1-1-1901

1901-1902 Course Catalog
University of Montana–Missoula. Office of the Registrar

Let us know how access to this document benefits you.
Follow this and additional works at: https://scholarworks.umt.edu/coursecatalogs_asc

Recommended Citation
https://scholarworks.umt.edu/coursecatalogs_asc/55

This Catalog is brought to you for free and open access by the University of Montana Publications at ScholarWorks at University of Montana. It has been accepted for inclusion in University of Montana Course Catalogs, 1895-2017 by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
UNIVERSITY BULLETIN No. 9.
ISSUED QUARTERLY, JUNE, 1902.

... THE ...

UNIVERSITY OF MONTANA

ANNUAL REGISTER

1901-1902.
THE

SEVENTH ANNUAL REGISTER

OF THE

UNIVERSITY OF MONTANA

MISSOULA, MONTANA.

1901-1902.

WITH AN OUTLINE OF THE COURSE OF STUDY AND THE
DEPARTMENTS OF INSTRUCTION FOR
1902-1903.

1902
INDEPENDENT PUB. CO.
State Printers and Binders
Helena, Montana
College Calendar for 1902-1903.

1902.

Entrance Examination begins Monday, September 15, 10 A. M.
First Semester begins Wednesday, September 17.
Thanksgiving Vacation begins Wednesday, November 26, 12:30 P. M.
Thanksgiving Vacation ends Monday, December 1, 8:30 A. M.
Christmas Holidays begin Friday, December 19, 5 P. M.

1903.

Christmas Holidays end Monday, January 5, 8:30 A. M.
First Semester ends Friday, February 6.
Second Semester begins Wednesday, February 11.
Annual Entertainment of the Hawthorne Society, Friday, February 20, 8:30 P. M.
Annual Entertainment of the Clarkia Society, Friday, February 27, 8:30 P. M.
H. N. Buckley Oratorical Contest, Friday, March 27, 8:30 P. M.
Annual Recital, Department of Elocution and Physical Culture, Friday, May 1, 8:30 P. M.
Instruction ends Friday, June 5.
Prize Contest in Declamation, Preparatory Students, Saturday, June 6, 8:30 P. M.
Baccalaureate Day, Sunday, June 7.
Class Day, Monday, June 8.
Annual Recital, School of Music, Monday, June 8, 8:30 P. M.
Field Day, Tuesday, June 9.
Annual Lecture before Literary Societies, Tuesday, June 9, 8:30 P. M.
Commencement, Wednesday, June 10, 10:30 A. M.
Alumni Reunion, Wednesday, June 10.
<table>
<thead>
<tr>
<th>JULY</th>
<th>JANUARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W T F S</td>
<td>S M T W T F S</td>
</tr>
<tr>
<td>6 7 8 9 10 11 12</td>
<td>4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>13 14 15 16 17 18 19</td>
<td>11 12 13 14 15 16 17</td>
</tr>
<tr>
<td>20 21 22 23 24 25 26</td>
<td>18 19 20 21 22 23 24</td>
</tr>
<tr>
<td>27 28 29 30 31</td>
<td>25 26 27 28 29 30 31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUGUST</th>
<th>FEBRUARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7</td>
</tr>
<tr>
<td>10 11 12 13 14 15 16</td>
<td>8 9 10 11 12 13 14</td>
</tr>
<tr>
<td>17 18 19 20 21 22 23</td>
<td>15 16 17 18 19 20 21</td>
</tr>
<tr>
<td>24 25 26 27 28 29 30</td>
<td>22 23 24 25 26 27 28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEPTEMBER</th>
<th>MARCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6 7</td>
<td>1 2 3 4 5 6 7</td>
</tr>
<tr>
<td>7 8 9 10 11 12 13</td>
<td>8 9 10 11 12 13 14</td>
</tr>
<tr>
<td>14 15 16 17 18 19 20</td>
<td>15 16 17 18 19 20 21</td>
</tr>
<tr>
<td>21 22 23 24 25 26 27</td>
<td>22 23 24 25 26 27 28</td>
</tr>
<tr>
<td>28 29 30</td>
<td>29 30 31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OCTOBER</th>
<th>APRIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 6 7 8 9 10 11</td>
<td>5 6 7 8 9 10 11</td>
</tr>
<tr>
<td>12 13 14 15 16 17 18</td>
<td>12 13 14 15 16 17 18</td>
</tr>
<tr>
<td>19 20 21 22 23 24 25</td>
<td>19 20 21 22 23 24 25</td>
</tr>
<tr>
<td>26 27 28 29 30 31</td>
<td>26 27 28 29 30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOVEMBER</th>
<th>MAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3 4 5 6 7 8</td>
<td>3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>9 10 11 12 13 14 15</td>
<td>10 11 12 13 14 15 16</td>
</tr>
<tr>
<td>16 17 18 19 20 21 22</td>
<td>17 18 19 20 21 22 23</td>
</tr>
<tr>
<td>23 24 25 26 27 28 29</td>
<td>24 25 26 27 28 29 30</td>
</tr>
<tr>
<td>30</td>
<td>31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DECEMBER</th>
<th>JUNE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
</tr>
<tr>
<td>7 8 9 10 11 12 13</td>
<td>7 8 9 10 11 12 13</td>
</tr>
<tr>
<td>14 15 16 17 18 19 20</td>
<td>14 15 16 17 18 19 20</td>
</tr>
<tr>
<td>21 22 23 24 25 26 27</td>
<td>21 22 23 24 25 26 27</td>
</tr>
<tr>
<td>28 29 30 31</td>
<td>28 29 30</td>
</tr>
</tbody>
</table>
The Montana State Board of Education.

Ex-Officio.

GOVERNOR JOSEPH K. TOOLE, President.
JAMES DONOVAN, Attorney General.
W. W. WELCH, Supt. Pub. Instruction, Secretary.

Appointed.

