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The excitatory amino acid transporter EAAT4 is ex-
pressed predominantly in Purkinje neurons in the rat
cerebellum (1–3), and it participates in postsynaptic re-
uptake of glutamate released at the climbing fiber syn-
apse (4). Transporter-mediated currents in Purkinje
neurons are increased more than 3-fold by arachidonic
acid, a second messenger that is liberated following de-
polarization-induced Ca21 activation of phospholipase
A2 (5). In this study we demonstrate that application of
arachidonic acid to oocytes expressing rat EAAT4 in-
creased glutamate-induced currents to a similar extent.
However, arachidonic acid did not cause an increase in
the rate of glutamate transport or in the chloride cur-
rent associated with glutamate transport but rather ac-
tivated a proton-selective conductance. These data re-
veal a novel action of arachidonate on a glutamate
transporter and suggest a mechanism by which synaptic
activity may decrease intracellular pH in neurons
where this transporter is localized.

Glutamate transporters play critical roles in synaptic trans-
mission and in maintaining glutamate homeostasis in the
brain (6). They are encoded by genes belonging to a family of
acidic and neutral amino acid transporters (7), and they exhibit
specific localization patterns. Glutamate transporters found on
glia include EAAT1 (excitatory amino acid transporter 1)/
GLAST and EAAT2/Glt-1 (8, 9), and transporters found on
neurons include the widely expressed EAAT3/EAAC1 (8), the
cerebellar-specific EAAT4 (1–3), and the retinal EAAT5 (10).

Arachidonate is released following activation of postsynaptic
glutamate receptors (11). In synaptosomal preparations,
arachidonate inhibits glutamate uptake (12–14). However, it
exerts differential effects on cloned glutamate transporter sub-
types, enhancing EAAT2 and inhibiting EAAT1 transport (15).
Arachidonate inhibits uptake in salamander retinal glial cells
(16). These cells predominantly express an EAAT1 homolog
(sEAAT1) that is similarly inhibited by arachidonate when it is

exogenously expressed in oocytes (10, 15). Because arachido-
nate is released during synaptic activity and can modulate
synaptic transmission (17, 18), understanding its effects on
various glutamate transporter subtypes is important. Recently,
Kataoka et al. reported an activity-dependent enhancement of
glutamate transporter currents in rat cerebellar Purkinje neu-
rons that was mediated by arachidonate (5). The present study
was designed to examine the mechanism of the effects of
arachidonate on the cloned rat EAAT4 transporter, which is
expressed at high levels in Purkinje neurons.

EXPERIMENTAL PROCEDURES

The rat EAAT4 cDNA1 was subcloned into pOG, a vector derived
from pBSTA (19) that contains a multiple cloning site between flanking
Xenopus b-globin 59- and 39-untranslated sequences. Capped mRNA
was transcribed using T7 polymerase and injected into stage V or VI
oocytes (approximately 50 ng/oocyte). Recordings and radiolabel uptake
assays were made 4–7 days later as described (15). Extracellular Ring-
er’s solution contained (in mM) 100 NaCl, 2 KCl, 1.8 CaCl2, 1 MgCl2.
Buffers were present at 5 mM and consisted of MES2/HEPES (pH 6.5),
Na/HEPES (pH 7.5), or HEPES/Tris (pH 8.5). Solutions containing
indicated ion substitutions were changed by bath exchange. Recordings
were made using a two-microelectrode voltage clamp circuit (20), and
records were analyzed using pCLAMP 6.0 software (Axon Instruments).
[3H]L-glutamate (1 Ci/mmol; Amersham Pharmacia Biotech) uptake
assays were performed at 25 °C. Following a 5-min incubation in the
indicated concentration of [3H]L-glutamate (10 mCi/ml), oocytes were
rapidly washed three times in cold Ringer and lysed in 1% SDS, and
scintillation spectroscopy was performed. Arachidonic acid (Calbio-
chem) was stored at 220 °C in 100 mM stock solutions in Me2SO and
dissolved in recording solution by sonication immediately prior to use.
All other compounds were from Sigma.

RESULTS

Three to four days following injection of RNA transcribed
from the rat excitatory amino acid transporter EAAT4 cDNA
Xenopus oocytes displayed .30-fold increased uptake of 1 mM

[3H]L-glutamate. In oocytes voltage-clamped at 260 mV,
EAAT4 currents induced by application of 30 mM L-glutamate
were increased upon co-application of 100 mM arachidonate
(Fig. 1A). This effect was reversible, although its onset and
offset were slower than the solution exchange times as moni-
tored by the glutamate response (Fig. 1A). Application of 100
mM arachidonate alone in oocytes expressing rEAAT4 resulted
in a small but significant inward current (Fig. 1B; 22.2 nA 6
0.6, n 5 4). This inward current was not observed in uninjected
oocytes (1.1 nA 6 0.9, n 5 9). At 260 mV, arachidonate in-
creased the magnitude of the steady-state current induced by
30 mM glutamate to 324 6 41% of its control value (n 5 11).
Currents elicited by glutamate in the presence and absence of
arachidonate at a series of membrane potentials showed that
arachidonate enhanced the current amplitude to a greater ex-
tent at more negative potentials (Fig. 1, C and D; also see Fig.
4). These results are consistent with a study on Purkinje neu-
ron transporter currents (5) and a recent report on the human
EAAT4 transporter (21).

