Interview with Dr. Gloria Conyers Hewitt
Department of Mathematical Sciences
The University of Montana
Missoula, MT 59812

by

Johnny W. Lott

J. Recording Gloria Hewitt and it is May 12, 2006.

J. Gloria, I think that we are all set for this to go. Why did you choose to become a faculty member at the University of Montana?

G. They offered me a job. No actually, Art Livingston was chair of the math department here at the time and he had been a faculty member at the University of Washington where I was a graduate student. He offered me a job before I finished my degree, but I didn’t want to leave there. I wanted to get further along with my dissertation. And the next year, he offered me the job again. And my thesis advisor was going on sabbatical to Berkeley and I figured that there wasn’t any point in my hanging around the University of Washington. So I came here but not after saying no. It was Edward Hewitt on the faculty there, on this 300 SL, and this was a cute little red thing that opened up at the top and he took me for a ride in it one night around Seattle and he said I hear that you turned Art down again, and I said “Yep” and I don’t want to go there, I don’t know a thing about Montana. By the time he got through telling me how beautiful it was and how if you wanted to commune with nature someplace to be. He had taught here one summer that I changed my mind so I
sent a telegram to Art and said I changed my mind. And that is how I ended up coming to the University of Montana.

J. Well that is great. I'm glad that you sent that telegram.

J. So who was the most influential person in helping you choose math as a career? And how did that person influence you?

G. Well, there are two things. I got married when I was in college and I had Ronnie [her son] and I needed to... I wanted to graduate with my class I did think, so actually I went back to school. I was trying to double up so I could get out and I had to choose a major and I had the most credits in math. So that was number 1. Obviously I was taking it because I liked it. But the reason I was taking it was because of Lee Lorch.

J. Lee Lorch, okay.

G. Right, He had encouraged me after I had gotten through that one year of general math that everybody had to take. He had encouraged me to take calculus that he was teaching that year. And then you know that he got fired by Fisk because of his activities in civil rights. And after that, I really wasn't going to do anything with the math whatever, but I had chosen it because I had the most credits and he was gone at that point.

J. So when did he get fired?

G. This was in 54.

J. Okay.

G. But I graduated with this degree in math to teach secondary school, and I took all the education courses required, but I just couldn't take any more education courses. I just couldn't do it. So I never got around to doing my practice teaching. And so I never got certified.

J. But you practice taught a lot later in your career, just not at secondary

G. Yes, I did. I wasn't thinking of graduate school. I wasn't thinking anything. I just didn't know what I was going to do. I had just gotten divorced that year and I wasn't sure what I was going to do with anything. Instead I did what most women do, I went home to momma. But then, Lee Lorch it turned out came to the graduation when I graduated. And he's the one who came out here to the math meeting during the math meeting that summer. And he went on to the University of Oregon, the University of Washington and talked to them and he ended up writing me, offering me what they called a teaching assistantship in a graduate school. I had no idea what graduate school was about. I had no idea what a teaching assistantship was either.
J. So this was at the University of Washington?

G. Well, I got offered one at both Oregon and Washington.

J. Okay.

G. Carl Allendoerfer was Chair at Washington at that time and Morrison was Chair at Oregon. And I, I just put both of them in a drawer and my momma found it. When my brothers came home that summer and of course she showed it to them and they encouraged me to accept it. So I accepted the one at the University of Washington. Got on a plane and came to Seattle.

J. I love it.

G. And that's how it happened because I just didn't know what I was going to do. I knew that I had this little boy that I needed to support and something. My dad wasn't working at that time. He had had a stroke and so he was at home at the time. He agreed to take care of Ronnie. He did so they came out to Seattle so that I could go on to school. So that's what I did. I came out to Seattle.

J. That's great.

G. Five years later I was at The University of Montana.

J. So, I don't remember you were the third?

G. Well, heck, I'm not sure because I had people tell me they see on the Web that fourth, and somebody else told me that I'm the third African American one that there was another one that got a degree at the University of Nevada.

J. Okay.

G. So I don't know. Johnny, I really don't know. In most of the publications I've seen in support, they say that I'm the third African American.

J. That's fantastic.

G. Well the other two. The thing I find fantastic about it. I didn't know it at the time of course was that the first two had gotten their degrees way back in 1947. In the same year. One from Michigan and one from Yale.

J. Oh wow!

G. In the same year.

Dr. Gloria Conyers Hewitt Interview, OH 412-15, Archives & Special Collections, Maureen and Mike Mansfield Library, The University of Montana - Missoula.
J. Okay.