N. W. McCONNELL, HelenaTerm Expires February 1, 1903
W. H. JOHNSON, Billings " " " 1, 1903
O. P. CHISHOLM, Bozeman " " " 1, 1904
J. G. McKAY, Hamilton " " " 1, 1904
N. B. HOLTER, Helena " " " 1, 1905
G. T. PAUL, Dillon " " " 1, 1905
J. M. EVANS, Missoula " " " 1, 1906
CHARLES R. LEONARD, Butte " " " 1, 1906
J. M. LEWIS ... Clerk of the Board

Executive Committee of the State University.

J. H. T. RYMAN, President Missoula
T. C. MARSHALL, Secretary Missoula
HIRAM KNOWLES Missoula
The Faculty.

OSCAR J. CRAIG, A. M., Ph. D.,
President.

CYNTHIA ELIZABETH REILEY, B. S.,
Professor of Mathematics.

W. M. ABER, A. B.,
Professor of Latin and Greek.

FREDERICK C. SCHEUCH, B. M. E., A. C.,
Professor of Modern Languages.

MORTON J. ELROD, A. M.,
Professor of Biology.

ARTHUR L. WESTCOTT, B. M. E.,
Professor of Mechanical Engineering.

FRANCES CORBIN, B. L.,
Professor of English Literature.

JAMES M. HAMILTON, M. S.,
Professor of Psychology and History.

WILLIAM D. HARKINS, A. B.,
Professor of Chemistry.

JESSE P. ROWE, M. S.,
Professor of Physics and Geology.
ELOISE KNOWLES, Ph. B.,
Instructor in Drawing, and Assistant in English.

MRS. BLANCHE WHITAKER,
Director of Music School.

LOUISE HATHEWAY, B. A.,
Instructor in English and Rhetoric.

RUTH ELISE KELLOGG,
Instructor in Elocution and Physical Culture.

GUY SHERIDAN.
Laboratory Assistant in Chemistry.

JAMES F. ANDERSON,
Laboratory Assistant in Mechanical Engineering.

BENJAMIN D. STEWART,
Laboratory Assistant in Biology.

STANDING COMMITTEES.

Committee on Graduate Work.—The President, Hamilton, Elrod, Reiley, Scheuch.

Committee on Discipline.—Hamilton, Rowe, Corbin.

Committee on Grading and Classification.—The President, Aber, Elrod, Reiley and Scheuch.

Committee on Examinations.—Aber, Knowles, Hatheway.
The University and its Endowment.

The University of Montana was created by an act of the Montana State Legislature, approved February 17, 1893. The following extracts give the title of the act; and also certain sections that indicate the purpose of the University and the scope of its work.

"An Act to establish, locate, maintain, and govern the University of the State of Montana.

Section 1. "There is hereby established, in this State at the City of Missoula, an institution of learning under the name and style of the University of Montana."

Section 6. "The object of the University of Montana shall be to provide the best and most efficient manner of imparting to young men and women, on equal terms, a liberal education and thorough knowledge of the different branches of Literature, Science and the Arts, with their varied applications; and to this end there shall be established the following colleges or departments, to-wit:

First—A Preparatory Department.
Second—A Department of Literature, Science and the Arts.
Third—Such professional and technical colleges as may from time to time be added to or connected therewith.

The Preparatory Department may be dispensed with at such rate and in such wise as may seem just and proper to the State Board of Education."

Section 7. "Such duties or Courses of Instruction shall be pursued in the Preparatory Department as shall best prepare the students to enter any of the regular colleges or departments of the University."

"The college or department of Literature, Science, and the Arts shall embrace courses of instruction in Mathematical, Physical and Natural Sciences with their applications to the Industrial Arts; a liberal course of instruction in the Languages, Literature, History, Philosophy, and such other branches as the State Board of Education may prescribe. And, as soon as the income of the University will allow, and in such order as the demands of the public seem to require, the said courses of instruction in the
Sciences, Literature and the Arts shall be expanded into distinct colleges or departments of the University, each with its own Faculty and appropriate title."

Section 9. "Tuition shall ever be free to all students who shall have been residents of the State for one year next preceding their admission; except in the Law and Medical Departments, and for extra studies. The State Board of Education may prescribe rates of tuition for any student in the Law or Medical Department, or who shall not have been a resident as aforesaid, and for teaching such studies."

EDOWMENT.

Section 11. "For the support and the endowment of the University there is annually and perpetually appropriated—

"First—The University Income Fund and all other sums of money appropriated by law to the University Income Fund.

"Second—All tuition and matriculation fees.

"Third—All such contributions as may be derived from public or private bounty.

Section 10. Any person contributing a sum not less than fifteen thousand dollars ($15,000) shall have the privilege of endowing a professorship in the University, or any department thereof, the name and object of which shall be designated by the State Board of Education."

By an act of Congress dated February 18, 1892, 46,080 acres of land were donated to the State of Montana for University purposes. This land was granted by the Federal Government upon condition that the proceeds from the sale of such lands should become a Permanent University Fund.

The Income Fund arises from the rental of lands unsold, from licenses to cut trees and from the interest on the proceeds of the sale of lands invested in the Permanent University Fund. This fund is applied to the payment of the bonds, principal and interest, which were issued in 1897 for the construction and equipment of buildings.

The University lands have all been selected. They comprise some of the very best lands in the State and are rapidly increasing in value.
Description of Campus and Buildings.

THE UNIVERSITY CAMPUS.

The University Campus is forty acres in extent, and lies near the southeastern limit of the City of Missoula, at the base of the hills which enclose the eastern end of the valley. To the north lies the Missoula River; westward stretches a wide plain, whose western and southern horizons are bounded by the Bitter Root Mountains. A substantial beginning has been made toward the improvement of the Campus. A double row of trees was planted along the north, west and south sides four years ago. Near the center an oval lawn of about three acres in extent is marked out by a broad graveled driveway; around this is a sidewalk; with a space between the walk and driveway for grass, flowers, or shrubbery. The entrance to this driveway is at the western side, from University Avenue.

A double row of trees is planted around the drive one on the lawn around the inner edge of the drive, the other on the outer side of the walk. The trees, and the lawns started around the buildings and within the oval, have made an excellent growth, and already present a beautiful appearance.

The northeastern corner of the Campus has been laid out for an athletic field, and has been placed in excellent condition.

BUILDINGS.