The arachidonate concentration dependence in the presence
of a saturating concentration of glutamate (30 mM) revealed
that the arachidonate effect on the current was saturable, with
an EC50 of 135 6 21 mM (n 5 3; Fig. 2A). In the presence of
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arachidonate, the apparent affinity of the transporter for glu-
tamate was unaffected; the EC50 of the current was 1.5 6 0.2
and 1.5 6 0.3 mM in control and with 100 mM arachidonate,
respectively (n 5 6). The effects of arachidonate on the trans-
port current seemed to be direct rather than through a metab-
olite, because coapplication of the cyclooxygenase inhibitor in-

domethacin (100 mM) together with the lipoxygenase inhibitor
nordihydroguaretic acid (50 mM) had no effect on the potentia-
tion induced by arachidonic acid (96 6 2% of control enhance-
ment, n 5 3). To examine whether arachidonate affected the
transport of L-glutamate in oocytes expressing rEAAT4, uptake
of 1 mM or 30 mM [3H]L-glutamate was assayed in the presence
or absence of 300 mM arachidonate (Fig. 2, C and D). In marked
contrast to its effects on the currents, arachidonate had no
significant effect on the uptake of L-glutamate into oocytes.
Uptake of 1 mM [3H]L-glutamate was 524 6 152 fmol/min in
control conditions and 468 6 86 fmol/min in the presence of 300
mM arachidonate (n 5 6, p 5 0.74). Uptake of 30 mM L-glutamate
uptake was also not significantly changed by 300 mM arachido-
nate (1753 6 506 fmol/min and 1477 6 271 fmol/min in control
and arachidonate, respectively; n 5 5; p 5 0.64). Arachidonate
also had no effect on L-glutamate uptake in uninjected oocytes
(Fig. 2, C and D).

These results demonstrate that arachidonate increased a
glutamate-dependent rEAAT4 current without affecting gluta-
mate uptake. This is in contrast to the effects of arachidonate
on the EAAT1 and EAAT2 subtypes, in which L-glutamate
uptake and currents are decreased or increased in parallel (15).
Hence, the ionic nature of the rEAAT4 conductance increased
by arachidonate was investigated further. Similar to the hu-
man EAAT1-EAAT4 subtypes (20, 22), rat EAAT4 mediates an
uncoupled Cl2 conductance in addition to the sodium-coupled

FIG. 2. Arachidonate dose-dependently increases the trans-
port current without increasing glutamate flux. A, arachidonate
concentration dependence of transporter currents activated by 30 mM

glutamate (normalized to the maximal current at Vm5 270 mV). Points
(mean 6 S.E., n 5 3) are fitted to the Michaelis-Menten equation with
a K0.5 of 135 mM. B, L-glutamate concentration dependence of currents in
the presence and absence of 100 mM arachidonate. Currents (mean 6
S.E., n 5 6) were normalized to the maximum current in the absence of
arachidonate and fitted to the Michaelis-Menten equation. Arachido-
nate increased the Imax without changing the glutamate K0.5 value (1.5
mM).

FIG. 3. Arachidonate did not enhance the NO3
2-selective trans-

porter anion conductance. A, voltage dependence of glutamate
transport currents recorded in Cl2-containing Ringer. B, glutamate
transport currents in the same group of cells with NO3

2 substituted for
Cl2. Note the different scales. E, control; ●,100 mM arachidonate. Cur-
rents represent means 6 S.E., n 5 3.

FIG. 4. Arachidonate enhances a proton-selective current.
Voltage dependence of currents induced by 30 mM glutamate in the
presence and absence of 100 mM arachidonate at pH 6.5 (A), 7.5 (B), and
8.5 (C). D, extracellular pH shifted the potential at which currents in
the presence of arachidonate crossed over the control transport cur-
rents. The l shows least squares fit with slope of 253.4 mV/pH unit.

