Document Type

Article

Publication Title

Nature Communications

Publisher

Nature Publishing Group

Publication Date

1-18-2016

Abstract

Large-scale climate patterns control variability in the global carbon sink. In Europe, the North-Atlantic Oscillation (NAO) influences vegetation activity, however the East-Atlantic (EA) pattern is known to modulate NAO strength and location. Using observation-driven and modelled data set, we show that multi-annual variability patterns of European Net Biome Productivity (NBP) are linked to anomalies in heat and water transport controlled by the NAO-EA interplay. Enhanced NBP occurs when NAO and EA are both in negative phase, associated with cool summers with wet soils which enhance photosynthesis. During anti-phase periods, NBP is reduced through distinct impacts of climate anomalies in photosynthesis and respiration. The predominance of anti-phase years in the early 2000s may explain the European-wide reduction of carbon uptake during this period, reported in previous studies. Results show that improving the capability of simulating atmospheric circulation patterns may better constrain regional carbon sink variability in coupled carbon-climate models.

Comments

Bastos, A. et al. European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling. Nat. Commun. 7:10315 doi: 10.1038/ncomms10315 (2016).

Rights

© 2016, Rights Managed by Nature Publishing Group

DOI

10.1038/ncomms10315

Recommended Citation

Bastos, A. et al. European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling. Nat. Commun. 7:10315 doi: 10.1038/ncomms10315 (2016).

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS