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 A Rank Correlation Coefficient Resistant to Outliers
 RUDY A. GIDEON and ROBERT A. HOLLISTER*

 In this article, a nonparametric correlation coefficient is defined that
 is based on the principle of maximum deviations. This new correlation

 coefficient, RgB is easy to compute by hand for small to medium sample
 sizes. In comparing it with existing correlation coefficients, it was found
 to be superior in a sampling situation that we call "biased outliers," and
 hence appears to be more resistant to outliers than the Pearson, Spear-
 man, and Kendall correlation coefficients. In a correlational study not
 included in this article of some social data consisting of five variables for
 each of 51 observations, Rg was compared with the other three correlation
 coefficients. There was agreement on 8 of the 10 possible correlations,
 but in one case, Rg was significant when the others were not, and in yet
 another case, Rg was not significant when the others were. A further
 analysis of this data set indicated that there were three to six data points
 that were anomalies and had a severe effect on the other correlations

 but not Rg. Apparently, the statistic Rg measures association in a unique
 fashion. This different measure of association for real data is extended
 to a population interpretation and expressed in terms of the copula
 function.

 In consideration of ties, this article suggests a randomization method
 and a computation of the minimum and maximum possible correlation
 values when ties are present. These ideas are illustrated with an example.

 Critical values of Rg and enough examples are included so that this
 new statistic can be applied to data. The success that we have had with
 the use of Rg in hypothesis testing suggests that Rg may have important
 applications wherever robustness is desired.

 KEY WORDS: Permutation group; Copula function; Simulated distri-
 bution; Robust rank correlation coefficients; Independence testing; Out-
 liers and their effect on correlation coefficients.

 1. INTRODUCTION

 Some sampling situations involve bivariate data that
 look correlated but have one or more data points that
 appear inconsistent with the bulk of the data. The trimmed
 mean has been suggested as an appropriate procedure in
 certain estimation problems. In some data, however, the
 "outlier" part of the data is in fact reliable data and should
 not be excluded. The proposed correlation coefficient is
 not as sensitive to inconsistent data as the most commonly
 used ones.

 The data shown in Figure 1 were observed in a YMCA
 fourth and fifth grade boys' basketball league in Missoula,
 Montana in 1979. The won-lost standings for the 16-team
 league are given as well as a sportsmanship ranking that
 was an accumulation of a subjective evaluation after each
 game.

 In general, we see that the better teams had poorer
 sportmanship rankings, except for the fourth and thir-
 teenth best teams. In evaluating this relationship one
 would desire a correlation coefficient that illuminates the
 general relations and is not unduly influenced by several

 * Rudy A. Gideon is Professor, Department of Mathematical Sciences,
 University of Montana, Missoula, MT 59812. Robert A. Hollister is
 Assistant Professor, Mathematics Department, University of Wisconsin,
 Oshkosh, WI 54901. Part of this work appears in Hollister's doctoral
 dissertation at the University of Montana. The authors would like to
 thank Michael J. Prentice, Edinburgh University, Scotland for his help
 on the population interpretation section while Gideon was on his sab-
 batical in Edinburgh. In addition, the authors appreciate referees' com-
 ments, which aided in the article's emphasis and in connecting the
 population interpretation to existing literature.

 possibly unusual but yet accurate data. Let us compute

 the Spearman R, (1904), the Kendall Rk (1938), the quad-
 rant Rq (Blomqvist 1950), and the new correlation coef-
 ficient, denoted by Rg, for the data in Figure 1 and for
 two perturbations of this data: (a) when the sportsmanship
 rankings of teams 4 and 13 are interchanged (more con-
 sistent); and (b) when teams 4 and 13 are left as they were
 observed, but the sportsmanship rankings of the best and
 worst (first and sixteenth) teams are interchanged (less
 consistent). The results are given in Table 1.

 It can be seen that the greatest changes in the values of
 the correlation coefficients over the three cases occur in
 the existing correlations and that Rg changes least. This is
 backed up by computation of the corresponding one-sided
 probability values for each result. This resistance-to-
 change property of Rg and the corresponding probability
 values are possibly of great value in detecting relationships
 between variables that are masked by current correlation
 coefficients.

 2. DEFINITION OF CORRELATION COEFFICIENT Rg

 Let p = (ply P2 . . . , PN) be a permutation of the first
 N positive integers. For a bivariate set of data (xi, yi)NI=,
 let r(xi) be the rank of xi among the x data and similarly
 define r(yi). We shall assume a continuous distribution so
 that with probability 1 the ranks are unique. Now order

 the x data and let pi be the rank of the y datum that
 corresponds to the ith smallest x value. In the YMCA
 example in Figure 1 with the won-lost ranks as the x values
 and the sportsmanship ranks as the y values, this vector
 p = (14, 11, 16, ... , 5) appears above the x-axis.

 Let SN be the symmetric group of degree N. There
 are N! possible p in SN. Let the group operation o be

 the composition of mappings. Thus if both p = (Pl, P2,
 *., PN) and q = (ql, q2, . . ., qN) are in SN, then
 p o q has for its ith component p o q(i) = P(q,) (i = 1, 2,
 ... , N). For each (X, Y) data set of size N, permutation
 p is denoted by p = p(X, Y) and formally defined by

 Pr(x,) = p(r(xi)) = r(yi), where (xi, yi) is the ith pair in
 the data set (i = 1, 2, . . . ,N).

 There are two permutations in SN that are of special
 interest. They are the identity permutation, e = (1, 2,
 ... , N), and the reverse permutation, E = (N, N - 1,
 .. .,1). Since e(i) = N + 1 - i, o p =(N + 1 -

 Ply * * * , N + 1 - PN) and p ? c = (PN, . , pi). The
 composition e o p results from the reversal of the order
 of the y values. So p(X, - Y) = o p(X, Y). Similarly,
 the composition p o e results from the reversal of the
 order of the x values, and so p(-X, Y) = p(X, Y) o e.
 Now we shall motivate our definition of the correlation
 coefficient Rg.

 ? 1987 American Statistical Association
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 Figure 1. YMCA Basketball Data.

 When the permutation for the data is the identity per-
 mutation e (reverse permutation F.), any rank correlation
 coefficient should be 1 ( -1). Our new correlation coef-
 ficient is based on the property of maximum deviation of
 p(X, Y) from e and F-, that is, from permutations that
 represent perfect positive and negative correlation.

 In comparing the permutation determined by the sample
 p(X, Y) with e, we measure the deviation at i (for i = 1,
 29 . . ., N) by the number of pl, ... ., pi that exceed ei
 = i.

 Definition 1. Let I(E) =1 if E is true and 0 if E is
 false , and let

 i ~~N

 di(p) = ,I(i < pj) = 2 I(r(xj) ci< r(yj)).
 j=1 j=1

 For the YMCA data , (d, (p) , d2 (p) * .. *, d16(P)) = (1,
 29,39,39,49,59,59,69,6,59,49,39,39,2,1,0).
 In comparing p(X, Y) with F., we shall measure the
 deviation at i (for i = 1, 29 ... ., N) by the number of pl,

 ..., Pi that are less than ei = N + 1 - i. This is equivalent
 to measuring the deviation at i for e o p with e, since

 i i

 , I(pj < N + 1 - i) = , I(i < N + 1 - pj)
 j=1 j=1

 = di( o p).

 Again for the YMCA data, e o p = (3, 6, 1, 15, 5, 4, 10,

 8, 7, 14, 9, 16, 2, 11, 13, 12), and (d1(E o p), d2(EQ a
 * .. , d16( o p)) = (1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 3, 3, 2,
 1, O).

 Definition 2. d(p) = maxi di(p). Then d(E o p) -
 maxi di(E o p), and for the YMCA data d(p) = 6 and

 d(Eop) = 3.
 Definition 3. Rg(X, Y) = (d(E o p) - d(p))I[N12],

 where p = p(X, Y), the permutation determined by the
 sample, and [S] is the greatest integer notation. If we now
 compute Rg for the data of Figure 1, we have Rg = (3 -
 6)I[1612] - 8.

 The statistic d(p)(d(E o p)) measures the greatest de-
 viation of p from e (p from e). The subscript g is used on
 R to denote greatest deviation. Rg is 1 if p = e, -1 if p

 = F, and 0 if p deviates from e and e equally.

 3. PROPERTIES OF Rg

 Reasonable correlation coefficients need to possess cer-
 tain properties. Renyi (1959) gave a list of desirable prop-
 erties for correlation coefficients and Schweizer and Wolfe
 (1981) gave a modified list of properties for nonparametric
 measures of dependence for continuously distributed ran-

 dom variables X and Y. This latter list is used to illustrate
 some of the properties that have been proved for Rg. In
 general the proofs are long and tedious and are, therefore,
 deleted, except for an outline of the proof of Property 3.
 The proofs appear in Hollister (1984).

 Consider Rg(X, Y) as a random variable, distributed
 over all possible samples of size N obtained from a con-
 tinuous bivariate distribution of the random variables X

 and Y. Then the following properties hold.

 Property 1. Rg(X, Y) is well defined.
 Property 2. -1 c Rg(X, Y) - + 1.
 Property 3. Rg(Y, X) = Rg(X, Y) .
 Property 4. Rg( -X, Y) = Rg(X, - Y) -Rg(X, Y).

 Table 1. YMCA Correlations and Probability Values

 (a) Teams 4 and 13 interchanged (b) Teams 1 and 16 interchanged
 (more consistent) Original data (less consistent)

 Rg = -*500 -= 375 .250
 p value .009 .068 .149

 Rk - = -.617 -j = -.367 = -.083
 p value <.005 <.025 .326

 Rs - = -.832 -^ = -.488 - = -.091
 p value <.001 .030 .362

 Rq -3 = -.750 = -.500 .250
 p value .005 .066 .310
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 Property 5. Rg(X, Y) = + 1 with probability 1 iff Y is
 a strictly monotone increasing function of X. Rg(X, Y) =
 - 1 with probability 1 iff Y is a strictly monotone decreas-
 ing function of X.

 Property 6. If X and Y are independent, then E[Rg(X,
 Y)] = 0.

 Property 7. Rg(f(X), g(Y)) = Rg(X, Y) if f and g are
 strictly monotone increasing functions on the ranges of X
 and Y, respectively.

 In addition to these properties, several other facts about
 Rg have been proved, but again the proofs will be omitted.
 For the most part the proofs involved the properties of SN
 and its operation o.

 (a) For any positive integer N greater than 2, [NI
 2]Rg(X, Y) can assume the 2[N12] + 1 values kl[N12]
 fork= -[N12], -[N12] + 1,..., -1,0,1,...,[N/
 2].

 (b) P(Rg(X, Y) = +1) = P(Rg(X, Y) = 1) = 1/
 N!, when X and Y are independent.

 (c) The null distribution (X, Y independent) of Rg(X,
 Y) is symmetric about 0.

 (d) If p o e replaces e o p in the definition of Rg, then
 Rg remains unchanged, since it can be shown that d(po

 = d(e o p). However, di(E o p) = dN-i(p a

 The technique used to prove these properties is illus-

 trated by the following outline of our proof of Prop-
 erty 3.

 Let p' be the inverse of p. Then p o p1 = p1 a p =

 e. Distinguish p = p(X, Y) from py = p(Y, X). Then py
 = p '.Thus

 [N12]Rg(Y, X) = d(E o py) -d(py)

 = d(e o p-1) d(p-1)

 = d((p o )-') -d(p-1), since (p oa )-1 = a-1 p-

 = a p ;
 = d(p o e) -d(p), since d(p) = d(p')

 [because di(p) = dj(p-1), for all i].
 Thus [N/2]Rg(Y, X) = [N/2]Rg(X, Y) as d(p o) =

 d( op) from Property (d).

 4. THE DISTRIBUTION OF Rg AND SOME
 POWER COMPARISONS

 The distribution of Rg(X, Y) is directly related to that
 of p(X, Y), which is difficult to determine in most cases.
 Under the hypothesis of independence between X and Y
 (the null hypothesis for a test of independence), however,
 it becomes easier. In that case all of the permutations in
 SN are equally likely. Thus P(p(X, Y) = p) = 1/N! for
 each p in SN

 The null distribution of Rg has been determined for
 sample sizes N = 2 to 10 by explicitly computing and
 tallying the value of Rg for every permutation in SN with
 the aid of a computer. These distributions are tabulated

 in Table 2. For larger sample sizes (11-100), the distri-

 bution has been approximated using computer simula-

 Table 2. The Null Distribution of Rg for N = 2 to 10

 (symmetric about 0)

 N Rg Frequency Probability

 2 1 1 .5000

 3 1 1 .1667
 0 4 .6667

 4 1 1 .0417

 2 3 .1250
 0 16 .6667

 5 1 1 .0083

 2 51 .4250
 0 16 .1333

 6 1 1 .0014

 i 35 .0486
 3 196 .2722
 0 256 .3556

 7 1 1 .0002
 595 .1181
 500 .0992

 0 2848 .5651

 8 1 1 .0000
 4 399 .0099
 2 2480 .0615
 4 11772 .2920
 0 11016 .2732

 9 1 1 .0000

 4 6927 .0191
 2 18992 .0523
 4 123660 .3408
 0 63720 .1756

 10 1 1 .0000
 45 4623 .0013

 36672 .0101

 i 479120 .1320
 5 562932 .1551
 0 1462104 .4029

 tions. Two-sided randomized critical values for a - .01,
 .05, .10 are listed in Table 3 (exact for n < 10 and ap-
 proximations for n > 10). For sample sizes 100 to 500,
 Figure 2 is provided to allow interpolation for approximate

 critical values. Currently no explicit formula has been de-
 termined for the null distribution of Rg, nor has its asymp-
 totic distribution been derived.

 To compare the power of Rg with other nonparametric

 correlation coefficients-Spearman's rho (Rs), Kendall's
 tau (Rk), and the quadrant correlation coefficient (Rq)
 computer simulations were run for randomized two-sided
 tests of independence. For each sample size (N = 5, 6,
 16, 20, 21, 25, 40) and level of significance (a = .01, .05,
 .10) 10,000 random simulations were run. The samples
 were simulated from populations that were bivariate nor-
 mal, bivariate exponential, and bivariate normal contam-
 inated with biased outliers. The bivariate populations had

 correlations of p = 0, .3, .6, and .9. Of these comparisons,
 those selected for presentation exemplify the general con-
 clusions deduced from all of the simulations.

 Because of the discrete nature of the distribution of rank
 correlation coefficients, good power comparisons depend

 on using randomized tests to achieve the same ae level for
 all compared statistics, and hence Table 3 is given to allow
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 Figure 2. Interpolated Critical Values for a Randomized Two-Tailed Test of Independence, Using Rg(X, Y), for Samples of Sizes 100, 200,
 300, 400, and 500 (based on simulations of size 2,500). Interpolated critical values = cl + p*(c, - c2), where cl > C2 and P(Rg 2 cd) + p*P(Rg
 = C2) = a.

 possible future comparisons. To use Table 3 for a two-
 sided test with a c .10 for N = 33, reject the independence

 hypothesis if IRg I 2 15; that is, use the column labeled
 Critl. To get a = .10 exactly, reject if IRgl 2 15 and reject
 with probability p = .4909 if |Rg| = 16

 The biased outliers referred to previously are based on
 the type of bias that may occur when comparing judges'
 rankings, for example, in diving or gymnastics competi-

 tion. For instance, two judges from rival regions may each

 rank competitors from their own region more favorably
 than other competitors and rank those from the rival re-

 gion more harshly. In the YMCA data, the YMCA di-
 rector's son was on the fourth best team! In the simulations

 that were run, this bias was created by sampling from a
 bivariate normal distribution having the given correlation
 p and having standard normal marginal distributions.
 Then, if the first value of the pair sampled was an extreme

 value (e.g., absolute value of the sample exceeds Za/2),
 the second value was negated. For example, if a = .05

 and the pair sampled was (2, 1.5), then since 2> z.025 =
 1.96, (2, 1.5) was replaced by the pair (2, -1.5) in the

 sample to test the hypothesis of independence. This is an
 exaggerated biased outlier concept and hence is useful for
 detecting effects of such outliers.

 As expected, simulations from a bivariate normal pop-
 ulation showed that the power of Rg was better than that
 of the quadrant correlation coefficient (Rq) and not as
 good as that of Spearman's rho (Rs) and Kendall's tau
 (Rk). Figure 3 illustrates this for p = .6. The power of

 the Pearson product moment correlation coefficient (Rp)
 was graphed for the same set of simulations.

 When the sample was derived from a bivariate expo-
 nential population (Marshall and Olkin 1967), the power
 of Rg was better than that of the quadrant correlation (Rq)
 and not as good as Kendall's tau (Rk). Note, however,
 that the power of Rg was close to that of Rs. Moreover,
 the power of Rg overtook the power of the Spearman rho

 (Rs) as the sample size increased. For larger samples the
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 Table 3. Critical Values for a Randomized Two-Tailed Test of Independence Using Rg(X, y),a for Samples of Sizes 2 to 100b

 10% 5% 1%

 N Criti Crit2 p Criti Crit2 p Critl Crit2 p

 2 * .10000 * .05000 * .01000
 3 * .30000 .15000 * .03000
 4 4 4 .06667 .60000 4 .12000
 5 4 4 .09804 4 .03922 4 .60000
 6 4 4 .00000 4 .48571 4 .07429
 7 4 4 .42185 4 .21008 4 4 .04067
 8 4 4 .65161 4 .24516 4 .50276
 9 4 4 .59056 4 4 .11289 4 4 .26179
 10 4 4 .29250 4 4 .10316 4 4 .36867
 11 4 4 .23640 4 4 .04260 4 4 .19350
 12 4 4 .13820 4 4 .59640 4 4 .08190
 13 .04960 4 .59530 .01480
 14 4 .10300 4 .64540 . 55230
 15 .94240 4 .36640 .50000
 16 .65860 4 .40770 .48750
 17 4 4 .76300 4 4 .40380 4 4 .20000
 18 4 4 .76600 4 4 .34650 4 4 .17750
 19 .50390 .34400 4 .06110
 20 .41240 A .05320 .01510
 21 1 .40810 .81180 A A .02740
 22 .29500 A A .43330 1 .58820
 23 1 A .27790 A .43150 A A .47060
 24 1 .18570 .38160 1 .34440
 25 A A .06400 A A .36730 A A5- .27400
 26 A A .07220 A A .33850 A A .05260
 27 1 .10510 1 .32930 1 1 .16410
 28 4 - .95360 A 1 .22900 A 4 .06340
 29 A A .81450 4 .18800 A 4 .92000
 30 1 A .83330 1 1 .09480 A .75000
 31 A .79740 A .00000 A A .63460
 32 1 1 .63730 1 1 .01660 A A .67920
 33 A A .49090 1 .92900 A 1 .53130
 34 7 .50380 A P .62740 A 1 .47830
 35 A .40050 .* 67940 A 17 .29730
 36 1 .35230 A A .61810 1 1 .20730
 37 A .33620 1 .54400 1 A .10620
 38 1 .26040 A 1 .36090 1 A9 .02080
 39 1 .26320 A .35360 1 .02220
 40 .23800 A .29910 .05940
 41 A A .14670 A A .31780 A A .87100
 42 A .00810 A A .31090 A A .76320
 43 .94700 A .16480 .40910
 44 A .84330 A .14290 .37290
 45 2 .86220 A .94510 22 .34380
 46 .78920 A .08310 - .30190
 47 .74230 A .88270 A 3 .10840
 48 .61240 A .98560 A 4 .09590
 49 .71890 A A .79680 2A .09520
 50 A .55620 A A .65660 85- .17390
 51 .43660 i * .58060 A A .75760
 52 A .58200 A A .55630 A A .91180

 powers of Rg and Rs were essentially equal, with that of
 Rg generally being slightly greater. Figure 4 illustrates
 this for p = .6. Again the power of the Pearson product

 moment correlation coefficient (Rp) was included for
 comparison even though it is not appropriate for this

 distribution.

 When the samples were bivariate normal with the biased
 outlier contamination, the powers of the correlation coef-
 ficients were ordered as they were for the pure bivariate
 normal case when the sample was quite small. However,
 the power of Rg increased relative to the others as the
 sample size increased. Rg had the most power for larger

 samples. Figure 5 illustrates this for simulations from a
 bivariate normal with p = .6, which was contaminated by
 biased outliers as explained earlier.

 Further study of biased outliers showed that Spearman's
 rho (Rs) and Kendall's tau (Rk) often rejected the null
 hypothesis of independence in the wrong direction,
 whereas Rg rarely did. That is, when p > 0, the rejection
 was frequently due to the sample correlation being more
 negative than the negative critical value. In this case we
 shall say that the null hypothesis was incorrectly rejected.

 The Pearson product moment correlation coefficient (Rp)
 is extremely sensitive to this contamination. Table 4 gives
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 Table 3 (continued)

 10% 5% 1%

 N Criti Crit2 p Criti Crit2 p Criti Crit2 p

 53 A A .51160 A A .57320 A A .55260
 54 .26920 7 1 .42960 P A .57690
 55 A .32860 7 A .49870 P 7 .75860
 56 A .24570 Af A .13710 A .55000
 57 A A .30410 Af A .31330 BA .33330
 58 A A .12240 YA .31290 .16670
 59 A .06640 A .13770 .18000
 60 .07990 .13490 .05560
 61 .11670 .00550 .05450
 62 .01990 .95240 .04240
 63 .04650 T .05740 .06370
 64 .89510 .91180 .87440
 65 .86900 .78620 .71920
 66 3A .84880 A .81300 A .79170
 67 A A .63290 A .77600 A .58620
 68 h A .71190 A .75000 A .75000
 69 4 A .66500 A .61310 A .57690
 70 A A .82900 A .39040 A .30560
 71 5 A .53970 A 5 .47370 A .36110
 72 A .58200 A - .33820 A .25000
 73 A .41960 A .25640 A .10260
 74 7 A .51880 A .39390 .13640
 75 i A .37900 A .30720 ? .25580
 76 1 A .32220 A .14570 A .08700
 77 1 A .31350 A .35250 A .31580
 78 A A .31490 A A .14570 A .04000
 79 A A .22090 A A .01430 a .64710
 80 a A .22050 A a .03390 a .60000
 81 4i A .21190 A a .05260 a .16670
 82 A A .14910 A .75440 i 4? .92310
 83 A4 A .09230 A .92310 .16670
 84 4A .08940 A .86000 4 .50000
 85 A .02960 A .78460 4A .06900
 86 -A .86460 h .88890 a .38460
 87 A -A .95450 h A .64290 A .03330
 88 f4 A .04170 A A .79590 V .00000
 89 4i A .05000 A A .77080 R .91670
 90 A fi .69880 A A .61710 4 5 .85710
 91 A A .55170 A A .43860 i .33330
 92 A li .55790 A A .37500 4 .00000
 93 A .64710 .32260 4 .28570
 94 7 .63640 4 .48280 4 .12500
 95 4 .63830 1 .39240 H * .27270
 96 A A .51550 A A .16070 14 .20000
 97 A A .55240 T A .28570 4 .25000
 98 A .59520 A .13640 i 4 .52940
 99 A .61860 A A .07790 f .68750
 100 A A .35710 A A .00000 1 A .72730

 a Example: To obtain a two-sided test with a = .05 for N = 15, reject Ho independent variables if IRgl 2 - and reject Ho with probability p = .36640 if IRgl = .
 b The values are based on the exact distribution of Rg(X, Y) for N = 2 to 10 and on simulations (of size 10,000) for N = 11 to 100; thus the fifth decimal place (0) for N > 11 appears only

 as a visual convenience.

 the results from 1,000 simulations of samples of the stated
 size from a bivariate normal population with the indicated
 correlation (p) and with biased outlier contamination.
 Consequently, for one-sided alternatives the power of Rg
 would be better relative to that of the other sample cor-
 relations.

 5. TIED RANKS

 A summary of tied rank procedures appears in H'ajek
 and gidak (1967, pp. 118-123), and we will assume that
 the reader is familiar with the randomization technique.
 For many data sets with tied values, Rg assumes only one

 value, and hence we recommend the randomization
 method so that Tables 2 and 3 can be used. We also rec-
 ommend that the highest and lowest values of Rg be com-
 puted over the range of possible randomizations. If it is
 found that the difference between these values is large,
 then the conclusion should be drawn that there is little
 information in the data set.

 To determine the extreme values of Rg, the two ran-
 domizations of p that most favor positive and negative
 correlation are determined.

 Let us demonstrate the suggested procedure by taking
 an example from Conover (1980, example 1, p. 253). This
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 Figure 3. Relative Powers of Randomized Tests of Independence From a Bivariate Normal Population Based on 10,000 Simulations for Each
 of N = 5, 6, 16, 20, 21, 25, and 40 (p = .6, a = .05, two-tailed tests).

 example is chosen because the tied rank procedure is dis-
 cussed there for Rs and Rk. The data are from psycholog-
 ical tests on identical twins, with X being the first born.

 The data given are in the well-known mid-rank form:

 X 1 2 3.5 3.5 5 6.5 6.5 8 9 10 11.5 11.5

 Y 1 2.5 8 7 4.5 6 2.5 10 4.5 9 12 11

 From Conover, Rs = .7378 or .7354 depending on which
 formula is used for Rs, and Rk = .5606. The approximate
 probability values for the two-sided test are given as .01

 for both Rs and Rk.
 To obtain the randomization of this tied data that most

 favors positive correlation, one simply chooses the lowest
 possible rank for Y as one proceeds over the 12 ranks of
 X within the constraints of the tied values. The permu-
 tation obtained is the same if the roles of X and Y have

 been interchanged. In a similar manner the permutation

 most favoring negative correlation is determined.
 We list these two permutations:

 X 1 2 3 4 5 6 7 8 9 10 11 12

 Y(+ correlation) 1 2 7 8 4 3 6 10 5 9 11 12

 Y(- correlation) 1 3 8 7 5 6 2 10 4 9 12 11

 In both cases Rg = (4 - 2)/6 = 1 and hence all random-

 izations would give Rg = 2. For N = 12, Rg is significant
 at the 10% level, significant with probability .5964 at the

 5% level, and significant with probability .0819 at the 1%
 level.

 Thus, for this data set, the use of Rg leads to 10% sig-
 nificance, whereas Rs and Rk are approximate tests sig-
 nificant at the 1% level but based on limiting distributions
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 Figure 4. Relative Powers of Randomized Tests of Independence From a Bivariate Exponential Population Based on 10,000 Simulations for
 Each of N = 5, 6, 16, 20, 21, 25, and 40 (p = .6, a = .05, two-tailed tests).

 that may be unreliable for small sample sizes. A possible
 use of Rg as an exact test for data sets with tied values
 would certainly help an experimenter in evaluating his
 data, especially when the sample size is very modest, as
 in this example.

 The above data set was one of several that were checked
 in various nonparametric statistics books. Most led to one
 value of Rg. Suppose, however, that the X variable had
 all distinct ranks but all N Y ranks were tied. Then the
 rejection of the null hypothesis would be unrelated to the
 gathered data but would be entirely due to the randomi-
 zation procedure. In this case the two extremes of Rg
 would be in -1 and +1 and all experimenters would
 realize that there is no information in their data relating
 X and Y. Note also that in this case, the average of the
 two extreme possible values of Rg would be 0.

 The use of mid-ranks is well established for many rank

 statistics, but after some study, no satisfactory way was
 found for their use with Rg. On the other hand, the idea
 of determining the highest and lowest statistic over the
 range of possible permutations within the constraints of
 tied data might be beneficial descriptive statistics for other
 statistics besides Rg.

 6. POPULATION INTERPRETATION OF Rg

 Kruskal (1958) gave a population interpretation to Rs,
 Rk, and Rq. It is possible also to relate the correlation
 statistic Rg to a population parameter. Assume that a bi-
 variate random variable (X, Y) is absolutely continuous
 and that a sample of size N is to be drawn. Let X(i), Y(1)
 be the order statistics. It is straightforward to show that
 for Rg(X, Y) the quantity di(p)li equals, within the sam-
 ple, the proportion of cases in which Y > Y(1) given X c
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 X(i). Likewise, di(E o p)Ii equals the proportion of cases
 in which Y < Y(N+1-i) given X < X(i). Thus di(p)Ii is
 an estimate of P(Y > Y(i) j X c X(i)) and di(E o p)Ii
 is an estimate of P(Y < Y(N+l-i) X c X(i)). For i = 1,

 2, ... , N, P(Y > Y(O) I X s X(i)) is the standardized area
 of a series of rectangles [corner at (X(i), Y(i))], which are
 open toward the upper left if we let X be the abscissa and
 Y be the ordinate axes. Similarly, as i = 1, 2, . .. , N

 P(Y < Y(N+l-i) I X - X(i)) is the standardized area of a
 series of rectangles [corner at (X(i), Y(N+1-i))], which are
 open toward the lower left.

 To simplify matters let us use the probability integral
 transformation as was done in Kruskal (1958). Let U =
 F(X) and V = G(Y), where F and G are the marginal
 cdf's of X and Y, respectively. Then for the joint density
 of (U, V), the marginals will be U(O, 1). Let U(i), V(i) be
 the order statistics for random variables U, V; (U, V) are

 called the grades in Kruskal. Then di(p)I[NI2] will esti-
 mate

 (il[N12])P(U s< U(i), V > V(i,)IP( U < uoi),

 and di(e o p)I[N12] will estimate

 (il[N12])P(U C U(i), V < V(N+1-i))IP(U c U(i)).

 For N large, U(i) approaches its expectation il(N + 1),
 and since P(U c il(N + 1)) = il(N + 1) and ([N12]Ii)
 * (il(N + 1) approaches 2, for large N and letting il(N
 + 1) -t

 Rg = max di(E o p)I[N12] - max di(p)I[NI2]

 estimates

 sup 2P(U t, V < 1 - t) - sup 2P(U < t, V > t).
 O<t<l O<t<l
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 Table 4. Wrong Direction Rejection Comparisons for Biased
 Outlier Simulations

 Correlation Total number Number incorrectly
 coefficient rejected rejected

 Sample size = 20, p = .2, 1,000 samples

 Rg 34 7
 Rk 56 32
 Rs 55 30
 Rp 57 40

 Sample size = 21, p .8, 1,000 samples

 Rg 138 2
 Rk 140 49
 R, 113 57
 Rp 263 229

 Before proceeding with examples, let us relate the pre-
 vious formula to the copula function C used in Schweizer
 and Wolfe (1981).

 P(U < t, v < 1 - t) = C(t, 1 -t)

 and

 P( U -S t, V > t) =C(tq 1) C(tg t) -

 Thus in the limit

 Rg = 2 sup C(t, 1 - t)-2 sup [C(t, 1) - C(t, t)].
 O<t l O<t<l

 Now as stated in Schweizer and Wolfe (1981),

 C(u, v)

 = max(u + v - 1, 0) for perfect negative correlation

 = uv if independent

 = min(u, v) for perfect positive correlation.