G. In the same year and there weren't any more. I got my degree in 1962.

J. And you got it in algebra, right?

G. Yeah.

J. That's what I thought, okay.

G. That's a long, long time.

J. That's a long time in there.

G. Yeah.

J. So we could do like the Olympics and say that you're the first in the modern era. Maybe that would be fairer way to say it, I don't know.

G. I don't know.

J. You said a little about your goals when you started. One was supporting your son. Have these been accomplished and have they been altered?

G. Oh yeah, he's such a great kid. I'm thinking very nicely of him right now. You know. [Gloria had an accident recently before the conversation and had a shoulder injury. Ronnie had come to Missoula to care for her after surgery and had just left before the interview.]

J. That's great. What were your goals in math? Were you able to do what you wanted to do in math?

G. Yes and no.

J. Why don't you explain?

G. Well, when I came her to the University of Montana, I had hopes of really doing research in mathematics.

J. Okay.

G. But nobody was doing any research and so I wasn't encouraged to do that. And so I had to finish up that first year, to finish up my dissertation and so forth. And so I did that. That's why it turned out to be 62 when I came here in the fall of 61.
J. Sure.

G. That I got my degree. Because I went back over to Seattle in the summer of 62 to take my final orals and get the dissertation accepted and all that summer. But I had been here one year at that point. So it was very difficult for me anyway. A lot of people, I guess, can be very independent about this, but I guess that I'm not one of them. I wasn't quite disciplined enough, I suppose. To just do research in isolation.

J. But you did research with the students here. Maybe not to the same level. You did do that I know.

G. I published papers, three of them in pure math.

J. I know that I just saw one of your former students, Rick Kitchen,

G. Oh yeah.

J. In St. Louis, and he said tell you hello. So, and he still is appreciative of all the work and all your help. You should know that.

G. I enjoyed working with the students, you know. They were a pleasure.

J. Yeah. I can believe it. The next set of questions is about kind of changes the department has gone through. And the first one is just a big question, "What changes did you see the department go through while you were there?" And then after that, "Were you directly involved in any of them?" And then we'll go from there.

G. Oh, Johnny. I've been here so long that the department doesn't even resemble what it was when I came?

J. How many faculty members were there when you came?

G. There were six of us.

J. Six?

G. Yeah.

J. And now there are 21 or 2 or something like that.

G. And we didn't have all these divisions, separate areas, on and on. Just all the faculty.

J. You were in the math department.
G. Yeah. And we didn’t offer a Ph. D. at all, but we did offer a masters. And uh, the big thing then was summer institutes for high school teachers where they could so many summers and most of them would come out with a master’s degree.

J. Those were the National Science Foundation supporting?

G. That was supported by the National Science Foundation.

J. Okay.

G. And then we also had academic year institutes we got after that because that was when the student came and stayed a full year. And then out with a master's degree. And a lot of students out of that went on to get their Ph. D. You know the only Ph. D. student I ever had which was Frank came out of that academic year institute.

J. And just for the record, that was Frank Hannick, right?

G. Frank Hannick, right. It wasn’t until McKelvey came here to kick off the Ph. D. in math.

J. And that was in the early 70s, maybe?

G. Yes.

J. Okay. I knew it was in place when I got here, and I didn’t get here until ’74, but the program was already in place.

G. Yeah, right. They got a big grant from NSF. And the emphasis of course was to create college teachers. That was the emphasis of it and that’s why they got all things to ?? of it. The requirements.

J. One of the things that I know changed even while you were chair, we didn’t have very much money for scholarships. And you changed some of that-directly.

G. Well you know Johnny. One of the things that I felt very strongly about when I was chair was the invisibility of the math department. I just thought that it was a crime that here we were, the largest department in the College of Arts and Sciences. We were even bigger than some schools, say like the School of Journalism and. And we were invisible. Nobody listened to us. Nobody cared what happened to us and it just made me angry.