University Hall, the larger building, stands on the east side of the oval, directly opposite the entrance to the driveway, facing the west. A little to the south stands Science Hall, which faces toward the northwest, and, like University Hall, fronts upon the oval.

A little north of University Hall stands the bicycle shed, a small, neat building, in harmony with its surroundings. In the rear of University Hall stands a shed for the shelter of horses.

University Hall is 140 by 65 feet in its ground dimensions, and its central tower rises to a height of one hundred and twelve feet. This building has four floors, including the basement, which is so largely above ground as to be well lighted and fit for any sort of use. The basement walls are of granite; above rise double
brick walls of the most substantial character; the inner partition walls are also of brick.

Throughout the building, from basement upwards, is a uniform, handsome finish of dark tamarack and white pine wainscoting, in alternate strips; above this are white plaster walls.

Every room is connected with a large ventilating shaft, whose outlet is above the roof. The steam-heated radiators are fitted with a cold-air box, whose connections with the outer air through the walls of the building can be opened and closed at pleasure. When these are open, fresh air is drawn into the room through the radiator, while the air of the room is drawn out through the ventilating shafts. This ventilating arrangement, while simple and inexpensive, is found to be efficient. Ample heat is furnished by the steam plant in Science Hall. The three essential requirements—light, heat, and ventilation—are well supplied.

The basement has a wide hallway running through it between the north and south entrances, with rooms on each side. This hall is divided in the center by a partition, which separates the whole basement into a northern and southern half, whose sole connection is the door through this partition. The northern half contains two small store rooms, now used by the Library, a room for the advanced work in drawing, a fire-proof vault, a cloak room, and a toilet room for women. The southern half contains two small storage rooms, a photographic dark room, a toilet room for men, and three large rooms, used at present as storage and work rooms for the Museum, and for the Departments of Biology and Geology.

From each half of the basement a stairway rises to the first floor. This floor, like the basement, is divided lengthwise by a broad hallway, extending between north and south entrances. The main entrance to the building, through the tower at the center of the western front, opens into this hallway. The center of the eastern half of the floor, all that part lying between the northern and southern stairways, is occupied by the Library, which also furnishes a reading and study room.

At the northeastern corner of the floor is the room for drawing, and at the southeastern is the Museum. The western half of the floor contains, in the southern part, the Laboratory and Lecture Room of the Biological Department, and in the northern part, the Lecture Room for History, the President's office, and a room for the use of the Faculty and its Secretary.
The central part of the second floor is occupied by the Assembly Hall, a room of fine proportions and simple but elegant adornment. In height it rises through two stories, and has a gallery whose entrances are on the level of the third floor. The main floor of the Hall is seated with about 300 opera chairs, and the gallery will accommodate about 150.

The second floor has three rooms on each side of the Assembly Hall. On the northern side are the rooms for Mathematics and Modern Languages, to the latter of which is attached a smaller recitation room. On the southern side are rooms for Literature and Ancient Languages, and a smaller recitation room.

The central part of the third floor is occupied by the gallery of the Assembly Hall; north of this is a large room for the literary societies, and a recitation room; south of the gallery is the Gymnasium, which extends along the whole southern end of the building; adjacent to this is a smaller room, used for storage.

The whole building contains thirty-one rooms, without including six small rooms in the rear of the Assembly Hall—three on the second and three on the third floor. These rooms furnish a passage way from one end of the building to the other, without going through the Assembly Hall, and may also serve as cloak rooms; those on the second floor give access from the rear to the platform of Assembly Hall.

The most important of these rooms in University Hall are the Assembly Room, Library, Museum, Literary Society Hall, Gymnasium, Offices, Biological Laboratory, and seven lecture rooms of uniform size, for the departments of History, Drawing, Biology, Mathematics, Literature, Modern Languages and Ancient Languages.
The Library.

The Library must always be the center of all college and university work. Without an adequate book supply the work of every department must be narrowed and curtailed. The accumulated knowledge of the ages is recorded in books. There is no line of student work or investigation but demands the use of books.

With the limited means at command, the attempt has been not to supply what was needed, but to supply that which is indispensable and absolutely demanded by the work already in progress in the different departments of the University.

The literary and scientific periodicals are carefully selected, with reference to the department work.

Within the past year the books have all been catalogued and indexed. The cards give accession number, author, title, and other necessary details concerning the books.

The books are being shelved and classed according to the Dewey decimal system. This work will include all pamphlets and periodicals, thereby making all of the material of the library accessible and easily drawn upon. The following are the rules governing the Library and Reading Room:

VII. LIBRARY AND READING ROOM.

1. The Library shall be open for reading and study at such hours as the Faculty may prescribe, and in these hours conversation, or other conduct which may divert attention or otherwise annoy, shall not be allowed.

2. Any one wishing any book or periodical (dictionary excepted) must apply to the Librarian for it, and before leaving the room the same must be returned to the Librarian, if not regularly drawn.

3. Books not marked "Reference Book" may be drawn from the Library and retained one week, and then may be redrawn for another week, but no book can be kept by one person longer than two weeks.

4. If a book is not returned within the week for which it is drawn the holder shall be subject to a fine of 10 cents; if not returned within two weeks from the time it was drawn, a fine of 25 cents; if not returned within a month a fine equal to the price of the book.

5. Reference books, current periodicals and papers cannot be taken from the library room except by special permission of the Librarian, and
then only from the closing of the Library to the first succeeding hour of opening.

6. A violation of any of the foregoing regulations, or other rules, which may from time to time be prescribed, may forfeit a student’s right to the use of the Library for such time as may be designated.

7. The maximum number of books which any student may have in possession from the Library at any one time in any one line of work shall be two; except that the Librarian may in special cases allow additional volumes to be drawn on the recommendation of the Professor in charge.

