foregone
time (opportunity) costs associated with each trip for a
specific activity serve as a proxy for price. Variables in
the demand function other than price typically include
income, price of substitutes, socio-economic and/or
demographic variables and site attributes. From this
function a second—-stage demand relation can be derived on
the assumption that recreationists would respond to site
access prices in the same way as they respond to varying
travel costs. The area under the simulated demand function
above the costs actually incurred to make a trip is defined
as the net economic value surveyed users hold for
maintaining access to the recreation sites under study.’
This method requires the model to accurately predict trips
across the sample. The first-stage demand function can be
integrated to determine net economic value (Menz and Wilton
(1983) in Duffield et al. (1987)). The resulting values
represent Marshallian consumer surplus which serve as a
reasonable proxy for net amount recreationists would be

5

willing to pay to maintain access to a site (see, Just et

“ See Dwyer, Kelly, and Bowes (1977) for an
explanation of the mechanics of the travel cost model.

° Although TCM can be used to measure net economic
values for environmental concerns other than to maintain
access to a recreation site, the focus of this study is to

limit the demand study to the access issue. It should also
be noted that demand and ecconomic values estimated with the
zonal TCM pertain to consumptive use value. Other economic
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al. (1982)). Fach facet of this process is summarized

below.

Simplifying Assumptions. To simplify the zonal
aggregate travel cost model, economic and demographic
characteristics of recreationists are assumed to be
homogeneous across and representative of each origin zone’s
population. Furthermore, only data for single—destination
and single purpose trips are included in the data set. This
mitigates problems with allocating costs among destinations
and activities. The amount of time recreationists spend at
each site is also assumed to be homogeneous for all
recreationists in each origin zone. It is also assumed that
the opportunity cost of travel time is constant or at least
homogeneous for all visitors to the observed site or sites
within the study region.

Quantity Measures. Generally quantity has been

specified by two different measures: trips taken and user-—
hours at the site. User—days, a linear transformation of
user days, has also been used (McConnell (1975)). However,
McConnell (1975) argues, that the marginal cost of user—days
is independent of travel costs. Since the utility

maximization framework underlying the travel cost method 1is

values placed on an environmental resource include option,
bequest, and existence values. These values pertain to the
option to use a resource sometime in the future, the value
associated with providing the resources as an endowment to
future generations, and the value of knowing that the
resource exists, respectively.
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based on the change in utility subject to a change in
quantity, he argues that the demand for user—days does not
fit in this framework. That is, the marginal cost of a
user—day 1s independent of travel costs once a trip is made.
He also argues that consumers’ surplus computations require
knowledge of the relatioconship of units costs and quantity
demanded. This is consistent with the theory of TCM in a
household production framework in which the demand function
is similar to a derived demand for trips. Specifically,
Ward and Duffield (1992) note that the basis for the travel
cost model in this framework is the weak complementarity
between marketed commodities associated with travel to and
from a site, among other inputs, and the non—-marketed
services provided by the site. Thus, travel is an input
into the production function for the provision of recreation
services.

Walsh (1985) notes that a precise definition of a
user—day, in terms of person hours, can be problematic when
different recreationists spend disparate amounts of time
participating in the intended purpose of the trip. He
suggests that when the length of stay is similar for all
recreationists, per capita trips is a suitable measure of
quantity.

Per capita trips is the quantity measure adopted in
this study. The decision to use this definition is based

primarily on maintaining consistency with the two previous
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7
demand studies using the Montana stream fisheries data base,
noted above. Based on the above literature review per
capita trips also appears to be the most logical measurement
of quantity.

Price. Since the market for outdoor recreation
trips is non—-commercial in nature, price is proxied by
out—of—-pocket travel and visitation expenditures (short—run
marginal costs) and the opportunity cost of time en route to
and at the site. Price in this model represents the rate of
exchange (or the marginal cost) for producing the recreation
trip, on average within the sample used for each study.

This proxy for price is advantageous since it allows price
variation across origin—destination pairs to be observed
cross—sectionally. Furthermore, there is usually more
variation in this surrogate price measure than price
‘variation generated in commercial markets (Burt and Brewer
(1971)) .

At the minimum, travel costs include the variable
costs of operating a vehicle (see, e.g., WRC (1983) and Burt
and Brewer (1971)). This information can be obtained from
Department of Transportation statistics published annually.
However, it has been suggested that reported costs or those
costs perceived by the surveyed recreationists as the out-—
of-pocket costs associated with taking the trip more
accurately represent true travel costs (Duffield et al.

(1987)) .
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The price proxy also includes the opportunity cost
of time in transit to'and from the site. While no
definitive way of measuring this cost has been developed,
two methods are widely accepted. These methods vary between
determining the recreationists’ willingness to pay to reduce
the travel time by one—half (see e.g. Duffield et al.

(1987)) to determining the value based on a ratio of the
estimated travel cost and combined average family income and
travel time (McConnell and Strand (1981)). One method
adopted by the Water Resource Council (WRC (1983)) and based
on analysis by Cesario (1976) measures the opportunity cost
cof time as one-third the wage rate for adults. One—fourth
of this value would represent the opportunity cost of time
for children.

The data used by Duffield et al. (1987) for the
travel and time cost measures was gathered in a separate
survey supplementing the Montana Statewide Angler Pressure
Mail Survey (McFarland (1989)), the primary data source used
in this study. Trip-weighted, average round-trip distance
is specified as the price proxy in their first-stage demand
function. The same practice is used in this study.

Data Requirements. The traditional (zonal)

Hottelling—-Clawson—Knetch TCM uses survey data aggregated by

origin zone for a single site or a collection of sites for
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similar activities within a region.® Data are gathered

from users whose primary purpose for taking their trip to a
particular site was to participate in a single consumptive
recreational activity, such as hunting or fishing. Although
the TCM has been described as measuring the demand and
benefits associated with an entire recreation trip, there is
general agreement in the literature that the model should be
limited to measuring such demand and benefits for the site
and single purpose trips as noted above (Dwyer et al.
(1977)). Even though a method has been suggested to
rationally allocate travel costs to several closely
clustered destinations (Haspel and Johnson (1982)), the
general consensus 1is that it is too difficult to
consistently allocate the costs for trips taken for several
purposes and destinations. Thus, only data for trips made
with the sole intent to visit a single site for the purpose
of participating in the activity under study (in this case
fishing) are included in the analysis.

Examples of TCM applications. TCM may be used to

estimate net economic values associated with status quo site

7

environmental qualities for specific recreation

® Two other methods rely on observations of individual
recreationists; the quantity variable in these models is the
number of trips per recreationist over a season. (see, e.g.,
Brown, Sorhus, Chou-Yang, and Richards (1983)).

7 "Status quo environmental quality" is defined here

as the environmental guality existing prior to the
implementation of a new policy or the occurrence of an
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10
activities. TCM may also be used tc forecast site usage and
changes (gains or losses) in net economic value due to
several alternative policy directives affecting site usage.
Such directives may affect site access prices (e.g., by
introducing or changing entrance or user fees or by
taxation) or result in changes to the environmental quality
of a site (Ward and Loomis, 1986). Such changes may be due
to projects such as damming a river or permanently changing
the water level of a reservoir. Changes may also result
from an involuntary oil or hazardous material spill. The
Water Resources Council (1983) provides guidelines for
estimating changes in site usage and economic benefits.®
In some cases, 1t may be reasonable to use previously
estimated relationships of wvaluation and non—price variables

such as site attributes.

incident which changes a sites gquality. The status quo
would then most appropriately refer to the base-line
condition similar to the definition provided in section
11.14 of Title 43 CFR. 1In this case it would be the cross-
sectional "snap—shot" of the site quality at the time the
data were ccllected.

8 WRC recommends TCM as one of two preferred methods
to evaluate changes in ecconomic benefits and to forecast
usage when assessing the impacts of water related projects.
Additionally, federal regulations governing the methods used
to assess economic losses due to oil or hazardous material
spills adopt the WRC guidelines by reference (43 CFR Section
11.18 (a) (2)) as one means for determining economic losses
assoclated with such accidents.
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11

Statistical Determination of the Form of the First-Stage

Demand Function

Based on the foregoing summary, it can be seen that
several criteria should be met to obtain accurate estimates
of consumer’s surplus. Other than sound and complete data
collection, demand functions in general should be fully
specified according to demand theory (Koutsoyiannis (1977)).
Omission of key variables such as the opportunity cost of
time and substitutes in a TCM demand function will generally
result in biased net economic value estimates (see, e.g.,
Strong (1983)). Since the magnitude of consumer’s surplus
relies heavily on price elasticities of demand, correct
functional form plays a key role in the value of consumer’s
surplus estimate (see, e.g9., Zeimer et al. (1980)).

However, it is also important that the model be able to
accurately predict trips since predicted trips is a factor
in estimating consumer’s surplus (see, e.g., Ward and Loomis
(1986) and Duffield (1988)). This section reviews the
literature regarding statistical procedures previously used
to specify the form of the first—stage demand function.

A priori specification of the form of the demand
function has provided less than optimal estimation of demand
and consumer surplus (see, e.g., McConnell (1985)). As an
example, McConnell (1975) shows that the functional form
cannot be additive since price must be allowed to vary as

income varies. This conclusion is based on analysis which
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12
shows the demand slope with respect to income depends on
costs and that the symmetry of the cross partial derivatives
with respect to all other prices and income is not equal to
zero. Therefore, a linear functional form is theoretically
incorrect.’ The linear form has been used to estimate the
first—-stage TCM demand function (see, e.g. Bowes and Loomis
(1980)) . However, Vaughn, Russell, and Hazilla (1982)
showed that Bowes and Loomis’ data is more appropriately
described by a semi-log from once heteroscedasticity is
identified and corrected.

While the linear form is inappropriate, theory
provides little other guidance on the appropriate
mathematical form of the first—-stage TCM demand function.
Much work has been devoted to the determination of the
functional form using statistical methods. The following are
three examples.

First, based on a study of general recreation usage
in the Desolation Wilderness Area in Northern California,
Smith (1975) suggests there does not appear to be any
empirical justification favoring use of either the linear,

semi-log, or the double-log (with log transformations in the

® Quirk (1976) also notes that if prices and income
are homogeneous to degree zero a linear functional form is
not possible.

10 All semi-~log models in this paper refer to a form
in which the dependent variable is transformed by the
natural-log and the independent variable takes its linear
form.
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13
dependent and independent variables) models. Further, using
a discrimination tesg for non—-nested models, namely
Pesaran’s N statistic (Pesaran (1974)), Smith found that
neither the semi-log or double-log forms represent the
behavioral patterns of recreation usage described by the
data.'!

In another study of warm—-water fishing in Georgia,
Zeimer et al. (1980) found that the semi-log versus the
double—-log form fit their data best (as determined by
applying the Box—Cox method of model discrimination).
Third, based on the findings of Zeimer et. al., Strong
(1983) suggest that functional form is an important

specification consideration when applying the TCM approach.

Study Methodoclogy

The goal of this paper is to determine the
mathematical form of the first—-stage TCM demand function
using the Box and Cox (1964) statistical method of
discriminating alternative functional forms. As noted, this
is done for the bivariate demand function. The
determination of functional form is also limited by the

bounds of the applicable economic demand theory:

11 aAlthough Smith (1975) notes that the TCM approach
is typically used for specific recreation activities and may
not be valid for the application in his 1975 paper, he
argues that demand for such diverse activities will be
indirectly reflected in the derived demand for the sites
services. Smith’s analysis was based on a single site zonal
aggregate travel cost model.
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specifically, the inverse relation of price and gquantity.

The standard forms used to estimate first-stage
outdoor recreation demand functions in the literature have
been generally limited to the linear, semi-log (with a
natural—-log transformation of the dependent variable),
double—-log, and guadratic forms. Relatively little has been
done in determining which of these forms is most appropriate
in estimating recreational demand (see, e.g. Smith (1975);
Strong (1983); and Zeimer, Musser, and Hill (1980)) or to
further investigate forms other than those listed.

By applying the Box and Cox (1964) family of power
transformations to the data collected for sport fishing on
Montana cold—water streams, this paper examines possible
functional forms for the first—stage demand function using
Duffield’s (1988) findings as a starting point.
Transformations on the dependent and price—proxry variable
are estimated using the Box—-Cox family of power
transformations given in equation (1):

(z*-1) . 5.0

(1) zH={
1n z ; A=0

Where z is either the dependent or independent variable and

A is the Box—Cox transformation parameter. The general form
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of the demand function is presented in equation (2):

(A, A
2) V- By Bl e

Where V,;, is per capita trips taken from origin i to site 7,
D;; is average round-trip distance from origin i to site 7,
B, and B, are estimated parameters, e is the error term, and
(A,) are the Box-Cox transformations of their respective
variables. Much flexibility in the form of the estimated
demand function is afforded by the Box—-Cox transformation.
For instance, if A, = Ay, = 1 the function is linear. 1If,
however, A, = 0 and A, = 1 the form becomes the semi-log
form (Spitzer (1982a)).% The form flexibility of
equation (2) is discussed 1in greater detail in chapter 4.

As noted, this study is a reexamination of two of
three prior studies on the stream fisheries data base using
different specifications of the first—-stage TCM demand
function. The results of these studies are summarized here
and discussed in more detail in chapter 4. 1In the first of
these studies, Duffield et al. (1987) specified a double-log
(log-linear) model in which per capita trips were regressed
on average round-trip distance, total trout catch by site,
and average years of fishing experience of anglers by origin

zone. Due to this model’s failure to produce homoscedastic

12 Kmenta (1986) shows that as A, approaches zero, the
Box—-Cox transformation becomes the natural-log of =z.
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residuals and its poor predictive power, Duffield (1988)
examined several alternative forms of the first—-stage demand
function.' 1In this study, it was found that a restricted
form of the Box—-Cox transformation suggested by Zarembka
(1974) produced a model which satisfied the homoscedasticity
and prediction concerns in the Duffield et al. (1987) model.
Specifically, this model took a form similar to equation

;™ was replaced with (D;; + €)™ where C is a

(2), except D,
constant added to average round-trip distance.® A, and A,
were set equal to zero to produce the double-log form, and C
was varied until trip prediction was within .1 percent of
observed trips. This result was achieved at C = 90 miles
for a multivariate model.

Based on Duffield’s (1988) findings, A, is expected
to lie close to zero and A, should fall between zero and
one. It is not expected that the value of A, will be close

to or greater than one, given the poor performance of the

general polynomial, semi—log, and double-log forms estimated

13 Homoscedastic residuals are those in which the
variance of each residual is nearly constant across all
observations. When the variance of the residuals are not
constant across all observations, they are said to be
heteroscedastic. The consequences of heteroscedasticity are
inefficient parameter estimates and biased variance
estimates yielding invalid hypothesis tests of the
significance of parameters (see, e.g., Kmenta (1986)).

14 Another difference between equation (2) and the
model estimated by Duffield (1988) for the entire sample was
that the several other variables such as catch aggregated by
site, a substitute index, and certain socio—economic and
demographic variables were included in the function.
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by Duffield (1988).

