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Role of resonance-enhanced multiphoton excitation in high-harmonic generation of N2:
A time-dependent density-functional-theory study

Xi Chu
Department of Chemistry and Biochemistry and Center for Biomolecular Structure and Dynamics, The University of Montana, Missoula,

Montana 59812, USA

Gerrit C. Groenenboom
Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

(Received 9 July 2012; revised manuscript received 17 September 2012; published 31 January 2013)

A minimum at ∼39 eV is observed in the high-harmonic-generation spectra of N2 for several laser intensities
and frequencies. This minimum appears to be invariant for different molecular orientations. We reproduce this
minimum for a set of laser parameters and orientations in time-dependent density-functional-theory calculations,
which also render orientation-dependent maxima at 23–26 eV. Photon energies of these maxima overlap with
ionization potentials of excited states observed in photoelectron spectra. Time profile analysis shows that these
maxima are caused by resonance-enhanced multiphoton excitation. We propose a four-step mechanism, in which
an additional excitation step is added to the well-accepted three-step model. Excitation to a linear combination
of Rydberg states c′

4
1�+

u and c3
1�u gives rise to an orientation-invariant minimum analogous to the “Cooper

minimum” in argon. When the molecular axis is parallel to the polarization direction of the field, a radial node goes
through the atomic centers, and hence the Cooper-like minimum coincides with the minimum predicted by a modi-
fied two-center interference model that considers the de-excitation of the ion and symmetry of the Rydberg orbital.

DOI: 10.1103/PhysRevA.87.013434 PACS number(s): 33.80.Rv, 42.50.Hz, 33.80.Eh, 33.90.+h

I. INTRODUCTION

Exciting results have been obtained in recent years by using
high-harmonic generation (HHG) [1,2] to probe molecular
dynamics with subfemtosecond temporal resolution [3–8].
The sensitivity of HHG emission to molecular geometry and
motion is the foundation for this application. In particular,
minima in HHG spectra [7,9] and the involvement of multiple
ionization channels [10–12] may correlate with the molecular
structure and cause oscillation of the HHG intensity in
response to geometry changes in molecules. Among the
different types of minima, those due to two-center interference
[13] and Cooper minima, initially observed in photoionization
[14] and caused by radial nodes of the ground-state wave
function, have attracted much attention. The HHG of CO2 is
well studied and believed to exhibit the two-center interference
[13] type of minimum [15], whose position depends on the
molecular orientation and parameters of the incident laser.
Wörner et al. [16] concluded that two molecular orbitals (MOs)
contribute to the HHG of CO2, which leads to controllable
phase differences. In contrast, they also reported a minimum
for N2, which remains at ∼39 eV for different alignment
angles and incident laser parameters. As such, it is considered
to be Cooper-like. The HHG spectra of Ar [17,18], Kr, and
Xe [19] have been shown to exhibit Cooper minima, and it has
been pointed out that the single-active-electron (SAE) model
is not sufficiently accurate to determine the positions of the
minima [20]. To confirm a Cooper minimum in a molecule is
even less straightforward. An expansion of both the ground and
the continuum wave function into angular momentum space
is needed. In the most recent work by Bertrand et al. [9],
HHG measurements using a longer wavelength, 1200 nm,
were compared to a SAE calculation involving only the
highest occupied molecular orbital (HOMO). They concluded
that the destructive interference between the recombination

contributions from the p and f free electron partial waves
gave rise to the minimum. The difference between theory and
measurements, however, is as large as 13 eV.

It is generally accepted that HHG of N2 is due to activity of
the electron initially occupying the HOMO. The HOMO-1, on
the other hand, has also been shown to influence the molecular-
orientation-dependent intensity [21] and phase [11,22] of
HHG. Current strong-field theory for HHG largely relies
on the semiclassical Lewenstein model [23]. Semiclassical
methods usually ignore all excited states, the depletion of the
ground state, and the interaction between the active electron
in the continuum and the parent ion. Furthermore, the SAE
approximation is usually applied. As such, all the electronic
structure information is embedded in the HOMO and the Ip.
Even when other orbitals, such as HOMO-1, are considered,
disentanglement of the orbitals is usually assumed and the
active electron is approximated by plane waves [11,22]. Such
calculations can resolve the alignment-angle-dependent HHG
signals and thus reveal the relation between the tomography
of the HOMO and the HHG signal [11,24,25]. The limitation
of these methods is that the role of correlated multielectron
dynamics and ionic excited states is not fully considered.
A quantum mechanical approach with all electrons included
provides a more complete description of the process, although
such a method requires extremely large-scale computation.

A time-dependent density-functional-theory (TDDFT)
study of the HHG of N2 was published in 2001 [26], in which
the Time-dependent Leeuwen-Baerends α (TDLBα) potential
was adopted. This method treats the ground and excited states
together with the continuum with sufficient accuracy. It also
describes other strong-field processes that accompany HHG,
including ionization and excitation. The advantage of TDDFT
is that it is, in general, less costly in terms of computation,
while electron correlation is accounted for to some extent. In
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Figs. 12 and 13 in Ref. [26], a minimum is visible at 39 eV for
both the 1064-nm and the 800-nm fundamental wavelengths.
The intensity applied there was 1014 W/cm2. Here we present
more HHG data for a variety of laser intensities, frequencies,
and molecular orientations to show that this relative stationary
minimum is reproducible by our method.

A Cooper minimum is the most likely cause for a minimum
that does not vary strongly with the molecular orientation
angle. An important question, however, is: What makes the
HOMO (3σg) atomic-like? An earlier study of ours showed
that the projection of the outer region of the 3σg orbital is
82.7% s and 17.1% dz2 [27]. This ratio varies with the radius
r . Dipole matrix elements involving the dz2 orbital depend
on the orientation. We therefore expect the dipole moment
for recombination, which concerns the p and f scattering
wave functions and their relative phases, to depend on the
orientation.