7. It is the duty of the Librarian to enforce the above regulations.

The following is a list of magazines and periodicals on file for the use of members of the University:

The Forum.
Scribner’s Magazine.
Chautauquan.
Forest and Stream.
The American Chemical Journal.
The American Chemical Society Journal.
The School Review.
The Monist.
Education.
Zeitschrift fur Anorganische Chemie.
Botanical Gazette.
The Classical Review.
The Journal of Association of Engineering Societies.
The Engineering and Mining Journal.
Power.
The Electrical Review.
The Engineer.
The Public School Journal.
Public Opinion.
Fliegende Blatter.
The Bookman.
The Literary Digest.
The International Studio.
Popular Science Monthly.
Harper’s Weekly.
Harper’s Monthly Magazine.
North American Review.
Atlantic Monthly.
The Cosmopolitan.
The American Naturalist.
Science.
Journal of Geology.
The Art Interchange.
Public Libraries.
Library Journal.
Publisher’s Weekly.
The Scientific American and Supplement.
Foundry.
Entomological News.
The Analyst.
American Archaeologist.
The Werner Magazine.
Journal of London Chemical Society.
Book Buyer.
The Critic.
Literary World.
Current Literature.
Poet, Lore.
Lippincott's Magazine.
Journal of the Royal Microscopical Society.
Nautilus.
Science Gossip.
American Journal of Mathematics.
Zum Fels und Meer.
Psyche.
Nature.
The Journal of Applied Microscopy and Laboratory Methods.
The American Journal of Science.
Bird Lore.
Zoologischer Anzeiger.
The American Architect.
The Outlook.
The Anaconda Standard.
Current History.
The Educational Review.
School and Home Education.
Engineering News.
Cassier's Magazine.
The Western Electrician.
Mining.
Political Science Quarterly.
The Presbyterian.
Ladies' Home Journal.
Helena Independent.
American Journal of Physiology.
The Christian Register.
The New York Independent.
The Dial.
The Century Magazine.
The Review of Reviews.
The Christian Science Sentinel.
The Classical Review.
Bulletin of the Torrey Botanical Club.
Anthony's Photographic Bulletin.
Locomotive Engineering.
American Electrician.
Comparative Neurology.
Annals and Magazine of Natural History.
Torreya.
Our Dumb Animals.
Plant World.
Zoologist.
Chemischer Centralblatt.
Mikroskopie.
American Journal of Psychology.

The following papers are donated by their respective publishers:

The Chronicle, Bozeman.
The Western News, Hamilton.
The Avant Courier, Bozeman.
The Billings Times.
The Glendive Independent.
The Silver State.
The Madison County Monitor.
The Edward's Fruit Grower, Missoula...
The Yellowstone Leader, Big Timber.
The Helena Herald.
The Inter Mountain, Butte.
The Chinook Opinion.
The Sentinel, Boulder.
The Philipsburg Mail.
The Citizens Call.
The Western Mining World.
The Inter-Lake.
The Tribune, Butte.
The Weekly Tribune, Dillon.
The Northwest Tribune, Stevensville.
The Rocky Mountain Husbandman.
Mining, Spokane.
The Dillon Examiner.
The Townsend Messenger.
The Jefferson County Sentinel.
The Big Timber Pioneer.
The Forsythe Times.
The People, Butte.
The Pony Sentinel.
The Belt Valley Times.
The Dupuyer Acantha.
The Ravalli County Democrat.
The Museum proper is on the first floor of the main building. One room in the basement is allotted for storage of the collections, and is packed full. The Museum is filled with cases, along the walls and in the interior. The cases are made after the best patterns, of native lumber, and display the collections to advantage. The walls are covered with insect cases containing mounted insects. Above the cases toward the ceiling are arranged the agricultural exhibits received from the Omaha Exposition, the large mounted fishes, collected and donated by Mr. R. A. Eddy, and the mounted birds of large size.

The collections of the Museum, from various sources, are as follows: A collection of over a thousand bird skins, almost entirely from the state; a collection of shells, partly collected in the state, and partly through donations from several sources; a collection of plants, embracing about 3,000 species, with many thousand duplicates, received largely through donations; a collection of ores and minerals, received through donations, by collecting, and from the exhibit at Omaha; a collection of insects, partly through purchase, but largely by collecting; a collection of fossils, almost entirely from the state, partly donated and for the remainder collected; a collection embracing money, historical relics, souvenirs, and promiscuous articles; a collection of fishes, partly from the U. S. Fish Commission, the remainder collected in the state; a collection of fresh water entomostraca from the lakes and rivers of Montana; a collection embracing coals, rocks, concentrate samples, building stones, brick, tile and pottery, developed and produced in the state; a set of the series of educational rocks prepared by the U. S. Geological Survey.
During the past year much work has been done on the Museum collections. As mentioned elsewhere many hundreds of insects have been arranged permanently in Comstock insect cases, more than eighty of these cases being now required to house the collection, with a large number as yet in papers.

Drawer space has been arranged for the collection of bird skins, now numbering more than a thousand, and the collection is now systematized so as to be easily accessible for any species.

Many hundreds of botanical specimens have been mounted, and all the identified Montana specimens have been systematically arranged in the case made especially for the collection and are easily accessible. This work is being continued as fast as possible.

A shipment of glassware has been received from a German firm, for displaying the alcoholic material that has accumulated and is not placed on exhibition. The containers are square boxes, with lids ground to fit. The boxes will display the material to the best advantage, without the distortion so noticeable in round containers. Some of the material has already been placed in these boxes, and makes a handsome exhibit.

A supply of paper-lined paste-board trays is kept on hand, and the various collections as they come in are placed in these neat trays, are properly labelled, and are shown to the best advantage.

The Geological store room, in connection with the Museum, is located in the basement of University Hall and has for the storing of specimens shelves built on the four walls. These shelves are almost entirely filled with newly collected vertebrate and invertebrate fossils; together with a number of new and beautiful cretaceous and tertiary leaves. Part of this valuable store room collection has been named and catalogued, but owing to lack of space in the Museum proper, but very little has been put out. However, as soon as more room is offered, the Museum will have a showing second to none in the Northwest.

In addition the Geological material previously mentioned the store room contains much material in other lines, skulls, skeletons, skins, and other specimens collected during the summer work.

The Museum material not stored in the room set apart for the collections is housed in the different departments. Indeed, much of it is indispensable to departmental work. As a result, much of the Museum is scattered. Considering the time during
which material has been gathered and the amount expended
the collections have made remarkable growth.

