Forestry Kaimin, 1954

Forestry Student Association

Follow this and additional works at: https://scholarworks.umt.edu/forestrykaimin

Let us know how access to this document benefits you.

Recommended Citation
https://scholarworks.umt.edu/forestrykaimin/33

This Yearbook is brought to you for free and open access by the University of Montana Publications at ScholarWorks at University of Montana. It has been accepted for inclusion in Forestry Kaimin, 1915-2015 by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
AGAIN

by

AL KELLEY, JR.

What a mad race
With deadlines to face,
With work to be done
Always on the run,
With hours of hard sweat—
Always something more to get;
But it was our fate
To be terribly late
Just nothing went right
Neither day nor night.
That's how it seemed,
But what did it mean?
The Kaimin of course.
What other great force
Could cause that struggle
To straighten the muddle?
But now that it's done
We can say it was fun,
And proudly we report
After a fashion of sort
As was always our aim
Here it is again . . .
The Forestry Club's

1954

Forestry Kaimin
It is doubtful if any one individual has done as much for the Forestry School as "Tom" C. Spaulding. A graduate of the University of Montana in 1906, he later took his masters degree at the University of Michigan. Then followed jobs as supervisor of the St. Joe and the Lewis and Clark Forests. He became a professor here when the Forestry School was known as the Ranger School. He became dean in 1923.

During the approximately twenty years that he served as dean, he did much for the school and its students. The students were free to come to his house and consider it home; he was like a father with his warm, understanding heart and his willingness to help them with their problems. The school benefited from his great interest in providing proper facilities for education.

He was largely responsible for the acquisition of many of the major improvements in the Forestry School. Among them were the Forest Nursery obtained in 1927, Arboretum in 1932 (no longer existing), and the Lubrecht Forest in 1938. In addition he devoted much of his time and effort in helping secure buildings and campus improvements.

The school lost him as dean in 1944, but he remained as a professor. In the summer of 1952 he received an honorary Ph.D. degree from the Biltmore School of Forestry. Last year he retired from the school staff. This summer, to the sorrow of all those who knew him, Tom Spaulding passed away.

We, the members of the Forestry Kaimin Staff, feel therefore that it is only fitting that this issue of the Kaimin should be dedicated to him.
Foreword . . .

Once again the foresters complete another successful year — including Bertha. She's still with us, despite the efforts of the New Hall girls, Kams and Dregs, and the Lawyers.

Coach Helwig and his teams were active in intramural sports. They made a terrific showing and took second place in the intramural standings.

Kaimin Staff . . .

Sitting, left to right: Zane Smith, editor; Ted Reiger, photo editor; Jack Houtzinger, business manager; Paul Bruns, advisor, and Jan Dickey, feature writer.

Standing, left to right: Dick Johnson, associate editor; Al Kelley, layout manager; Pete Stafie, feature writer, and Glenn Freeman, photo developer. Russ Dahl, advertising manager (not present).

Thanks to Johnny Lowell and all those who helped him, this year's Forester's Ball was a great success. Life Magazine came, the gym floor warped, and the foresters made money. What more could happen to make a more unusual, yet successful ball?

The Kaimin Staff wishes to present to you this permanent record of 1953-1954.
Some Sampling Techniques Used in Inventory of Mature Forest Stands in the Northwest
by MYRON B. SAVAGE and DON A. STUBB, Rayonier Corp., Hoquiam, Washington

OUTLINE

1. Objectives
 a. Management Requirements.
 b. Photography Needed to Conduct the Survey.

2. Methods of Sampling
 a. Plot Size.
 b. Number of Samples Required.
 c. Distribution of the Sample.

3. Method of Recording the Sample Data
 a. Tabulation and Analysis.
 b. Tabulation of Information (Plot Cards).

4. Statistical Analysis of the Sample
 a. Basic Considerations.
 b. The Arithmetic Mean.
 c. The Variance and Standard Deviation.
 d. Coefficient of Variation.
 e. Standard Error of the Mean.
 f. Sampling Error.

5. Summary

6. Bibliography

1. OBJECTIVES

Vertical Aerial Photographs have become a must in inventory studies, and their use has significantly and economically aided foresters in cutting costs, constructing better, more accurate planimetric as well as topographic maps. Conventional systems of inventory in the past have not only been very time consuming but have not provided significant information of any proof of the results. Application of statistical analysis to inventory information must necessarily be based upon a sample of some size, shape or entity. A strip line system, a method most commonly used is difficult if not impossible to correctly analyze and evaluate. It does not lend itself to statistical analysis unless the estimates are kept separate by some uniform unit. Errors in pacing result in inaccurate map construction and inaccurate estimates.

a. Management Requirements

It is not the intent of this paper to discuss methods and techniques of photo interpretation and mapping. Needless to say such a subject requires a separate treatise.

Therefore, the reader must assume that good aerial photographs have been used, a desirable scale of 1:12000, 12 inch focal length, panchromatic minus blue, and that standard photogrammetric techniques of map construction have been employed with the resultant transfer of the interpreted forest stands to the base sheet by some form of radial plot.

The completed base map showing the forest types to be inventoried serves as a basis of area determination and forest types concerned. The requirements of good forest management dictate that sampling error, the error that is possible if the sample is not truly representative of the unit sampled, shall not exceed plus or minus 10% of the actual volume of the stands. A 95% probability is considered essential. These requirements mean that any estimate submitted for use in planning must be within plus or minus 10% of its true value, exclusive of technique errors, ninety-five (95) times out of a hundred. In this case, it is 2 Standard Deviations, one Standard Deviation being only 67% of the time. Management requires not only a good estimate of the forest stands but an accurate map showing the area of any type and its proper geographic location. Vertical aerial photographs make possible both of these requirements.

b. Photography Needed to Conduct the Survey

Experience in the Northwest hemlock-spruce area thus far, indicated vertical aerial photographs exposed at 12,000 feet above the mean datum with a 12' focal length camera using panchromatic film with a minus blue filter to be the optimum for most efficient use. Various altitudes, focal lengths, film and filters have been experimentally tried, but none of the other combinations offers so much general use as the panchromatic minus blue. The principal advantage of infra-red film over panchromatic is the more apparent contrast between deciduous and coniferous species. To the inexperienced interpreter this becomes paramount and the other disadvantages of infra-red are overlooked. Shadows appearing in the photos, because of the extreme contrast register very black and detail cannot be seen in them. In the rougher terrains this disadvantage becomes more ominous. In dense forest stands of full stocking normally found in the hemlock belt the few holes in which the ground might have been seen on a panchromatic film are, in the most instances, too black to discern any detail whatever on infra-red. This disadvantage is of increasing importance if either elevational or tree height determinations are to be made. Finally, experience will show that although forest typing differentiations may be more easily made on infra-red photography just as accurate typing can be made on panchromatic (Continued on Page 14)
ROSS WILLIAMS
Dean of the Forestry School
Director of the Montana Forestry and Conservation Experiment Station
Professor of Forestry
B.S.F.—Montana State University—1921
M.F.—Yale University—1923
Survey of Forestry and Farm Forestry

PAUL BRUNS
Associate Professor of Forestry
B.A.—New York University—1937
M.F.—Yale University—1940
Forest Management, Silviculture and Regional Silviculture

ROSS WILLIAMS
Dean of the Forestry School
Director of the Montana Forestry and Conservation Experiment Station
Professor of Forestry
B.S.F.—Montana State University—1921
M.F.—Yale University—1923
Survey of Forestry and Farm Forestry

JOHN KRIER
Assistant Professor of Forestry
B.S.—University of Idaho—1947
M.S.—1948
Ph.D.—Yale University—1951
Forest Utilization
Forest Policy
Forest Economics

MEL MORRIS
Professor of Forestry
B.S.—Colorado A. & M. College—1930
M.S.—1932
General Range Management, Conservation Economics, Big Game Management, Big Game and Wildlife Management and Regional Range

CHARLES WATERS
Professor of Forestry and Botany
B.S. and B.L.—Berea College—1919
M.A.—Ohio State University—1921
Ph.D.—University of Michigan—1927
Dendrology, Wood Technology, Forest Pathology and Silvics

FAY CLARK
Professor of Forestry
B.A.—University of Michigan—1912
M.S.F.—University of Michigan—1914
Mensuration and Valuation

O. M. PATTEN
Extension Farm Forester and Nurseryman
B.S.—Colorado A. & M. College—1935
A CLASS IN ACTION

BEN BEATTY
Field Assistant—Forestry and Conservation
Experiment Station
B.S.—Montana State University—1951

JOSEPH KRAMER
Professor of Botany
B.S.—University of Nebraska—1921
M.A.—University of Nebraska—1923
Ph.D.—University of Nebraska—1936
Plant Ecology, Forest Botany and Plant Anatomy

MRS. HELEN ETTINGER
Librarian

Office Staff

DONNA GOODMANSEN and LOIS LARSON
Secretaries
Louis W. Powell—Louis received his B.S.F. in forest management from Oregon State College in 1950, and his M.F. in silviculture from Duke University in 1951. He spent two years, eight months in the Infantry, in both Germany and Japan. During the summers of 1946-47, Louie worked for the USFS in the Rogue River National Forest. In 1949 he spent the summer working for the Oregon State Board of Forestry, and spent the summer of 1950 with the Magnolia Lumber Co., Ashland, Oregon. During the next three years he worked again for the Oregon State Board of Forestry. From July, 1951, through March, 1953, he was at Astoria, Oregon, and from March, 1953, to November, 1955, he was at Salem, Oregon. During this time he worked on inventory and management planning of 140,000 acres of state-owned land. He spent this time to continue teaching and to get use of aerial photos. He spent his future, Louis hopes, to continue teaching and to get his Ph.D. His main interest is in aerial photo interpretation.