Two-center interference [13] has also been discussed by
Zimmermann et al. [28] and Gühr et al. [29]. Zimmermann
et al. observed that the 3σg orbital of N2 is a linear combination
of p and s orbitals at the two atomic centers. For a destructive
interference the free electron wave function as a plane wave
should have a 2π phase shift between the two atomic centers
for the p component, whereas a π phase shift is needed for the
s component. Gühr et al., on the other hand, only considered
a phase shift of π between the atomic centers and found
agreement between the interference model and the calculated
HHG minimum using an SAE method for larger internuclear
distances R and the parallel orientation θ = 0.

In this article we propose that resonance-enhanced multi-
photon excitation (REME) plays an important role in HHG
spectra. Maxima occur at 23–26 eV for all orientations.
Their positions overlap with the ionization potentials in
photoelectron experiments [30], which correspond to excited
ion states. We use time profile analysis to show that HHG
peaks in this energy range have a large “multiphoton”
component, which diminishes at the minimum. We postulate
that this process is an excitation that results in an atomic-like
orbital for the active electron. A significant contribution to
HHG comes from recombination to Rydberg orbitals, which
creates an isotropic Cooper minimum. When this channel is
considered, destructive two-center interference requires a π

phase difference for the plane wave between the two atomic
centers and it overlaps with the Cooper minimum for the
parallel orientation.

We introduce the essential formalism of TDDFT in Secs. II
and III. In Sec. IV we show the calculated HHG spectra
for various laser parameters and molecular orientations. We
present time profile analysis and photoelectron experiment
data that demonstrate the importance of excitation in creating
HHG minima and maxima in Sec. V. The role of different
MOs is analyzed in Sec. VI. In Sec. VII we describe
interference models that involve atomic-like Rydberg orbitals.
The conclusions are given in Sec. VIII.

II. TIME-DEPENDENT DENSITY FUNCTIONAL THEORY
FOR MOLECULES IN STRONG FIELDS

A TDDFT method was developed for treating diatomic
molecules interacting with a linearly polarized laser, whose

polarization direction is parallel to the molecular axis [26,31,
32]. Later this work was extended to treat arbitrary polarization
directions for the study of the anisotropy of ionization and
HHG [27,33,34]. We use the approach of Ref. [35], which
includes multiple electronically excited states, the depletion
of the ground state, and the interaction between the active
electron and the parent ion in the continuum. We employ the
TDLBα exchange-correlation functional, whose accuracy has
been extensively benchmarked [26,31,34,35]. Details of the
method are given in previous articles [26,31,35]. The central
theme of the TDDFT method that we implemented is a set
of TD Kohn-Sham equations, which are structurally similar
to the TD Hartree-Fock equations, but include many-body
effects through a local TD exchange-correlation potential. We
consider a quantum action integral [36–38],

A =
∫ t1

t0

dt〈�(t)|i ∂

∂t
− Ĥ (t)|�(t)〉, (1)

where �(t) is the total N -electron wave function. When �(t)
is represented by a single determinant,

�(t) = 1√
N !

det [ψ1(t)ψ2(t) · · ·ψN (t)] , (2)

the total electron density at time t is determined by the set of
occupied single-electron orbital wave functions {ψiσ } as

ρ(r,t ; R) =
∑

σ

Nσ∑
i=1

ρiσ (r,t ; R)

=
∑

σ

Nσ∑
i=1

ψ∗
iσ (r,t ; R)ψiσ (r,t ; R), (3)

where i is the orbital index, σ is the spin index, and R is
the internuclear distance. The spin orbital ψiσ satisfies the
one-electron Schrödinger-like equation, in atomic units,

i
∂

∂t
ψiσ = Ĥ (r,t ; R)ψiσ

=
[
−1

2
∇2 + vnucl(r; R) + E(t) · r

+
∫∫∫

d3r ′ ρ(r ′,t ; R)

|r − r ′| + VLBα,σ (r,t ; R)

]
ψiσ ,

i = 1,2, . . . ,Nσ , (4)

where Nσ is the number of electrons that have σ spin and
E(t) = E(t)q̂ is the electric field of the laser and |q̂| = 1. The
external potential due to the nuclear attraction is

vnucl = − Z

|R1 − r| − Z

|R2 − r| , (5)

where R1 and R2 are the coordinates of the two nuclei with
charges Z. The TDLBα potential is

VLBα,σ

= αvLSDA
xσ (r,t ; R) + vLSDA

cσ (r,t ; R)

− βx2
σ (r,t)ρ

1
3
σ (r,t ; R)

1 + 3βxσ (r,t) ln
{
xσ (r,t ; R) + [

x2
σ (r,t ; R) + 1

] 1
2
} , (6)

which contains two empirical parameters, α and β. In Eq. (6),
vLSDA

xσ and vLSDA
cσ are the local spin density approximation
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(LSDA) exchange and correlation potentials, which do not
have the correct asymptotic behavior. The last term is the
gradient correction with xσ (r) = |∇ρσ (r)|/ρσ (r)4/3, which
ensures the proper long-range asymptotic behavior VLBα,σ →
−1/r as r → ∞.