J. That’s probably a good thing.

G. Dean Flightner used to all the time say, "Don't make her mad. Don’t make her mad." And so one of my goals was to do something about the visibility of the Math
Department. Well, in doing that, and another one of the complaints was that you didn't have any money for students to help in the area and on and on and on. And in the Undergraduate Committee, everybody was talking about maybe having some kind of tutorial program for the students. And Jack Eidswick was here, visiting professor at the time. And he talked about a tutorial kind of program that they had at Santa Barbara where he was. Well somehow, it didn't quite appeal to me, but yet, it started the seeds of what we could have, of getting a more intimate relationship between the student and a faculty member, having them do something they would appreciate and be really good at math. Because we need to increase their maturity and ?? and so forth. So I went to Flightner, tried to get money to fund that program. So, I said, "Well, what will you give me?" Well, he just didn't have any money. So I said, "Okay, would you match what I give?" Well no he wasn't sure about that. So finally, I said to him, "I'll make you a deal. I said if I raise $30,000 for it, and this is how it all started, would you give us the money?" And he said, "Yeah, if you raise $30,000, I'll give you five." So I'm sure that he didn't think that I would do it. So I said, "Okay." So I went over to the Foundation and I set as a goal getting $50,000, a small goal to start with. $50,000 to do this program. And I was going to endow it with $50,000. It wasn't much but it was a start. Now, Jack Eidswick donated some stock to it. By the time of course he did all of this, I don't quite understand the details on this, but it turned out to be worth less than $4,000. And I thought originally that it was going to be worth $10,000. So I then took $5,000 of my money and put into it and the dean gave me $5,000. Then I went to the Mack Johnsons and they gave me $30,000. So here it was up to and then I went to the President and said that I want $200,000. I got bold. He said no. So, I said well, okay, I'll tell you what if I give 5, would you give 5? And he said, "Yes." So I gave another $5,000 and in turn, he gave me 5. And that brought us, I was thinking, within $6,000. Now I've got the $50,000 and that are two endowments for that thing now.

J. Sure.

G. I wish that they would have consolidated those two but they haven't. So I endowed that program with $50,000, but I still needed $200,000. So that's when I went out looking for help. I talked to the Foundation and talked to the Foundation until I got Charles Bryan and his brother. And I had written up this proposal. Of what I thought it was and I took it by the Policy Committee and they okayed it. So I took this wider proposal and they okayed it and I sent it to Charles Bryan's brother. He liked it. He thought that it was just this great idea. So he asked me what I would do with it if he gave me $500,000. I said I don't want $500,000; no. He said, now what did he say? Never $500,000. That is just the most ridiculous thing; what about $500,000. I want $200,000. Not picky. All that became clear to me was that he would give me $500,000. And then I started to think of all these things I expand it to for adjuncts and on and on and on. And so I went to the Policy Committee and we drew up a list of what we would do with $500,000. I took that back to him and he then got his attorney to draw up the contract and that is how I got $500,000 from him plus $25,000 to run it the first year.
J. And that had a tremendous effect on the department of course, Gloria.

G. Then we got the $50,000 from the other also for the undergraduate fellowship program in a separate thing. So they aren't linked up yet together but I do wish that they would consolidate that undergraduate math scholar's fund. It is a pain in the neck to me.

J. You'll just have to come out of retirement to work that one through.

G. I tried to get Jim Hirstein to when he was chair to deal with that. He never got around to it to the very end.

J. Well, I can tell you from a student's standpoint I think that they have been most appreciative. Always. Let's return to the building itself. What did it look like when you got there and how did it change or did it change?

G. Oh my God, it was going to fall down.

J. How did it change?

G. Well, I'll tell you I've got a higher power I'm sure looking at it. Because we had so year after year, you know, the proposals under the Building Fund.

J. Right.

G. Well things that needed to be done. All the things that got denied year after year after year. One of them was the doors for the Math Building, the front doors. And so nobody would ever do anything, just wouldn't do anything. So finally I had the President. I made that an agenda item on the President's yearly visit. He just started. Well I said what we really want is a wing. And he was not receptive to it. After the whole meeting I asked him. I said, "You know. You put out this call for ???. I said, "We don't have any call for ??? over here. We are in this rattrap and look at the paint on the walls. I said, "Do you see it?" "Yes, I saw it." It needs painting; I said the doors are separating faculty and offices. I said there's all this stuff. I said and, and I mention some things like that. I said, are you going to fix up this building; are you going to put a wing on it? What do you intend to do? Well, he said, I haven't thought about anything right now. I said, well what are you going to do, let it fall down? Then he said, hm. Then he walked out. That's all he said. And by a miracle, he then sent all these people from Physical Plant over to assess the Math Building and report directly back to him. The first thing I managed to get was those doors. Because Ed Willet came over to check the doors. I said that they are fire hazards. I said this one has to stay locked so it won't fall down. And I didn't know I was telling the truth. I said, you know that's against fire regulations? Yes it is. We have to open the door. He opened the door and darn if the door didn't fall off the hinges.
J. Good timing.

G. I said, right on. Told me that was a message to the president.

J. ????

G. Yeah.

J. ????

G. Right on. Got the doors and while we were at it, the back door needs it also, and I said right on. Then we got the computer thing, and we started getting all our grants funded after that after at the end of the year. And kept getting them. I know that you have discretionary funds. I said we need this and that and the undergraduate room as well as the faculty lounge got big grants from Flightner's excess money. And half of it had to do with you because you challenged me. About the faculty lounge, I told you. I tell you what you give me $500, and I'll do it. I got you. If you give me this, I'll deliver.

J. You got the money, didn't you?

G. Yes. We got it and the Physical Plant got interested. They started donating the time. They donated all the time and the paint, they donated the coffee table where the coffee is and on and on. And Flightner and your grant [gift] is the one who bought the furnishings. Well when things start to roll, then things begin to happen. The more they gave me, the more I asked for. We got the building cleaned up; we got it painted. And there were excellent deals the Physical Plant did on the doors between offices and.

J. You were the chair I think when finally the wall made out of bookcases...

G. That is what I mean.

J. Between George McRae and Keith Yale?

G. Well, more than that. It was between all the offices, between Derrick’s and Stroethoff’s offices. See Stroethoff really wanted it because he had a door between his office and Derrick’s..

J. Got ya.

G. There was a door between.

J. Between his office and Yale’s.
G. Between his office and Keith's. And there were bookcases between Keith's and George's.

J. George's.

G. So all.

J. All.

G. All the internal walls had to be done and it was the same way downstairs.

J. Yes.

G. On the second floor. I said we might as well do the whole thing. So I called Physical Plant and they made a bid on it. Thank goodness that I had people who got big grants and Dean Flightner was nice enough to kick in a lot of kickback from the SPABA funds, and those were the funds I used to do that. ???

J. Those indirect funds did come in handy, but without your planning, I'm sure that they would not have been used that way.

G. Well, actually that was too good to turn down. I thought we'll take that.

J. Hey, as a faculty member, I thought that it was great what you did.

G. We made the building more livable. ??? The President even got smarter. He sent his architects over and they drew the plans for a wing. You know, we've got plans for a wing.

J. I think that the building they've put behind the Math Building kind of stopped that wing.

G. No, the wing goes out the other way.

J. Okay. I had it wrong.

G. It could be really quite nice. Cahudry and oh, someone or other submitted the plan. The plan was submitted to the President. And if I had remained chair, that was the next thing that I wanted to do, raise funds for the wing.

J. For the building.

G. But I never got that far. That can be somebody else's dream.
The next question has to do... if you could identify the best asset of the Department of Mathematical Sciences, when you were there. What would it be?

The nurturing of students. I think that was a success. The faculty really cared what happened to students. And the other asset is the willingness to set aside differences and try to get along with each other.

I agree.

They made a concerted effort to not have the department split over too much over tenure and that type of thing. They really tried to get along.

That was a huge asset for sure. I agree with you totally. As a former faculty member over there too, and uh. That was a very good thing.

That doesn't mean that we didn't get mad at each other as you well know.

I can't imagine two faculty members every getting mad at each other. Gloria taught me how to slam a door after I slammed one once. Now we have this on tape so that it is public record. But all for good reasons, let me tell you. We did get along with each other. I think.

I think so too. I think that we liked each other.

Yes. Very different opinions, but people liked each other.

Yes.

So. It is something that not every department has, that's for sure.

Especially when you've got so many different division.

Yes. Yes, I don't think ...

Too many divisions.

Right.

We could almost have a Department of Applied Math, Department of Analysis, Department of Pure, Algebra, Department of ...

Right. Stat, Math Education, Operations Research...

All of those operating under one umbrella. That's hard. That is hard because everybody wants a big share of the pie.
J. That's right. The next question had to do with research. And you already mentioned a little bit about research and other areas. I know that you've done quite a bit over the years with women in mathematics in different ways. And while that is not pure math research, you've certainly done enough for to count and you've been active in a number of organizations. Do you want to say something about some of that?

G. Oh, yeah, I was kind of on the ground floor of all that stuff. It ... At the very beginning of AWM [Association of Women in Mathematics] for example, it really came to the public eye.

J. That is the Association for Women in Mathematics?

G. Right.

J. Okay.

G. And it got kicked off at a Penn State meeting with ???Mary Gray and myself, and Mary Ellen Rudin, and Christine Aheu. We set up a panel there at Penn State. It was held in an auditorium and that whole auditorium was packed. We showed that women had a lot of interest in those matters. Because women just weren't really recognized. They weren't advancing in the ranks. They weren't in any significant numbers in the departments, or anything. Salaries weren't as good. It was just the very beginning of trying to get some kind of equality for women mathematicians. And I can remember talking about how applications you could read. There were pages of the same things, of how the chairman would go about how he wrote letters of recommendation. And you know, they would come right out and say, "For a woman, she is the best student that I've ever had." That kind of thing. Nothing ??? rather than. I don't think that it was intentional. They just didn't know any better.

J. Right.

G. So a lot of education had to be done, but that's I think with some deliberate effort we brought it to the attention that there were people out there getting ready to form AWM. So it was Mary Gray as its first President. And they had other panels of women scientists. I wrote a long status report for mathematics that appears in the New York Academy of Science journal. In which New York had I think that it must have been in the auditorium. Between 2500 and 4000 women scientists gathered there. I remember Yalow was one of the speakers there. You know and she was the Nobel Prize winner. She worked on the ?? research. And I remember Jill Cobb was President of Cal State Fullerton. So they had these great women scientists. And Horowitz, I met her at that particular conference. Who later turned out to be President of AMS, you know. And there were lots and lots of very famous women scientists at that conference. I can remember seeking the status of women in mathematics. And one of the things about that is right after a period where I had been totally demoralized by this department. So I was very emotional. And I
probably shouldn't have mentioned those kinds of things, but I blew it. I got to talking about and was going to cry. And that was exactly what happened. And it made them feel so sorry for me that they got up and gave me a standing ovation.

J. I'll bet that is not the only reason.

G. But I'm talking about the kinds of little things that just wear away at you and just totally demoralize you and just sap away all of your energy. And they don't seem to realize the difference and respect and love. And you know, they say they do. But you wouldn't expect people to say to you that let you know what they think of you in some ways, you know. I don't feel competent. I don't think competence in women at that time entered people's minds very much. You know, and it got to where anything, it wasn't because of competence. Got another reason and there are all these insidious things, and I talked about those kinds of things in that talk. That's how I ended it up after all the statistics of how many were in this, their salaries, and all of that. I just had to say something about that because that was the thing that mattered in my life and just destroys more and more women mathematicians and why a lot of them don't go on. Somewhere down the line, they got disturbed by this kind of thing.

J. About what year was that? Or just relatively?

G. I could look it up, but I forget.

J. That's okay.

G. But for letters of evaluation. I just felt very strongly about those kinds of things. And it never left me. I can never figure it out personally. And Flightner said to me one time, you spend too much time writing these faculty evaluations. I said, I beg your pardon. I said you wanted an evaluation, don't you? And he said, well, do they have to be this long? I said, Yes to say all the things I need to say. He said well you know, it sounds as though when you write things up long, people think that you are probably padding the file. I said, Read it and if you see any padding, then forget it. So I told him, You know Jim, one of the things I really don't want to happen. We're getting more and more women in the department and I don't want them to ever have to go through what I went through. And he just looked at me and that was the end picking at me about my letters, because I didn't just write list of work, I wrote a paper.

J. I remember you wrote for everyone and where I thought you were very honest in them too.

G. I always was very conscious in them. I didn't want them to be turned into something else because of the way I was writing them.
J. Right.

J. One of the things in this whole project that we've been doing is looking at chairs of the department, and if I have done my scans right and math history right, you may be the second woman who was ever chair of the department, and I'm assuming that the first faculty member was the chair, although she might not have been. Because I don't think that there was another woman in there who was chair before you.

G. Oh.

J. And I suspect that Professor Reilly who was the first math department faculty member wasn't a chair, because I'm not sure that they had them then. So you may very well be the first and the only woman chair of the Department of Mathematical Sciences at the University of Montana.

G. Now I will looking up the early math departments, and I don't remember a woman faculty member.

J. Well, the very first one was a woman.

G. Really?

J. Right.

G. I didn't find her.

J. The very very first one. She was a former high school teacher was the first math faculty member. But there aren't a whole lot in between.