Since there is little theoretical basis for
determining the functional form of the TCM demand equation,
the form must be found by experimentation. The model judged
"best" will be determined through statistical inference. As
an aside, and purely for illustration, the predictive power
and own price elasticities of the model determined best in
this study are compared with bivariate forms of the models

estimated by Duffield et al. (1987) and Duffield (1988).

Study Qutline

The balance of this paper is presented in four
chapters. Chapter two provides a literature review of the
use of the Box—Cox method of estimation of nonlinear
regression parameters. The first section of this chapter
compares two approaches used to determine the specification
of a model. This is followed by a review of the methods
used to estimate the parameters of a Box-Cox regression
model. This section closes with a summary of the reasons
maximum likelihood estimation was chosen to estimate the
Box—Cox regression of the first-stage stream fisheries
demand function. The next section summarizes the methods
used to discriminate nested and non—nested rival models for
purposes of determining model specification by statistical
inference. The last section of chapter two summarizes

several diagnostic measures used in conjunction with the
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model specification approach employed in this paper.

Chapter three summarizes the data used in this study
and the methods used to gather this data. Descriptive
statistics of the variables specified in each of the
functions examined are also provided.

The results of applying the Box—Cox method of model
discrimination to the DFWP streams fisheries data is
provided in chapter four. Included in this chapter is a
summary of models estimated in the two previous studies
noted above. Next, five general Box—Cox regression models
are estimated such that eight plausible forms could be
attained using equation (2) as a basis. These models are
then discriminated to determine which form contains the
parameters which are most likely to describe the population
from which the data are drawn. This model is compared with
the bivariate models summarized at the outset of this
chapter.

The study is summarized in chapter five. Included
in this chapter is a summary of the limitations of the

analysis and suggestions for future research.
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CHAPTER 2
LITERATURE REVIEW OF MODEL SPECIFICATION AND

THE BOX—-COX TRANSFORMATION

This chapter reviews the econometric and statistical
literature regarding application of the general Box-Cox
family of power transformations to model specification of
functional form. First, general elements of model
specification within the context of ordinary least sgquares
(OLS) are reviewed. Second, two approaches to model
specification are reviewed. Inclucded in this review is a
summary of the approach used in this study and a list of the
tests used to select the most appropriate form of the
Montana stream fisheries demand function. Third, the basic
and extended (BCE) Box—-Cox transformation and methods used
to estimate a Box—-Cox regression function are reviewed.®’
Next, a summary of the four methods used to estimate a Box-
Cox regression function and a review of available

econometric software is provided. This is followed by a

15  The Box—-Cox extended regression equation
(attributed to Savin and White (1978) by Seaks and Layson
(1983)) includes variations of equation (2) in which Box—-Cox
transformations are applied to independent variables in
addition to the dependent variable. (See also Box and Cox

(1964) .)
19
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summary of the likelihood ratio test for discriminating
nested models and the j-test for discriminating non-nested
models. Next, diagnostic tests used in this study are
reviewed followed by a summary conclusions reached in this

chapter.

General Elements of Model Specification For OLS Estimated

Mcodels

Although this study is focused on estimating the
functional form of a first-stage TCM demand function using
the Box—Cox transformation, the problem is couched within
the more general problem of model specification. Kmenta
(1986) describes specification for models using (OLS) as the
use of an estimation technique which satisfies its general
assumptions. Applicaticon of OLS estimators assume that the
error term (residuals or disturbance term) is normally and
independently distributed with a mean of zero and a constant
variance (e ~ N(0,02)); the covariance between any two
errors is zero; each of the explanatory variables are
measured without error, are nonstochastic, and no "exact"
linear relationship exists between any two of these
variables; and the number of observations exceeds the number
of estimable coefficients in the model. Satisfaction of
these assumptions results in best unbiased estimators (BUE)
of the regression parameters. A BUE estimator is one which

has minimum variance among all linear unbiased estimators.
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An unbiased estimator is one in which the expected value of
the estimator equals the true value of the parameter.

Kmenta (1986), narrows the definition of
specification by noting that specification errors result
from failures to include only the variables relevant to the
model, to specify the "correct" mathematical form of the
model, and correctly specify the way in which the error term
enters the model. However, as indicated in the literature,
complete model specification must include the above listed
basic assumptions of OLS estimators. For instance, a non-
constant error variance (heteroscedasticity) may be the
result of an poorly specified function form of the
regression equation (Kmenta (1986)). Also, data outliers
may be the result of a misspecified model (Kennedy (1992)).
As noted, Duffield, Loomis, and Broocks (1987) found that the
first—stage demand function estimated for the entire stream
fisheries sample exhibited heteroscedastic errors. With
this a priori knowledge, analysis of form specification
would be incomplete without tests for and possible
correction of any of the basic assumptions of the OLS
estimator. However, the focus of this study is limited to
specification of the mathematical form of the first-stage
demand function. Therefore, analysis of possible tests of
and corrections for heteroscedastic errors within the Box-

Cox transformation framework are left for further analysis
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on the stream fisheries data base.l®

Approaches to Model Specification

Kennedy (1992)' classifies state of the art
approaches to model specification as 1) "Average Economic
Regression (AER)'", 2) "Test, Test, Test (TTT)", and 3)

"Fragility Analysis"?®.

Collectively, the analysis by
Duffield et al.(1987) and Duffield’s (1988) of the form of
the Montana stream fisheries demand function would appear
best, although not perfectly, classified as an AER approach.
In this approach specific forms are determined by,
"proceeding from a simple model and ‘testing up’ to a
specific more general model" (Kennedy (1992)). The AER
approach is marked by a process of applying diagnostic tests
to the residuals of an estimated model known to be correct
to determine if the assumptions of an OLS estimator have

been met. If the a priori model fails to satisfy these

assumptions, researchers using the AER approach turn first

16 See Gaudry and Dagenais (1979), Greene (1990),
Lahiri and Egy (1981) for econometric treatment of
simultaneous testing and correcting for heteroscedastic
errors within the Box—Cox transformation framework. Also
see Vaughn, Russell, and Hazilla (1983) for an application
of the Lahiri and Egy (1981) method to a travel cost model.

17 This section relies heavily on Kennedy (1992),
Chapter 5.

18 mpragility Analysis" incorporates a Bayesian method
to determine if estimated parameters of a model fall within
an acceptable range. Since this study used classical
statistical methods, a review and comparison of this
approach to the AER and TTT approaches is omitted.
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to more sophisticated estimation techniques to resolve
errors in the residuéls. Failure of such methods to satisfy
OLS assumptions then leads to tests of specification in
which high R? and significant t-ratios are used to select
the best model.

In contrast, researchers using the TTT approach
begin with a model more general than that believed correct.
The general model is then subjected to several diagnostic
tests regarding the assumptions of OLS. If such tests
reveal unsatisfactory attainment of OLS assumptions, the
analyst concludes that the model is misspecified. The model
is then respecified and the testing procedure is repeated.
The overall process 1is repeated until the model is
considered "congruent with the evidence" (Kennedy (1992)).
That is, the model has a logically plausible predictive
power, 1s theoretically and parametricaly consistent, the
residuals are completely random (i.e., they exhibit white
noise), and the model successfully encompasses all rival
specifications.' The TTT approach is, therefore,
considered a "testing down" approach.

Kennedy (1992) notes that neither the AER nor the

TTT approaches are without criticism. Some criticisms

19 parametricaly consistent refers to a models ability
to predict observations not used to specify the model. Such
consistency could be attained using post-sample prediction
tests in which a portion of the data is removed from the
initial specification process and used to validate the
specified model.
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directed specifically to the AER approach are 1) the use
econometeric analysis to reinforce theoretical
relationships; 2) the failure to conclude the existence of
specification errors when diagnostic tests show
dissatisfaction of OLS assumptions; and 3) maximizing R?2
(i.e., data mining). Critics suggest, for instance, that
reliance on adjusted R? for model selection appeals to the
unique features of the analyzed data, thereby allowing mere
chance to become a determining factor in model specification
(see Mayer (1975 and 1980) in Kennedy (1992)). Kennedy
suggests this latter criticism supports the need for post-—
sample prediction tests.?

Both the AER and TTT approaches are criticized for
their lack of a well-defined structural approach to model
specification. Further, both approaches are criticized for
the expected occurrence of type I errors, a result due to
the multitude of diagnostic tests performed under each
approach. Under the TTT approach, this result is also due
to the loss of degrees of freedom for general model
specifications.?

Kennedy (1992) suggests the following principles for

model specification: 1) economic theory should serve as the

20 post—sample prediction tests were omitted from this
study.

21 Kennedy (1992) suggests reducing the critical
region or the probability of a type I error to mitigate such
results when the TTT approach is used.
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basis for model specification; 2) diagnostic tests revealing
residuals not satisfying OLS assumpticons should point to
specification errors; 3) "testing down" is preferred to
"testing up"; 4) tests for misspecification (e.g., tests for
omitted variables, functional form, homoscedasticity,
outliers, etc.) should be performed simultaneously to
mitigate the possibility of erroneously selecting one
misspecification over another (e.g., heteroscedasticity
versus functional form); 5) a large number of
misspecification tests should be employed including post-
sample prediction tests; 6) models selected as correct
should encompass rival models; and 7) limitations of the
selected model should be reported along with the methods
used to arrive at the selected the model. Because these
principles compare more favorably with the TTT approach than
the AER approach, Kennedy appears to lean toward suggesting
a TTT approach to model specification.?

Based on this review, an approach similar to the TTT
approach appears to have the greatest merit in model
specification analysis. Kennedy’s literature review and
comments are sufficiently compelling to use a TTT approach
to recognize that unsatisfied OLS assumptions may mean the

model is misspecified. Further, since this approach begins

22 Both Kennedy (1992) and Harvey (1990) note that the
process of model selection is complex and that no generally
accepted method has been adopted by econometricians in

general.
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with the most general form of the model, which, as noted
below, is the testable hypothesis of this study, and tests
down to a specific form, it is the most applicable approach
to model selection for this study. Consistent with the
focus of the paper, diagnostic tests for functional form,
parameter consistency, outliers, homoscedasticity, and the
degree in which the selected model encompasses rival models
are reviewed in this chapter for use in this study.
However, due to the narrow focus on functional form,
simultaneocus tests of misspecification such as
heteroscedasticity versus functional form are omitted from

the analysis in this study.?®®

The Box—Cox Family of Power Transformations

As noted in chapter one, demand theory lacks
sufficient a priori theoretical guidance for complete
mathematical form specification of the demand function.
Kmenta (1986) suggests that in such circumstances the form
becomes a testable hypothesis and lists several methods for
testing the form specification of an econometric model. Two
of the methods suggested by Kmenta to determine functional
form use the Box—-Cox family of power transformation
described in equations (1) and (2) in chapter one. One use

of the transformation is to test a linear form against an

23 See the comments regarding limitations of the
analysis presented herein regarding simultaneous tests for
misspecifications in chapter five, infra.
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alternative in which all A, and A,, in terms of equation
(2), are estimated with equal value (see, e.g., Kmenta
(1986) and Zarembka (1968)). In this case, the linear and
Box—Cox transformed models are discriminated using a
likelihood ratio test (described below). Similarly, a
double—log model, in which A, = A; = 0, may also be tested
against a form in which A, and A, are estimated with equal
value.

A second use of the Box—Cox transformation is
suggested when the model’s general form is questioned. In
terms of equation (2) A, and A, are varied independently.

The model’s form in this approach is termed "flexible" and
is used to test a priori specifications against a form
determined by the data. Use of this approach allows any
number of form restrictions on Av and Ad as testable
hypothesis against the flexible form determined by the data.

As noted in chapter one, Duffield (1988) found that
several specifications of the form of the demand function
failed to accurately describe variation in per capita demand
for trips. Furthermore, it was found that a double-log
model with a constant added to the price—proxy variable
(average round—trip distance) significantly enhanced the

predictive power of the model.?® Given the results of the

24 puffield (1992) improved this approach by replacing
round—-trip distance with predicted total trip costs based on
functions for resident and non-resident anglers that were
developed by Duffield, Loomis, and Brooks (1987) to estimate
variable travel costs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28
specifications examined, Duffield (1988) suggested searching
a family of power tr%nsformations on the price—-proxy
variable. Thus, the general form of the first-stage Montana
stream fisheries demand function becomes the testable
hypothesis in this study. This is consistent with
McConnell’s (1985) suggestion that functional form should be

tested when using the TCM framework.

Purpcse and Assumptions of the Basic and Extended

Box—Cox regression. The Box—Cox transformation was

initially intended for use on the dependent variable to
achieve a simple model structure, constant error variance
(homoscedasticity), and normal distribution of the errors
(Box and Cox (1964)). However, in the initial and
subsequent applications it has been suggested that the
transformation can also be applied to the independent
variables, resulting in the extended Box—Cox model. The
extended Box—~Cox regression allows flexibility in
determining functional form by estimation of the
transformations of the wvariables in the model according to
the data. The continuous nature of the Box—-Cox
transformation allows one to estimate both intrinsically
linear and nonlinear forms.

Econometric models are classified as either
intrinsically linear or nonlinear. An intrinsically linear

function is linear in the estimated parameters but nonlinear
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in the variables. Functions specified with polynomials,
interaction terms, and as either multiplicative or additive
generally qualify as intrinsically linear forms. Such forms
are also marked by the error term specified as additive.
Alternatively, an intrinsically nonlinear function is
nonlinear in the variables and estimated parameters. While
such functions may also be multiplicative or additive, they
are marked by an error term specified as multiplicative in
the model. OLS can be used to estimate all intrinsically
linear and some nonlinear forms by transforming the
variables into linear forms (although nonlinear forms are
generally estimated using maximum likelihood). However,
when the error term is specified as multiplicative in
nonlinear models, transformations of the variables leads to
a nonlinear distribution of the error term and OLS
estimation of the function is appropriately termed nonlinear
least squares estimation (see, e.g., Kmenta (1986)).

As noted below, OLS could be used to estimate a Box-—-
Cox regression such as that specified in equation (2).
However, the Box—Cox transformations are considered a priori
fixed in this process. In an AER approach to model
specification, the form of the model is determined
incrementaly. However, the Box—Cox method allows
flexibility in determining the form of the model in terms of
how each variable enters the model, i.e., linearly or

nonlinearly. The intuitive appeal of the Box—Cox method is
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that greater flexibility is allowed to determine the form of
the model by allowing variable linearization in conformation
with the data and not a priori expectation. Thus, testing
down from the most general to a specific form using a TTT
approach 1s made possible with the extended Box—Cox model.

Methods Used to Estimate a Box—Cox Regression.

Spitzer (1982a and 1982b) lists four approaches to
estimating a Box—Cox regression including maximum likelihood
and concentrated maximum likelihoocd, nonlinear least
squares, and iterative OLS. This review shows that maximum
likelihood or concentrated maximum likelihood estimation
provides the most accurate and least costly estimates of the
parameters in a Box—Cox regression equation for purposes of
hypothesis testing, assuming the software is available. For
illustrative purposes, these methods are presented in terms
of equation (2). Each of the above listed methods are
summarized in turn.