The intention is to make the Museum a depository of the
material representing the natural, mineral and scientific wealth
of the State.

It is most earnestly requested that all who are interested in
the University, and especially in the preservation of valuable
material for scientific work, should take special pains to con­
tribute to the material in the Museum. Time and circum­
stances are fatal to nearly all specimens, but being properly
cared for and placed in the Museum of the University they will
be preserved.

Correspondence is solicited concerning material which may
be donated. All donations will be properly acknowledged, and
the articles properly labeled and the donor's name recorded.

The additions to the Museum the past year are as follows:
Prin. P. M. Silloway, Fergus County High School, a number
of nests and eggs of North American birds.
Chas. F. Hedges, Miles City, Montana, a skin of a rare Monta­
na bird.
John C. McDonald, City, sample of ore from the Skylark Cop­
per mine, Beaver Co., Utah.
A collection of several hundred Montana plants, through pur­
chase.
Frances Maley, City, several species of Montana Butterflies.
Collected at the University of Montana Biological Station dur­
ing the season of 1901. 900 numbers of plants from the western
part of the state; 100 numbers of lichens; several hundred in­
ssects; a series of bird skins and bird nests; a number of mammal
skins; a series of land and fresh water shells; and additional
quantity of entomostracan life in vials; a collection of negatives
of scenery and of natural history and geological material.
Mr. J. F. Davies, specimens of calcacite.
Mr. J. H. T. Ryman, Quartz and Arsenopyrite Crystals.
Mr. Reade, zinc blende and copper ores from Bonita, Montana.
Mr. Harold Blake, specimens of banded obsidian.
Mr. Earl Douglass, several hundred Montana rocks and min­
erals, also several invertebrate fossils and vertebrate fossils from
Montana. Two massive specimens of obsidian from the Yel­
lowstone Park.
From Geo. B. Frazer by purchase:
30 Ore specimens.
45 Economic minerals.
25 Building stone specimens.
100 Palaeontological specimens.

From Eimer and Amend by purchase:
250 Palaeontological specimens.
3 sets, 48 in each set, Single Crystal Models.
50 mineral crystals.

C. H. Hall, Missoula, Montana, specimen of Vanadinite, from New Mexico.
J. C. McDonald, Missoula, Montana, Gold, Silver and Copper ore, from Utah.
Samuel Gardner, Deer Lodge, Montana, several beautiful Crystals of quartz and Arsenopyrite.
T. J. and W. H. Kitts, Missoula, Montana, Stalacites and several other minerals, from Fergus County, Montana.
Mr. J. X. Lewis, Missoula, Montana, Magnetite Crystals and other minerals, from Gallatin County, Montana.
W. W. White, Missoula, Montana, Copper and Gold ores, from Solomon River, Alaska.
Judge Hiram C. Knowles, Missoula, Montana, some pieces of old and rare paper money.
Missoula Camera Club, Missoula. A collection of prize pictures, obtained during several years of the club's existence.
Collegiate Departments of Instruction.

Note.—Roman numerals indicate the number of the course; Arabic indicate the number of recitations per week. Courses extend through one semester.

Department of History and Economics.

GENERAL INFORMATION.

The aim of this Department is to give (1) a thorough knowledge of the life and institutions of the nations studied; (2) to make the student familiar with the best literature of the epochs treated as embodied in the works of the great historians; (3) to furnish a training in historical method and research through the study of sources. The library method of teaching history, supplemented by lectures and tests, is followed in all classes. Daily use is made of standard histories for reference. The thesis work is done mainly by the study of such sources as the original documents of treaties, laws and proclamations, speeches and debates of contemporaries, personal memoirs and journals, official reports, museum collections, pictures, etc. The material in the University Library is ample for all courses offered. Much source material is available including collections of documents, personal journals, etc. The government and other official publications are catalogued and easily accessible. Such standard works are provided in American history as those of Bancroft, Winsor, Parkman, Von Holst, Fiske, MacMaster, the Elliot Debates, the Johns Hopkins Studies, etc. In European history, are found the complete works of Grote, Gibbon, Duruy, Hume, Macaulay, Froude, Stubbs, Hallam, Guizot, Thiers, Lamartine, Taine, Carlyle, Motley, Menzel, Rambaud, etc. Economics is taught by the historical method and especial attention is given to those subjects which directly relate to the social and industrial life of the people. Instruction is made practical by the application of theories to specific examples in history and present day problems. The Library facilities in Economics are sufficient for thorough work.
COURSES IN HISTORY.

I. Political and Constitutional History of England.—The development of the English Constitution is traced from Anglo-Saxon institutions and the contributions of the Normans. Prominence is given to the study of Magna Charta, the king, barons and commons, the English church, the Stuarts and parliamentary government, the commonwealth, financial policies, taxation, colonization and similar questions.—4.

II. American History.—Especial attention is given to the development of political, social and industrial institutions. Intensive study is made of events of national importance. The Spanish in America, the French in the Mississippi valley, the Dutch in New York, the Puritans, the Virginians, territorial expansion, the powers and relations of the Federal and State Governments, slavery, taxation, commercial policy and the tariff, money and banking, etc.—4.

III. Studies in Ancient History.—Including the Kingdoms of the East, Egyptian Civilization, the Grecian States and the Roman States. The aim is to investigate the social, aesthetic, religious, domestic and political life of these peoples; to discover the motif and their educational, family, ecclesiastical, military and political institutions.—4.

IV. Mediaeval History.—A study of a few of the great movements of the Middle Ages. The migration and settlement of the Teutonic Tribes, Mohammed and Saracen Civilization, the Empire of Charlemagne, the Byzantine Empire, rise of the Papal Power, Feudalism, Monasticism, the Crusades, the beginnings of modern European Governments, the growth of cities, etc.—4.

V. Modern European History.—Era of discovery and conquest, the Reformation, rise of the Dutch Republic, thirty years war, Peter the Great and Russia, Frederick the Great and Prussia, the French Revolution and Napoleon, disturbances of 1830 and 1848. Crimean War, present status of the church and society, constitutions of modern European Nations, current problems of trade, the army, finances and Balance of Power.—4.

