Document Type


Publication Title

Biotechnology Progress

Publication Date







Biology | Life Sciences


Encapsulated microbes have been used for decades to produce commodities ranging from methyl ketone to beer. Encapsulated cells undergo limited replication, which enables them to more efficiently convert substrate to product than planktonic cells and which contributes to their stress resistance. To determine how encapsulated yeast supports long-term, repeated fed-batch ethanologenic fermentation, and whether different matrices influence that process, fermentation and indicators of matrix durability and cell viability were monitored in high-dextrose, fed-batch culture over 7 weeks. At most timepoints, ethanol yield (g/g) in encapsulated cultures exceeded that in planktonic cultures. And frequently, ethanol yield differed among the four matrices tested: sodium alginate crosslinked with Ca and chitosan, sodium alginate crosslinked with Ca , Protanal alginate crosslinked with Ca and chitosan, Protanal alginate crosslinked with Ca , with the last of these consistently demonstrating the highest values. Young's modulus and viscosity were higher for matrices crosslinked with chitosan over the first week; thereafter values for both parameters declined and were indistinguishable among treatments. Encapsulated cells exhibited greater heat shock tolerance at 50°C than planktonic cells in either stationary or exponential phase, with similar thermotolerance observed across all four matrix types. Altogether, these data demonstrate the feasibility of re-using encapsulated yeast to convert dextrose to ethanol over at least 7 weeks. 2+ 2+ 2+ 2+


alginate, chitosan, fermentation, immobilization, yeast encapsulation



© 2019 The Authors.

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

50_btpr2925-sup-0001-supinfo.docx (2248 kB)
Supplemental information

Included in

Biology Commons