Document Type

Article

Publication Title

Annals of Glaciology

Publisher

International Glaciological Society

Publication Date

2004

Abstract

Accurate modeling of ice sheets requires proper information on boundary conditions, including the geothermal heat flow (or heat-flow density (HFD)). Traditionally, one uniform HFD value is adopted for the entire modeled domain. We have calculated a distributed, high-resolution HFD dataset for an approximate core area (Sweden and Finland) of the Scandinavian ice sheet, and imbedded this within lower-resolution data published for surrounding regions. Within the Last Glacial Maximum ice margin, HFD varies with a factor of as much as 2.8 (HFD values ranging between 30 and 83mWm–2), with an average of 49mWm–2. This average value is 17% higher than 42mWm–2, a common uniform value used in ice-sheet modeling studies of Fennoscandia. Using this new distributed dataset on HFD, instead of a traditional uniform value of 42mWm–2, yields a 1.4 times larger total basal meltwater production for the last glacial cycle. Furthermore, using the new dataset in high-resolution modeling results in increased spatial thermal gradients at the bed. This enhances and introduces new local and regional effects on basal ice temperatures and melt rates. We observed significant strengthening of local ‘ice streaming’, which in one case correlates to an ice-flow event previously interpreted from geomorphology. Regional to local variations in geothermal heat flow need to be considered for proper identification and treatment of thermal and hydraulic bed conditions, most likely also when studying Laurentide, Greenland and Antarctic ice sheets.

DOI

10.3189/172756405781813582

Comments

© 2004, International Glaciological Society. View original published article at 10.3189/172756405781813582 .

Share

COinS