COURSES IN ECONOMICS.

I. Elements of Political Economy.—This course includes the consideration of such topics as wealth, capital, land, labor, value, money, coinage, banking, rent, interest, wages, profit, population and taxation. It comprises the study of the Mercantile System, the Natural Liberty System and the Historical School. The views of such economists as Adam Smith, Malthus, Ricardo, John Stuart Mill, Cairnes, Say, Dunoyer, Carey, Roscher, Jevons, Marx, Walker, and Henry George are examined.—4.

II. Modern Economics.—This course will consist of the discussion of some of the most important questions in economics of the present time and the trend of recent legislation. Among these questions may be mentioned Trusts and the Combinations of Capital, Labor Unions, Government Subsidies, Taxation and the Single Tax Theory, Government Ownership of Public Utilities, Recent Currency Legislation, Banking Functions and Laws, Franchises, Socialistic Settlements and Co-Operation.—4.
Department of Philosophy and Education.

GENERAL INFORMATION.

The subject of Psychology is studied largely from the experimental and physiological standpoint. The work is made concrete and practical. In general psychology an examination is made of the works of James, Ladd, Baldwin, Jastrow, Munsterberg, Sully, Galton Foster, Romanes, Carpenter, Wundt, Fechner, Hoffding, Weber, Ribot and others. These studies are supplemented by lectures and class demonstrations.

In experimental psychology Scripture, Sandford, and Titchener are followed. A completely equipped laboratory is provided for experimental psychology. In addition to glassware, chemicals, desks, etc., sufficient apparatus is at hand to perform the most valuable experiments in the manuals of the above named psychologists. These include Pseudoptics, apparatus for testing sight, hearing and temperature, Aesthesiometer, Stop Watch, Vernier Chronoscope, Touch Weights, Suggestion Blocks, Color Wheel and Disks, Metronome, Tuning Fork, Induction Coil, Kymograph, Dynamometer, Pneumograph, Olfactometer, Mosso's Ergograph modified by Lombard, Jastrow's Automatograph, Marey's Sphygmograph and Jastrow's Memory Apparatus.

COURSES IN PSYCHOLOGY.

I. Descriptive Psychology.—This course presents a systematic view of modern psychology. Attention is given to such topics as the province of psychology, methods of psychological research, the growth of the central nervous system, the relation of mind and body, the nature of consciousness, the phenomena of sensation, etc., as well as a study of the higher intellectual faculties and the will.—4.

II. Experimental Psychology.—This course is open to students who have a knowledge of general psychology. It furnishes a practical exposition of the materials and methods of psychological investigation. The lectures are accompanied by class demonstrations. An opportunity is afforded for individual work in the laboratory which trains the student to carry on original research work. The more valuable experiments are given in visual, auditory, dermal and muscular sensations; color, time and space perceptions; motor reactions and fatigue; tests in attention, memory, association, discrimination, emotion and the will.—4.
COURSES IN THEORY AND ART OF EDUCATION.

I. History of Education.—The aim is to give a comprehensive review of the rise and progress of education. Methods, materials, organization, principles and ideals of education are studied chiefly under the following heads: Athenian and Spartan Education together with the Views of Plato and Aristotle. Roman Education. The Monasteries, Scholasticism and the rise of the Universities. The Renaissance, Humanism and Sturm. The educational system of the Jesuits. The rise of Realism, Comenius and Bacon. Rousseau and education according to nature. The Kindergarten. Pestalozzi and Froebel. Hegel and Herbert Spencer and Spencerism. Education in the United States and Horace Mann.—4.

II. Theory and Practice of Education.—The statutes of Montana provide that graduates of the University shall be given a life diploma to teach in the state after two years' successful experience of teaching. The aim of this course is to give a practical training in the theory and art of teaching. Opportunity is given for observation of actual work. The scope of the work is indicated by the following topics: Qualification and equipment of the teacher. Methods of teaching the various subjects. School management. Supervision and discipline. Programs, courses of study and school organization. School sanitation. The relation of the school and society. Duties of the teacher and her relation to the parents. This course embraces a study of the work of such contemporary educators as Hinsdale, Col. Parker, Pres. Eliot, the McMurry's, Pres. Butler, Dr. Dewey, Arnold Tompkins, etc.—4.

COURSES IN PHILOSOPHY.

I. Ethics.—The course includes the study of the scope of ethics, relation of ethics to other sciences, moral standards, the standard of the law, the evolution of conduct, the development of ethical thought, the social and individual life, the progress and trend of ethics. The scientific method of investigating the right in human conduct is used.—2.

II. History of Philosophy.—A review of the leading schools of philosophy from the Greeks to the present day. The thought of the various periods is associated with the life and philosophy of such central figures as Plato and Aristotle of the Ancients, Descartes, Spinoza, Leibnitz, Kant and Hegel among the moderns. Special attention is given to such questions as Epicureanism and Stoicism, the influence of Christianity, Neo-Platonism, Scholasticism, Idealism and Realism, etc.—4.

III. Modern Philosophy.—An examination of the leading theories of Modern Philosophy with special reference to recent German and French writers. The Library method with lectures and thesis work is used. Open to students who have taken Course II.—4.

IV. Logic.—A course in Deductive Logic. All theoretical work is followed by practical exercises in which theories and definitions are applied.—2.

V. International Law.—Woolsey's International Law is used as a basis. Lectures and library work supplement the text. The laboratory or source method of study is pursued so far as possible by an investigation of treaties and the findings of international congresses and conventions.—4.
Department of English and Rhetoric.

The work in this department has two purposes: (1) a thorough knowledge of the principles of prose and verse; (2) proficiency and skill in the writing of English. It is necessary that the student have thorough preparation in English before entering upon this work; and the entire work in Rhetoric as outlined in the preparatory department (or its equivalent) is a prerequisite.

COURSES IN RHETORIC.

I. English Composition.—Classroom work will be divided between theory and practice. Themes affording practice in narration, exposition, summarizing, and argument will be required. A portion of the time will be devoted to the analysis and study of the oration. Lectures will be given upon the history of the English language. First Semester.—4.