Maximum likelihood estimation (MLE) can be described
by comparison with OLS estimation. Regression coefficients
estimated using OLS are estimated by minimizing the sum of
the squared errors of the regression function from their
mean. Further, to attain best unbiased estimators and
determine confidence intervals for the estimated parameters,
the residuals are assumed to satisfy the classical OLS
assumptions summarized at the outset of this chapter. 1In

contrast, parameters estimated using MLE are those which are
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more likely to describe the population from which the data
are drawn then by any other set of parameters describing a
different population (Kennedy (1992)). When the regression
variables are not subject to transformations or
transformations are assumed fixed, MLE and OLS produce
identical estimated regression coefficients.

Kennedy (1992) summarizes MLE in four steps. These
steps are summarized assuming the Box—-Cox regression
function given in equation (2). First, the distribution of
the error term in the regression equation is specified. One
common specification, and that used in this study, is that
the error terms are assumed to be independently,
identically, and normally distributed (e ~ N(0,G2)).

Second, the relationship of the error terms are specified in
terms of the variables in the regression function. Third,
given the above specification of the error terms, namely
their independence, the likelihood function equals the
product of f(e;) across the sample or the joint probability
distribution function of the error terms. Since the natural
log of the likelihood function is a monotonic transformation

of the likelihood function, the log—-likelihood function is
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stated as follows:?®

N (hp)
Y (Vi By- BD )R

(3) 1nL =-—£?ln(2n02)—
2 i=1

1

20?2
N

+ (Ay-1) Y 1nv;
i=1

The last term in equation (3), (A, — 1) Z¥_, In Vv,, is the
jacobian determinant of the transformation. This term
accounts for possible differences in the probability
distributions (probability density functions) of the error
term and the dependent variable when the latter is
transformed. The log—likelihood function is specified in
terms of the unknown, assumed distribution of the error
terms. However, known observations of the dependent
‘variable are used to estimate the parameters of the
function. Absent the jacobian determinant, the log-
likelihood function assumes the distribution of the error
terms and the dependent variable are the same. This is true
when the dependent variable is not transformed (i.e., A, =
1), thus the jacobian determinant in this case would be zero
(see equation (3)). Differences in the probability
distribution of the error terms and the dependent variables

will occur for all transformations on the dependent

25 gSee Kennedy (1992), chapter 2 for details of the
general development of this function.
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variables when Av # 1. Thus the jacobian determinant is
included in the log-likelihood function to adjust for the
differences in the probability distributions of the
dependent variable and the error terms (see Kennedy (1992)
and Kmenta (1986) for further explanations).

The fourth step is estimation of the parameters §,,
B,, Ay, Ay, and G2 in equation (3). Estimates of these
parameters can be found by maximizing equation (3) with
respect to each parameter. Necessary and sufficient
conditions for a local maximum requires the first and second
order conditions (first and second derivatives) of equation
(3) to be equal to zero and negative definite, respectively.
Theoretically, the negative of the inverse of the expected
value of the second order conditions yields the variance-
covariance matrix. However, due to the complexities
involved in this computatioh, Spitzer (1982a) maintains the
negative of the inverse of the second order conditions
produce acceptable results.

A second approach to estimating the parameters of a
Box—Cox regression function exploits the fact that the

estimate of 02, given in equation (4), reduces equation (3)
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to equation (5) (see Greene (1990) and Spitzer (1982a).%

(4) B2 =

N
5 e

1=1

N

N
(5) InL.= -4 (In(2m) + 1) - J1nd2 + (4,-1) lenvi
1i=

That i1s, 02 is concentrated out of the log—likelihood
function. Spitzer (1982a) shows that the first and second
order conditions for maximization of equation (5) are
identical to those produced by equation (3).

In a third approach to estimating equation (2),
initially attributed to Zarembka (1968), data are rescaled
by the inverse of the geometric mean of the dependent
variable raised to the power of A, Spitzer (1982a) shows
that the resulting concentrated log—likelihood function
reduces the estimation problem to non—linear least sqguares.
Optimal values of the estimated regression parameters are
obtained by minimizing the standard error of the estimate of
the scaled model. However, different from the MLE
approaches, the negative of the inverse of the second order

condition of the NLS concentrated log—-likelihood function

26 Based on the literature regarding simultaneous
tests of function form and heteroscedasticity, the
specification of 62 in equation (4) assumes the error terms
are homoscedastic (see, e.g., Kmenta (1986) and Greene

(1990)) .
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does not provide the variance-covariance matrix directly due
to the rescaling of the data. Thus, the variance—-covariance
matrix must be estimated by means of converting the
estimated scaled coefficients to their original form (see
Spitzer (1982a) for the appropriate adjustment). Thus, B,
B., Ay, Ap, and 62 are not a direct result of minimizing ©2
of the scaled model.

Estimates of the regression parameters may also be
made using an iterative OLS/grid-search method. According
to Spitzer (1982a) a series of regressions are estimated for
Bo» P., and 62 using the scaled model described for the
third approach above is one approcach. In terms of equation
(2), each regression would differ according to each of the
values of Ay and A,, assumed for each estimation. The
combination of A, and A, which minimizes the sum of the
squared errors for the scaled model, found by scanning a
grid of these values, yields the same results as if any of
the above three methods were used. However, since the data
are scaled and A, and A, are assumed fixed for the
regression function minimizing the sum of the squared
errors, the estimated coefficients must be rescaled and,
more importantly, the variance-—covariance matrix must be
adjusted. Spitzer (1984) and Kmenta (1986) note that the
standard errors of the estimated coefficients will be biased
downward, yielding inflated t-ratios resulting in possible

errors in hypothesis testing. Thus, similar to the scaled-
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model approach summarized above, the variance-covariance
matrix must be adjusted to validate hypothesis testing (see
Spitzer (1982a) for details).

There are several advantages to using the MLE
approaches to estimating the Box-Cox regression parameters
over the alternative methods listed here. Foremost is that
there is currently available software to compute a valid
variance—covariance matrix directly from the second order
conditions of the log—-likelihood functions without
adjustment.?’ Second, Kennedy (1992) notes MLE has several
attractive large-—sample asymptotic properties. Namely,
maximum likelihood estimators are asymptotically unbiased,
consistent, and efficient. These features are particularly
attractive when compared to OLS in that each may be
considered comparable to unbiasedness, efficiency, and BUE,
respectively, which are results of satisfaction of the
classical assumptions of OLS for large samples.
Additionally, in terms of the mechanics of estimation the
OLS is limited to internal estimation of only the constant
and slope coefficients, whereas MLE produces estimates of
these parameters in addition to the variance and Box—-Cox
transformations (see e.g., Kmenta (1986)). Finally, the MLE
approach does not require additional adjustments to

variance—covariance matrix as does an NLS or OLS approach.

27 For instance SHAZAM (White (1990)) and LIMDEP
(Greene (1990) are two econometric programs featuring
estimation of Box—Cox regressions.
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Based on this analysis, software in which a Box—-Cox

regression is estimated using the full or concentrated log-
likelihood appreocach would provide the best parameter
estimates, thereby mitigating erroneous hypothesis testing.
However, should an IOLS/grid-search approach be necessary,
it would be desirable for the software to incorporate the
appropriate adjustments to the variance—covariance matrix as
noted by Spitzer (1982a and 1982b). LIMDEP, version 6.0
(Greene (1991)) uses algorithms which satisfies both of
these constraints. Thus, LIMDEP was chosen for the software
to estimate the first—-stage demand function. Moreover,
Spitzer (1982b) notes that4computer programs using
optimization algorithms which are limited to use of the
first derivative of the log—-likelihood function provide
larger variances than do programs using first and second
order conditions. Greene (1991) specifically states that
first and second order conditions are used for MLE in the

BOXCOX procedure in LIMDEP.*® 2°

8 It appears the IOLS/grid-search method provided in

LIMDEP makes the appropriate adjustments to the variance-
covariance matrix as suggested by Spitzer (1982a). The
magnitudes of the estimated t-—ratios resulting from the
LIMDEP IOQOLS procedure appear similar in magnitude to those
resulting from the full MLE procedure (compare models 3.a
and 5, table 6, chapter four).

2% Several issues regarding estimation of a Box-Cox
regression have been identified. For instance, the
distribution of the error terms will be truncated since the
data for transformed variables must be positive (Smith 1975)
and the equation must contain a constant term (Schlesselman
(1971) in Spitzer (1982a)). The last of these concerns is
satisfied in this study since the demand function is
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Methods of Model discrimination

As noted, the model specification determined best
using the TTT approach should encompass all rival
specifications. The methods used to discriminate such
models depends on whether one model can be nested in the
alternative. That is, discrimination tests of nested models
may not be applicable for non—nested models (see e.g.,
Kmenta (1986)). A model is nested in another model if it is
a restricted case of the more general model in which it is
nested. For instance, if in equation (2) A, = A, = 1, this
form would be considered nested in a form in which A, A,
were allowed to vary independently . This section briefly
summarizes two approaches used to discriminate nested and
non—nested models in this study: the likelihood ratio test
and Davidson and MacKinnon’s J-Test.

The Likelihood Ratio Test. The likelihood ratio

test is used to discriminate general (unrestricted) Box—Cox
regressions with their restricted counterparts. The concept
of the test is that the value of the maximized likelihood
function for the restricted and unrestricted models will be
similar if the restricted model is correct (Kmenta (1986)).
Thus, the ratio of the likelihood function for the
restricted and unrestricted models would converge to a value

of one. More specifically, the ratio of the estimated

specified with a constant term. The remaining concerns are
not considered in this study.
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regression variances would be nearly equal. Thus, as noted
by Kmenta (1986), the null hypothesis in a likelihood ratio
test is that the restrictions imposed on the unrestricted
model are correct and the alternate hypothesis is that the
restrictions are not correct. If the null hypothesis is
true, then the values of the maximized log—likelihood
functions for the restricted and unrestricted models are
similar. This results in a log—likelihood ratio given in

equation (6):

(6) LR = -2[L(Ag) = L(A,) 1-%3

In equation (6) L(Az) and L(Ay) equal the values of the log-
likelihood function when the Box—Cox transformations are
restricted and unrestricted, respectively, and m equals the
number of parameter restrictions. In terms of a test
between the linear and most general form of equation (2),
for example, L(A;) and L(Ay;) would be replaced with values
of the maximized log—likelihood function when A, = A, = 1
and when A, and A, were allowed to vary either together or
independently, respectively. As noted in equation (6), the
log—likelihood ratio is asymptotically distributed as a chi-
squared (x?) distribution with degrees of freedom, m, equal
to the number of restrictions in the restricted model.

Two rival models can be discriminated using a log—
likelihood ratio test providing the restricted model can be

nested as special cases of the unrestricted or less
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restricted model (Greene (1990)). However, the likelihood
ratio test cannot be used to discriminate two functions in
which neither can be nested in the other. For instance, a
semi—-log cannot be discriminated from a double—log model
using a likelihood ratio test. 1In such instances other
tests such as the J-test are applicable, which is summarizes
below.

Tests for Non—nested Models. Generally, if two

rival models are non—nested, traditional methods of model
discrimination such as an analysis of variance (nested F-
test) or adjusted—-R? are not applicable (Kmenta (1986)).°°
Kennedy (1992) lists several methods for statistically
discriminating rival non—-nested models which are classified
as variants of either Cox’s test or Davidson and MacKinnon’s
J—-test.’ The J-test consists of model discrimination
based on whether the predictive power of one model is
enhanced by the predictive power of a rival model. The
complete test examines how each pairwise combination of
rival models encompasses each other’s predictive power.
Details of application of the J-test are summarized in

appendix B.

% Model discrimination using R? is applicable when

the dependent variables are equally defined and transformed.

31 ror the readers information, variants of Cox’s test
are used to discriminate models based on their wvariances.
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Diagnostic Tests Useful for Model Specification

One aspect c¢f the TTT approach to model
specification is to subject an estimated model to a series
of diagnostic tests. The diagnostic tests used in this
study summarized below include tests for normality and
homoscedasticity assumptions of the residuals and detection
and measurement of the influence of data outliers.

Methods for Testing the Normality of Residuals.

Neter et al. (1989) suggests the use of normal probability
plots as one means of determining whether the residuals are
normally distributed. A normal probability plot consists of
plotting the residuals (or standardized residuals) against
the expected values of the residuals under normality. Large
deviations of the residuals from a straight, forty—five
degree line representing the expected values of the
residuals when conforming precisely to normality suggest
deviations from normality.

Detection of Homoscedasticity. Tests for

homoscedasticity consist of visual examination of residual
plots and formal statistical tests. Neter et al. (1989)
suggests examination of residuals (or standardized
residuals) plotted against the predicted or fitted values of
the dependent variable to determine whether the variance of
the residuals are constant. If the scatter of the plotted
residuals tends to flair either to the right or left, the

residuals display a monotonic non-constant variance.
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Bulges, either at the left and right of the plot or around
the center of the plot may mean that the residuals are non-
constant and non-monotonic. If the plotted residuals appear
evenly distributed around a value of zero along the residual
axis, the variances are considered homoscedastic.

Although detection of and corrections for
heteroscedasticity in conjunction with the Box—Cox
regression model 1s beyond the scope of this study, it is
important to note whether the Box—Cox model satisfies the
assumptions of OLS, including the homoscedasticity of the
residuals. Two tests for heteroscedasticity are used in
this study. |

First, White’s test (see Kmenta (1986)) provides a
means of detecting heteroscedasticity without knowledge of
the form of the non—constant error variance such as required
by the Glejser test. Moreover, the test does not require
the residuals to be normally distributed. White’s test
consists of regressing the squared errors of the model being
tested on the variables in the model in their modeled form
plus the square of each variable and interaction variables
for each paired combination of the variables in the model.
The null hypothesis of White’s test is that the variances of
the residuals are constant. Failure to reject this
hypothesis also implies that any heteroscedasticity is
caused by sampling error. The asymptotic, large—sample

statistic is computed by N(RZ,) which is distributed as a
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x° with p degrees of freedom. A complete description of the
regression function used in White’s test is provided in
Appendix C.

Additionally, the Glejser test is used in cases when
the degree of colinearity prohibits use of White’s test.
The Glejser test consists of determining whether a
significant correlation exists between the absolute value of
the residuals and the variable assumed to be the cause of
heteroscedasticity using a regression model. This
determination is made by choosing from an array of presumed
forms of heteroscedasticity as reflected in different
regression equations (see Koutsoyiannis (1977)).

Methods for Detecting and Measuring the Influence of

OQutliers.’® One approach to detecting data outliers is
done by visually examining scatter plots. Neter et al.
(1988) identify several useful scatter plots, two of which
are summarized here. First, plotting observations of the
dependent with an independent wvariable can reveal
observation lying outward of the cluster of observations
around the estimated regression line (see also Weisberg
(1980)). Second, in a plot of the standardized residuals
against an independent variable or predicted values of the
dependent variable observations appearing isolated from

remaining residuals might be considered outliers.

32 This section is based largely on Neter et al
(1989) .
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Neter et al. (1989) suggest use of DFFITS and
DFBETAS measure to detect influential observations, both of
which make use of leverage values. DFFITS measures the
influence a particular case has on the fit of a regression
equation. DFBETAS measures the influence a particular
observation has on each of the regression coefficients. In
large data sets, the absolute value of DFFITS wvalues
exceeding the 2(k/n)” statistic, where k and n are the
number of estimated coefficients and n equals the sample
size, indicates an influential case affecting the fit of a
model. Absolute values of DFBETAS values exceeding 2/ (n)”
indicates cases which affect the estimated constant or
coefficient of the particular variable under evaluation.
Details of the equations making up the DFFITS and DFBETAS
measures are summarized in Appendix C.

Once data outliers are identified, specification of
the function with dummy variables can be used to assess the
collective impact a group of outliers has on certain
coefficients including the intercept. Kmenta (1986) shows
how this can be done using a dummy variable specified in the
function as variable affecting the intercept and as an
interaction term with any of the variables in the function
thereby affecting the slope of these variables. Details of

such an application are summarized in Appendix C.
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Conclusions and Summary

This chapter showed that a TTT, versus an AER
approach to model specification is preferred for purposes of
mitigating type I errors in the process of selecting an
appropriate specification of an econometric model. Thus, a
TTT approach to statistical determination of the functional
form of the first—-stage TCM demand function is used in this
study. However, due to the information presented in
previous analyses of the DFWP stream fisheries data base
(namely, Duffield et al. (1987) and Duffield (1988) the
approach resulting from this study and prior studies would
more accurately be labeled as an AER/TTT hybrid approach.

Second, use of a full MLE method was found
preferable to the NLS or IOLS/grid-search approaches. This
18 due largely to the bias in variance estimates resulting
in the use of these latter two methods. Third, log-
likelihood ratio test for discriminating restricted Box—Cox
regression models from more general specifications, non-—
restricted forms was reviewed. Also reviewed was the
Davidson and MacKinnon J-Test for discriminating non—nested
models.

Finally, in accordance with the TTT approach to
model discrimination, several diagnostic tests useful for
determining functional form by statistical inference were
reviewed. These tests included, 1) methods to determine

whether the residuals satisfy the OLS assumption of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

normality, including visual examination of normal

probability plots, 2) methods to determine whether the
residuals satisfy the OLS assumption of homoscedasticity,
including White’s and Glejser’s tests, and 3) methods for
identifying outliers such as plots of the data and of

residuals and analytical methods such as DFFITS and DFBETAS

measures.
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CHAPTER 3

DATA SOURCES AND DESCRIPTION 33

As noted in chapter one, this study is a
reexamination of the original TCM demand analysis performed
by Duffield et al. (1987) and Duffield (1988) on Montana
cold water stream fisheries. This chapter provides a
description of this data base (or the cold-water stream
fisheries data base). First, a description of the sites
included in the study is provided. Second, a list and
description of the sources of data used in this study from
the cold-water streams fisheries data base is provided.
Last, the methods used to gather, organize, and aggregate
all primary data included in the data base and used in this
study are summarized.

Description of the Sites Comprising the Montana

Stream Fishervy

The data set used in this paper contains TCM data
for 28 tributaries and/or watersheds and 20 "unique waters"

in Montana identified by the Montana Department of Fish,

33 The data used in this study were developed for
estimation of demand and net economic values for cold water
fishing by Duffield et al. (1987). No alterations were made
to the untransformed data used in that study.

47
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Wildlife, and Parks (Duffield et al. (1987)). The 28 non-

unigue waters include tributaries to unique waters or
watersheds comprised of a river and its tributaries.
These streams and tributaries define the regional stream
fishery used in this paper.?® Tables 1 and 2 list the 28

non—unique waters and the 20 unique waters, respectively.

3 A regional TCM is generally used to analyze demand

for a collection of recreation sites for a specific
recreation activity such as hunting or fishing. Thus, site
specific models pertain only to one site.
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TABLE 1.-- Montana Stream Fisheries: Non-Unigue Waters,
River

Code River Definition

11 Flathead, South Fork Entire drainage

12 Flathead, Middle Fork Entire drainage

14 Flathead, North Fork Entire drainage

15 Flathead River and tributaries below confluence with south fork and
excluding river 89

16 Lower Clark Fork River and tributaries below confluence with Flathead
(Paradise)

17 Kootenai Tributaries Excludes mainstem river 91

21 Upper Clark Fork Tributaries Above confluence with blackfoot (Milltown) and excluding
mainstem river 86

22 Blackfoot Tributaries Excludes mainstem river 83

23 Rock Creek Tributaries Excludes mainstem river 94

24 Bitterroot Tributaries Excludes mainstem river 82

25 Middle Clark Fork Tributaries Paradise to Milltown excluding mainstem river 87

31 Upper Yellowstone Tributaries Springdale to Gardener ezcluding mainstem river 98

32 Gallatrin Tributaries Excludes mainstem river 90 and 88

33 Upper Missouri (Region 3) River and tributaries from Threeforks to Canyon Ferry

34 Madison Tributaries Excludes mainstem river 92

35 Jefferson Entire drainage

36 Beaverhead Tributaries Excludes mainstem river 80

37 Big Hole Tributaries Excludes mainstem river 81

41 Middle Missouri River and Tributaries below Marias River and above Fort Peck

42 Smith Tributaries Excludes mainstem river 95

43 Upper Missouri (Region 4) Canyon Ferry to Marias River excluding mainstem river 93

44 Marias Entire drainage

52 Middle Yellowstone Tributaries Springdale to confluence with Bighorn excluding rivers 99,

84, 85, 96, 55, and 56

55 Stillwater Tributaries Excludes mainstem river 96

56 Boulder Tributaries Excludes mainstem river 84

61 Lower Missouri River and tributaries from upper end of Fort Peck Reservoir

to North Dakcta Border

62 Milk Entire drainage

71 Lower Yellowstone River and tributaries below confluence with Big Horn

Source: Duffield et. al. (1987, table 1.)
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TABLE 2.-- Montana Stream Fisheries: Unique Waters

River

Code River Definition

80 Beaverhead Mainstem

81 Bighole Mainstem

82 Bitterroot Mainstem to confluence with East and West Forks
83 Blackfoot Mainstem

84 Boulder Mainstem

85 Bighorn Mainstem

B6 Upper Clark Fork Mainstem above Milltown

87 Middle Clark Fork Mainstem Milltown to Paradise

88 East Gallatin Mainstem

89 Upper Flathead Mainstem above Flathead Lake to confluence of South Fork
90 Gallatin Mainstem

91 Kootenai Mainstem

92 Madison Mainstem

93 Missouri Mainstem, Holter to Cascade

94 Rock Creek Mainstem near Missoula

95 Smith Mainstem

96 Stillwater Mainstem near Absarokee

97 Swan Mainstem

98 Upper Yellowstone Mainstem Springdale to Gardener

99 Middle Yellowstone Mainstem Springdale to confluence with Bighorn
Source: Duffield et. al. (1987, table 1.)
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Data Sources Included in the Cold-Water Stream Fisheries

Data Base

The cold-water streams data base used in this study
is comprised of three sources. Chief among these sources
are the survey data collected by the Montana Department of
Fish Wildlife and Parks (DFWP) through the Montana Statewide
Angling Pressure Mail Survey for the 1985 license year
(McFarland, 1989, henceforth fisheries survey) and a
supplemental telephone survey conducted in 1985. These data
sources provided information regarding sites fished,
anglers’ origins, distance to the site, harvest rates,
socio—economic data, and travel and time costs. These two
data sources were supplemented with estimated map distances
in cases where the reported distance traveled were found to
be in error (Duffield (1988)). Distances in these cases
were computed from the Rand McNally Road Atlas: U.S.,

Canada, Mexico (1977).

Data Preparation for First—Stage TCM Demand Function

Estimation

Collection of Survey Data. DFWP conducted the

fisheries survey during each of the license years of 1982
through 1985 beginning spring 1982 (see, McFarland, p. 2).
Questionnaires were mailed monthly to resident and non-
resident licensed anglers within one month of the angler’s

purchase of his or her license. Approximately 1,500 and 100
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surveys were sent to resident and non-resident anglers per
month, respectively, during 1982 through 1984. Beginning
with the 1984 license year the fregquency of survey
distribution was generally increased to biweekly mailings
for the months of March through October, corresponding with
high fishing pressure months. This increase in the
distribution rate for the same number of monthly surveys was
implemented to mitigate memory bias. Non-resident anglers
who purchased 2—-day licenses were surveyed on an annual
basis.

A random drawing of anglers was ensured by using a
stratified sampling procedure (see, McFarland (1989), pp. 3
and 144-145). Questionnaires sent during 1985 sought
detailed information for each fishing trip taken during the
particular sampling period for which the survey was made.
This information can be noted from a copy of the surveys
sent provided in Appendix D.

The number of monthly fisheries surveys was
increased to about 3,000 and 250 monthly mailings for each
of resident and non-resident license holders, respectively,
in 1985. This increase in frequency was made to accommodate
the data needs for the purposes of the Montana Bioceconomics
Study. Of the 36,000 surveys sent during 1985, 92% were
sent to resident and 8% were sent to nonresident anglers.
The overall response rate was 54% or 19,271. (Duffield et

al. (1987)).
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For the purposes of TCM analysis the data sample
collected through the fisheries survey were reduced as
follows. First, respondents that had not fished during the
month or two-week time period specified on the survey were
excluded. Additionally, those who were determined to have
been on multi-purpose and/or multi-site trips and those
making over—night trips were also purged from the data set.
Fishing sites were then coded according to DFWP management
designations. Thus, data for the cold-water stream analysis
includes those who had fished in the trout stream designated
in tables 1 and 2.

The second major data source used in this study is
taken from a supplemental survey to the 1985 fisheries
survey. The data in this set were gathered by a telephone
survey of 2,000 resident and nonresident angler. This
survey was administer by DFWP during September and October
of 1985. This sample consisted of 1,600 resident and 400
non—-resident anglers and produced a response rate of 80% for
residents and 52% for nonresidents. The same criteria noted
above was used for selecting qualified respondents for TCM
analysis. Three types of data were collected in this
survey: 1) socio—economic data, such as fishing experience,
age, income, and education; 2) data characterizing site use
behavior, such as time spent at the site, time spent
fishing, and equipment used; 3) and travel cost data such

as, expenditures, travel time, and distance. Socio—economic
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data from the supplemental survey were appended to the
fisheries survey by origin. Site characteristic data were
appended by site. Travel costs data were appended by
origin/destination pairs. (See Duffield et al. (1987) and
McFarland (1985a and b)).

Aggregation of the Supplemented Fisheries Survey

Data. As noted, the demand functions estimated in this
study are based on zonal aggregations of fishing trips for a
given region. Thus, individual survey responses for trips
taken to a given site were aggregated by origin zones.
Responses are aggregated by zones of nearly equal distant

origins, using the following rules:

1. An origin zone consists of a single county if
the county contains the destination site or
is contiguous to the county or counties
containing the site.

2. Several counties were lumped together to
define a zone of intermediate distance
observations. This was done to prevent
concentric gaps which would otherwise result
from zero observations from counties of
intermediate distances. Therefore, observed
trips from these "super—-counties" represents
the population of counties where no trips
were recorded within the sample.

3. Contiguous counties of states bordering
Montana were treated as individual zones.

4. Five nonresident market regions were defined
to allow nonresident trips to represent the
population of their home state and that of
all states they traveled through to get to
the site, providing no trips from these
states were included in the data base. These
market regions were constructed as spokes
extending outward from Montana throughout the
continental United States. Again, this
method of aggregation was used to avoid any
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concentric gaps in the surrounding market
zones between the site and the non-resident’s
origin.

Independent variables were summed together and the
aggregation process resulted in 839 origin-destination pairs
for the cold-water stream fisheries data base. Aggregation
methods of origin—destination data by site presented
problems with regard to the accuracy of distance traveled.
Cases were found in which anglers who traveled to a
particular site from the same origin zone may have traveled
disparate distances. 1In fact, the survey data on distance
were found unreliable for 50% of the origin—-destination
pairs. In these cases, map distances were used in lieu of
reported distances and population weighted average distances
were recomputed (Duffield, 1988).

The sample size for the estimated demand functions
presented in chapter four is 741 origin-destination pairs.
This size is the combined result of two adjustments made on
the stream fisheries data base. First, to remain consistent
with previous studies on this data set four tributaries
regions (river codes 11, 23, 56,and 61) were excluded from
the complete set of DFWP administrative regions (see table
1). The sample was further reduced to origin-destination
pairs with complete information on socio—economic and
demographic variables as was the case for samples used for
previous modeling efforts. Table 3 provides descriptive

statistics for the variables specified in the models
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Table 3.-- Descriptive Statistics for the Variables Specified in the Models Presented
in Chapter 4.
Standard
Variable Mean Deviation Min Max Label
TRIPS 6.79 16.89 1.0 153.00 Zonal Aggregated Trips
POP 4.324 Eb 9.966 E6 1.0 E3 7.809 E7 Zonal Aggregated Population
TRIPCAP 2.71 E-4 1.02 E-3 1.58 E-8 1.51 E-2 Per Capita Trips
LTRIPCAP -11.71 3.04 -17.96 -4.19 Natural Log of Per Capita Trips
CAVEDIST 1119.55 1196.89 4.00 4937.50 Average Round-Trip Distance
LCVEDIST 6.21 1.54 1.39 8.50 Natural Log of Average Round-Trip Distance
LKVEDIST 6.49 1.18 4.22 8.52 Natural Log of Average Round-Trip Distance plus 64
TRIP3A -11.59 2.98 -17.70 -4.18 Box-Cox of Per Capita Trips at .0016
CDIST3A 11.54 4.16 1.56 18.99 Box-Cox of Average Round-Trip Distance at .169
TRIP3B -9.34 1.97 -13.02 -3.87 Box-Cox of Per Capita Trips at .038
CDIST3B 7.06 1.91 1.42 10.04 Box-Cox of Average Round-Trip Distance at .038
TRIP4A ~13.05 3.70 -21.00 -4.34 Box—-Cox of Per Capita Trips at =-.017
TRIP4B -9.78 2.16 -13.88 -3.94 Box-Cox of Per Capita Trips at .03
CDISTS 11.70 4.25 1.57 19.33 Box-Cox of Average Round-Trip Distance at .172
The sample size for all of the variables listed in this table is 741.
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CHAPTER 4

ESTIMATION AND ANALYSIS OF DEMAND FUNCTIONS

This chapter provides a summary of the mathematical
form analysis performed on the bivariate first—stage TCM
demand function for the stream fisheries data.

As noted in Chapter 2, this study takes a model
specification approach which combines the AER and TTT
approaches. The AER aspect of this analysis consists of the
use of two prior studies performed on the stream fisheries
data base. The TTT aspect consist of several diagnostic
tests on the bivariate forms of the two previously estimated
demand function summarized below, estimation and diagnostic
testing of the Box—-Cox forms of the TCM demand function, and
comparison of this model with the bivariate forms of the
previously estimated models. This chapter is organized as
follows.