III. HHG POWER SPECTRUM CALCULATIONS

The numerical solution of the TD equations is detailed in a
recent publication [35]. Once the electron density ρ(r,t ; R) is
obtained, the induced dipole moment and dipole acceleration
can be determined, respectively, as

d(R,t) =
∫∫∫

ρ(r,t ; R)qd3r, (7)

where q = r · q̂ and

a(R,t) =
∑

σ

∫∫∫
ρσ (r,t ; R)

[
−∂vnucl(r; R)

∂q

+E(t) sin(ωt)

]
d3r. (8)

The HHG power spectrum is related to the Fourier transform
of the respective TD dipole moment or dipole acceleration:

d(R,ω) = 1

tf − ti

∫ tf

ti

d(R,t)e−iωtdt, (9)

a(R,ω) = 1

tf − ti

∫ tf

ti

a(R,t)e−iωtdt = −ω2d(R,ω). (10)

Finally, the spectral density (radiation energy per unit fre-
quency range) is given by Refs. [33,39]

S(R,ω) = 2

3πc3
|a(R,ω)|2 = 2ω4

3πc3
|d(R,ω)|2 , (11)

where c is the speed of light. We have checked that results
obtained by calculating a and d are indistinguishable, which
is an indication of numerical accuracy. Throughout the paper
we plot |d(R,ω)|2 as the HHG power spectrum.

IV. THE 39-ELECTRON-VOLT MINIMUM AT THE
EQUILIBRIUM INTERNUCLEAR DISTANCE

We consider a linearly polarized laser field with a sin2 pulse
shape, a pulse length of 20 optical cycles, and an intensity of
2 × 1014 W/cm2. The wavelength is 800 or 1064 nm. We fix
R at the equilibrium distance Re = 2.07a0. The α parameters
of the TDLBα potential for different R values are listed in
Ref. [27]. We show the HHG spectra in Fig. 1 for two laser
frequencies. The electric-field polarization is parallel to the
molecular axis. This parallel orientation significantly reduces
the size of the computation because the axial symmetry is
conserved. For both 800- and 1064-nm incident light, there is
a minimum at 39 eV. Specifically, it is at the 25th harmonic for
800 nm and at the 33rd harmonic for 1064 nm, in agreement
with experiments [16]. In Fig. 1 we also plot the spectrum for
an 800-nm laser with an intensity of 1.5×1014 W/cm2. The
minimum is more obvious with the lower laser intensity, which
is consistent with experimental results [16]. The decrease of
HHG intensity from 30 to 39 eV is more abrupt for a lower
incidental laser intensity.
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FIG. 1. (Color online) HHG of N2 at the equilibrium geometry
calculated with the TDDFT method. The unit for laser intensity I is
1014 W/cm2 and the pulse length is 20 optical cycles. Wavelengths
are λ = 800 nm [dashed (black) line and dot-dashed (green) line] and
λ = 1064 nm [solid (red) line].

Experimentally measured positions of the discussed mini-
mum for N2 are not much influenced by the orientation angle
(θ ) of the molecular axis relative to the polarization direction of
the laser field. This is a major difference between the minimum
for N2 and those for CO2.

In Fig. 2 we plot the HHG spectrum for three values of
θ . The laser intensity is 2 × 1014 W/cm2 and the wavelength
is 800 nm. The HHG intensity decreases from the parallel
orientation to θ = 45◦ and, further, to the perpendicular
orientation for most harmonics, which is consistent with
experimental observations. For all three orientations there is a
minimum at 39 eV, also in agreement with experiment [40].

Earlier work on H2 showed that HHG spectra calculated at
the equilibrium distance differ considerably from HHG spectra
calculated with molecular vibration taken into account [41].
The reason is that for H2 the vertical Ip(R) varies significantly
over R, which causes the phase φ(ω,R) of HHG to oscillate
over R as well. In Fig. 3 we plot the ground-state vibrational
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FIG. 2. (Color) HHG of N2 calculated with the TDDFT method.
The laser intensity is 2 × 1014 W/cm2 and the pulse length is 20
optical cycles. Orientation angles are θ = 0◦ [solid (black) line],
θ = 45◦ [dashed (green) line], and θ = 90◦ [solid (red) line].
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FIG. 3. Ionization potential of N2 as a function of R calculated
with the Rydberg-Klein-Rees method [47] with spectroscopic data
for N2 and N+

2 from Refs. [48,49], respectively (dashed line), and
ground-state vibrational wave function χ0(R) computed with the sinc-
function discrete variable representation method [50,51] (solid line).

wave function χ0(R) of N2 together with Ip(R). This Ip(R) is
much flatter than that for H2 in the region where the nuclear
wave function has a significant amplitude.

If we express |D(ω,ν = 0)|2, in which ν is the vibrational
quantum number, as

|D(ω,ν = 0)|2 = |〈χ0(R)|d(R,ω)eiφ(ω,R)|χ0(R)〉|2, (12)

we see that a large phase variation causes cancellation in
Eq. (12) and makes |D(ω,0)|2 very different from |d(ω,Re)|2.
Due to the importance of the R-dependent phase, Eq. (12) can
be approximated by

|D(ω,ν = 0)|2 ≈ |〈χ0|e−iIp(R)τ (ω)|χ0〉|2|d(ω,Re)|2, (13)

where τ is the recombination time defined in the strong-field
approximation (SFA). It was shown that this “SFA-phase”
formula reproduces the measured D2-to-H2 HHG ratio [41].

It is much less costly to evaluate Eq. (13) than to evaluate
Eq. (12), because Eq. (12) involves repeatedly solving TDDFT
equations for different R values. In recent work on H2, the
error caused by using the SFA-phase formula is estimated to
be within 7% for similar laser parameters [41]. We expect the
error in the case of N2 to be even smaller, because |d(R,ω)|
is more flat as a function of R for N2 than for H2 due to the
flatter Ip(R) of N2.

As a measure of the effect of the zero-point vibration in
N2, we calculate the ratio |D(ω,ν = 0)|2/|d(ω,Re)|2. When
using Eq. (13) this ratio becomes |〈χ0|e−iIp(R)τ (ω)|χ0〉|2 and it
is always less than 1 because only the phase φ is considered
as a function of R in Eq. (13). In Fig. 4 we plot the ratio of the
HHG intensity calculated with Eq. (13) as a function of ω for
R = Re. This ratio at the discussed minimum is 0.98 for the
1064-nm laser and 0.97 for the 800-nm laser, and it remains
close to 1 at other harmonics. This justifies our approximation
of |d(ω)|2 ≡ |d(ω,Re)|2 ≈ |D(ω,ν = 0)|2 for N2 throughout
this paper.