James L. Faurot—Jim is a native of the Dairy State of Wisconsin and is 31 years old. He received his B.S.F. here at Montana in 1949, and did graduate work here in 1950 and 1951. He has also spent three years in the Air Force in England and Germany. Jim spent the summer of 1946 as an engineering aid, under the Soil Conservation Service in Colorado. As a soil conservationist he worked from June, 1950, to September, 1951, on farm and ranch planning in the San Luis Valley. In the summer of 1952, Jim was ranch planning in the White River country, and in the summer of '53 was working on the agriculture conservation program in North and Middle Parks, Colorado. In September of 1951 he was back at Colorado A. & M., this time as an instructor in range management and as range conservationist for the Colorado Agriculture Experiment Station. He left there in June of 1952. This past summer, Jim worked for the Montana Department of Fish and Game, doing a range survey of the Blackfoot-Clearwater Game Range. Jim enjoys teaching and doing research work, and hopes someday to return to the University of California for his Ph.D. His primary interest is soil-plant relationships.

James O. Klemmedson—Jim is a native of Colorado and has had his schooling in Texas, California, and in his home state of Colorado. He spent two and one-half years at the University of Texas and then graduated with his B.S. degree from the School of Forestry at the University of California in 1950. In 1953 he received his M.S. in range management at Colorado A. & M. College. Jim spent the summers of '44, '45, '47 and '48 working as an engineering aid, under the Soil Conservation Service in Colorado. As a soil conservationist he worked from June, 1950, to September, 1951, on farm and ranch planning in the San Luis Valley. In the summer of 1952, Jim was ranch planning in the White River country, and in the summer of '53 was working on the agriculture conservation program in North and Middle Parks, Colorado. In September of 1951 he was back at Colorado A. & M., this time as an instructor in range management and as range conservationist for the Colorado Agriculture Experiment Station. He left there in June of 1952. This past summer, Jim worked for the Montana Department of Fish and Game, doing a range survey of the Blackfoot-Colorado Agriculture Experiment Station. He left there in June of 1952. This past summer, Jim worked for the Montana Department of Fish and Game, doing a range survey of the Blackfoot-
A STUDY OF THE PONDEROSA PINE RISK RATING SYSTEM
by JOHN S. SPENCER, JR.

The western pine beetle (*Dendroctonus brevicomis* Leç.) presents a serious threat to the ponderosa and Jeffrey pine stands of the Western United States unless control measures are taken. Methods for the control of this bark beetle have involved many factors, and one method, the ponderosa pine risk rating system, has been highly successful in certain portions of the country.

The ponderosa pine risk rating system is an indirect method of beetle control developed in 1937 by the U. S. Bureau of Entomology and Plant Quarantine at Berkeley, Calif., working in cooperation with the California Forest and Range Experiment Station. The risk rating system involves the removal from a stand of trees those which are classified as being of high susceptibility to bark beetle attack. Cuttings of this type are called sanitation-salvage cuts and allow rapid speed of coverage of the affected area as only a small percentage (approximately 16 per cent by volume) of the stand is composed of high-risk trees. The residual stand is “bug-proofed” for an average period of ten years after logging by this system.

Studies conducted by the Berkeley Forest Insect Laboratory provide conclusive proof of the effectiveness of the system to protect the reserve stand. Results of these studies showed that a removal of about 16 per cent of the stand by volume resulted in a reduction of insect loses by more than 70 per cent over a ten-year period.

A study conducted by the writer to determine the correlation between rate of growth and risk classes found equally satisfactory results. It was learned that there is a significant difference between rate of growth and individual risk classes. There is also a definite gradation in growth rates with risk I trees exhibiting the fastest rate and risk III and IV the poorest.

Thus the ponderosa pine risk rating system is desirable from a silvicultural as well as an entomological basis and satisfies most of the objectives of forest management.

THE DEVELOPMENT OF REPRODUCTION FOLLOWING A SEED TREE CUTTING OF A LARCH STAND IN NORTHWESTERN MONTANA
by WILLIAM J. FREDEKING

Recently the Northern Rocky Mountain Forest and Range Experiment Station of the U. S. Forest Service gathered data on stand development following the seed tree cutting of a western larch (*Larix occidentalis* Nutt.) stand. The stand under consideration had been logged by commercial methods in the period 1942 to 1945. The author's purpose was to analyze the information gathered and to determine whether a 76 per cent by volume cutting, without any seedbed preparation or other reproduction considerations, would reproduce larch as against its associate species.

The analysis disclosed that seven years after logging the area was only 49 per cent stocked to all reproduction. This included reproduction on the area at the time of logging as well as reproduction subsequent to the cutting. An additional 10 per cent of the area was covered by large residual trees and considered unavailable to reproduction. Larch maintained a slight advantage in the new stand over its associate Douglas fir (*Pseudotsuga taxifolis* (Poir.) Britt).

If the attempt is to reproduce western larch, the productivity obtained by this method of logging is generally considered low. A larger residual stand of larch seed trees, some seedbed preparation favoring larch reproduction, or both appears necessary to obtain satisfactory larch reproduction.

exhibiting the fastest rate and risk III and IV the poorest.

Thus the ponderosa pine risk rating system is desirable from a silvicultural as well as an entomological basis and satisfies most of the objectives of forest management.
ED BARKMAN
Ed hails from Watkins Glen, N.Y. He is a timber management major. In 1951 and 1952, he worked at the Forest Nursery and in 1953 worked for the county surveyor.

DONALD C. CALHOUN
Don is a forestry major from Inglewood, Calif. He has attended El Camino College and U.C.L.A. Since coming here, he has played a year with the Forestry Club softball team. Don spent four seasons on the Sequoia National Forest doing K.V., fire guard, and suppression crew foreman.

GEORGE A. DEVAN
A range management major from Missoula, George spent his summer of '51 working for the Idaho Fish and Game Dept.—Fisheries Division. In 1952, he worked on the Tongas National Forest in Alaska. In 1953, he worked at Lolo R.S. doing fire fighting.

JACK M. DOLLAN
Jack is another timber management major and hails from Missoula. He is a member of the Forestry Club and a member of Druids for 2 years. Served as treasurer of Forestry Club his senior year; also assisted with Forestry Ball finances. Jack has spent 3 seasons on the Powell Ranger District, Lolo N.F., as fire control aide and timber aide doing cruising, scaling and spruce beetle detection work.
RICHARD A. FAUROT

Richard, a timber management major from St. Croix Falls, Wis., is a member of the Forestry Club, and has served as assistant chairman of the exhibition room committee of the Forester’s Ball. He has also served on the wood butcher’s committee and in 1953 was the editor of the Kaimin. He is a member of Scabbard and Blade and intra-mural forestry ski team. In 1950, he worked with the B.R.C. on the Cabinet N. F. In 1951, he worked in the mill at the Lincoln Lumber Co., and 1952-53 saw him as a smokejumper out of Missoula.

FRANK A. FOWLER

Frank hails from Lanham, Md. While here at MSU he has served as bull cook in the Forestry Club, a member of Phi Sigma, and president of Wesley Foundation. He has also played softball, basketball and volleyball. His summer work consists of a year of range research in Miles City and two years as a smokejumper. Frank is a timber management major.

DAVID A. GRAHAM

Another timber management major from Missoula, Dave has been active in Forestry Club and helped on Forester’s Ball. He is a member of Lambda Chi Alpha and the Air Force Reserve. He is also on the honor roll. The summer of 1945 he started working on the St. Joe N. F. with the B.R.C. and has worked there since, except the fall of ’49 when on the Cabinet N. F.

PHILIP C. HANSON

Phil is a timber management major from Missoula. He was active in Forestry Club, as chairman of gym decoration on Forester’s Ball for 3 years and business manager of Kaimin for 3 years. He is an active skier, and also a member of Druids. In 1950, he worked on the Salmon N. F., in 1951 and 1953 out of McCall, Idaho as a smokejumper, and 1952 worked on the Boise N. F. with the Idaho Timber Survey.

ELBERT B. HILL

A forest management major from Champion, Neb., Elbert was a member of Forestry Club and helped on Forester’s Ball. In 1951 he worked with the USFS in Kingston, Idaho, as a headquarters guard. In 1952 he was there again as head scaler on timber sale to Ohio Match Co. 1953 saw him working at Hanson’s Conoco station and dear old MSU.

DICK JOY

Dick comes from Alexandria, Va., and is a range management major. He attended San Francisco State College in 1949-50. He was active in Forestry Club, serving as property manager, assistant treasurer and treasurer. Also worked on Forester’s Ball. Dick is a member of Druids, Scabbard and Blade, Pershing Rifles and Sigma Chi. Was also on Forestry Club bowling team. He spent a season on Plumes N. F. with B.R.C. and three seasons on Beaverhead N. F. as headquarters guard and alternate ranger.

FAY KISER

Fay is a timber management major from Lonview, Wn. An active member of Forestry Club, Fay was president of Druids, on the athletic board of the club, and has worked on Forester’s Ball. He was active in softball and touchball. In 1950, he worked in a sawmill in Missoula, 1951 as a carpenter’s helper, 1952 he scaled for the USFS, and in 1953 worked on school forest.
EVERETT KYTONEN

JOHN H. LOWELL
John hails from Sioux Falls, S.D., where he attended South Dakota State College in 1950. John is a timber management major. He was active in Forestry Club as Chief Push for this year’s Forester’s Ball. He was vice president of Druids and a member of Wesley Foundation and a talented square dance member of Roy-oleers. He spent the summers of 1952-53 working out of Missoula as a smokejumper.