II. Advanced Composition.—Critical reading of selections of prose masterpieces, having in view the verifying of the principles of Rhetoric. Essays and papers will be required throughout the course. Lectures on the formation and growth of English prose will be reinforced by collateral reading. Second semester.—4.

Open to all students who have had Course I or its equivalent.

In addition to the regular written work in Courses I and II, two themes of not less than 1,500 words each will be required of all students in each course. These papers will be due on the following dates: First Semester, December 1, 1902 and February 2, 1903; Second Semester, April 3, 1903 and June 3, 1903.

III. Principles of English Versification.—In this course the work will be considered from an aesthetic as well as from a structural point of view, the chief aim being to instill in the student a love for good poetry as well as to give a thorough knowledge of the principles and mechanism of verse. Lectures on poetics will be given throughout the course, and a critical study will be made of poetic style. From time to time, the student will be assigned exercises in scansion and the composition of verse. First semester.—2.

This course is open to students who have had Courses I and II.

IV. History of English Prose Style.—A study of the works of the best prose writers from the middle of the sixteenth century to the middle of the nineteenth, with reference to the development of English prose style. Second Semester.—2.

This course is open to students who have had Courses I and II.
Department of Literature.

COURSES IN LITERATURE.

I. Shakespeare and the Elizabethan Drama.—This course is preparatory to a more extended study of Shakespeare and his contemporaries. A brief history of the Pre-Shakespearean drama in lectures. Selected plays from Peele, Kyd and Marlowe. Occasional papers. Open to students who have completed Course I in Rhetoric. First Semester.

II. Shakespearean Drama.—Special preparation for this course is gained by the study of the drama in Course I. The critical study of eight plays, so selected as to illustrate the author's range and the variations of his art in the successive periods of his life. Open to students who have completed Course I and to students in the Mechanical Engineering Department. Second Semester.

III. English Literature of the Eighteenth Century.—Lectures and written reports. Special attention will be given to the works of Pope, Goldsmith, Gray, Addison, and Swift. First Semester.

V. Wordsworth and his Contemporaries.—This course is intended to cultivate a catholic appreciation of the poetry of Wordsworth, Shelly, and Byron. Many of the more notable works of these poets are read; their biographies are studied for light upon their art and thought; and the great social and literary movement which they exemplify and interpret is discussed. This course is intended primarily for the more advanced undergraduates, but is open to others who may satisfy the instructor of their fitness. First Semester.

V. Tennyson and Browning.—The critical study of selections from Tennyson and Browning, comparing the style, philosophical ideas and theories of the authors. Second Semester.

VII. American Literature.—A survey of American literary history, and the discussion of notable works in prose. First Semester.

VIII. American Literature.—Selections from the verse of the greatest American poets. Second Semester.

IX. The Extended and Critical Study of the Poems of Browning.—Graduate Course.

X. Some department, subject, or figure in Literature will be selected as the basis of the work of this course. Graduate Course.
Department of Education and Physical Culture.

ELOCUTION.

It is the aim in this department to develop the individuality of the student and to assist him to express himself naturally and gracefully. Special attention is given to voice placing and building by means of a correct method of breathing.

Four courses are offered, as follows:

Course I. **Elements of Practical Elocution.**—Pantomimic Action. Recitations and Orations from standard writers.—4.

Course II. **Practical Elocution.**—Recitations from classical authors. Shakespeare, Tennyson, Browning and others.—4.

Course III. **Practical Elocution.**—Program construction and production. Programs will consist of five or more numbers from varied sources or from the works of a single author.—4.

Course IV. **Program Work Continued.**—In this course attention will be given to the production of a standard play or book dramatization.—4.

Physical Culture.—The object in this department will be to secure an easy and graceful carriage and the harmonious action of the body. Special attention is given to general development and to deep and rhythmic breathing.

——

Department of Latin and Greek.

GENERAL INFORMATION.

1. The primary aims of this department are the acquisition of such a mastery of the languages as to enable the student to read them with some degree of facility, to read the greatest possible amount of the best Greek and Roman literature, and to make the work subservient to general culture in the English language and literature.

The scope of this department is conceived to include, not only the study of the language and literature of the ancient Greeks and Romans, as narrowly defined, but also some attention to all phases of their civilization. Without this broader view, some of the most important results of classical studies cannot be attained. For this reason, the study of the arts, institutions, and
life of the Greeks and Romans will be given due prominence; and provision has been made for this part of the work.

2. In the required courses, the study of grammar will be pursued in connection with the reading, not as an end in itself, but as a means of intelligently reading the language, with or without translation. The more systematic and scientific study of grammar will be provided for in elective courses.

3. In connection with the prose reading, exercises in writing Latin and Greek will be used. The training in syntax will be largely given in connection with this work.

4. There will be almost daily practice in reading and translating at sight, generally from that portion of the text assigned for the next day's reading.

5. "Bennett's Latin Grammar" and "Hadley-Allen's Greek Grammar" will be used for the ordinary class room work. Editions of the texts will be chosen as far as possible from those which have references to these grammars. Students are advised to bring with them any Latin and Greek text books they may have, but not to purchase books before definite directions are given. The most essential aids for study, such as maps, charts, and works of reference, are provided by the University.

6. The work of the college courses outlined below will be advanced as fast as it seems practicable to advance the requirements for admission, and should not be regarded as presenting the ultimate standard or ideal.

This department is supplied with a set of Kiepert's Classical Maps; with Cybulski's colored wall charts; and a carefully chosen selection of lantern slides and mounted photographs for the illustration of Greek and Roman Archaeology and Private Life.

The Library is well equipped with the most important and essential works of reference for this department.

COURSES IN LATIN.

I. Vergil's Aeneid—First three books. Elements of Prosody. 4.

II. Vergil's Aeneid—Books IV., V., and VI. 4.

III. Horace—First half, selected odes. 4.

Cicero—Second half, Essays, Letters.

IV. Livy and Tacitus—Selections. 4.

V. Plautus and Terence—One play from each.

VI. Private Life of the Romans.—Descriptive, no knowledge of Latin required for this course, open to all students. 4.

This course is given in the second semester and should be preceded by the course in Greek life.
VII. Rapid Reading Course, selected from Latin Poetry. 4.
VIII. Rapid Reading Course, selected from Latin Prose. 4.