20 30 40 50
h
_ ω (eV)

0.94

0.96

0.98

1

|D
(ω

,0
)|2 /|d

(ω
,R

eq
)|2

800 nm
1064 nm

FIG. 4. (Color online) Ratio of the HHG intensity calculated with
Eq. (13) for the ground vibrational state to that calculated by fixing
the internuclear distance at Re. The laser intensity is 2 × 1014 W/cm2

and θ = 0◦.

V. REME AND ITS ROLE IN HHG MAXIMA AND MINIMA

A maximum appears around 23–26 eV for the 800-nm laser
and at similar energies for the 1064-nm laser, but with more
structure. Compared to the HHG intensity at the ionization
threshold, the maximum is more enhanced than what we expect
from constructive interference. We further observe that photon
energies of the maxima overlap with Ip values measured in
photoelectron experiments. In Table I we list the lowest eight
doublet N+

2 states observed in the photoelectron experiment
[30]. The vertical Ip of N2 at R = Re for each state is
obtained from experiment, from multireference configuration
interaction [42], and from DFT calculations. For each state
we also tabulate the dominant excitation with respect to the
X 2�+

g ground state of the ion. In the DFT calculation, we use
the LBα potential with exactly the same α coefficient as in
our TD calculations. The orbital energies (ε) of N2 are listed
in Table II. The vertical Ip from the ground state of N2 to
the X 2�+

g state of the ion is calculated as the negative of the
orbital energy of the 3σg HOMO. For other ionic states, the
orbital energy differences for orbitals involved in the dominant
excitation of the ion are added. For example, the Ip from the
ground state of N2 to the D 2�g state of the ion is calculated
as Ip = −ε3σg

+ ε3σg
+ ε1πg

− 2ε1πu
= ε1πg

− 2ε1πu
.

With the laser polarization parallel to the molecular axis,
allowed transitions from the X 2�+

g ground state are limited
to the B 2�+

u and C 2�+
u states in Table I with odd numbers

of photons or to the F 2�+
g state with an even number of

photons. From intermediate output and analysis of our TDDFT
formalism, we identify contributions of these excited states to
HHG. First, we rewrite �(t) [Eq. (2)] as

�̃(t) =
∑
ll′

bll′ (t)�
ion
l ϕelec

l′ , (14)

where �ion
l is an orbital product corresponding to a field-free

ionic configuration and ϕelec
l′ is a one-electron function. We do

not use determinants since that is not necessary for computing
the dipole moment. The ion and electron are treated together

013434-4
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TABLE I. Vertical ionization potentials of N2, the experimental value [30], the ab initio value (MRCI) [42], and the DFT value (see Sec. IV).
Column 7 gives the dominant excitation with respect to the ground state of the ion, and the excitation energy �Eexc is estimated from DFT
calculations.

Ip (eV) Resonance Excitation

Ionic state Experiment MRCI DFT θ h̄ω (eV) Assignment �Eion
exc (eV)

X 2�+
g 15.580 15.406 15.580

A 2�u 16.926 16.912 16.863 90◦ ∼17 1πu → 3σg 1.283
B 2�+

u 18.751 18.569 18.700 2σu → 3σg 3.120
2 2�g 24.788 24.547 23.518 3σg → 1πg 7.938
C 2�+

u 25.514 25.321 24.802 0◦ 23–26 1πu → 1πg 9.222
D 2�g (26) 26.064 26.085 1π 2

u → 3σg 1πg 10.505
2 2�u (30) 28.326 26.639 90◦ 26–30 2σu → 1πg 11.059
F 2�+

g 28.8 28.864 27.922 2σu1πu → 3σg1πg 12.342

in our calculation and an absorbing boundary is placed at
40 a0 radius to simulate ionization. The summation includes

the ground state, excited states, and continuum states. The
Fourier transform of the dipole becomes

d(ω) = 1

tf − ti

∫ tf

ti

∑
l1l2l3l4

b∗
l1l2

(t)
〈
�ion

l1
ϕelec

l2

∣∣d̂∣∣�ion
l3

ϕelec
l4

〉
bl3l4 (t)e−iωtdt

=
∑
l1l3

〈
�ion

l1

∣∣d̂∣∣�ion
l3

〉 1

tf −fi

∫ tf

ti

∑
l2

b∗
l1l2

(t)bl3l2 (t)e−iωtdt +
∑
l2l4

〈
ϕelec

l2

∣∣d̂∣∣ϕelec
l4

〉 1

tf −fi

∫ tf

ti

∑
l1

b∗
l1l2

(t)bl1l4 (t)e−iωtdt, (15)

where d̂ is the dipole operator and we used the orthonormality
of the orbitals. In situations where the only contribution comes
from recombination, at time τ (ω), from a free electron state
with energy εk = h̄2k2

2me
to the ground state with energy −Ip and

the ion remains in the ground state, this model reduces to the
SFA formalism with d(ω) ∝ 〈ϕelec

3σg
|d̂|ϕelec

k 〉 and

h̄ω = εk − (−Ip) = h̄2k2

2me

+ Ip. (16)

In our calculations, however, resonances couple the ground
state to excited states of the ion and the active electron. We
evaluate Eqs. (7) and (9) with ρ(t) obtained by solving the
TDDFT equations. For the purpose of analysis, we evaluate
the Fourier components of bll′ (t),

bll′ (ω) =
∫ tf

ti

〈
�ion

l ϕelec
l′

∣∣�̃(t)
〉
e−iωtdt. (17)

TABLE II. Orbital energies (ε) of N2 calculated with the LBα

potential and the ground-state occupation.