BARTLETT McNAMEE
Bartlett come from Scarsdale, N. Y., and is a timber management major. He was active in Forestry Club and served as chairmain and advisor on gym decorations committee for Forester’s Ball. He is a member of Alpha Phi Omega, Phi Delta Theta, and was an Frash football. In 1950 he worked on Nez Perce N. F.; 1951, mail carrier in Scarsdale, and 1952-53 worked on St. Joe with road location and timber management.

DANIEL J. O’ROURKE
Another range management major, Dan hails from Santa Barbara, Calif. He was doorway chairmain and advisor on Forester’s Ball for four years. An active member of Forestry Club, he served as spring hike chairmain one year and chief cook for three years. Dan is a member of Druids. He spent two seasons in Missoula as a smokejumper. The past year he was assistant ranger on Anaconda District of Deerlodge N. F.

JAMES A. PFUSCH
James hails from Valley City, N. D., and in 1949-50 attended State Teachers College there. He is a timber management major. Jim has been vice president of Forestry Club and chairman of gym and bar decorations for Forester’s Ball. Also a member of “Old Forester’s Quartet”, and intra-mural swimming. He cruised timber for J. Neils in 1952 and was dispatcher on the Lewis and Clark N. F. in 1953.

HENRY J. PISSOT
Henry is a forest management major from Butte. He is married and has children. He has worked for Northern Rocky Mountain Forest and Range Experiment Station. Did timber survey in Idaho and Montana in 1951-52-53. Summer of 1954, he prepared a report entitled: “Forest Resources of North Idaho.”

MARTIN E. REED
Martin is another timber management major from Missoula. He is a member of Forestry Club, served on the loan fund committee, and was senior representative to executive board. He was chairman of chow committee 1953 and 1954 Forester’s Ball, and also a member of Druids. Was on Forestry bowling team his fourth year. In 1951-52-53 worked for Northern Rocky Mountain Forest and Range Experiment Station Economic Survey.
GEORGE E. STONE
George was active in Forestry Club, was cook his last year, and helped out on Forester's Ball. He is a member of Druids and "Old Forester's Quartet." He was a member of campus grounds committee. He is a timber management and utilization major, hailing from Missoula. He spent three seasons on Flathead N. F. doing timber sale work and assistant dispatcher.

MONTE SUPOLA
Monte is a range management major from Pompey's Pillar, Mont. Worked on Forester's Ball and has been on Varsity-Freshman football, and intra-mural softball. He was lookout in 1951, carpenter in 1952, and was headquarters guard at Wisdom in 1953.

WILLIAM M. TALIAFERRO
Bill is a forest management major from Bartlesville, Okla. He attended U. of Tulsa a year before coming here. He worked on Forester's Ball and in charge of layout for 1953 Kaimin. He is a member of Wesley Foundation. He was with B.R.C. on the Clearwater N. F. in 1950, on fire crew on Coeur d'Alene in 1951, brush disposal at Kingston in 1952, and timber marking at Kingston in 1953.

ROBERT H. WALKUP
Bob is a forest management major from Hayward, Calif., attending U. of Calif. before coming here, where he was on the Glee Club and Varsity wrestling. He spent two seasons on B.R.C., two as F.C.A. on the St. Joe, and four as smokejumper in Missoula.

JAMES H. WHITE
Jim is a forest management major from Great Neck, N.Y. He is a member of Forestry Club and active with Forester's Ball. Jim worked two seasons on Kaniksu N. F., and one season on Lolo N. F. in fire suppression work, cruising, and scaling.

HARRY S. WOFFENDEN
A timber management major, Harry hails from Eureka, Montana. He is a member of Forestry Club and likes hunting and fishing. In 1951-52, he worked for J. Neils Lumber Co. as cruiser and road location.

GERALD G. WRIGHT
Jerry is a timber management major from Ripon, Wis. Attended Mich. Tech. and Ripon College before coming here. He was president of Forestry Club, served on doorway committee, and advisor for Forester's Ball. He is a member of Druids, and Silent Sentinel his fourth year. He was also in intra-mural sports. Worked on B.R.C. in 1949-50, Division Forest Pathology in Missoula in 1951-52, and J. Neils Lumber Co. in 1953.
Some Sampling Techniques

(Continued from Page 5)

by the experienced interpreter and will, in addition, have the other advantages of better detail for other determinations. Few photographers can successfully expose good infrared, primarily due perhaps to inexperience as well as the fact that most aerial cameras are not corrected from the standard manufacturers calibration for the exposing of panchromatic film.

Photographs exposed at lower elevations than 1:12000 (1000 feet per inch) do not reveal such additional information to the forest interpreter to be of significant economic value to warrant the additional cost of flying. Conversely, photos at scales smaller than 1:12000 do significantly decrease the information available to the interpreter to warrant the expense at 1:12000. Such photographic coverage varies from \(\frac{1}{2}c \) to 3c per acre depending, of course, upon the difficulty or risk of the contractor in complying with the specifications.

2. METHODS OF SAMPLING

a. Plot Size

One of the problems faced in setting up inventory procedures for mature timber stands is the selection of the most efficient size and shape of plot. A field sample of various sizes of rectangular and circular plots taken in a typical area revealed experience similar to that of Johnson and Hixon. The circular plot was soon eliminated because it had a higher coefficient of variation and a circular plot was more difficult to take in dense brush and down logs than a rectangular plot which can be run as a strip.

The one-half (\(\frac{1}{2} \)) acre plot, 1 chain by 5 chains, was selected as the most efficient plot. This decision was reached on the basis of the lower coefficient of variation and the fact that travel conditions in the area are often extremely difficult due to brush and down timber. Therefore considerable time is saved by taking a fewer number of large plots over taking a greater number of smaller plots.

b. Number of Samples Required

The number of plots required in order to meet the standards of accuracy set up by management is computed by use of the following formula:

\[
n = \frac{N \times T^2 \times C^2}{N_a^2 + T^2 \times C^2}
\]

where

\(n \) = number of plots to be taken
\(N \) = total number of possible plots (Area to be sampled timber number of plots/ acres)
\(T \) = standard deviation
\(C \) = coefficient of variation (as a decimal)
\(a \) = allowable sampling error (as a decimal)

See Table I for the effects of area, coefficient of variation, and sampling error on sample size.

In Table IA note that once the sampling area reaches 640 acres any additional increase in the size of area does not materially affect the number of plots taken. Also note how radically the percent of cruise increases as the area drops below 640 acres in order to maintain the given standards.

Tables IB, IC, and ID demonstrate the great influence of coefficient of variation on the number of plots required to maintain the sampling error of plus or minus 10%. Reducing variation by finer stratification of the timber stands is apparently the only practical means of reducing the required number of plots.

Table IE shows the tremendous reduction in the required number of plots achieved by increasing the allowable sampling error. The practicality of this means is quite limited.

In Table IF it is seen that, in larger acreages, the size of the plot does not materially influence the number of plots required. However, experience has indicated that at least on the coastal area of the Olympic Peninsula, the coefficient of variation of a 1/5 acre rectangular plot will usually be about 20% higher than that for a one-half (\(\frac{1}{2} \)) acre rectangular plot which will approximately double the number of plots required. Because of the difficulty of field travel in that area this is a very important factor to consider.

c. Distribution of the Sample

In order to be reliable a sample must be representative. It should also be a random sample. However, many believe that the application of sound judgment to the problems of taking the sample will give results more accurate than those obtained by a purely random sample.

The stratified area is divided into a sufficient number of blocks to assure a representative distribution of the sample. The plots are apportioned to these blocks in proportion to the percentage of the merchantable area in the block. These plots in each block are apportioned among the various merchantable timber types in proportion to the percentage of area of each type in the merchantable area of the block.

Next the area is marked into ten (10) acre squares and numbered across the top and down the side. Using a table of random numbers select the location of the plot.
Forestry Club
Initiation:

Here's How It's Done!

Executive Board

Bock row, left to right: Lew Foster, vice president; Ted Reiger, Kaimin photo editor; Jack Hautzinger, Kaimin business manager; Bill Tolaforro, property manager; Gene Kuhns, vice president of conclave; Dick Johnson, sophomore delegate; Zane Smith, Kaimin editor; Dave Owen, assistant treasurer; Larry Helwig, senior athletic manager.

Front row, left to right: John Lowell, chief push; Jack Dollan, treasurer; Jerry Wright, president; Bill Overdorff, secretary; Joe Meuchel, conservation officer.
Seniors...

Back row, left to right: Bill Taliaferro, Bill Overdorff, Dick Joy, Gene Kuhns, Phil Hanson, Jim Pfusch, John Lowell
Front row, left to right: Fay Kiser, Marty Reed, Dan O'Rourke, Frank Fowler, Dick Faurot, Larry Helwig

Juniors...

Back row, left to right: Ted Reiger, Pete Stoffe, Lew Foster, John Holden, Bob Poole, Adrian Grill
Middle row, left to right: Ralph Joszkowski, Ralph Emerson, Jim Eckland, Adrian Swenson, Al Kelley, Bob Greenan, Bud Hanson
Front row, left to right: Jack Hatzinger, Bob Moore, Jack Chamberlin, Dave Owen, Don Williams, Joe Meuchel
Sophomores...