FIG. 1. Arachidonic acid enhances the magnitude of gluta-
mate-induced currents recorded in voltage-clamped oocytes ex-
pressing rat EAAT4. A, representative cell clamped at 260 mV;
compounds were superfused for the times indicated by the open (30 mM

L-glutamate) and closed bars (100 mM arachidonic acid). B, application
of arachidonate alone induced a current much smaller than observed
with co-application of L-Glu. C, subtracted (30 mM glutamate-control)
currents recorded during 90-ms voltage jumps between 2120 mV and
170 mV. D, currents recorded in the same cell as C with 100 mM

arachidonic acid present. The dashed line indicates zero current; capac-
itive artifacts have been removed for clarity. Holding potential, 270
mV.
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glutamate transport current, because the outward current was
abolished when extracellular chloride was substituted by glu-
conate (n 5 4; data not shown). To examine whether arachido-
nate selectively increased the uncoupled Cl2 conductance, the
voltage dependence of the current induced by glutamate was
examined in the presence and absence of arachidonate. The
arachidonate-dependent current was inwardly rectifying and
did not reverse at the Cl2 equilibrium potential (;220 mV),
indicating that the conductance increased by arachidonate was
not Cl2-selective (Fig. 3A). To further rule out an action of
arachidonate on the transporter-mediated anion conductance,
extracellular Cl2 was substituted by the more permeant ion
NO3

2 (4, 20). Similar to results with the human EAAT4 trans-
porter (4), NO3

2 was more permeant than Cl2. Replacement of
extracellular Cl2 by NO3

2 increased the glutamate-induced out-
ward current and shifted the reversal potential to more nega-
tive potentials, from 214.8 6 1.1 to 281.8 6 1.1 mV (n 5 3; Fig.
3B). Coapplication of 100 mM arachidonate with glutamate
slightly inhibited the outward NO3

2 current, further supporting
that conclusion that the conductance increased by arachido-
nate was not anion-selective (Fig. 3B). The reversal potential of
the glutamate-induced current was shifted approximately 110
mV by arachidonate (from 214.8 6 1.1 mV to 24.7 6 2.4 mV,
n 5 3), and this shift was not influenced by changing the Na1

gradient by substitution of 48 mM Na1 with choline (n 5 3; data
not shown). Hence, the arachidonate-mediated increase of the
L-glutamate current was selective for ions other than sodium or
chloride.

Glutamate transporters mediate a coupled flux of protons
with glutamate (23). To examine whether a proton-selective
current was involved in the arachidonate potentiation of the
L-glutamate current, currents were measured with varying
extracellular pH between 6.5 and 8.5. Altering the extracellu-
lar proton concentration markedly influenced voltage depend-
ence of the arachidonate-dependent current. As the extracellu-
lar proton concentration increased, the potential at which the
glutamate current recorded in the presence of arachidonate
crossed the control glutamate current shifted to more positive
potentials (Fig. 4). With extracellular pH at 7.5, close to the
value of the intracellular pH (24), the arachidonate-dependent
current crossed the control current at 2.3 6 3.9 mV (n 5 11),
and this reversal potential changed 53 mV/pH unit (Fig. 4D).
These results indicate that the major component of the con-
ductance amplified by arachidonate was proton-selective.

DISCUSSION

The present results show that arachidonic acid activates a
proton-selective conductance during EAAT4-mediated trans-
port of L-glutamate, extending the recognized types of currents
associated with glutamate transporters. In addition to the cur-
rent associated with the Na1/H1/K1-coupled translocation of
glutamate (15), thermodynamically uncoupled Cl2 currents
(20, 22, 25, 26) as well as cation leak currents (27, 28) have
been associated with glutamate transport. Different subtypes
exhibit variability in both their anion (20) and cation conduc-
tances (28). Several other neurotransmitter transporters me-
diate uncoupled proton currents (29, 30), but EAAT4 is the first
glutamate transporter reported to exhibit this property.

EAAT4 is predominantly localized to the cerebellum, where
it is found on Purkinje cell bodies and dendrites (1, 2, 3).
Transporter-mediated reuptake of glutamate released at climb-
ing and parallel fiber synapses onto Purkinje cells plays a role
in speeding the decay of postsynaptic responses (31, 32). The
transporters participating in this process are located both in
glial cells surrounding the synapse (33, 34) and in the postsyn-
aptic dendrites and cell body (4, 35). The pharmacological and
electrophysiological properties of the synaptically activated

transport current in Purkinje cells suggest that it is mediated
in large part by EAAT4 (4).

Arachidonic acid is liberated by activation of phospholipase
A2 during neuronal activity (5, 36), and it can modulate activity-
dependent changes in synaptic strength in Purkinje cells (18).
Whether exogenously applied or generated by depolarization,
arachidonic acid increased the amplitude of glutamate trans-
porter-mediated currents in rat Purkinje cells (5). The ampli-
tude of the increase seen in Purkinje cells was similar to that
reported here with the exogenously expressed EAAT4. To-
gether these results suggest that synaptic activity may lead to
activation of a glutamate transporter-mediated proton influx in
neurons that express EAAT4. Because pH strongly influences
the activity of many types of ion channels (for review see Ref.
37), this property of the transporter could provide an additional
mechanism to modulate postsynaptic responses. Furthermore
this phenomenon could contribute to intracellular acidification
during ischemia as a consequence of the pathological elevation
of glutamate and arachidonate.

Acknowledgments—We thank Yuqin Yang for oocyte preparation and
T. Otis and J. Wadiche for discussions and comments on the
manuscript.
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