The first section reviews the principles applied by
Duffield et al. (1987) and Duffield (1988) to estimate two
different functional forms of the TCM demand function.
Bivariate models based on these principles were estimated
and are presented in this section. The fit of these models

is summarized along with an analysis of adherence to certain
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assumptions of OLS. This section serves as a starting point
for the analysis of the regional, zonal aggregate TCM demand
functions presented in this paper.

Based on the foundation set in section one, a
determination of the most statistically sound and practical
functional form(s) of the bivariate TCM demand function is
presented in section two. This section includes a synopsis
of the a priori theoretical expectations of the signs and
magnitudes of the parameters estimated using various
specifications of the original Box—Cox and extended Box-Cox
regression approcaches. This is followed by a summary of
five models estimated using various combinations of the Box-—
Cox transformations on the dependent and independent
variables. These models are then discriminated to determine
the form which best satisfies the maximum likelihood
principle from this field. An analysis of this model’s
adherence to certain OLS assumptions is also summarized.

Finally, comparisons between the optimal Box—Cox
estimated model and the bivariate forms of the two
previocusly estimated models review in section one are
continued in the last section. This includes a comparison
of the predictive power of each model and a conclusion
regarding which model describes per capita trip demand bkest.
As an aside, the elasticities resulting from each mcdel are

provided in this section.
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Bivariate Estimates Two Previously Estimated Demand

Functions

As noted in chapter 1, two functional forms were
used to estimate the first-stage demand function in two
previous studies. In the first of these studies, Duffield
et al. (1987) specified a multivariate, double-log (log-
linear) form. This form was specified primarily to satisfy
the constraint of eccnomic theory that there be diminishing
marginal value for each additional fish caught. This form
was also selected to avoid the possibility of predicting
negative per capita trips from distant origin zones and to
minimize heteroscedasticity of the residuals expected to
occur when population varies across origin zones. Both of
these latter two problems were expected to occur with the
linear form. However, as noted, the model estimated by
Duffield et al. (1987) failed to produce homoscedastic
residuals and overpredicted observed trips by about 60
percent. The overprediction was found to be largely
influenced by trips taken from origins within 20 miles of a
site. The model also underpredicted trips from intermediate
distances and overpredicted trips form longer distances.

Driven primarily by the concerns of
heteroscedasticity and prediction, Duffield (1988) examined
three general alternative functional forms including
polynomial, semi-log, and double-log forms. Although the

polynomial specifications, including additions of distance
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squared and cubed terms and a hybrid double-log-polynomial
form enhanced trip prediction, demand was positively sloped
for distances greater than 3,000 miles. The semi-log
specification also enhanced trip prediction. However,
converse to the double-log model, the semi-log model
overpredicted trips at intermediate distances and
underpredicted trips at short and long distances. Further,
the coefficient of determination for the semi—-log model was
less than that of the double-log function (.22 for the semi-
log versus .78 for the double-log form). A hybrid
pclynomial semi-log function was also estimated, but did not
correct the heteroscedasticity problems noted above. This
model also showed a positive slope at about 3,000 miles, an
unacceptable theoretical result.

As a result of the above summarized analysis,
Duffield (1988) found that a multivariate, double-log form
in which average round-trip distance was shifted by constant
of 90 enhanced trip prediction to within .1 percent of
observed trips and satisfied the assumption of homoscedastic
residuals.?

Table 4 summarizes estimated bivariate models based
on the forms specified by Duffield et al. (1987) (model 1)

and Duffield (1988) (model 2). However, different from

3> A constant variance of the residuals in this model
was concluded based on visual examination of a plot of the
residuals versus the predicted values of the model (Duffield

(1988)) .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Duffield’s (1988) analysis, the shift parameter added to
average round—-trip distance was found to be 64 for the

bivariate model.?>*

3¢  The optimal shift parameter of 64 miles was found
by searching a range of parameters until adjusted—-R? was
locally maximized.
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Table 4.-- Bivariate Specifications of Models Specified by Duffield et al.
(1987) (Model 1) and Duffield (1988) (Model 2).

Model Ay Ap Log-Likelihood B, B, R2 F
1. 0 (R) 0(R) 7,331.34 -1.03 -1.71 .759 2,335.68
(t-ratio) (—4.53) (-48.32)
(p—value) (<.001) {<.001) (<.001)
2. 0 (R) 0 (R) 7,372.34 3.09 -2.28 . 784 2,695.48
(10.68) (-51.91)
{.000) (<.001) (<.001)

B, is the estimated parameter for average round-trip distance and average
round-trip distance plus 64 in each of models 1 and 2 respectively. The
critical values for t and F at a 5 percent probability of a type I error
1.6471 and 3.854, respectively. The sample size for both models is 741.

£9
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Diagnostic Tests on Models 1 and 2. The following

summarizes the fit and statistical significance of the
estimated parameters in models 1 and 2. Also OLS
assumptions of a normal distribution of the residuals and
their variance consistency are examined. Further potential
outliers resulting from models 1 and 2 are summarized.

As can be noted in table 4, both the double-log and
double-log, shifted distance models have high adjusted-R?
values suggesting the majority (75.9 and 78.4 percent,
respectively) of the variation in the natural-log of per
capita trips are described by the independent variables in
each model. Further, with a critical wvalue of 3.854, with
degrees of freedom equal to 1 and 739, the hypothesis that
B, is zero is rejected at a 5 percent probability of a type
I error. Thus, each model constitutes a good fit. It is
also noted that the signs of P, are accepted as correct at a
5 percent probability of a type I error.

Examination of the normal probability plots of the
residuals resulting from models 1 and 2 (figures 1 and 2,
respectively) suggest these models yield nearly normally
distributed residuals. Moreover, model 1 appears to yield
greater normality in the residuals. Figures 3 and 4 are
standardized scatter plots of the residuals and predicted

natural—-log of per capita trips produced by each of Models 1
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and 2 (table 4).° Four general conclusions can be made
from these plots.’® First, the residuals of the double-

log, shifted distance model appear more evenly distributed
around the center of the plot than the residuals produced by
the double—log model (even though there appear more points
in the south-west quadrant then any other quadrant). Thus,
the double~log, shifted distance model appears to yield less
heteroscedasticity in the residuals than the double-log
model. However, the results of White’s test for
homoscedasticity with a null hypothesis of constant variance
and alternate hypothesis of non—constant variance across the
residuals suggests that at a 5 percent probability of a type
I error the residuals in both models 1 and 2 are not
constant.?’

Secondly, the inverted-U shape of the
residual/prediction plot in figure 3 suggests a misspecified
functional form. That is, the double—-log functional form
does not achieve complete linearity. 1In contrast, figure 4

displays less of an inverted-U shape suggesting the double-

3  The plots in all of the figures in this chapter

were produced using SPSSX software which were uniformly
resized in WORDPERFECT 5.1.

¥  This analysis relies heavily on Neter, Wasserman,
and Kutner (1989).

39 nR2 for each of models 1 and 2 are 42.66 and 44.43,
respectively. The p—values for each of these )2
distributions with 2 degrees of freedom are .545132 E-9 and
.22498 E~-9, respectively. Further, the 95% critical value
is 5.9915.
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log, shifted distance model achieves greater linearity.*’

Third, as noted by Duffield (1988), the double-log
model tends to overpredict per capita trips at short and
long distances and underpredicts at intermediate distances.
This can be readily seen in figure 5 which is a standardized
scatter plot of the residuals resulting from model 1 and the
natural—-log of average round-trip distance.? 1In contrast,
the shape of a similar plot for model 2 in figure 6 suggests
that model 2 mitigates these prediction errors although this
model continues to overpredict at short distances and

underpredict at intermediate distances.

40  The standard for linearity used in this analysis is
that a completely random distribution of the points on the
standardized residuals/prediction plot means the function 1is
linear.

1 points on figure 5 and 6 falling below zero-valued
residuals not counter weighted by points above zero—valued
residuals suggest net over—prediction. The opposite is true
for under-prediction.
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Figure 3.—-— Scatterplot of the Residuals and Predicted
Natural-Log of Per Capita Trips Produced by Model 1.
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Finally, in each of figures 3 and 4 there appear to
be several observations lying outward from the general
cluster of points in each plot. Thus, a formal analysis of
outliers was conducted using DFFITS and DFBETAS measures on
models 1 and 2. The DFFITS measure revealed several
observations affecting the fit of the models for shorter
distance (2 to 30 miles from various sites). Similarly,
most of the observations influencing the constant and slope
parameters in these models, as measured by DFBETAS, were
observations with one-way distances of 2 to 50 miles. Most
importantly, however, all three measures (DFFITS and the two
DFBETAS measures) identify trips taken from Alaska as
observations influencing the fit and constant and slope
parameters of the two models. These 20 observations
represent all of the trips made from Alaska in the 741
observation aggregated sample and are the only observations
which were aggregated using a method different from that
summarized in Chapter 3. The exception is due to a physical
gap in the defined market between Montana and Alaska, namely
Canada. Recall that when trips from states not contiguous
with Montana in which there were no trips made to a site
from states between the state of origin, these trips carried
the population of the intervening states. Thus, since
Canada was excluded from the non-residential market, trips
from Alaska carry only the population of Alaska, whereas

trips from origins of similar distances to the east coast
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carry greater populations. Another reason for the Alaska
trips to standout is that distances traveled by
recreationists from Alaska were all corrected to a uniform

2

distance.* Due to this anomaly in application of the

aggregation rules presented in chapter 3, an effort was made
to model trips from Alaska with a dummy variable. The
results of this effort are summarized in Appendix C.
Although the methods used to model trips from Alaska
improves the fit and satisfaction of normality in models 1
and 2, it is not known with certainty that adding the
interactive dummy variable is consistent with the general
heteroscedasticity prevalent in models 1 and 2 and la and 2a
(Appendix C). Thus, correction for the anomaly in the
aggregation process for trips originating in Alaska has not
been fully explored. Therefore, the adjustment to the
bivariate models for trips originating in Alaska is omitted
from the primary portion of this study. However, for the
readers information, the results of modeling trips from
Alaska as noted above in the model proving best among the
Box—-Cox models estimated (model 5) is presented in Appendix

C.

42 pistances traveled from Alaska to sites in Montana
were among those found to be in error as noted by Duffield
(1988a). These distances were corrected using the distance
from Anchorage, Alaska to Great Falls, Montana, via the
ALCAN highway.
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General Model Specifications for the Box—Cox Regressions

In the next step of the analysis, 8 alternative
functional forms were specified based on the general
specification of equation (2). Table 5 summarizes these

plausible general forms and the different restrictions on A,
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Table 5.—— Plausible Forms of Equation (2) Other than the
Double-log, Semi-log and Linear forms.?%
Plausible Forms Restrictions:* A, Ao
Ay Ap
Viy-1 D;?-1
(a) —‘x—=ﬁo—51;i——+e N/R N/R
v D
A
D;?-1
(b) ]JIV=ﬁQ—Bl—i%—-+G 0 N/R
D
Ay
vii-1
(c) 1;_—V=Bo*511n131j+9 N/R 0
A
D;7-1
(d) Vij=po—pl—‘x——+e 1 N/R
D
Vf‘-’-l
(e) -———i-;——‘—‘ﬁo-ﬁlDij+e N/R 1
(f) 1n V,;=B,-B,1nD,;+e 0 0
(g) 1n Vij=ﬂo-B1Dij+e 0 1
(h) Vij=Bo°p1Dij+e 1 L

4  The error term in all plausible forms estimated was
assumed to enter addictively. Thus, the functional form is
limited to intrinsically linear forms.

44 Restrictions of 0 and 1 refer to a natural-log
transformation and a linear restriction, respectively. N/R
refers to an estimated Box—-Cox transformation parameter.
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and A, required to obtain these forms. As noted in chapter
1, the primary theoretical constraint on equation (2) is
that the signs and sizes of the estimated parameters B,, B,
Ay, and A, result in a function in which per capita trips
are inversely related to average round-trip distance
traveled (the price proxy) from origin i to site j. With
one exception, this constraint is satisfied in all of the
forms listed in table 5 when (3, is less than zero. This
exception occurs in plausible form (b) in which B, must be
positive if A, is negative. An additional constraint for
the models to be considered demand functions is that the
estimated parameters in equation (2) must yield a positive
intercept or constant term. As one may note this term will
not always be P, due to the specification of the Box—Cox
transformation. For instance, consider plausible form (a)
(table 5) is expressed in its reduced form as shown in

equation (7):

If the absolute value of B,/A, > B, + 1 and A, and B, are
positive, the intercept term in plausible form (a) will be
negative. The combinations of possible values and signs of
Bo, B, Ay, and A, contributing to the sign of the intercept

term in each of plausible forms (a) through (e) (table 5)
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are too numerous to analyze and list here. Thus, the
intercept terms in each of the estimated forms presented
below are independently assessed for theoretical

acceptability.

Form Analysis of the Bivariate First—Stage TCM Demand

Function

This section presents the estimation and model
discrimination performed on the first—stage TCM demand
functions estimated using the plausible forms summarized in
table 5. First, each of the models estimated in this
section are generally reviewed. This includes a summary of
models’ adherence to the theoretical constraints, an
overview of the fit of models, and review of the
significance of the Box—Cox transformation parameters.
Next, the results of discriminating these models using the
log—likelihood ratio test is summarized. This is followed
by a review of the results of applying several diagnostic
tests to model 5.

Estimated Models. Table 6 summarizes the results of

estimating five forms of the bivariate first-stage TCM
demand function listed in table 5.% Based on Duffield’s
(1988) findings specific estimates of the semi-log and

linear forms (f) and (h) (table 5), respectively, were

45 Collectively, the approach used to estimate the
models in table 6 was designed to allow all of the plausible
forms listed in table 5 to result.
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omitted from this analysis.

At the outset only models 3.a, 3.b, 4.a, and 4.b
were estimated. However, due to the failure of A, in model
3.a to be significantly different from zero at a 5 percent
probability of a type I error, model 5, in which A, is
restricted to a value of zero, was also estimated. Aside

from the insignificance of A,, the hypotheses that the

remaining
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Table 6.-— Estimated Box-Cox Bivariate First-Stage TCM Demand Functions.