Orbital ε (eV) Occupation

2πu −2.910 0
3σu −2.966 0
4σg −3.730 0
1πg −7.642 0
3σg −15.580 2
1πu −16.863 4
2σu −18.700 2

The field-free wave functions �ion
l and ϕelec

l′ are from DFT
calculations on the same spatial grid and �̃(t) is obtained in
our TDDFT calculations. Contributions to d(ω) [Eq. (15)]
arise from products bl1l2 (ω0)bl3l4 (ω1) whenever ω = ω1 − ω0.
Since depletion of the ground state is small, the main
contribution arises from h̄ω0 = −Ip, and for an harmonic
with photon energy h̄ω, we have h̄ω1 = h̄ω − Ip. Among
∼10 000 coefficients bll′ (−Ip/h̄) and bll′ (ω − Ip/h̄), we select
the largest ones. For bll′ (−Ip/h̄), apart from the ground-state
contribution X 2�

+
g 3σg , we also found a significant

contribution from (C 2�
+
u ) 3σu because of the resonance.

For bll′ (ω − Ip/h̄), the contribution from (X 2�+
g )ϕk′ , with

h̄ω − Ip = εk′ , where εk′ is the energy of the electron in the
continuum, is negligible. The largest contribution is from
(C 2�

+
u )(ϕk + b 3σg), where b is a constant, h̄ω − Ip =

εk + �Eion
exc, and �Eion

exc = E(C 2�
+
u ) − E(X 2�

+
g ) is the

excitation energy of the ion. Therefore we have

h̄ω = Ip + εk + �Eion
exc. (18)

The dipole according to Eq. (15) is

d(ω) ∝ A〈X 2�+
g |d̂|C 2�+

u 〉 + B〈3σu|d̂|ϕk〉, (19)

where constants A and B are significantly larger than those of
other contributions.

Excitation of the ion from the X 2�+
g to the C 2�+

u state
and excitation of the electron from 3σg to 3σu are important.
In neutral N2 orbital excitation from 3σg to 3σu produces the
c′

4
1�+

u Rydberg state. We extract the following mechanism
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FIG. 5. (Color) Time profiles of the 9th, 11th, 15th, and 25th
harmonics for R = Re = 2.07a0. The laser intensity is 2 × 1014

W/cm2 and θ = 0◦.

accordingly for H15 and up to the 39-eV minimum:

N2(X 1�+
g ) + 9hν

excitation−→ N2(c′
4

1�+
u ), (20)

N2(c′
4

1�+
u ) + 6hν

ionization−→ N+
2 (C 2�+

u ) + e−, (21)

e− + nhν
acceleration−→ e−∗, n = 1, . . . ,10, (22)

N+
2 (C 2�+

u ) + e−∗ recombination−→ N2(c′
4

1�+
u ) + hν ′

[ν ′ = (6 + n)ν]. (23)

In this “four-step” mechanism, excitation is added prior to
the three steps of HHG and the product of the ionization
is an ion in an excited state, rather than in the ground
state. The excitation and ionization steps are enhanced by
multiphoton resonance. The recombination step consists of
two single-electron processes of ion de-excitation C 2�

+
u →

X 2�
+
g and the high electron goes from the continuum with

energy εk to the 3σu orbital. The combination of the X 2�+
g

ionic state and 3σu electronic orbital gives the c′
4

1�+
u state

of N2.
The time profile of |dω(t)| obtained by the wavelet expan-

sion [31] distinguishes a three-step process from a multiphoton
process for HHG with photon energy h̄ω. An example of the
“three-step” process is H25 (the minimum at 39 eV) at Re

in Fig. 5. It exhibits two “recombination” peaks per optical
cycle, and twice per cycle |d25ω0 (t)| drops to 0. An example
of a pure multiphoton process is H9 (slightly below the Ip),
because its energy is too low for tunneling ionization. Its time
profile in Fig. 5 shows no periodicity and it correlates with
the laser intensity. For H11 (17 eV; slightly above the vertical
Ip), although the periodic recombination peaks are visible,
the dominant contribution is still the multiphoton process,
enhanced by the multiphoton resonance with highly excited
states and virtual states near the ionization threshold. As a
result, |d11ω0 (t)| does not drop to 0 between two peaks, as in the
case when the three-step process is dominant. Harmonic H15,
the 23-eV maximum, has a similar profile. The contribution
from the multiphoton resonance matches that of H9 and is
significantly larger than that of H11. The contribution of
multiphoton resonance decreases with increasing harmonic
order and drops to near 0 for H25, the weak minimum, and for
higher harmonics. We observe similar patterns in time profiles
for θ = 45◦ and θ = 90◦.

The mechanism in Eqs. (20)–(23) is consistent with
significant multiphoton contributions for harmonics between
the maximum and the minimum, which cannot be explained by

interference models that only consider the three-step mecha-
nism. In these four-step mechanisms we propose, multiphoton
contributions arise from the excitation and ionization steps,
they are reflected in the first term of Eq. (19), and they are
enhanced by the resonances listed in Table I. Compared to the
three-step mechanism, the additional excitation step makes the
free electron recombine to a higher orbital than the HOMO, as
in the second term in Eq. (19), which bears a significance in
interferences that create HHG minima.