Back row, left to right: Kelsey Smith, Barney Sedlacek, Dick Johnson, Joan Campbell, Dick Sandman, Joanne Golden, Arne Royce, Harlan Hayes, Pete Leveque

Middle row, left to right: Tom Patterson, George Grandy, Dan Daniels, Pat Ryan, Jerry Omundson, Gary Seitz

Front row, left to right: (kneeling): Greg Eilerman, Ken Cardwell, Jim McClain, Al Crozer, Jock Phelps, Pete Heinz, Dal Johnson

Freshmen...

Back row, left to right: Sonny Clark, Don Morrissey, Carl Neufelder, Jack Hoffman, Ed Bloedel, Charles Thorsen, Wayne Todgey

Middle row, left to right: Whitney Schmitt, Al Morris, Joe Duff, Rich Gibson, Tom Kovalicky

Front row, left to right: Jim Pfadt, George Arnold, John Galea, Mary Meagher, Jan Dickey, John Pinter

Members
RALPH JASZKOWSKI won this year's Silas Thompson, Jr., Award, given each year to a junior in the Forestry Club, for his outstanding curricular and extra-curricular activities during his sophomore year.

This $150.00 scholarship is given by Dr. and Mrs. Thompson each year in honor of their son, Silas, who died in the Man Gulch fire of 1949.

GEORGE STONE was the recipient of the 1953 Alumni Award. This award of $25.00 is given to the outstanding junior in forestry each year, at the annual awards convocation.

Montana Druids...

"The Montana Druids is an honor society whose primary function is service. Its objectives are to foster better understanding and relationships between the students and faculty, the school and the Forestry Club, and the students and school alumni. The membership is composed of forestry upperclassmen who have proven their ability and desire to promote these interests. New members are selected by the active members each autumn and winter quarter."

Top to Bottom: Dave Kauffman, Joe Meuchel, Dick Faurot, Jerry Wright, Jack Chamberlin, Bob Greenan, Frank Kirsten, Fay Clark, Fay Kiser, John Lowell, Bill Overdorff, Phil Hanson, Dick Joy, Mel Morris.
Springtime...1953

Field Trip Time for Foresters and Range Men at MSU
Spring Range Trip...

The 1953 Spring Range Management Trip started out from Missoula at 7:30 a.m. Wednesday, April 29, with Professor Mel Morris leading a pack of seven seniors. The work of cooking, dishwashing and the writing of the journal, daily log, and all technical write-ups was divided among the fellows and Mel.

A few stops were made the first day consisting mostly of taking in the vegetative types. The boys "free-loaded" that night at the expense of Jack (Pancho) Royle's father-in-law.

Through Nevada studying Halogeton and its control and other salt desert types, across the Great Basin country and through the Mojave Desert, with stops made to key out and study the various desert plants.

Into Arizona, Mexico, and then back to the U.S.A., observing range types, water control and use, and range management.

At the Sierra Ancha Experiment Station the crew studied watershed management and observed different soil types and their erosion potential. At the Fort Valley Experiment Station the boys observed both forest and range management.

Into Grand Canyon and through Zion National Park for two days of relaxation. Not much to do but lots of scenery.

Back again on the road and last major stop was made at the United States Sheep Station, Dubois, Idaho. Here they were lectured about and studied sheep breeding and management, and sagebrush range management.

After traveling for 31 days and over 4,600 miles, the "bucket-o-bolts" came chugging into Missoula with the entire crew intact. The seniors' only comment upon emerging from the truck was that they hoped they would be able to remember all they had seen. For truly it had been an enlightening, memorable, and enjoyable trek.

Left or right:
Don Lantz, Mel Morris, Bob Lake, Jack Royle, Jerry Stern, Doyne Tank, Clarence Almen and Ed Burroughs.
Spring Silviculture Trip...

The '53 Spring Silviculture trip began by the seniors attending the fifteenth annual Intermountain Logging Conference held in Spokane, Washington, March 24.

The two questions discussed that day were: How can the timber industry and public agencies work most cooperatively to solve their mutual problem in securing the development and use of public timber lands?; and, can the logger construct, design, and maintain private roads and bridges to recognized standards at minimum costs? The seniors gained much valuable knowledge in this one-day meeting, but at 6:00 p.m. were glad to adjourn to the mezzanine and enjoy the cocktail hour.

In Avery, Idaho, the boys observed road construction and then on to the Potlatch mill of Lewiston. Here the pulp and veneer plants were inspected and Pres-to-log operations were observed, among other things.

The next major stop made by the crew was at the Columbia Tree Farm of the Crown Zellerbach Corp., near Veronia, Oregon. A short talk was given on the history of the tree farm, and then they were shown a planting area, thinning operations, log rafting, and a restocking area.

Lastly, at King Creek Experiment Station they watched a demonstration of pruning, using pruning saws with extension handles, and the Whitmore Chisel.

After a very eventful and enlightening trip, the "wandering minstrels" came home.
Some Sampling Techniques

(Continued from Page 14)

To be an absolutely random selection the squares marked on the map should be the size of the plot used, but this is not practical. The field men are instructed to go to some point which is identifiable both on the photos and map near the square in which the plot is to be taken, and then scale the distance into the square and pace the required distance. It is felt that this is sufficiently random for all practical purposes.

In order to eliminate bias as much as possible the field men are instructed to make all decisions concerning the taking of the plot before they get on actual plot location. A better sample is gotten if plot strips are run at right angles to the drainages and ridges than if they are run parallel to them. In flat country the direction of the plot should be decided before reaching the plot.

3. METHODS OF RECORDING THE SAMPLE DATA

It is proposed to inventory an imaginary area. The area has been photographically covered, photos interpreted and stratified, and a base map constructed showing the variations in the forest stands. Management specifies a plus or minus 10% accuracy or sampling error and a 95% probability or two standard deviations. What procedure should be used to inventory this area? What is the proper sample size? What and how should information be collected in the field and how should it be analyzed and evaluated? The system described in the following paragraphs can be used effectively on any area. It should be remembered, however, that as the area decreases the number of samples will increase for any given Stand Volume Variation (see Table I).

a. Tabulation and Analysis

Many methods of field tabulation have been tried, and it would indeed be difficult to attempt to design a plot card for any inventory procedure. The objectives of the inventory will not doubt determine what information is needed. Basically management is concerned with volume, both present day and future volume. Inventory procedure for immature or growing forest stands requires additional data such as growth, more accurate estimates of site, perhaps soil samples, etc.

Whether the information is for detailed management of immature lands or for management and harvesting the mature forests the method of tabulation of the basic information should be in its simplest and complete practical form. The human element of time consumed in computing, tabulating and analysis is an important phase of the economy of inventory. The element of human error in transferring and handling data is always a complex problem, and because of these factors use of the International Business Machines is deemed necessary to best efficiency and economy. The I.B.M. have their services available by means of service bureaus and therefore it is not necessary to have their machines on hand to handle the project. By contacting the managers of these bureaus and presenting the problem they will devise a system of handling the data to best advantage. It can be assumed that what one can do by hand computation the I.B.M. can do it faster and more economically. Furthermore, the time involved in hand computation detracts from field observation time if the field men are employed at such work. The I.B.M. machine checks that can be made on its own computation renders the results without error. I.B.M. can by wiring special boards for the particular problem, extend the field observations of DBH, species, log heights and form class to volume. Defect and breakage can be automatically extracted. The I.B.M. will sort and collect any information from the source data and tabulate in whatever form specified. Last of all it can compute the reliability of the estimate and do all the mathematical statistical computations set forth in the analysis to follow. There are many other possibilities of employment of the I.B.M. services, but these few are noted to better explain methods of gathering field data.

b. Tabulation of Information (Plot Cards)

Example “A” shown below is a waterproof plot card showing items of information collected for I.B.M. analysis. All information is recorded in the card in number form. The owner (own) has a number assigned for each division of ownership. One space in the I.B.M. card will keep as many as ten divisions of ownership separated. Two spaces will accommodate 100 divisions of ownership. Most items of information are actual numbers such as DBH, log height, age, total height, site index, form class. Decimal points are taken for granted, i.e., 20 = 2.0 logs, 25 = 2.5 logs). The limiting factor controlling the code to be used is the total spaces of 80 allocated on the I.B.M. card. The field card is made in loose leaf form so as to be easily sorted if done by hand. In the event that I.B.M. is not used the code is still a fast way of recording and subsequent analysis. The field men readily learn to handle the few actually coded items.

(Continued on Page 25)
Summer Work . . .

The Foresters made a determined effort for the intramural sports trophy this year. Coach Helwig worked hard and long hours with his many teams, which participated in every intramural sport. Although the Foresters did not come out on top in the race, they did take second place, with a first place in both swimming and skiing, second place in volleyball, and third place in track.

Competition was too keen in basketball — the team managed to get only ninth place.

This is MSU's best intramural swimming team. These boys have set records which are going to be hard to beat.

Left to right: Dan Daniels, Jim Pfusch, Gene Kuhns, Dal Johnson, Pete Dring, Coach Helwig (with trophy), and Ken Knoll.

The Pine Toppers placed fourth in the intramural swimming meet.

Doug Dawson, Greg Ellerman, Al Kelley, Ken Cardwell and Jim Pfusch.

The Foresters stroked to victory yesterday and set five new records in six events in the Intramural swimming finals.

Ken Knoll, Milwaukee, Wis., set new records in the 40 and 80 yard free style events. Old time for the 40 was 19.8 seconds set by Fred Carl, Sigma Chi, in 1952. Gene Kuhns set a record of 46.5 seconds for Forestry last year. Knoll's new record is 44.9 seconds. Kuhns also broke the record in the 40 yard free style with the time of 19.6 seconds.

Dallard Johnson set two new records, one in the 80 yard back stroke, 54.9 seconds. Old record set by John Rounds in 1950 for the ATO was 59. flat. The 80 yard breast stroke is now set at 55.4 seconds. It was 58.6 seconds, set by Tom Ritter, Forestry, in 1952.

The Forestry broke their old record of 1:29.4 for the 180 yard, making it 1:23.9. The 80 yard breast stroke was won by Dallard Johnson, Forestry, time 55.4; second was Tom Ritter, third, Wallace, SAE.

40 yard free style was won by Knoll, Forestry, 20 seconds. He scored the new record in the preliminaries. Second was Kuhns, Forestry; third, Hansen, SAE.

Johnson, Forestry, won the 80 yard back stroke in 54.9 seconds. Rounds, ATO, was second, and Tom Ritter, PSI, took third.

Forestry's Knoll won the 80 yard free style in 44.9 seconds. Dawson, Pinetoppers, was second; Daniels, Forestry, was third.

The 60 yard medley relay was won by the Forestry in 52.5. Second was SX. Phi Dels was third.

The Forestry won the 160 yard free style in 1:23.9 for their sixth win in six starts.

This is the first time a team has won all the events and set a new record in five of them.

— Helwig's Corner
Data card is 7½” long and is hole punched in center folding area for loose leaf notebook.

4. STATISTICAL ANALYSIS OF THE SAMPLE

It is first necessary to understand the relationship between the sample and the population. In cruising merchantable timber the population is composed of all trees of merchantable size on the area to be cruised. The sample is any portion of that population taken in the form of plots or strips for the purpose of estimating the magnitude of that population.

The statistical values of the sample which are the arithmetic mean, the standard deviation, and the coefficient of variation are in estimation of the corresponding parameters of the population. The only time that these population parameters are known exactly is after a 100% cruise has been made. Obviously any errors that influence the determination of the sample parameters will be magnified in the estimation of the population parameters.

It is customary to use Greek Letters to refer to the population parameters and Roman letters for the corresponding sample parameters.

b. The Arithmetic Mean:

\[\mu \] (mu) is the population mean and can only be determined by a 100% sample. \(\bar{X} \) is the sample mean used as an estimate of the population mean. \(x \) is the value of an observation. (A plot in this case). \(N \) is the total number of possible observations. \(n \) is the number of observations in the sample. \(\Sigma \) is the Greek letter, sigma, meaning “summation of.”

\[\mu = \frac{\Sigma X}{N} \quad \text{and} \quad \bar{X} = \frac{\Sigma X}{n} \]

c. The Variance and Standard Deviation:

\(\sigma^2 \) (small sigma) is the population variance. \(Sx^2 \) is the sample variance used in estimation of the population variance. Variance is the average squared deviation from the mean.

The quantity \((X - \mu) \) is called an error since it is an exact statement of the variation of an observation from the mean of the population. The quantity \((X - \bar{X}) \) is called a residual because it is a statement of the variation existing between an observation and the sample mean and is only an estimation of the quantity. \((X - \mu) \).

It will be noticed that in the formula for the sample variance, \(n - 1 \) was used as a divisor instead of \(n \). Using the factor \((n - 1) \) makes the variance of the sample larger than if \(n \) were used; this is done for the following reasons:

1. The population mean \(\mu \) is generally unknown because 100% cruises are seldom made. Therefore, it is necessary to estimate the variance of the population mean from the variance of the sample mean which, in turn is based on the sample mean. Once the mean of a sample is determined there are only \(n - 1 \) independent comparisons. For example, in the hypothetical array of three (3) observations with the values, 4, 5 and 6 the arithmetic mean is 5. Thus, if the mean, 5, and one other observation, say 4, is taken then the value of the third observation is automatically fixed at 6.

2. In addition the variance of the sample mean, mean square of residuals, is always less than the variance of the population mean, mean square of errors, whenever the sample mean varies from the population mean. This is true regardless of whether the sample mean is larger or smaller than the population mean.

(Continued on Page 26)
Some Sampling Techniques
(Continued from Page 25)

Therefore, one observation is sacrificed which increases the variance thereby compensating for this fact. The factor of \((n - 1)\) is extremely important whenever the sample is comprised of less than thirty (30) observations. This point will be discussed further.

d. Coefficient of Variation

Reference to Tables IB, IC, and ID will illustrate the effect of this statistic. The coefficient of variation is equal to the standard deviation divided by the arithmetic mean with this result multiplied by 100%. The formula is:

\[
\text{C.V.} = \frac{Sx}{X} \times 100
\]

Variability of groups of data such as cruises of different stands of timber can be compared by means of this coefficient which is stated as a percentage. Very often the magnitudes of two sets of data are so different that the absolute values of the standard deviation of each set are not directly comparable. Then comparison of variability can be made by relating the standard deviation to the arithmetic mean.

e. Standard Error of the Mean

In computing this parameter the standard deviation of the population is estimated from the standard deviation of the sample by correcting the sample parameter for its tendency to be less than that of the corresponding population parameter.

\[
\text{Estimated } \sigma = Sx \sqrt{\frac{n}{n - 1}}
\]

\[
\text{SE}_M \text{ (Standard error of the mean)} = \frac{\text{Estimated } \sigma}{\sqrt{n}}
\]

when \(n\) is the number of observations.

The confidence which can be placed in any statistical measure computed from a sample depends upon how closely that measure comes to the corresponding parameter for the population. The standard error of the mean provides a means of estimating how closely the arithmetic mean of the sample comes to the population mean without taking repeated samples in the population. It is therefore one of the main considerations in determining the reliability of an average. It is necessary to consider probability when discussing reliability. In stating an average it is proper to state the number of standard errors used and the number of observations in the sample on which the average is based. An average volume/acre in board feet Scribner based on 100 observations and \(1\) standard error would be stated as follows:

Average volume/acre = 50,000 BFS \pm 1,000 (100 cases).

The statement can then be made that the true mean lies between 49,000 and 51,000 BFS and that statement will be wrong one time out of three on the average.

If the statement is made that the true mean lies between 48,000 and 52,000 BFS, average of two standard errors from the observed mean, the statement will be wrong one time out of 20 on the average. A range of two standard errors is most commonly used in forestry.

If the statement is made that the true mean lies between 47,000 and 53,000 BFS, a range of three standard errors from the observed mean, the statement would be wrong one time out of 370 on the average.

The above probability statements are based on samples of over 30 observations. As the number of observations decreases from 30 the probability also decreases. For a sample of two observations the statement would be wrong one time out of two on the average for one standard error instead of as stated above. In stating an average to two standard errors for a sample of over 30 cases the result of the standard error formula is simply multiplied by two in order to get the amount that the true mean may vary from the sample mean. In stating an average to two standard errors for a sample of less than 30 cases it is necessary to get the correct multiplier from a table of \(t\) which may be found in any standard text on statistics. Thus for a sample of 10 observations the factor would be 2.262 instead of two and for a sample of 2 observations the factor would be 12.706 instead of two. It is essential to know the number of observations in a sample as well as the number of standard errors used whenever the reliability of an average is being considered.

f. Sampling Error

Sampling error is zero when a 100% cruise is made. Since it is generally impractical to make a 100% cruise it is necessary to decide upon an allowable sampling error and then compute the sample so that this allowable error will not be exceeded. This is done by using the formula previously given for computing the required number of plots.

Since the coefficient of variation is usually estimated before beginning the survey, it is necessary to compute the final sampling error achieved after the survey is over by the following formula:

\[
a = \sqrt{\frac{\text{T}^2 \sigma^2 (N - n)}{nN}}
\]

This formula is derived from the formula for the required number of plots.

(Continued on Page 35)
Greenan, Kuhns and Crozer
Taking '5'

Queens judging the beards—Chamberlin took top honors

Can-Can girls at intermission time

Dick Johnson and Claudia Hooper
"Let her in Dick, you can't keep a gal waiting forever!"
The boys with the peach fuzz: John Holden, Al Crozer, Frank Kirsten, John Lowell, Pat Ryan, Jim Zeltinger, Dan Daniels, Jack Chamberlin and Jim Eakland

"Bertha, how you've changed"

Daniels, Overdorff, Rundle and Stone retrieving Babe's nose
Jim Ryan, caught in the act
Primping Bertha for the big night
The foresters, believe it or not, worked 3,625 man hours to produce this year's ball. Without a doubt, this year's dance was one of the best Paul and Babe have seen at MSU in a long time.

The fellow's work paid off, not only in a good gate return, but also in some national advertising — and a warped gym floor. The ball was photographed from beginning to end by LIFE and received a three-page spread. The pictures in this section are some of the many that they took.

Water, from the melting snow brought into the gym on the trees, resulted in too such stress on the wooden floor — it warped! Foresters helped the Physical Education Department refinish the floor.

A new angle in the beard contest was tried and went over with much success. The "Queens" on the campus, acting as judges, determined who was to receive a prize for the best whisker rub. Dan Daniels was proclaimed the whisker rubbing champ, while Jack Chamberlin had to settle for first prize — an electric razor.

The Bunny Hop!
IN MEMORIAM

DAVID W. SALTSMAN

Born August 21, 1931, Canton, Ohio
Died October 26, 1954, Whitefish, Montana

Graduated from the School of Forestry, Montana State University, in 1953. Former president of the Montana Druids, and Photography editor of the Forestry Kaimin.

A WOODSMAN'S PRAYER

Let me breathe the clean pure air
That blows only in the wilder places
Send me far from the tainted cities
Packed tight with mongrel races.

Let me quench my thirst
In pure crystalline springs
That bubble from the living rock
Shadowed only by an eagle's wings.

Let me follow the untrod trail
Roaming freely till the end of my days
And watch the dusty red sun
Set the heavens and mountains ablaze.

Let me, alone, eager and forever,
Follow and fight the naked wild
And when I die, mark me down
For what I am — Nature's Child.

— Silas R. Thompson
School Roster . . .

Arnold, George; Fr.; Box 273, Malta, Montana

Backling, Harvey; Fr.; Corvallis, Montana

Barkman, Ed; Sr.; Watkins Glen, New York

Beckman, Glenn; Fr.; Gallatin Gateway, Montana

Belcher, F. Arthur; Jr.; 146 Seminole Ave., New Milford, N. J.

Bergland, Robert; Fr.; 500 7th Ave., Great Falls, Mont.

Blakeley, Lawrence; So.; 812 Lynnhaven Lane, La Canada, Calif.

Bloedel, Ed; Fr.; 1026 Jerome, Janesville, Wisconsin

Brammer, Monte; So.; R. 2, New Castle, Indiana

Bremicker, Gilbert; So.; 3141 Home Ave., Berwyn, Ill.

Burrows, George; So.; Box 526, Saginaw, Michigan

Calhoun, Donald; Sr.; 4951 Lennox Blvd., Ingleswood, Calif.

Campbell, Jean; So.; Rt. 1, Orchard Homes, Missoula, Montana

Carey, Charles; Jr.; Landwehr Road, Northbrook, Ill.

Carruthers, R. V.; Jr.; 26 Ravalli, Missoula, Montana

Cardwel, Ken; So.; 568 Ave. Del Ora, Redwood City, Calif.

Chamberlain, Jack; Jr.; 1732 So. 13th W., Missoula, Montana

Clark, Maurice; Fr.; 1117 N. Dale Dr., Annandale, Va.

Cole, Roger, So.; 1437 Virginia Ave., Havertown, Pa.

Coston, Charles; Jr.; 111 Goucher Cir., Oak Ridge, Tenn.

Crozer, Ed; So.; 178 W. Hanover St., Trenton, N. J.

Dahl, J. Russel; Sr.; 113 Clinton, Hot Springs, Ark.

Dale, Robert; Fr.; 3917 E. 5th St., Long Beach, Calif.

Devan, George; Sr.; 9 Ravalli, Missoula, Montana

Dickey,Jan.; So.; Pampa, Texas

Dollan, Jack; Jr.; 2156 S. 14th W., Missoula, Montana

Downing, Donald; So.; 415 S. 2nd, Hamilton, Montana

Droge, Pete; Fr.; 321 N. Harvey, Oak Park, Ill.

Duft, Joe; Fr.; Morris, Minnesota

Duhamel, Eugene; So.; 111 Central Ave., East Providence, R. I.

Dunning, Francis; Jr.; 142 Terry Ave., Billings, Mont.

Eakland, James; Sr.; 243 W. Cedar Ave., Burbank, Calif.

Ellerman, Greg; So.; Rt. 1, Box 971, Woodside, Calif.

Emerson, Ralph; Jr.; Juneau, Alaska

Estey, William; Jr.; 5 Carbon, Missoula, Montana

Fauror, Richard A.; Sr.; St. Croix Falls, Wisconsin

Foster, Lewis; Jr.; Meeteetse, Wyoming

Fowler, Frank A.; Sr.; Lanham, Maryland

Frame, Albert; Jr.; Forest Nursery, Rt. 1, Missoula, Montana

Franz, Thomas; Fr.; 411 Burlington, Billings, Montana

Freeman, Glen; So.; Conrad, Montana

French, William; Fr.; 15 South St., Masseua, N. Y.

Galea, John; Fr.; 2159 Froude, San Diego, Calif.

Garrick, Norman; Jr.; 6052 N. Cloubrly, Temple City, Calif.

Gibson, Richard; Fr.; 12814 Maple, Blue Island, Ill.

Gibson, Robert; Jr.; 323 Eddy, Missoula, Montana

Gilliam, John; Jr.; Lincoln, Montana

Golden, Joanne; Sr.; Target Range, Missoula, Mont.

Graham, David; Sr.; 1835 Ellis, Missoula, Montana

Grandy, George; So.; 2332 Howard Ave., San Carlos, Calif.

Greenan, Bob; Fr.; 7714 S. Lowe, Chicago 20, Ill.

Grice, Howard; Jr.; 4022 Scandia Way, Los Angeles, Calif.

Grill, Adrian, Jr.; Elko Park, N. Y.

Guschausky, Richard; Fr.; Rt. 1, Box 335, Zion, Ill.

Hankins, Wm.; Jr.; 1212 2nd St. W., Billings, Montana

Hanson, Harold E.; Jr.; 17 Custer, Missoula, Montana

Hanson, Phil; Sr.; 308 N. Ave. E., Missoula, Montana

Hautzinger, John; Sr.; 3065 S. 32nd Ave., Omaha, Nebraska

Hayes, Harlan; So.; 634 Marshall, Missoula, Montana

Heinz, Paul; So.; Shawano, Wisconsin

Helwig, Lawrence; Jr.; Waubay, South Dakota

Hill, Elbert; Sr.; Prefab 27, Missoula, Montana

Hoffmeister, Wm.; Fr.; 3517 Tarpis Ave., Cincinnati, Ohio

Jaszkowski, Ralph; Jr.; 5627 S. Trumbull, Chicago, Illinois

Jenkins, Joseph; Jr.; 411 N. 31st St., Kansas City, Kan.

Johnson, Dallard; Jr.; 2861 N. 24th Place, Milwaukee 6, Wisconsin

Johnson, Richard; So.; 2014 N. Lamon Ave., Chicago 39, Ill.

Joy, Dick; Sr.; 2906 Edgehill Dr., Alexanderia, Va.

Jukkala, Arthur; Fr.; 410 Grandview Dr., Lead, S. D.

Kelley, Al; Jr.; 87 West St., Gild, Mass.

Kirschten, Frank; Sr.; Baker, Montana

Kiser, Fay; Sr.; 45 Carbon, Missoula, Montana

Kluwe, Carl; Jr.; Box 145, Argo, Chicago, Ill.

Kovalicky, Thomas; Fr.; 470 Pisget Ave., Clifton, N. J.

Kuhns, Gene; Sr.; 4851 N. 2nd, Milwaukee, Wis.

Kutten, Everett; Jr.; 64 Ravalli, Missoula, Montana

Laux, James; Fr.; 1140 A. N. 27th St., Milwaukee, Wis.

Leat, Merlin G.; Jr.; 16 Beaverhead, Missoula, Mont.

Levade, Pete; So.; 2206 Sacramento, Vallejo, Calif.

Locke, Richard; Fr.; 3520 Jackson Blvd., Rapid City, South Dakota

Lowell, John; Sr.; 707 S. Menlo; Sioux Falls, S. D.

McCulloch, John; Jr.; 405 W. Olive, Bozeman, Mont.

McLean, James; Jr.; 1135 Uphan St., San Louis Obispo, Calif.

McNamee, Bart; Sr.; 37 Lake, Missoula, Montana
Mading, Wallace; So.; Oak Grove Lane, Springfield, Missouri
Martin, Barry Lee; Fr.; 69 Lincoln Ave.; Deadwood, South Dakota
Meagher, Mary; Fr.; 1314 W. 20, Spokane, Wash.
Meuchel, Joe; 107 Ferrell, Hamilton, Montana
Mirehouse, James, So.; Augusta, Montana
Moore, Howard Robert; Jr.; 302 Berwyn Ave., Trenton 8, N.J.
Morris, Alan; Fr.; 609 S. 6th E., Missoula, Montana
Morrissey, Donald; Fr.; 43 Chester St., Wilkes-Barre, Pennsylvania
Moulton, Thomas; Fr.; Ashland, Montana
Murphy, George; Fr.; 119 Pine St., Whitetish, Mont.
Murray, Robert; Sr.; 7707 Jayseel St., Twanga, Calif.
Murray, Roger; Fr.; 1620 N. Benton, Helena, Montana
Musekamp, Robert; Fr.; 426 Wash. St., Lead, S. D.
Nelson, Marvin; So.; Westby, Montana
Nelson, Nat; Fr.; 752 Greenbay, Winnetka, Ill.
Nelson, Robert; Fr.; 379 Market St., Highspire, Pa.
Neufelder, Carl; Fr.; 2543 Floral, Butte, Montana
Nyquest, Charles; Fr.; Boulder, Montana
O'Rourke, Dan; Sr.; Santa Barbara, Calif.
Ortengren, Richard, So.; 1056 Jackson St., Marinette, Wisconsin
Overdorff, Bill; Sr.; Grand Island, Nebraska
Owen, David; Jr.; 405 Franklin Ave., Madison, Wis.
Palmer, Ronald; Fr.; 408 Lake St., Sandpoint, Idaho
Patten, Richard; Fr.; Rt. 4, Missoula, Montana
Patterson, Tom; Jr.; Minoaqua, Wisconsin
Paul, Glen; Fr.; 11924 92nd St., Edmonton, Alberta
Pennington, Andrew; Fr.; Box 44, McLean, Virginia
Perry, Roger; Fr.; 2732 Henrietta, La Crescenta, Calif.
Pfadt, James; Fr.; R.F.D. 3, Peach St., Erie, Pa.
Pfush, James; Sr.; 847 2nd Ave. N.W., Valley City, North Dakota
Phelps, John; So.; 1008 Asbury Ct., Winnetka, Ill.
Pinter, John; Fr.; 3449 N. Diversey Blvd., Whitefish Bay, Wisconsin
Pissot, Henry; Sr.; 49 Lake, Missoula, Montana
Poole, Robert; Jr.; 15 Chouteau, Missoula, Montana
Poulson, Wm.; Jr.; 1 Chouteau, Missoula, Montana
Ramey, Gener; Fr.; 3600 Horn St., Alton, Illinois
Reed, Martin; Sr.; 7 Dawson, Missoula, Montana
Reiger, Ted; Sr.; Plevna, Montana
Rogers, Robert; Jr.; 1724 Caramay Way, Sacramento, Calif.
Rounds, John; So.; 797 Solano Dr.; Lafayette, Calif.
Royce, Arnold G.; Box 122, Beltry, Montana
Rundle, Ralph; So.; Chicago, Illinois
Rundle, Ron; Fr.; 7647 S. Marshfield, Chicago, Ill.
Ryan, Pat; 447 Bellevue Ave., Trenton, N.J.
Sandman, Richard; So.; Box 361, Rapid City, S.D.
Sandvig, Frank; So.; 229 Dearborn, Missoula, Mont.
Schirm, John; Fr.; 906 Avondale Rd., San Marino, Calif.
Schlueter, Henry; Fr.; 533 W. Euclid, Spokane, Wash.
Schmitt, Whitney; Fr.; 527 Teaneck Rd., Teaneck, N.J.
Schoenbaum, Jim; Jr.; 5 Beavervalee, Missoula, Mont.
Sedlacek, Barney; So.; 339 E. 65th St., New York 21, New York
Seitz, Gary; So.; Roundup, Montana
Smith, Lewis; So.; 212 Blake St., Helena, Montana
Smith, T. M.; Sr.; 100 Van Buren, Missoula, Montana
Smith, Zane; Jr.; 4 6th St. S., Great Falls, Montana
Snyder, Paul; Fr.; Malta, Montana
Stone, George; Sr.; 140 E. Central, Missoula, Montana
Stolle, Pete; Jr.; 1554-A Wilhelmina Rise, Honolulu 16, Hawaii
Struck, Gerhard; Jr.; 134 N. Cuyler, Oak Park, Ill.
Supola, Monte; Sr.; Pompy's Pillar, Montana
Swenson, Adrian; Jr.; 2020 Baxter Ave., Superior, Wisconsin
Taliaferro, Wm.; Sr.; 1317 Jennings, Bartlesville, Okla.
Tatge, Wayne; Fr.; Rt. 2, Greenup, Illinois
Thayer, Alan; So.; 32 Sprague Ave., Riverside, R. I.
Venable, Richard; Fr.; 400 S. Mont. Ave., Miles City, Montana
Walkup, Robert; Sr.; 737 E. Front, Missoula, Montana
Wanner, Kennedy; Jr.; 2 Chouteau, Missoula, Montana
Weingart, Paul; Fr.; 515 Rolllin, Missoula, Montana
Wells, Don; Jr.; 909½ E. Beckwith, Missoula, Montana
White, James H.; Sr.; Prefab 9, Missoula, Montana
Williams, Don; Jr.; Forest Service, Hamilton, Montana
Wineman, Warren; Jr.; 490 Oakdale Ave., Glencoe, Illinois
Woffenden, Harry; Sr.; 810 Edith, Missoula, Montana
Wolfe, J. Franklin; Fr.; 25 Ravalli, Missoula, Montana
Wright, Gerald; Sr.; 520 Watsen, Ripon, Wis.
Young, Ronald; Fr.; Moiese, Montana
Some Sampling Techniques
(Continued from Page 26)

The allowable sampling error ("a") derived from this formula is the maximum error which will result from the fact that a 100% cruise was not made. This statement is based on the assumption that bias has been eliminated from the sample and that the sample is representative.

The "a" of the above formula is often referred to as "accuracy." This is misleading because it is only a statement of maximum expected sampling error at a specified probability and does not include the technique errors which affect the accuracy of a cruise. Thus all errors due to inaccurate estimates or measurements of DBH, height, form class, defect and breakage and misuse of volume tables, inaccurate area determinations, and computation errors are in addition to the possible sampling error. Technique errors can be either compensating or compounding in their effect on sampling error.

5. SUMMARY

The need for better planimetric maps and forest inventory information in management planning is becoming increasingly important. Utilization trends dictate a finer economy and reliable information at less cost is necessary to maintain the profit in growing and harvesting trees. Management is rightfully entitled to maps and information with a specified degree of certainty. While the foregoing is a tried and workable method and is generally applicable to most other problems of inventory, modification of this procedure may be necessary for specific problems.

Table 1A

<table>
<thead>
<tr>
<th>Area (Ac)</th>
<th>Plots</th>
<th>% Cruise</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>12</td>
<td>60%</td>
</tr>
<tr>
<td>40</td>
<td>19</td>
<td>47.5%</td>
</tr>
<tr>
<td>80</td>
<td>22</td>
<td>14%</td>
</tr>
<tr>
<td>160</td>
<td>37</td>
<td>7.2%</td>
</tr>
<tr>
<td>640</td>
<td>85</td>
<td>1.25%</td>
</tr>
<tr>
<td>2000</td>
<td>250</td>
<td>0.625%</td>
</tr>
<tr>
<td>10000</td>
<td>2500</td>
<td>0.125%</td>
</tr>
</tbody>
</table>

Referring to formula shown for computing the required number of samples:

Example

\[
N = 10,000 \times 2 = 20,000 \text{ ½ acre samples possible}
\]

Table 1B

<table>
<thead>
<tr>
<th>Effect of CV (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t = 2), (a = 10%), (c = 50%)</td>
</tr>
</tbody>
</table>

Table 1C

<table>
<thead>
<tr>
<th>Effect of CV (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t = 2), (a = 30%), (c = 30%)</td>
</tr>
</tbody>
</table>

Table 1D

<table>
<thead>
<tr>
<th>Effect of CV (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t = 2), (a = 20%), (c = 20%)</td>
</tr>
</tbody>
</table>

Table 1E

<table>
<thead>
<tr>
<th>Effect of the error (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t = 2), (CV = 50%), (a = 20%)</td>
</tr>
</tbody>
</table>

Table 1F

<table>
<thead>
<tr>
<th>Effect of Size of Plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a = 10%), (c = 50%), (t = 2).</td>
</tr>
</tbody>
</table>

Note: Tables 1A, 1B, 1C, 1D, and 1E based upon ½ acre sample size.

If this same formula were applied to a stand basis the same procedure would be taken to determine the sample required, but the coefficient of variation would certainly be less than 50% due to finer stratification of the stand variation. The coefficient of variation if not known can be estimated and a quick analysis may be necessary for specific problems.

Bibliography

Sampling Methods in Forestry and Range Management, Schumacher, F. X., and Chapman, R. A.

Methods of Correlation Analysis, Ezekiel, M.

An Outline of Statistical Methods, Arkin and Colton.

Statistical Methods, Snedecor, George W.
GOOD FORESTRY

AND CARCO EQUIPMENT

For selective or "staggered setting" patch logging, a Carco winch–Carco arch-tractor team is the most versatile rig in the woods. It efficiently and economically bunches and yards timber of all sizes. It reaches out for isolated logs and winches them in from inaccessible spots. Because of its great maneuverability, this smooth-working team of tractor, winch and arch operates with minimum damage to standing trees and with minimum expense for access roads.

Wherever your career in forestry takes you, you’ll find that Carco equipment is owned by the most successful loggers and is sold and serviced by the leading tractor dealers. You’ll find, too, that Carco logging equipment never lets a forester down... has great staying power and is dependable. PACIFIC CAR AND FOUNDRY COMPANY, Renton, Washington. Branches at Portland, Ore., and Franklin Park, Ill.
Compliments of

MONTMARTRE
MISSOULA HOTEL

ORVIS MUSIC HOUSE
125 West Main Street
Everything Musical
Since 1897 Phone 9-2261

MISSOULA DRUG
Wholesale and Retail
Missoula Montana

NORTHERN BAR
and
COCKTAIL LOUNGE
Dancing in the Rose Room

The Home of Quality
Drugs . . . Drug Sundries
Cosmetics . . . and Toiletries

SEVEN UP BOTTLING COMPANY

Compliments of

Tree Farmers INCORPORATED
Forest Appraisals Timber Logging
P. O. Box 1361 MISSOULA, MONTANA Phone 9-0495
Fire Prevention Means...
Better Living for More People

Proper Utilization Promotes...
Better Business

WESTERN MONTANA LUMBER CO.
MISSOULA, MONTANA

THORNTON LUMBER CO.
RAVALLI, MONTANA

JOHN R. DAILY, Inc.
Wholesale and Retail Distributors of
Meat and Meat Products

Packers of
DAILY’S
MELLO-TENDER
HAMS, BACON, SAUSAGE
AND LARD

Western Montana’s Buyers of
FAT CATTLE, CALVES, LAMBS, HOGS and
POULTRY FOR HOME CONSUMPTION

Compliments of
MISSOULA
WHITE PINE SASH CO.
MISSOULA, MONTANA

K. D. WINDOW FRAMES
MILLWORK and LUMBER
PINE CRAFT PRODUCTS
INTERSTATE LUMBER CO.
Quality Building Materials — Ponderosa Pine, Larch, Fir Lumber
YARDS IN WESTERN MONTANA

SUNNY MAID BAKERY
for
Cakes — Pastries — Dinner Rolls — Bread
129 WEST FRONT
PHONE 2-2384

INTERMOUNTAIN LUMBER CO.
Manufacturers of
PONDEROSA PINE — DOUGLAS FIR
LARCH — SPRUCE
9-2385 118 Russell 9-8312
MISSOULA, MONTANA

FOLSOM COMPANY, Inc.
Complete Irrigation Equipment and Engineering Service
Box 1227 MISSOULA, MONTANA Phone 2-2186

HANSEN’S ICE CREAM
Factory and Fountain at 519 South Higgins
OPEN EVERY DAY UNTIL 10:00 P.M.
Hats off...

To the many hundreds of young men, devoting their lives to the preservation and promulgation of our national forests and resources... we say: "Hats Off!"

Yours is a worthy task, vital to the future of this great nation and deserving of the thanks of this, and future generations!

The Mercantile
WESTERN MONTANA'S FAMILY SHOPPING CENTER

DAVENPORT LUMBER COMPANY, Inc.

CUSTOM MILLING - CUSTOM AIR DRYING

P. O. Box 724 — Phone 9-0252

Office 1633 Russell Street
Missoula, Montana
INDIAN FIRE PUMP

one man fire department

INDIAN FIRE PUMP
WORLD'S BEST FIRE FIGHTER

D. B. Smith & Company, Inc.
SMITH BUILDING, MAIN STREET, UTICA 2, NEW YORK

The SMOKEJUMPER

We have created some new shoes for the SMOKEJUMPERS; also for men that want a real shoe for arch support and sturdy underpinning.

With built-in arch features, hand-made underslung heels.

Solid procord soles will not slip.

Send Us Your Mail Orders

These shoes carried in several widths.

FILSON DUCK CLOTHING —

Pants, Double — $10.45
Cruiser Coat — $12.95
Vest — $6.95

Oil Tanned, Double Leather Vamp
$19.95

Elk Tanned, Cloth-Lined Vamp,
For Warm Weather
$18.95

Two New Bergmann Numbers
Heavy Oil Tanned, Leather-Lined Vamps
or
Same in Elk Tanned Leather,
Leather Lined Vamps
$24.95

Missoula, Montana
WOODY SAYS -

BE SURE YOUR FIRE IS REALLY OUT

ONE SPARK IS DANGEROUS
PROTECT FORESTS FOR OUR COUNTRY'S FUTURE

J. NEILS LUMBER CO.

TIMBER IS A CROP... DON'T BURN IT
YANDT'S FEATURE THE BEST DRESS AND OUTDOOR CLOTHES

KUPPENHEIMER
HANDCRAFTED CLOTHES

DOBBS HATS

Pendleton
TROUSERS
JACKETS

Tailor-Ed by
Day's

Bone-Dry
HAND MADE
SHOES
UNION MADE

Paul Bunyan
LOGGER
Patented

Alligator
ALL-WEATHER COATS

ARROW SHIRTS & TIES
UNDERWEAR • HANDKERCHIEFS • SPORTS SHIRTS

Yandt's
MEN'S WEAR

Jackets and Overalls
LEVI and LEE

REPELLENTS
"Filson" Canvas Vest
"Black Bear" Cruiser Pants
and Coats

403 North Higgins Ave.

MAIL ORDERS GIVEN PROMPT ATTENTION
WE PAY POSTAGE

Missoula, Montana

IDAHO POLE COMPANY
SANDPOINT, IDAHO

BOZEMAN, MONTANA

PRODUCERS — PRESERVERS — SHIPPERS

of

LODGEPOLE PINE — WESTERN RED CEDAR

WESTERN LARCH — DOUGLAS FIR

Poles — Piling — Posts

44
These Firms Made Gift Donations to Foresters Ball...

Yandt's Men's Wear
Missoula Mercantile
Bob Ward & Sons
Westerner's

Save on Drug
Dragstedt's
Schick Razor Company

Shop the New

PENNEY'S

Always First Quality

J. M. LUCY & SONS, Inc.

Home and Office Furnishings

Established 1889

Missoula, Montana

Phone 2-2179

BREST'S MARKET

BETTER FOODS

at

LOWER PRICES

1801 South Higgins

YOUR

WESTINGHOUSE

DEALER

and

ELECTRICAL CONTRACTING

The Electrical Shop

Opposite Courthouse on Broadway

You'll Like...

Highlander

PREMIUM BEER

MISSOULA BREWING CO.
...FOR THE MOST WORK, LEAST UPKEEP
...FOR LONGEST LIFE, GREATEST MANEUVERABILITY,
POWER AND RUGGEDNESS!

GERLINGER Material Carriers and Fork Lift Trucks have proved for over 30 years to be the answer to loading, hauling, stacking and delivery problems of logging, lumber mills and yards, and wood product factories the world over. Feature-for-feature, Gerlingers consistently prove their flexibility to meet the exacting standards of material handling requirements of all heavy industries.

GERLINGER CARRIER CO., DALLAS, OREGON

ASSOCIATED STUDENT'S STORE

ON THE CAMPUS

STUDENT UNION BUILDING

Home of

Student Textbooks
Reference Books
Supplies
Sporting Goods

THE PLACE TO MEET YOUR FRIENDS FOR FUN, REST, GOSSIP, EATS
Currin's HAND MADE LOGGERS

Currin's Loggers have been the standard of comparison for over fifty years. Made in all heights, from fly weight to heavy weight, lace to toe or plain toe.

Currin's Loggers Are Sold by Over 1,000 Dealers in the Pacific Northwest

Currin-Greene SHOE MANUFACTURING CO., Inc.
2700 Block Western Ave., Seattle 1, Wash.

KRAMIS HARDWARE COMPANY
Missoula, Montana
DURABLE EQUIPMENT for RUGGED USE
1865 to 1953

Dr. L. R. Barnett **Dr. D. R. Barnett**
Dr. W. L. Barnett

OPTOMETRISTS
Glassed Fitted — All Optical Repairs
Missoula — 129 East Broadway — Montana

Coca-Cola Bottling Co. of Missoula
— also —
CANADA DRY GINGER ALE
and **HI-SPOT MISSION ORANGE**

MONTANA CONCRETE PIPE CO.
Culvert, Sewer and Irrigation Pipe
Pumice Building Blocks
Phone 5-5011 South on Highway 93 MISSOULA, MONTANA
The West's Best FORESTERS

CLOTHING LOGGERS FURNISHINGS

That have stood the test of time — 36 years in outfitting Foresters and Lumberjacks with WOLLICH, MALONE, and WHITE STAG CRUISERS and PANTS; PENDLETON WOOL SHIRTS; FILSON and HIRSCHWEIS WATER REPELLENTS; WRIGHT'S WOOL UNDERWEAR; WHITE LOGGERS and PACKERS, have given DRAGSTEDT'S a wide reputation for guaranteed customer satisfaction.

WHITE LOGGERS AND PACKERS

No. 75 — 8” Black Kip Lumberman’s or Driver’s Loggers, Best Quality $28.00
No. 335 — 8” Brown Elk Summer Logger, Uskide Sole and Rubber Heels $24.50
No. 690 — Brown Elk “Packer,” Light Weight, Stitchdown for Riding or Walking $27.00
No. 1432 — 8” Black Kip, Light Weight, Hand Sewed Stitchdown $26.50

Widths B, C, D, E, EE. Best selling width is E. Walking $2.00 and Hobbing $1.50 extra. There is no “Breaking in” period for a White Arch-Ease Logger. They are the most comfortable shoe of its kind made.

No. 335 is Logger used by “Smokejumpers” in U.S.F.S. Region No. 1

RANGER WHIPCORD TROUSERS

Tailor-d by Day's

Year-round Wear
For Work—For Play
The famous long-wearing Ranger Whipcord
100% Virgin Wool
Never-rip Seams
Heavy Boatsail
Pocket
Zipper Jacket to Match $17.95
Cruiser, Double Back, $22.50
The above numbers available in Forest Green, Tan, Sage, Grey and Navy Blue.

"FILSON" WATER REPELLENTS

CRUISER, Double Front, Back and Sleeves $12.45
FIELD VEST, Cruiser Pockets, 4 Outside and 2 Inside Pockets, No sleeves $6.95
PANTS, Double Construction $10.45
PANTS, Single Construction $8.45

"CONQUEROR" UNIFORM SHIRTS

Best Grade Poplin, Forest Green, Grey, Sun Tan, Navy Blue $4.50
Regular Broadcloth, Grey, Tan Only $3.50
Sizes 14-18, Sleeves 32-33-34-35

Day's IRON DUKE

Same as Ranger Whipcord, only 19-oz. (heaviest wt.); 2-ply Nylon Blend; Scratch-free Comfort; Stain and Spot Resistant; Permanently Crease Resistant. Pants $9.95
Zipper Jacket $11.95 Cruiser, Double Back $14.95
Available in Forest Green and Sage Grey

MAIL ORDERS APPRECIATED

EVERYTHING MEN WEAR ON CIRCLE SQUARE

MISSOULA, MONTANA

48