Maximum Likelihood Estimates OLS

Model Ay Ay Log-Likelihood B, B, R2 F

3. BCE’

a. Ayr Ay .0016 .169 7,361.84 -4.30 -.629 .778 2,601
(.172) (6.78) (-11.57) (=7.01)

b. Ay, Ap .038 .038 7,345.91 ~2.92 -.907 .775 2,550
(5.45) (5.45) (=11.32) (-8.56)

4, BC"

a. Ay -.017 1(R™) 7,129.75 -13.59 -.0045 .592 1,076
(—6.68) (~16.20) (-7.35)

b. A .030 0 (R) 7,337.43 -2.15 -1.22 .768 2,451
(3.35) (=7.50) (10.25)

5. Ap (BCE) 0 (R) .172 7,361.82 ~-4.33 -.630 .778 2,599

(6.87) (11.49) (-6.99)

BCE stands for use of the Box-Cox extended estimation method.
BC stands for use of the classical Box-Cox estimation method.
* "R" signifies a restriction of the Box-Cox transformation parameter at the indicated value.
B, are the estimated coefficients for per capita trips transformed by the respective value of A,.
The p-value for A, in model 3.a is .4317. All other p-values are less than .001. The critical values
for t and F at a 5 percent probability of a type I error are 1.6471 and 3.854, respectively. T-ratios
were computed from the variance-covariance matrix resulting from the maximum likelihood estimation of
each of models 3.a, 3.b, 4.a, and 4.b. Model 5 was estimated using an OLS/grid-search method.
Adjusted-R? and F-statistics were computed using OLS regression with the appropriate transformations on
the dependent and independent variables as listed in columns 2 and 3.
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estimated coefficients in table 6, equal zero is rejected
at a 5 percent probability of a type I error. Further, the
hypothesis that no relationship exists between the
independent and dependent variables are rejected at a 5
percent probability of a type I error for all of the models
presented in the same table.

The signs on B, in each of the models listed in
table 6 are theoretically correct. With the exception of
model 3.a, the signs and magnitudes of all estimated and
restricted parameters in the models presented result in
positive intercept terms in each model. A, in Model 3.a is
not significantly different from zero at the 95 percent
confidence interval thereby yielding the intercept term in
model 3.a equal to zero.

Model Discrimination. Discrimination of the models
presented in table 6 was performed using a series of
likelihood ratio tests, as summarized in Chapter 2. There
are several combinations of models in table 6 that satisfy
the restriction that only models that can be nested in their
non—-restricted counterparts may be discriminated with this
counterpart using a likelihood ratio test. However, based
on the likelihood principle and the methods used to estimate
the models in table 6 (see table 6 and preamble), only four
combinations of models need to be tested. These
combinations consist of models 3.b, 4.a, 4.b, and 5 as

restricted models of model 3.a. Likelihood—-ratio tests for
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these combinations is summarized in table 7. The null
hypothesis in this table is that the restricted models
listed in column one are similar to the general model listed
in column two. The alternative hypothesis is that the

restricted and general models are dissimilar.

Table 7.—— Likelihood Ratio Tests of Bivariate Models with
Model 3.a. as the General, Unrestricted Case

Restricted General Degrees of Likelihood P-=Value
Model Model Freedom Ratio (x?)

5. 3.a. 1 .04 . 841
3.b. 3.a. 1 31.86 <.0001
4. 3.a. 1 48.82 <.0001
4.a. 3.a. 1 464.18 .000

1. 3.a. 2 61.00 <.0001

It can be concluded from this analysis that only
model 5, of the models presented in table 6, is not
significantly different from the most general model at a 5
percent probability of a type I error (the critical y? value
with one degree of freedom is 3.8415). Thus, according to
the maximum likelihood principle, model 5 consists of those
parameters which, among the parameters estimated for the

remaining models in table 7, best describe the population of
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per capita demand for fishing trips during 1985. It can be
further concluded that model 5 is statistically superior to
the remaining models in table 7.

Since the double—-log model, presented in table 4,
can be nested in model 3.a, a likelihood ratio test was
performed with the same null hypothesis as that established
for the remaining tests summarized in table 7. The results
of this test, summarized in table 7, suggest that the null
hypothesis could is rejected at a 5 percent probability of a
type I error (the critical Y2 value with two degrees of
freedom is 5.9915).

Diagnostic Tests on Model 5. Figure 7 is the normal
probability (P-P) plot for model 5. As can be seen, model 5
produces fairly normal residuals. In comparison with models
1 and 2, model 5 appears to produce slightly more normally

distributed residuals, although they are slightly skewed

left. Figure 8 is the standardized residual plot for model
5. In comparison with the similar plots for models 1 and 2
(figures 3 and 4), model 5 appears to result in a greater

distribution of the residuals around the center of the plot
than do models 1 and 2, thereby suggesting less
heteroscedasticity of the residuals produced by model 5. It
is noted however, that the results of White’s test for

homoscedasticity suggests the residuals in model 5 are
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heteroscedastic.?®®
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Figure 7.-- Normal Probability (P-P) Plot of the
Standardized Residuals for Model 5, Table 6.
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Figure 8. Standardized Scatterplot of predicted Per Capita
Trips and Residuals for Mcdel 5, Table 6.

4 pnR2 for model 5 is 52.74 with a p-value of this X2
distribution with 2 degrees of freedom less than .0001.
Further, the 95% critical wvalue is 5.9915.
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Figure 9 is a standardized scatterplot of the
residuals produced by model 5 and average round—trip
distance transformed by the Box—Cox transformation parameter
for the same model. Although the inverted-U shape present
in similar plots for models 1 and 2 appears less evident for
model 5 than it does for model 1, the shape continues to
suggest the functional form may not be correctly
specified.? Comparison of figures 6 and 9 also suggests
further resolution of the over/under trip prediction problem
encountered in model 1. This is evident by the wider
dispersement of points around the center of figure 9 verses
the dispersement of points in figure 6. The predictive
performance of models 1, 2, and 5 are further discussed

below.

97  As noted in chapter 2, the trade-off between
heteroscedasticity and functional form is omitted from this
study. It may be the case that the inverted-U shape in
figure 9 is partially due to the lack of correction for
heteroscedasticity.
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Figure 9.—— Standardized Scatterplot of Round-Trip Distance

Transformed by the Box—-Cox Parameter listed for Model 5,
Table 6, with the residuals from the same model.

Lastly, examination of figures 8 and 9 suggest the
presence of several outliers. Thus, outlier analysis was
conducted using the same measures used for models 1 and 2.
The results of this analysis for model 5 and a model in
which trips from Alaska were modeled as an interaction term
with average round-trip distance are presented in Appendix

C.

Discrimination of Models 2 and 5.

The last step in the analysis consists of

discriminating between model 2 and 5, the two remaining,
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models considered in this paper. Since these two models are
non—nested, a J-test was used for discrimination. The

results of the hypothesized models are summarized in table

8.
Table 8. —- Results of J-Test for Discrimination Between
Models 2 and 5.

Model -
(Hypothesis) Bo B." B, R?2 F
2. (Null) 4.724 -3.508 -.541 . 785 1,352
(t—ratio) (4.793) (=~4.932) (-1.728)

(p—value) (<.0001) (<.0001) (.042)
5. (Alt) 2.308 . 341 1.523 .785 1,352

(1.703) (1.728) ( 4.932)

(.044) (.042) (<.0001)

*

B, are the estimated coefficients of average round-trip
distance plus 64 and average round-trip distance subjected
to the Box—-Cox transformation with A=.172.

v X

, are the estimated coefficients of the predicted
values resulting from estimating models 5 and 2 with OLS,
respectively.

The sample size is 741 and t'=1.647 and F'=3.007 at the 5
percent probability of a type I error.

In terms of the method summarized in Appendix B,

models 2 and 5 are considered the null and alternate
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hypothesis models (for general specifications see equations
(B-1) and (B-2)), respectively. The estimates of models 2
and 5 parallel the general specifications of equations (B-4)
and (B-3). The hypotheses that the estimated coefficients
of B, in both models 2 and 5 (table 8) are different from
zero are rejected for both hypothesized models at the 5
percent probability of a type I error. The decision
criteria summarized in table 10 (Appendix B) suggests that
neither model 2 or 5 is acceptable or sufficiently explains
the variation in the natural-log of per capita trips when
compared to the other. Unfortunately, however, this test
provided inconclusive results. That is, their is
insufficient evidence at a 5 percent probability of a type I
error to reject the null hypotheses that each models’
predicted values of the natural—-log of per capita trips adds
to the fit of the rival model. This result is one of the
drawbacks of the J-test. Specifically, the J-test does not
provide conclusive evidence that either model 2 or 5 is
statistically superior over the other. This is caused by
insufficient information regarding the comparison of the
conditional distributions of the dependent variables in the

two models (see Maddala (1992)).°%

8 Madalla (1992) suggests supplementing the J-test
with an analysis of variance 1in which the models are
combined and the coefficients on the differing variables are
tested for significance. However, due to strong colinearity
between the independent variables in models 2 and 5, such
analysis was unsuccessful. Additionally, Maddala cites
Mizon and Richard (1986) for a means to overcome the lack of
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An alternative means of discriminating models 2 and
5 1s to compare their adjusted-RZs. These values are .784
and .778 for models 2 and 5, respectively. The slight
difference of .006 between these values (i.e., model 2
explains less than 1 percent more of the variation in the
dependent variable than model 5) suggests the two mcdels may
be considered statistically comparable.

Based on the analysis in this chapter, although
models 2 and 5 may be considered statistically comparable in
terms of slight differences in adjusted-R2?, it may also be
concluded that model 5 provides an alternative means of
adjusting for prediction efrors primarily due to measurement
error at shorter distances (see Duffield (1988)). A
comparison of figures 11 and 10 (see subsection discussing
scatter plots below) shows that both models 2 and 5 enhance
the linear price/quantity relationship of model 1. However,
unlike model 2, model 5 achieves this enhancement without
shifting the entire demand function to the right as noted by
Duffield (1988). Furthermore, model 5 suggests a degree of
nonlinearity not specified in model 2. It is also important
to note that both models suggest that the relationship of
per—capita trip demand for varying distances from a site is
not a one—to—one relationship as suggested for a

multivariate specification of model 2 by Duffield (1988).

information on the conditional distributions in the null and
alternate hypothesis models.
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It is also noted that the theoretical basis for a
multivariate specification of model 2 suggested by Duffield
has greater merit than a possible theoretical basis for
model 5. Specifically, the constant in model 2 may be a
measure of the fixed costs associated with making a trip. A
theoretical basis for model 5 might be that it describes the
degree of marginal diminishing returns for per—capita trips
as distance increases more accurately than model 1.

However, at least, models 2 and 5 appear to capture
characteristics of per-capita trips demand not captured in

model 1.

OQverview of Models 1, 2, and 5

The balance of this chapter provides an overview
comparison of the bench—mark models (1 and 2) and model 5.
Included in this section is a comparison of models 1, 2, and
5 in terms of scatterplots and line—plots of the three
models and their predictive performance across the sample.
This section is closed with a summary of the elasticities of
each model.*®

Scatter and Line Piots. Figures 10, 11, and 12 are

scatter plots of the natural log of per-capita trips versus

4%  The model estimation and discrimination analysis
presented above is considered sufficient for a conclusion
that models 2 and 5 are statistically similar in describing
the variation in the natural-log of per—capita trip demand.
The plots, predictive performance and elasticities of each
model are provided for illustrative purposes only.
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the transformations of average round-trip distance applied

in each of models 1, 2, and 5, respectively.®

*°  When comparing figures 10, 11, and 12 it should be

noted that the horizontal scale in figure 12 is more
compressed then that of figures 10 and 11. This was done to
maximize the scatter of observations across the plet and to
include the mean of the independent variable in figure 12.
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As one can see in these plots, models 2 and 5 result
in three improvements over model 1. These include, a
tighter cluster of observations around the regression line,
fewer outlying observations at shorter distances (this is
confirmed by comparison of the DFFITS and DFBETAS for these
two models), and greater linearity in the price-quantity
relationship. The first two of these improvements can be
considered as improvements of the intended use of the
double—-log model. Specifically, the double-log model was
selected by Duffield et al. (1987), in part, as a means of
mitigating heteroscedasticity which results from compressing
the range of observations by means of the double-log form
(see, e.g. Gujarati (1988)).

If one were to plot models 1, 2 and 5 on one graph
with per—capita trips on the y—axis, using a continuum of
data points across the range of average round-trip distance,
models 2 and 5 would appear most similar.’® Although the
plots for all three models are non-linear, model 2 shows the
least amount of nonlinearity and model 1 the most.*

Further, at round-trip distances less than 48 and 64 miles,
the plots of models 2 and 5 are below model 1, respectively.

These plots remain above model 1 up to distances of about

1 This plot was omitted from the text due to
illegibility.

52 The functions used for these plots were roughly:
Model 1: Vv = .357 D %7
Model 2: V = 21.977 (D + 64)%7%
Model 5: V = exp (—.667 — 3.663 D'''%)
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1,200 and 1,500 miles for each of models 2 and 5,
respectively. Thus, models 2 and 5 dampen the curvature of
model 1 (particularly at shorter distances) providing
greater linearity in the price/quantity relationship in the
transformed form of these models. This illustrates models’
2 and 5 mitigation of the over/under trip prediction problem
with model 1.

Predictive Power. The resulting predictive power of

models 1, 2, and 5 provide additional information regarding
the performance of these models. As expected, model 1
overpredicts the 5,029 aggregated trips in the sample by
2,820 or 56.1 percent. However, model 2 underpredicts trips
by 287 or 5.7 percent and model 5 overpredicts trips by 72
or 1.4 percent.

Elasticities. As an aside and purely for

illustrative purposes, table 9 summarizes the elasticities
evaluated at the mean of average round-trip distance

(1,119.5) for each of models 1, 2, and 5.
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Table 9.—— Estimated Own-Price Elasticities of Demand
for Models 1, 2, and 5

Estimated Cwn-Price

Model Elasticity of Demand
1. -1.718
2. -2.281
5. -2.115

Thexpwn price elasticity for model 5 is computed by
B (D) .
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CHAPTER 5
CONCLUSIONS

This chapter provides a summary of this study, its
limitations and suggestions for further research. Each are
addressed in turn.

Summary

The purpose of this study has been to examine the
form of the first—-stage demand function for the cold-water
stream fisheries in Montana during the 1985 season. Chapter
one provided an overview of the travel cost methodology.
This included a summary of the pertinent economic theory
underlying the TCM methodology, simplifying assumptions,
definitions of the price and quantity variables, data
requirements, and examples of TCM applications.
Additionally, the literature regarding determination of the
functional form of the TCM demand function supporting the
use of statistical inference to determine the correct form
was reviewed.

Chapter two outlined the approach to model
specification used in this paper. It was concluded that the
best approach was to test down from a general to a specific
functional form. However, due to the information regarding

the form of the first—-stage TCM demand function as
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investigated by Duffield et al. (1987) and Duffield (1988),
an hybrid of a testing down and up (AER/TTT) approaches was
concluded as the best approach to use in this study. That
is, the study relied on the findings of the two prior
studies noted to limit the field of plausible forms of the
demand function.

Chapter two also provided an overview of the Box—-Cox
methodology. Included in this review were four possible
approaches to estimating a Box—Cox regression function, of
which the full maximum likelihood method was deemed best due
to the ability to estimate the variance—covariance matrix
encompassing all estimatedrparameters. Next, two methods of
model discrimination were reviewed, including the likelihood
ratio test, which was used to discriminate five plausible
Box—Cox regression models and the double-log model initially
proposed for the data base by Duffield et al. (1987).
Davidson and Mackinnon’s J—-test for discriminating non-—
nested models was also reviewed. Finally, in accordance
with the TTT approach to model specification, several
diagnostic tests on the assumptions of OLS used in this
study were reviewed.