The anisotropy of the calculated HHG intensities, defined
as the ratio between |d(ω)|2 for θ = 0◦ and |d(ω)|2 for θ =
90◦, supports our interpretation that excitation causes HHG
maxima at all orientations. The anisotropy increases with the
harmonic order n, from n = 1 to n = 7, which occurs at 11 eV.
Then it decreases for n = 9 and n = 11, possibly due to the
X 2�+

g –A 2�u resonance for the perpendicular orientation (see
Table I). Then it increases for n = 13 and n = 15, which is the
23-eV maximum for the parallel orientation. The anisotropy
is maximal here. This is consistent with the selection rule,
which prohibits the X 2�+

g –C 2�+
u multiphoton transition for

the perpendicular orientation. For n = 17 (at 26 eV), the
anisotropy has a minimum, which is due to the X 2�+

g –2 2�u

resonance prohibited for the parallel orientation but allowed for
other orientations (Table I). From 26 to 36 eV, the anisotropy
appears to be constant. For the perpendicular orientation, the
peaks for n = 25, 27, and 29 (at 39–45 eV) have the shape
of a short plateau before the cutoff. For the perpendicular
orientation, we propose the following mechanism for H17 and
up to the 39-eV minimum:

N2(X 1�+
g ) + 9hν

excitation−→ N2(c3
1�u), (24)

N2(c3
1�u) + 8hν

ionization−→ N+
2 (2 2�u) + e−, (25)

e− + nhν
acceleration−→ e−∗, n = 1, . . . ,8, (26)

N+
2 (2 2�u) + e−∗ recombination−→ N2(c3

1�u) + hν ′

[ν ′ = (8 + n)ν]. (27)

The c3
1�u state of N2 corresponds to an ion in the X 2�+

g

state and the electron in the 2πu orbital. The dipole ma-
trix element analogous to Eq. (19) for the perpendicular
orientation is

d(ω) ∝ C〈X 2�+
g |d̂|2 2�u〉 + D〈2πu|d̂|ϕk〉, (28)

where C and D are constants.
The X 2�+

g –2 2�u and X 2�+
g –C 2�+

u resonances, which
create maxima for the perpendicular and parallel orientations,
respectively, are both allowed for the θ = 45◦ orientation. The
four-step mechanisms that we propose [Eqs. (20)–(27)] for
parallel and perpendicular orientations therefore apply at any
orientations in between the parallel and the perpendicular. In
addition, the X 2�+

g → 2�g transitions are forbidden for both
the parallel and the perpendicular orientation but allowed for
θ = 45◦. As such, the HHG intensity at θ = 45◦ orientation
is much closer to that for the parallel orientation than that for
the perpendicular orientation. Figure 2 shows a near-constant
ratio between the HHG intensity of the parallel and that of the
θ = 45◦ orientation for most of the harmonics.
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In experiments aligned molecules contain a distribution
of orientations. Calculated HHG spectra for the above three
typical angles show that a 23- to 26-eV maximum due to
multiphoton excitations of the ion exists for all orientations,
despite the different selection rules that apply to parallel and
perpendicular orientations. From these maxima, the HHG
intensity decreases to the same 39-eV minimum for all
orientations.

VI. CONTRIBUTION OF MOLECULAR ORBITALS

MOs have been an important concept in strong-field
theories. Here we discuss orbital assignments to the four
steps. For the parallel orientation the excitation step consists
of orbital transition 3σg → 3σu(2pσu). Ion excitation 1πu →
1πg occurs in the ionization step. For the perpendicular
orientation, 3σg → 2πu(3pπu) occurs in the excitation step
and 2σu → 1πg in the ionization step. For orientations in
between, a combination of these orbitals and transitions occurs.
Orbital energies are listed in Table II. Our assignment of the
second step consists of the ionization of the highest electron
from the 3σu or 2πu orbital while exciting a second electron.
Assignments of ion excitations are listed in Table I. Finally, the
electron returns to the 3σu or 2πu orbital and the ion returns to
the ground state upon recollision.

We consider two-electron processes for the ionization steps
important for creating the 23- to 26-eV maxima, which we in-
terpret as a multiphoton resonance with the excited ionic state.
In order to support this model, we investigate contributions of
individual initially occupied orbitals, when coupling between
orbitals is removed. In our TDDFT calculation, all orbitals
are coupled through the Coulomb and exchange-correlation
terms in Eq. (2). The coupling becomes negligible when we
artificially shift the orbital energies of all but one occupied
orbital down by 1.5Eh (40.8 eV). The unoccupied orbitals are
not shifted. The electron density for the orbitals with shifted
energies becomes frozen to the initial distribution obtained
from field-free DFT calculations. As such only the unshifted
orbital contributes to the dipole, i.e., |d(ω)|2 ≈ |dj (ω)|2, in
which j is the index for the unshifted orbital.

In Fig. 6, we plot the calculated contributions from the 3σg

(HOMO), 1πu (HOMO-1), and 2σu (HOMO-2) orbitals to the
HHG of N2 for an 800-nm laser of 2 × 1014 W/cm2 with
the molecule parallel to the polarization direction of the field.
These contributions are obtained by three different calculations
in which we freeze electrons in turn in all but one contributing
orbital using the method described above. The contribution of
the HOMO is dominant. In this orientation the contribution of
the 2σu orbital is larger than that of the 1πu orbital for most
harmonics, despite its lower energy.

The 39-eV minimum appears in the contribution from 3σg .
From 17 to 30 eV, there is a high plateau for 3σg , and the 39-eV
minimum is at the beginning of a second plateau. We also find
the ∼39-eV minimum in the 3σg-only calculation for other ori-
entations. Time-profile analysis for these 3σg-only calculations
show that the excitation step [Eq. (20)] is still there. In this case,
instead of Eq. (19) the recombination dipole matrix element
becomes d(ω) ∝ A′〈3σg|d̂|3σu〉 + B ′〈3σu|d̂|ϕk〉. When only
the two 3σg electrons are considered, the mechanism remains
very similar to the one in Eqs. (20)–(23). The excitation step
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FIG. 6. (Color) Contribution of individual initially occupied
orbitals to HHG, obtained by freezing all other occupied orbitals.
The laser intensity is 2 × 1014 W/cm2 and θ = 0◦.

involves the 3σg-3σu transition, the other 3σg electron ionizes
in the next step and accelerates in the field before it recombines
with the 3σu orbital, while the excited electron goes back to
the 3σg orbital.