 Thus C(t, 1 - t) = 0 for perfect positive correlation and
 hence sup C(t, 1 - t) - 0 measures the distance from
 perfect positive correlation. Likewise, C(t, 1) - C(t, t)
 = 0 for perfect negative correlation and sup[C(t, 1) -
 C(t, t)] - 0 measures the distance from perfect negative

 correlation. The quantity K(X, Y) = 4 supo<u,v<l C(u, v)
 - uvj was introduced by Blum, Kiefer, and Rosenblatt
 (1961) as a test of independence, but it was not developed
 for practical use and its asymptotic distribution was not
 derived. In contrast to Rg their statistic measures distance
 from independence, and the sample statistic form

 K = 4 sup[Hn(X, y) -En(x)Gn(Y)]
 x,y

 where Hn, Fn, Gn are empirical distribution functions,
 needs a computer for evaluation even for small sample
 sizes.

 We now give two examples to show that Rg can some-
 times behave like Kendall's tau and sometimes like Spear-
 man's rho. If (X, Y) is bivariate normal, say

 then for large N, Rg estimates the same quantities as Ken-

 dall's z, (2Iir)sin-tp. To see this, we make the probability

 integral transformation and then C(u, v), the copula func-
 tion, is the bivariate cdf of (U, V). Then for large N,

 Rg = sup 2C(t, 1 - t) - sup 2(t - C(t, t))
 O<t<l O<t<l -

 (2 2) (2 (2 2)

 =(24 + 17 sin p)I - 2 (1 - 2-sin -lp)

 2
 - - sin- p,

 because the bivariate normal has maximum probability of
 open rectangles at the medians. If p = , then Rg = Rk

 = (2/I)sin- X .5399 and R, = (6/7r)sin-1(p/2) = .7341.
 It is not true that Rg always estimates the same quantity

 that Rk does. To show this, take the following example,
 where the density of U, V is

 g(u, v) = 2 for 0 s u, v c 2 and for 1 c u, v c 1

 = 0 elsewhere.

 Then the marginals are U(O, 1) and it is straightforward

 to show that p = Rs = Rg = 43, but Rk 1
 Finally, if X and Y are independent, then so are U and

 V. In this case maxi di(p)I[NI2] and max, di(e o p)I[N12]
 both estimate A and Rg estimates supo<t<l 2t(1 - t) -
 supo<t<i 2(t - t2) = 0.

 7. FINAL COMMENTS

 It should be noted that in the biased outlier simulations
 the quadrant correlation coefficient (Rq) also increased in

 power relative to R. and Rk, becoming second to Rg for
 large samples. Rq is closely related to a correlation coef-
 ficient defined similarly to Rg but based on the deviation
 at only one point instead of the maximum deviations at
 all points. All results are stated without proofs, which are
 tedious but straightforward (Hollister 1984). To see this,

 define, for an integer 0 < i < N, Ri(X, Y) as follows:
 Ri(X, Y) = (di(e o p) - di(p))INi, where p = p(X, Y)
 and Ni = min(i, N - i). Under the null hypothesis of
 independence between X and Y, di(p) and di(E o p) are
 hypergeometric random variables and Ri(X, Y) has the
 probability function

 f(x) = P(Ri(X, Y) = x)

 , Nij Ni N-2N j /Nh
 + jNixJ \2j +(x- 1)N/ VNi}

 forx= -1, -1 + 1INi, -1 + 2INi, . . . , + 1. ForN

 even, R[N,21 = R1(N+1),21 = Rq; for N odd, however,
 R[NI2], R[(N+ 1)/21, and Rq may differ slightly but R[N/2] and
 R[(N+1)/2] have the same distribution, which is asymptoti-
 cally equivalent to the distribution of Rq.

 In conclusion, we have defined a maximum deviation
 type nonparametric correlation coefficient Rg for use in

 testing the hypothesis of independence between two ran-
 dom variables. Moreover, Rg could be considered as a
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 generalization of the quadrant correlation coefficient, Rq.
 Furthermore the power of Rg falls among that of other
 well-known nonparametric correlation coefficients when
 the sample comes from a bivariate normal, is as good as

 Rs for larger sample sizes of a bivariate exponential pop-
 ulation, and is greater than that of the others when the
 population is a bivariate normal contaminated with biased
 outliers and the sample sizes are large. In addition, if a
 sample is severely biased in one of the tails (or, equiva-
 lently, the correlation is reversed from the bulk of the data
 in one of the tails), then Rg senses the correlation in the
 bulk of the data best. Thus Rg may be especially useful in
 problems in which outliers are present, contaminated pop-
 ulations are involved, or certain types of nonlinearity occur
 in bivariate data.

 There are possible uses for Rg beyond just independence
 testing. For example, some forms of cluster analysis de-
 pend on the correlation coefficient as a measure of dis-

 tance. This new coefficient used on nonnormal data could
 possibly cluster the data in a more attractive manner.

 [Received May 1985. Revised August 1986.]
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