The results of the econometric analysis performed in
this study were reported in chapter four. As a bench-mark
for the analysis in this study, two bivariate models were
estimated and subjected to several diagnostic tests

regarding certain assumptions of OLS. These models followed
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the principles used by Duffield et al. (1987) (a double-log
model) and Duffield (1988) (a double—-log, with shifted
distance model) to estimate multivariate counterparts to
these models.

Based on the results of prior studies, five Box—Cox
regression models were estimated such that eight plausible
forms could result. These models were tested for their
adherence to generalities regarding a priori expectations of
the signs and magnitudes of the estimated regression
coefficients and Box—Cox transformation parameters. Only
the most general form failed to meet these requirements.
Using a series of likelihood ratioc tests, it was found that
a form consisting of the natural log of per—capita trips
regressed on average round—trip distance raised to the .172
power {(model 5) was the only form statistically similar to
the most general form (model 3.a) of the TCM demand function
investigated in this study. A likelihood ratio test
comparing the most general form with Model 1, based on the
findings of Duffield et al. (1987), was also conducted.

This model was also dissimilar to the most general form at
the 95 percent confidence interval, thus eliminating model 1
from the field of statistically acceptable models.

An attempt to discriminate Model 5 and the bivariate
specification of the double-log, shifted distance model with
a shift factor of 64 (model 2) using a J-test provided

inconclusive results. Thus, these two models were compared
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based on their adjusted-R? statistics. Because the values
of these statistics were found to be close (.784 and .778
for models 2 and 5, respectively), it was concluded that the
two models are statistically comparable. Moreover, model 5
was found to provide more information regarding the
characteristics of the per—capita demand for stream fishing
in Montana during 1985 than the does the double-log model.

Comparisons of the scatter plots of models 1, 2, and
5 revealed that models 2 and 5 result in five improvements
over model 1. These include greater linearity in the
price/quantity relationship, a tighter cluster of data
points around the regression lines, further mitigation of
heteroscedasticity (compare figures 3, 4, and 8), mitigation
of ocutliers for shorter distances (possibly related to the
mitigation of heteroscedasticity), and enhanced predictive
power. As regards the latter of these improvements models 2
and 5 predicted trips within 5.7 and 1.4 percent of observed
trips, whereas model 1 overpredicted trips by 56.1 percent.

Limitations and Suggestions for Further Research

This section highlights four limitations to this
study, three of which may merit further research. Each of
these issues include heteroscedasticity of the residuals, a
truncated distribution of the residuals in model 5, errors
in measurement of round-trip distance, and omitted variable
bias. An additional suggestion for further research

includes estimation of the demand function to account for
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possible segments in the market by use of a spline function.
Each of these issues are summarized in turn.

Heteroscedasticity. As previously noted, no

attempts were made to measure or correct heteroscedasticity
in any of the models presented in this study. Moreover,
while models 2 and 5 appear to mitigate heteroscedasticity,
as 1s evident in the plots of the models’ residuals against
their predicted values, White’s test suggests the residuals
are not homoscedastic. Thus, the estimated coefficients in
these model are neither best or linear estimates, nor can
they be considered efficient (see Kmenta (1986)). A
possible solution to this limitation may be determined by
reestimating the models presented in this paper by
specifying likelihood functions capable of simultaneously
estimating the Box—-Cox parameters for functional form, the
shift parameter (model 2), and the form of
heteroscedasticity *°.

Truncated Distribution of the Residuals in Model 5.

Smith (1975) notes that use of the Box—-Cox transformation on
the dependent variable does not allow for negative values in
this variable resulting in a non-normal distribution of the
residuals. As a consequence, he notes that estimates of the
parameters in a Box—-Cox regression model using a likelihood

function specified with a normal distribution of the

>> See footnote 19, Chapter 2 for pertinent citations
of literature addressing this issue.
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residuals results in approximations of these parameters.
The likelihood function specified for estimates of the Bowu—
Cox models presented in table 6 assumed the residuals were
normally distributed. Therefore, models 3.a, 3.b, 4.a, 4.b,
and 5 are considered only approximations of the models that
would be estimated given the same restrictions (or
latitudes) capsulated in each of these models when the
truncated distribution issue is incorporated in the
analysis. No further analysis on this issue was conducted.

Errors in Measurement of the Distance Variable. As

noted in chapter 3, several of the reported distances were
found to be in error and were replaced in the data base with
map distances. These distances were measured by assuming
trips originated from the population centers of each county
or state. Duffield (1988) notes this is a result of the
small sample size in the data set. He also notes that
aggregation of trips with disparate distances within origin
zones to a common site add to the effect of the distance
measurement error occurring largely in the range of shorter
distances. He suggests that shifting distance by a constant
appears to mitigate the effects of the measurement error at
shorter distances by shifting the demand function away from

these shorter distance.>

% puffield (1992) further refined the shifted
distance, double—log model by transforming average-round
trip distance for resident and non-resident anglers by the
total cost functions estimated for each class in Duffield et
al (1987).
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Conversely, model 5 adjusts for the nonlinearity not
captured by model 1, which can be seen by comparison of
figures 10 and 12. However, an explicit examination of an
error—in-variables model or other means of correction for
errors in measurement within the framework of the Box—-Cox
regression models were not examined in this study.®® Thus,
further analysis of this sort may provide a further
enhancement to the analysis.

Omitted Variable Bias. Since the scope of this

study was limited to determining the functional form of the
bivariate TCM demand function, the models estimated in this
study are prone to omitted variable bias. Thus, further
examination of the functional form of the demand function
for stream fishing in Montana might include the addition of
non—-price variables. These variables might include site
attributes, a measure of substitutes, and several
socio—economic / demographic variables designed to
approximate tastes and preferences. Failure to include
these variables in the model would result in biased

parameter estimates and thereby biased estimates of consumer

% A general Box-Cox model similar to model 3.a was
estimated for model 2. However, it was found that the Box-—
Cox transformation on the dependent and independent
variables both converged to zero, yielding the initial
double—-log form as that which maximized the likelihood
function.
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surplus (see, e.g., Dwyer et al. (1977) and Walsh
(1986)) .°°® These non-price variables are intended to
explain potential shifts in demand. These variables can be
used to evaluate the effects on demand and net economic
benefits of adding a new site to or deleting an existing
site from a region, changing the attributes of one or more
sites, or changing a site’s access costs.

In this regard, the reader is advised to examine
Duffield (1988) in which he lists three additional concerns
or limitations to the stream fisheries data set. Other than
the measurement error issue, these issues include
misspecification of the substitute variable, use of socio-
economic/demographic variables limited to the representation
of the angler’s of an origin zone.

Market Segmentation. Another suggestion for further

research regarding functional form would be to estimate per-—
capita trip demand using a spline function (Greene (1990)).
Duffield et al. (1987) found that their double-log model
overpredicted trips for short and longer distances and
underpredicted trips for medium range distances. Also,
analysis of the residuals versus average round-—trip distance

plots in figures 6 and 2 for models 2 and 5, respectively,

¢ sSuch bias consumer surplus is expected to occur if
the bivariate demand function presented in this paper is

used to compute consumer surplus values. Readers are
reminded that the purpose of this paper is to examine the
functional form of the bivariate model. Thus, the non-price

variables listed in this section are intentionally omitted
from the specification presented in chapter four.
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reveals the this poor prediction problem was not entirely
addressed. Simply stated, a spline function could be used
to segment the market by increments in distance, thereby
testing whether different distance intervals represent
different market segments. In a broader scope, the dummy
variables delimiting market segments could be estimated with
a log—likelihood function, as suggested by Greene (1990),
which also accounts for functional form and

heteroscedastistic effects.
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APPENDIX A

TECHENICAL DESCRIPTION OF THE TRAVEL-COST MODEL

As noted in chapter one, the zonal TCM consists
of statistically estimating a demand function for use of a
recreation site. Although the TCM has been justified in
terms of household production, the following provides a
jJustification in terms of utility maximization. McConnell
(1985) provides the following general development of the
first—-stage TCM demand function based on the following

57

guasi-—-concave utility function subject to income and

time constraints:

(A-1) f'a‘; u{x, z) s.t. y=cx +pz, T =h+ x{(t, + L))
Where:
x = Number of trips to a given site
z = Hicksian composite commodity
h = Time spent working
t, = travel time per trip
t, = time spent on site per trip
T = total available time
y = exogenous income
¢ = out—of-pocket costs per trip
p = Price of the composite commodity
Yy = Yo t wh
w = the wage rate
This model assumes recreationists can trade between

57  Henderson and Quandt (1980) show the utility
function must be strictly quasi-concave in terms of the
utility and price space.
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work and leisure at a constant rate which means t,, t,, and
h are all measured in the same units. When the income and

time constraints are combined utility maximization becomes:

M. ) )
(A-2) Xfa’; u(x, z) + [y* - ¢*x - pz]

Where
(A=3) y* =y + wT
(A—4) c* = w(t; + t, ) + c

With first order condition of:

(A-5) -g% = Ac" = A(c + w(E,+E,))

which results in demand given by:

(A-6) x = f(c*, p, ¥*)

which reduces to:

(A_7) X = f(C‘, y‘)

when p is assumed constant in the cross section, the time
frame typically used for TCM demand function estimation.
Thus, demand is a function of full income and full costs.
Full costs generally constitute out—of-pocket costs and the
opportunity cost of travel time. According to general
demand theory these variable would be inversely related to

the quantity of recreation trips demanded.
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APPENDIX B
OVERVIEW OF THE APPLICATION OF

THE DAVIDSON AND MACKINNON J-TEST®®

The Davidson and MacKinnon J-test is a joint test of
the predictive power of two rival, non—-nested models. The
following summarizes the methodology for a general case
which may include Box—Cox transformations in the regression
variables. The null and alternate hypothesis models are
specified as in equations (B-1) and (B-2) in which the error
term of each is assumed normally and independently

distributed with zero mean and constant variance:

K
(B-1) Hy: Y=Bo+z BiXiete;
k=1

K

k=1

The test is based on an artificial nesting of the two models
and is performed in two stages. In the first stage, the
null hypothesis model (equation (B—1)) is artificially

nested in the alternate hypothesis model (equation (B-2)).

8 This summary relies heavily on Maddala (1992).
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This is done by specifying the predicted values of equation
(B-1) resulting from OLS estimation as an additional

variable in equation (B—-2) to form equation (B-3).

K

(B-3) H,: Y='Yo+z Yedptayote;
k=1

Yo represents the predicted values of the null hypothesis
function and o is the estimated parameter. A secondary
hypothesis test is then established in which H,: o = 0 and
Hy,: oo # 0. If this test shows the null hypothesis is
acceptable, it is concluded that the null hypothesis
function (equation (B-1)) does not add any further
description of the variation in Y then that provided by the
independent variables in equation (B-2). However, this
information is insufficient to determine whether the null
hypothesis model encompasses the alternative hypothesis
model. Thus, the second stage of the test consists of
artificially nesting the alternative hypothesis model
(equation (B—2)) in the null hypothesis mode (equation (B-
1)). Similar to the first stage of the test, this is done
by specifying the predicted values of equation (B-2)
resulting from OLS estimation as an additional variable in

equation (B-1l) to form equation (B—4).

K
(B-4) H,: Y=ﬁo+§: BeX +8y,+e;
k=1
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Y. represents the predicted values of the alternate

hypothesis function and & is the estimated parameter. The
secondary hypothesis test is then H,: § = 0 and H,: § # 0.
If this test shows the null hypothesis is acceptable, it is
concluded that the alternate hypothesis function (equation
(B—2)) does not add any further description of the variation
in Y then that provided by the independent variables in
equation (B-1).

Maddala (1992) summarizes the possible outcomes of

the J-test in a table similar to that provided in table 10

below.
Table 10.-— Possible Outcomes of The J-test.
Hypothesis: a = 0
Hypothesis:
0 =0 Not Rejected Rejected

Not Rejected Both H,: and H;: H,: is acceptable

are acceptable H,: is not acceptable
Rejected H,: is acceptable Neither H;: nor

H,: is not acceptable H,: are acceptable

Source: Maddala (1892)
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APPENDIX C

TECHNICAL DESCRIPTION OF DIAGNQOSTIC TESTS

AND MODELING OF OUTLIERS

This appendix provides technical descriptions of
several of the diagnostic tests summarized in chapter 2.
Technical descriptions of White’s test for homoscedasticity,
DFFITS and DFBETAS measures for detecting outliers, and a
method of modeling the effects of outliers using dummy
variables are summarized in turn. This is followed by a
summary of preliminary modeling efforts designed to address
the anomaly in the data aggregation process presented by
trips originating in Alaska noted in Chapter 4. Alternative
specifications of models 1, 2 (table 4), and 5 (table 6) are

presented in turn.

White’s Test for Homoscedasticity

White’s test for homoscedasticity consists of
regressing the squared errors on the variables in the
regression model being tested using the general form 1in

equation (C-1).
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) P
(C-1) e; =8,+Y 8,2z, .+ u;
p=1

In this equation e; are the residuals, & are estimated
regression coefficients, Z,, and p is determined by the
number of independent variables in the regression function
being tested using the following example taken from Kmenta
(1986) . When there is one independent variable (X), p = 2
and Z,, = X;; and Z,, = X;°. When there are two independent
variables, p = 3 and Z,, = X,,, 2., = X5 25 = X Xip» 2,4 =
X;;’, and Z,; = X,,°. Regressors in equation (C-1) are
determined likewise for regressions with more independent
variables.

The null hypothesis of White’s test is that the
variances of the residuals are constant. Failure to reject
this hypothesis also says that any heteroscedasticity is
caused by sampling error. The asymptotic, large-sample

statistic is computed by n(R?,) which is distributed as a Y?

with p degrees of freedom.

DFFITS and DFBETAS Measures

The general approach to detecting and measuring the
impact of outliers on a regression function used in this
study is based on the leverage a single observation or group

of observations has on the mean and variance of the
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remaining observations. These methods can be divided into
those in which observations on the dependent and independent
variables are examined as outliers influencing the fit of
the regression and those which identify cases influencing
the fit of the regression equation or the values of
estimated coefficients. Both methods utilize leverage
values (h;;) which consist of the diagonal elements of the
hat matrix stemming from the data for the independent
variables (see, e.g. Neter et al. (1989), Kmenta (1986) or
Greene (1990) for development of the hat matrix). An
explanation of the second of these general methods
classified here and use of leverage values in each are
summarized below.

Neter et al. (1989) suggest use of DFFITS and
DFBETAS measure to detect influential observations, both of
which make use of leverage values. DFFITS measures the
influence a particular case has on the fit of a regression
equation. This measure may be computed for each case by

equation (C-2):

Y.-Y...
(C-2) DFFITS ;=211
MSE,

1433

In this equation Y, is the fitted value of Y (the dependent

variable) for the ith case, Y is the predicted value of Y

1{1)

for the ith case when it is omitted from the estimated

regression equation, MSE; is the mean squared error when the
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ith case is omitted, and h;; is the leverage value of the
ith case. Thus, DFFITS; is a standardized measure of the
deviation of the regression fit when all data are used and
when the ith case is removed. 1In large data sets, the
absolute value of DFFITS values exceeding the 2(k/n)~
indicate an influential case. k and n are the number of
estimated coefficients in the regression equation and the
sample size, respectively.