The largest difference between the 3σg-only contribution
shown in Fig. 6 and the all-electron results in Fig. 1 concerns
the maximum at ∼23.3 eV (H15). According to the all-electron
calculation, the ratio between this maximum and the minimum
at 17 eV is 8, whereas the same ratio from the 3σg-only
calculation is only 2. It demonstrates a significant contribution
from other orbitals to the maximum.

We propose that the most important contribution to the
maximum comes from the transition between the 1πu and the
1πg orbitals, which is consistent with an intermediate output
and our model in which the ionization step is a two-electron
process. To show the effects of two-electron processes in
which the highest electron ionizes while a second electron
is excited from the 1πu to the 1πg orbital, we shift the energy
of the unoccupied 1πg orbital up by 0.25Eh (6.8 eV) in an
all-electron calculation. The HHG spectrum calculated this
way is plotted in Fig. 7 as the dashed (red) line and it is shifted

0 10 20 30 40 50 60
h
_ ω (eV)

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

0.1

|d
( ω

)|2

No shift
Shifted

[u
ni

ts
 o

f 
(e

a 0)
2 ]

FIG. 7. (Color online) Effect of shifting the energy of the
unoccupied 1πg orbital up by 0.25Eh (6.8 eV). The laser intensity is
2 × 1014 W/cm2 and θ = 0◦.
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slightly to the right to compare it with the unshifted spectrum.
The 23.3-eV maximum is reduced eightfold. The intensity of
emissions at 33 and 36 eV increases. The HOMO is a σ orbital,
which is not coupled to π orbitals by the laser field when
θ = 0◦. This shows that it has to be a two-electron process that
involves another electron initially in the 1πu orbital that creates
the 23.3-eV maximum. A TDDFT method may not treat
two or many electron excitations very accurately. Resolving
harmonic orders, on the other hand, does not require a high
accuracy. For an 800-nm laser field, for instance, the energy
difference between two adjacent odd harmonics is as large
as 3.10 eV.

VII. INTERFERENCE MODELS INVOLVING RYDBERG
STATES TO EXPLAIN THE MINIMUM

An HHG minimum occurs when the contribution shown
in Eq. (19) or the analogous dipole matrix element for other
orientations becomes minimized. The excitation step shown
in Eqs. (20) and (24) creates Rydberg molecules when N2 is
exposed to an intense 800-nm linearly polarized laser. The
Rydberg state is c′

4
1�+

u for the parallel orientation, c3
2�u

for the perpendicular orientation, and a linear combination
of these for other orientations. Both Rydberg states have
principal quantum number n = 3 and converge to the ground
state of the ion, and their energies are very similar: c′

4
1�+

u

is 12.93 eV above the ground state, while c3
2�u is at 12.91

eV [43,44]. The highest orbitals for both the parallel and the
perpendicular orientations, 3σu (2pσu) and 2πu (3pπu), are
highly atomic-like and have more than 99.8% p character.
Their orbital energies are very similar (Table II) as well.
As a result, the dipole matrix elements involving these p

Rydberg orbitals create minima analogous to the Cooper
minimum in Ar associated with the 3p orbital. At energies
(k values) where 〈3σu|d̂|ϕk〉 in Eq. (19) becomes minimized,
A is also significantly reduced, because of the mixing between
ϕk and 3σg .

Cooper minima of Rydberg molecules created in resonance-
enhanced multiphoton ionization photoelectron spectra have
been studied theoretically for NO [45]. It was shown that the
minima have a much lower energy and the energy variation
with respect to the orientation angle is within 3 eV. We expect
similarities for the HHG of N2 with 800-nm intense lasers:
recombination matrix elements involving the Rydberg state
have an energy lower than 39 eV and the excitation energy
makes up the difference. The orientation dependence is
very small.

At any orientation other than the perpendicular, the Rydberg
orbital involved in HHG resembles a 4p atomic orbital, with
one radial node at ∼R/2 and another at ∼2a0. The Rydberg
orbital at the perpendicular orientation has one radial node
remaining, at ∼2a0, while the other node tends to the plane
that goes through the origin. At the parallel orientation, in
particular, one radial node goes through the two atomic centers;
we therefore expect the Cooper minimum, which is due to the
nodal structure, to coincide with the two-center interference
minimum at the parallel orientation. At other orientations
the Cooper minimum remains at similar photon energies,
because the changes in radial nodes are very subtle as the
orientation is varied. The two-center interference, however,

depends on the distance between two planes, R cos θ , and its
minimum becomes unnoticeable when θ is large, because it is
either at the low-intensity plateau beyond the Cooper minimum
or even beyond the cutoff energy.

Here we use a modified two-center interference model at
the parallel orientation to further demonstrate the important
influence of excitation on the minimum. With the REME and
Rydberg orbital considered, we propose a model that has two
major differences compared to earlier work by Lein et al. [13]
and by Zimmermann et al. [28]. (i) Since we identify the
Rydberg orbital (2pσu) rather than the HOMO (2pσg) as the
MO for recombination, the destructive interference requires
the free-electron plane wave to have a π phase difference
between the atomic centers, rather than a difference of
2π , i.e.,

|k|R cos θ = π, (29)

where k is the wave vector of the free electron and θ is
the angle between the molecular axis and the polarization
direction of the electric field of the laser. (ii) When a
multiphoton resonance with an excited state makes a
significant contribution, the photon energy of the high
harmonic is given by Eq. (18). As is often done in the
SFA [13], we compute the wave number k = |k| from

h̄2k2

2me

= εk + Ip, (30)

because the free electron has a higher kinetic energy near
the atomic centers. The photon energy given by Eq. (18)
becomes

h̄ω = h̄2k2

2me

+ �Eion
exc. (31)

In our TDDFT calculation for θ = 0◦, excitations that create
the HHG maximum are dominated by the 1πu ↔ 1πg orbital
transition. We therefore approximate