G. That's right.

J. And there were people, there were women who were may be called instructors or maybe called by other titles who may have taught or helped with classes, but I'm virtually positive you were the first professor of mathematics and I think you very well may have been the first chair.

G. I'm pretty sure of that.

J. I don't think that this first woman was considered to be chair of the department because that was when the faculty had only about five or six faculty members total in the whole university.

G. Well, one of the things that was called to my attention that I did not know or had not thought about was that they were saying that it was very unusual for a woman to be chair of a mathematics department of a major public institution. And that was while
I was chair. I said is that right and they sat there and named them off. I said, Oh. But I didn't know that but at private institutions, yes, but at major public institutions, that was really a rare thing.

J. I know that it was a shock to me when we started this whole math history project to find out that the first math faculty member was a woman. After that woman in a normal tenure track line, I'm not sure that there were any until you got there. And we've gone through it pretty carefully.

G. There were no women when I came here.

J. Right.

G. And for years and years and years. There were no women until we hired I think Elizabeth Papousek.

J. And see that was before my time, so. But.

G. Of course Emma Lommasson taught math.

J. Right.

G. In the department under Lennes.

J. N. J. Lennes.

G. Yeah. But I don't remember.

J. If we weren't doing the history project, I would never found the other name, ever.

G. Well, I can.

J. But I'm pretty sure that you're the first chair, almost positive. I do not believe that there were chairs when she was a faculty member.

G. Well nationally, that's not a huge mark on Montana in the sense that the is not difference from what is the norm.

J. Sure.

G. So I think that redeem a little. They didn't know any better.

J. Okay.

J. Gloria, I know that when you were chair you used technology some, but did you use technology much in your teaching at all?
G. No.

J. Okay.

G. I

J. I know, it's not normally been considered a tool of algebra.

G. well I used a calculator a lot in 107.

J. Right.

G. When I taught it, but I you know, technology was used in all the classes, but I never taught those classes.

J. 107 is Contemporary Mathematics.

G. Yeah, right. I used calculators a lot especially dealing with data and tangents. They used their calculators. They usually couldn't do without them. Without them they couldn't do decimals and on and on.

J. But I know when you were chair, you used technology. I mean you used word processing, a spreadsheet. You name it.

G. I had to. I had to.

J. It may not have affected your research, but it affected your work.

G. Oh yes. Oh yes. Without Excel, I don't know how I could have done the schedule and kept track of all of that stuff.

J. One of the questions that we had down here, which is a little bit outdated now, but it was asking for a Hilbert list of problems. And did you have any kind of problem that you might suggest that would help move us in the future. I don't know if that problem is appropriate right now, but if you do, I would like to include it.

G. Oh well. That's a pretty hefty opinion. For he gave that to close his session to keep mathematicians busy to this day. You know, it seem that more and more and of mathematics research is moving together, more applied areas and modeling and things of that sort. And I still don't’ think anybody has the math education part right. I don't.

J. That's fair.
G. They keep changing that. It's just amazing. Like ??? came out with the top 100 high schools in the United States you know. I looked over that and I thought now what made them tops over the schools in Montana. Now most of them are magnet schools or schools for the gifted, or schools that required everybody to take courses in math and sciences and I thought somehow or another, you got these little private school called academies of science that are doing their own thing. And you got some public schools that made of course this list and you've got the majority of them and everybody seems to be doing their own thing and nobody at all seems to tell them what to do. Your thing for example was on the threshold of something really innovative and you called it integrated mathematics and on and on. But that's hard you see, but I think that it is more than a lot of things. And I somehow don't think that people quite know yet what to do.

J. I think you're probably right.

G. I think that there's still lot of open area out there. What is going to excite students? Hang on to any assortment of students that excel. Have more exciting things to do. They got interested. Tell me to give students a whole backpack of homework to do isn't the right kind of homework you want them to do. You know that's busy work. And it's not turning them on. They're grumbling about not every being able to go out and play or anything else. They've got to spend so much time to do this homework that it may not do any good any way. So... That's what I think.

J. That's fine. But we did want to know what you think. And it is interesting when I read some of those rankings. Well about like the collegiate rankings in Newsweek and other magazines ranking colleges. You know, what makes one college better than another? And the same issue or types of issues may arise. The one thing about thigh school is that it does affect all kids or virtually all kids in the United States. And it is a big issue. On a different level but a Hilbert type problem.

G. Oh yes. Maybe that will by your last push when you retire. Early retirement.

Phone rings and interview ends.