DFBETAS measures the influence a case has on the
slope parameter of a particular variable or on the constant

term. DFBETAS values are computed using equation (C-3):

= pk“ﬁku)
W MBE Cep

(C-3) DFBETAS,

In this equation B, is the estimated coefficient when all N
cases are included for the ith case, B,,, is the estimated
regression coefficient when the ith case is omitted from the
estimated regression equation, MSE; is the mean squared
error when the ith case is omitted, and ¢, is the kth
diagonal element of the (X’X) ' matrix. DFBETAS; is a
standardized measure of the difference between the estimated
regression coefficient when the ith case in included and
when it is omitted. In large data sets Neter et al. (1989)
recommend that absolute values of DFBETAS values exceeding

2/(n)” should be considered influential.
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Modeling the Effects of Qutliers Using Dummy Variables

Once data outliers are identified, specification of
the function with dummy variables can be used to assess the
collective impact a group of outliers has on certain
coefficients including the intercept. Kmenta (1986) shows
how this can be done using a dummy variable specified in the
function as variable affecting the intercept and as an
interaction term with any of the variables in the function
thereby affecting the slope of these variables. For
instance, preliminary analysis of the first-stage demand
function estimated in this study shows that aggregation of
per capita visits from Alaska do not follow the rules used
to aggregate the balance of the origin—destination pairs in
the stream fisheries data set (see Chapter Four). To
account for this difference equation (2) could be specified

as

(C“4) Vij= BO - BlDij + azAK + BBAK(DIJ) + e

where AK is a dummy variable in which AK = 1 for
observations of trips originating in Alaska and AK = 0 for
all trips from all other origins. This specification then
allows analysis of how trips from Alaska influence the
constant term (B, and price coefficient (f,).

Specifically, if AK = 1 then equation (C-4) would reduce to
equation (C-5) in which the impact of trips taken from

Alaska would influence the constant and slope coefficients
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of equation (2) in its linear form.

(C-5) Vij= (Bo + ﬁz) + (BB - Bl)Dij T e

However, if AK = 0, equation (C—4) would reduce to equation
(C-6) in which there would be no impact on either the

constant or slope coefficients due to trips from Alaska.

The impact of trips from Alaska on the constant and slope
coefficients can be determined from hypothesis tests of the
statistical significance of B, and PB,;, respectively.
Expansion of the analysis to incorporate the Box—-Cox
transformation on V,; and D,; as specified in equation (2)
would result in equation (C-7) where the Box-Cox
transformation on average round-trip distance is the same
for both occurrences of this variable in equation (C-7).
Thus, inclusion of AK in this way allows adjustment of the
Box—-Cox transformation (A;) according to the influence of

trips from Alaska.

g L B,AK + P,AK(D;j

(C-7) Vi7" =By - ByDij ) v e
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Analysis of Modeling Trips from Alaska as a Dummy Variable

in Models 1 and 2

To understand the affect of the Alaska trips on each
of models 1 and 2, an attempt to include a dummy variable
for trips from Alaska affecting the model both as a shift
and slope parameter (i.e., as an interaction term between
Alaska trips and the log of the distance variables) in one
equation for each model failed due to high colinearity
between these two variables. Thus, two models, one
including a dummy variable for Alaska trips affecting the
intercept and another the slope parameters were estimated
for each of the double~log and double—-log, shifted distance
models, holding the functional form and shifted distance
constant. The analysis of variance of these new models with
their original counterparts (table 4) showed the additional
variables to be significant additions. Further, the
adjusted—-R2? for each model was enhanced. The most
significant result of these new models is that the two
different dummy variable specifications impacted the slope
and intercept parameters equally. However, since the Alaska
trips represent relatively extreme distances in the data set
(versus a more uniform dispersement across the range of
distances) it was decided to model Alaska trips as a dummy
variable affecting the slope parameter using an interaction

variable. The resulting equations are presented in table

11.
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Table 11.-~ Estimates of Models 1 and 2 with Alaska Modeled as an
Interaction Parameter Dummy Variable.

Model Log-Likelihood B, B, B, R? F
l.a. 7,386.29 -.587 -1.805 .418 .792 1,411
(t-ratios) {(—=2.72) {(-53.10) (10.86)
(p—values) (.003) (<£.001) (<.001) (<.001)
2.a. 7,446.27 4.01 -2.44 .508 .832 1,840
(15.24) (-60.64) (14.59)
(<.001) (.000) (<.001) (<.001)

‘uolssitiad noypm payuqiyosd uononposdal Jaypng “Jeumo JybuAdod ayy jo uoissiwsad ypm paonposday

B,, B,, and B, are the estimated parameters for the intercept, average round-trip
distance (plus 64 in model 2.a) and the dummy variable for Alaska trips times the
natural log of distance (plus 64 in model 2.a), respectively. The dummy variable
for Alaska trips was set equal to one for trips made from Alaska and zero
otherwise. The critical values for t and F for both models are 1.6471 and 3.0079,
respectively, at a 5 percent probability of a type I error. Finally, the sample
size for both models is 741.
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Although not provided in this paper, the normal
probability plots for models la and 2a show less negative
skewness than models 1 and 2 (i.e. observed points are less
bowed to the left than those in figures 1 and 2).
Furthermore, the residual versus predicted value plot for
models la and 2a show greater dispersement of points around
the center of each graph and model 2a appears less
heteroscedastic in the residuals. However, Glejser tests
with a linear form reveal a negative and significant
correlation of the distance terms in each of models la and
2a suggesting the residuals continue to be heteroscedastic
in these models.®® Finally, model la continues to show the
same over and underprediction pattern observed for model 1.
Yet, the overprediction for longer distances in model 2a

appears mitigated when compared to model 2.

Analvsis of Modeling Trips from Alaska as a Dummy Variable

in Model 5

Outlier analysis was conducted for model 5 using the
DFFITS and DFBETAS measures. Collectively and similar to
models 1 and 2, the DFFITS measure and the two DFBETAS
measures on the constant and slope parameters revealed

influential observations for one—way distances of 2 to 50

5 The Glejser test for heteroscedasticity was chosen
for models la and 2a due to a high degree colinearity among
the squared and interaction terms including the Alaska dummy
variables required for White’s test.
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miles. Additionally, all three measures again revealed
trips from Alaska as influential observations. Thus, model
5 was reestimated with a dummy variable for trips from
Alaska specified as an interaction term with average round-
trip distance transformed by the Box—Cox transformation as
shown in table 6. This model is designated as model 5.a.
This model is presented in table 12. The analysis of
variance between models 5 and 5.a shows that inclusion of
the interaction Alaska-—trip/ Box—~Cox transformed average

round-trip distance variable enhanced the fit of model 5.
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Table 12.~~ Estimation of Model 5 with Alaska Trips as an

Variable with Round-Trip Distance.

Interaction Dummy

Model Log-Likelihood B, B, B, R2 F
5.a. 7,540.69 -3.900 -.677 .235 .830 1,807
(t—ratios) (—-28.29) (~60.1) (15.02)

(p—values) (<.001) (<.001) (<.001) (<.001)

B,, B,, and B, are the estimated parameters for the intercept, average
round-trip distance transformed by the Box-Cox parameter estimated for
model 5 (table 6) and the interactive dummy variable for Alaska trips. The
dummy variable for Alaska trips was set equal to one for trips made from
Alaska and zero otherwise. The critical values for t and F in this model
are 1.6471 and 3.854, respectively, at a 5 percent probability of a type I

error. The sample size is 741.
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APPENDIX D

SURVEY FORMS
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FISHERIES SURVEY

DID YOU FISH IN MONTANA DURING THE MONTH OF MAY ? 8 v,fg IF YES, HOW MANY DAYS DID YOU FISH IN MAY ?
O rism?
IF YOU ARE A PIONEER (62 OR OLDER) OR A YOUTH (12 TO 14), DO YOU PLAN TO USE YOUR CONSERVATION LICENSE TO 0O HONT?
O BOTH?

PLEASE REFER TO THE MAPS TO HELP US IDENTIFY THE WATERS YOU FISHED. IF YOU NEED MORE SPACE, PLEASE USE A SEPARATE
PIECE OF PAPER AND RETURN IT WITH THIS SURVEY.  THANK YOU FOR YOUR TIME AND COOPERATION.

l TOTAL NUMBER OF | TOTAL NUMBER OF Y,
oATE | nameoFLuE  JSECTION | NEAREST TOWNAND/ | TOTAL JrisH CAUGHT PER DAY JFISH KEPT PERDAY |PURPOSE | stay | o
fsHED | OR STREAM NUMBER F | OR POINT OF ACCESS | HOURS OF YOUR 1 OVER- | pisTANCE
FISHED WNOICATED] OR LANOMARK | FisHED | TROUT | OTHER JTROUT | OER 1TRIPTO | uiiT2| Tm
W ON MAP peroav] AND | spoRT | anD | sPORT L risr | iy orn WELED]
MAY SALMON|  FisH* JSALMON | FISH® | (v or )
ENTER EACH DAY AND EACH WATER FISHED ON A SEPARATE UINE. LIST ALL FISHING IN MONTANA, NOT JUST WATERS INDICATED ON MAPS.
5 lsel
s ed
5 186
5/ /86
L T:
s red
5  mg .
5 1mg
T
5 8
Y
51 mq

* SUCH AS: THE NUMBER OF WHITEFISH, PERCH, BASS, ECT. ** IF YOU STAYED OVERNIGHT, PLEASE MAKE A SEPARATE ENTRY FOR
EACHRISHING TRIP.  THIS INFORMATION WILL BE HELD IN STRICT CONFIDENCE AND USED FOR MANAGEMENT PURPOSES ONLY.
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ANGLER PHONE SURVEY

PLACE LABEL HERE

Interview date:

Interviewel nome: _

1) DID YOU FISH I8 MONTANA THIS KFASON?
[B YN & 1/ 6)

2) !'D LIKE TO ASE SOME (NUFSTIONS ABUIT YOODP
HOLT RPCENT FISHING TRIP IN MONTANA -
SPETIPICALLY, THE LAST TRIF POR WHICH
PISPING WAS TRE MAIN OR ONLY REASON YOU
100K THE TRIP, AND WHERF YOU WERE PRIMAKILY
EISHINC ONF LARE, RIVER, OR STREAM,

H intesview le ended here hecauvse

fiehing was NOT main teason oc teip

wes multiple destination, write

down 1eeson and names of multiple 1

deat inat ions,
NAME OF LARE/STREAR:
CLOSET TOMNK-
PEASON:

DESTINATIONS :

3) WHEN DID YOU MARE TRIS TRIP T  _

7 DATEIl I,

4) WHAT TYPE OF PISHING EOUIPMENT DID YOO OSE?

S1Pait I'P)les Yitures WOCombination

§) DID YOU SPFND WOST OF YOUR TIME FISRING
FROR A ROAT OR PROM SRORE?

1) hoat 21 Shore

8) HOW BUCR TIME DID YOU SPEND AT 14

(Total time gpent at si1ts, WOT the
amount of time they actually fished)
7) 1F NORF TRAM OMF DAY,
rbaut how seny hours & dey did you fish?
T} 2F LESS TRAN ONE DAY
About how many houte did you (ish?

@) WHAT wAS TRE PRIMARY TYPE OF
FISR YOU WPRE TRYING TO CATCA?

“ AROIT HOW MANY PISR (OF EBaca TYPE} 01D YOU
CAT(R ANDG HOW MANY DIN YOU REEP?

LIST ALL SPECIES: cone,
B B O |

27 10 29
H .. . | L_

b1 35 i 13

(PG| M=
Code:

[ I N |
¢ 5

mo ., day year
S .3 NS N P2 N D
4 9 o 1 12 B
1__ .1 EQUIPRENT
ix}
I ____) BOAT/SHORE
1%
v __1.' __t AOURS
16 17 N
1 t .} DAYS
9 20
! 1.0t ROHRS
7! il ) PEN DAY
U DU 1 OHENERS,
24 2% 26
¢ CAUGHT »FEIT
S | I D D
30 N 12 33
t BN N DR DU |
»” k14 39 40
[ R R T DO |
“w “% O

The next few guestions ask sbouL some _‘\
%} of the trip deteiles ond expenditures,
10) wow Dip YOU TRAVEL PROM YOOR HOWE TO 7 MODE : CODEs
n S | B | )
55 56
(Ltst all transpoctotion modes) , , .
b 3 ~ —
5 5¢
If cor ves driven, ASE ¢1) and #lja,
Ef BOT, g0 to 012,
19}  wHAT TYPE OF VENICLE WERE YOU 1IN? CobE
11 Compactid Cylinders} 4) 4w Drive 1
2 intermediatets Cylindess) Siflectestional 59
I Pull-Sizeid Cylindersl
1A) NERE YOU DRIVING, RIDING IN THE cope
VERICLE, OR BOTE?
1 '
1Yoriviag 2)0iding YBoth 60
12) ABOUT ROW LONG DID IT TARE TO TRAVEL ¥ t__} RINUTES
FROM YOUR ROWE TD ___ 7 (3] 62
{this ehould etert when they left home 1 1____) ROURS
and end when they scrived ot the fishing 63 (1]
site, iIncluding stops slong the way.)
] t__ ) Days
65 [1}
13) COULD YOU ESTIRATE TRE DISTANCE YOU
TRAVELED PRON YOUR RONE TO _ 7 [ T R N . 11
One-way distance, sum of a1) wodes [X) (13 69 10
including stops slong Lhe way?
14) WOULD YOU ESTIMATE THE AWOUNT OF MODF AMOUMT SPENT
MONEY YOU SPENT ON TRANSPORTATIOM
TO AND PROM ? too ! [ ] 1_ 1 | 1 on
i oM 3O 18 16
Money apent on such things se tires
should not be included becsuvee they | Lo Sh_ b t___ .00
scen’t specificelly for the trip. 1 e 79 M B) 2
1€ cac or other vehicle wan vaed, ASK #3155 - 421,
If NOT, skip to 017, $ GAS ONLY
18) ROW mUCH OP TRIS COST WAS POR GAS? 3 1 ' V.00
e) (13 e ({3

16) DI1D 300 CONSIDER WEAR AND TEAR ON
TAE VERTCLE DRIVEN AS PART OF THE
TRANSPORTATION COST?

17} WRAT WOULD YOD ESTIFATE AS TAL
COST FPER WILE OF WEAR AND TEAR "

ON THE VERICLE DRIVEW? [T T)

1’, OR WRAT TYPE OP ROAD DID YOU SPEND MOST
OF YOUR TIME TRAVELING?
1Ninterstate

11Mighvay 3} Rural ipaved)

YESel pnel !

1 Rucal (unpaved)

1.___t PER mILF
20

LCT
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