�Eion
exc = ε1πg

(R) − ε1πu
(R) ≡ �ε(R), (32)

where εi is the orbital energy of orbital i. At the equilibrium
internuclear distance, ε1πg

(Re) − ε1πu
(Re) is approximately 6

photons’ energy for 800-nm lasers, consistent with Eq. (23).
In order for the destructive interference between the two
atomic centers to occur, |k| has to satisfy Eq. (29). Thus for
θ = 0◦ we predict the HHG minimum at

h̄ωmin = h̄2π2

2meR2
+ �ε(R). (33)

We calculate a series of HHG spectra for 1.9 � R � 2.7a0

using the TDDFT method. Results are shown in Fig. 8. For
R = 2.7, 2.6, and 2.5a0, the minimum is in between two
maxima. For R = 2.3, 2.2, 2.1, 2.0, and 1.9a0, the shape above
the minimum is more like a plateau rather than a maximum.
Note that R = 2.1a0 is very close to the N2 equilibrium
distance (Re = 2.07a0). In Fig. 8 we use vertical (red) lines
to mark the h̄ωmin predicted by Eq. (33). They agree with
the minimum according to the TDDFT calculation for R �
1.9a0. Considering that the HHG peaks calculated by TDDFT
are odd harmonics of the principal frequency, whereas h̄ωmin
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FIG. 8. (Color) HHG of N2 at a series of internuclear distances calculated with the TDDFT method. Distances are labeled for each spectrum.
The laser intensity is 2 × 1014 W/cm2 and the pulse length is 20 optical cycles. Wavelengths are λ = 800 nm [solid (black) line]. The molecular
axis is parallel to the polarization direction of the field. Positions of the minima predicted by the modified two-center interference model are
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values calculated by Eq. (33) are not limited to be harmonics,
the agreement between the two methods is remarkable.

In Table III we list the h̄ωmin predicted without considering
the excitation, i.e.,

h̄ωmin = h̄2π2

2meR2
, (34)

and using Eq. (33) for the series of R values used in
Fig. 8. The difference between the two methods is �ε(R)
estimated by Eq. (32). It varies from 4.5 eV for R = 2.7a0

to 11.6 eV for R = 1.9a0, which offers a crucial modification
of the two-center interference model. If we do not include the
excitation energy and do not consider the symmetry of the
Rydberg orbital, but use the symmetry of the HOMO instead,
positions of the minimum would be four times the values
predicted by using Eq. (34), different from the TDDFT results
by a large extent.

TABLE III. Two-center interference minimum predicted by
Eqs. (34), (33), and the TDDFT calculation, together with the
harmonic order (HO) from the TDDFT calculation.

h̄ωmin (eV) predicted by

R (a0) Eq. (34) Eq. (33) TDDFT HO

2.7 18.420 22.986 23.25 15
2.6 19.864 25.002 26.35 17
2.5 21.485 27.264 26.35 17
2.3 25.384 32.690 32.55 21
2.2 27.744 35.955 35.65 23
2.1 30.450 39.672 38.75 25
2.0 33.5707 43.920 44.95 29
1.9 37.198 48.799 48.05 31

The agreement between this model, which considers both
the Rydberg orbital and the excitation energy, and the TDDFT
results offers further support for our four-step model. It
demonstrates the importance of the multiphoton excitation
in the shape of the HHG spectra calculated by the TDDFT
method.

VIII. DISCUSSION AND CONCLUSIONS

We calculate HHG spectra of N2 using a TDDFT method
that has been extensively benchmarked. The influence of the
laser intensity and wavelength is analyzed, as well as the effect
of molecular vibration and orientation. A minimum appears
at 39 eV in all of our results for the equilibrium geometry,
regardless of laser parameters and molecular orientation, in
agreement with experiments. Molecular vibration does not
play a significant role in the HHG because the vertical Ip of
N2 is relatively flat in the region sampled by the ground-state
vibrational wave function.

Calculated spectra exhibit maxima at 23–26 eV, depending
on the laser parameters and the molecular orientation. We
propose that REME causes the maxima. This interpretation is
supported by the following. (i) Photon energies of maxima are
in resonance with excited states of N2 and their orientation
dependence is consistent with the selection rules. (ii) The
time profiles of maxima show a significant contribution of
multiphoton processes; they do not drop to zero twice per
optical cycle as in the case of a typical three-step HHG
process. Considering that photon energies of maxima are much
higher than the ionization threshold, the only explanation for
a multiphoton process is multiphoton excitation enhanced by
resonance. (iii) Shifting the energy of an unoccupied π orbital
causes significant changes in the harmonic of the maximum
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when the molecular axis is parallel to the polarization of the
field. This confirms our assignment of excited states involved
in the resonance.

We propose a four-step model for the HHG between the
maxima and the ∼39-eV minima, which includes excita-
tion, ionization, acceleration, and recombination steps. This
mechanism is based on analysis of our TDDFT formalism
and supported by intermediate output, time profile analysis,
orbital contribution analysis, and our assignment for the HHG
maxima. The excitation step results in a Rydberg state which
is atomic-like. The Rydberg orbital is a combination of the
3σu and 2πu orbitals, depending on the molecular orientation.
Regardless of the orientation, however, the orbital has more
than 99.8% p atomic orbital character, which gives rise to a
Cooper-like minimum that is invariant to orientation. A radial

node is at ∼R/2 radius, going through two atomic centers
for the parallel orientation. For the parallel orientation only,
the Cooper minimum coincides with the minimum predicted
by a two-center interference model, in which we consider the
symmetry of the Rydberg orbital and the excitation energy.
Minima predicted by this modified two-center interference
model agree with TDDFT calculations with a series of R

values, which offers more support of the four-step model that
involves Rydberg orbitals and excited ionic states.
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