COURSES IN GREEK.
I. A First Greek Book; elements of Greek Grammar. 4.
II. First Book of Anabasis; sight reading, writing Greek; study of Grammar in connection with the reading and writing. 4.
III. Anabasis continued; sight reading; writing Greek; Grammar with topical Outline. 4.
IV. Homer's Iliad, selections. 4.
V. Homer continued.—First half, selections from Odyssey. 4.
Herodotus and Thucydides—Second half, selections.
VI. Plato—First half, selections. 4.
Demosthenes—Second half, selections.
VII. Greek Dramatists—One play of each from Aeschylus, Sophocles, and Euripides, selections from Aristophanes. 4.
VIII. Greek Archaeology, elective in first semester of Senior Year, open to all students. 3.
X. Private Life of Greeks—Descriptive, no knowledge of Greek required for this course, open to all students, given in first semester.

Department of Modern Languages.

GENERAL INFORMATION.
The aim of the beginning year of the Modern Language Courses is to give the student a thorough knowledge of grammar; to this is added reading of easy prose; this is followed in the second year with syntax and intermediate readings, the translation of scientific (biological, chemical), and technical monographs. Writing short essays in the languages will be required during the year, and some conversation will be given. In the third year, which is elective, more difficult readers will be used, such as "Faust" or "Wallenstein" in German; "Ester, Athalie," Moliere in French, and Cervantes in Spanish.

During the third year conversation and composition will be made one of the chief aims of instruction. Extracts from modern authors will be read, and the study of the literatures will be made a special topic.

Tests will be given in the different classes from time to time. Elective classes will be organized only upon the application of three or more students for the work.

Recitations are held four times per week.
If time permits classes will be organized purely conversational.

GERMAN.

A course of three years has been planned. During the first and second years Courses I, II, III, IV, Joyne's Meissner's Grammar will be used and Joyne's Reader, followed by a course of reading. 'Peter Schlemihl,' Wilhelm Tell, etc.

The third year (Courses V and VI) will be devoted to a study of the classics, some of Schiller's and Goethe's works, as Schiller's Ballads, and Goethe's Faust, Part I and scientific monographs. These latter will be given to those students taking the Scientific Course. Essays will be required in the various subjects which students are pursuing such as chemical, biological, etc.; also—Wenkebach's Deutsche Literatur geschichte.

FRENCH.

Courses I and II devoted to the study of Chardenal's Complete French Course. Reading (Daudet, 3 contes) followed by Courses III and IV, consisting of intermediate readings, such as Colomba, translations of various selections from modern writers, with exercises in composition and conversation, followed by Courses V and VI (Elective), which will be devoted to a study of the French classics and scientific writings, and Duval's—Histoire de la Literature Francaise.

SPANISH.

A three years elective course will be given if called for. The first year, or Courses I and II, will be taken up with the study of Grammar and very easy readings from modern prose, followed by Courses III and IV, which will be devoted to readings of Spanish classics and literature; Syntax. Exercises in composition and conversation will be given.

A third year, or Courses V and VI, will be continuation of Courses III and IV. Conversation and composition; recitations will be held in Spanish.

Department of Chemistry.

THE CHEMICAL LABORATORIES.

The Department of Chemistry occupies the whole of the second floor of Science Hall, which contains six rooms and a hall. The student laboratories, two in number, are on the north side of the hall; the lecture room, store room, and office and private laboratory of the professor are on the south side. The balance room, also used for a library and reading room, is at the end of the hall, and opens into the quantitative laboratory only.

Of the two laboratories, the larger is for the work in general
chemistry and qualitative analysis. This is fitted with two rows of desks, underneath which are arranged the drawers, forty in number, for the students' apparatus. Each desk is provided liberally with running water at the many sinks, with taps for water on the desk, and tips for gas. The laboratory will accommodate forty students in all, with a maximum number of twenty-four in one section. Each student is given a full set of apparatus. Each desk is locked by a single padlock.

The reagents are stored in large glass-stoppered, tubulated bottles, in one corner of the room. The ventilation for the laboratory is procured through five hoods, each connected with a separate steam-heated flue. Water and gas are brought into each hood.

The smaller quantitative laboratory will accommodate sixteen students at once. This room has northern and western exposures, and is therefore well lighted. The arrangement of hoods and flues is the same as in the other laboratory. Eight separate drawers or closets, all locked by one padlock, are given each student. This insures perfect safety for the many pieces of apparatus and solutions in use. The desks are all fitted with stationary iron stands, of the universal type, which allows the desk to be used in all of the many ways necessary for analytical work. Each desk has also an iron plate heated by gas burners. The gas is furnished to the student either by the ordinary gas tip, with rubber connection, or by a stationary swinging gas jet, fitted with a Bunsen burner. Water is brought to each desk in taps, and to the many sinks in the usual manner. Brass suction pumps are attached to the latter, and a good suction obtained for filtration processes. The reagents are provided at each desk and in more complete sets in a suitable case in one corner. The sets of apparatus issued to each student are very complete and consist of beakers, flasks, crucibles, burettes, pipettes, bottles, etc.

The balance and reading room opens into the quantitative laboratory. In it are two Becker balances, sensitive to .2 mg., for the beginners in quantitative analysis. Shelves are fastened to the solid wall, and independent of the floor, for four balances.

The Department Library, placed in this room, is under the direction of the General Library and subject to such restrictions as will insure the safety of the books. The following books
LECTURE ROOM—PHYSICS.
are placed here for the use of students: 200 volumes pertaining to Chemistry, analytical, organic, inorganic, physical, and industrial. This list includes many volumes of importance; in Inorganic Chemistry, by Mendeleeff, Freer, eight volumes by Roscoe and Schorlemmer, Dammer's Handbuch der Anorganischen Chemie; in Analytical Chemistry, Allen's Commercial Organic Analysis, Wiley's Agricultural Analysis, Classen's Ausgewählte Methoden der Analytischen Chemie, and works by Fresenius, Classen, Menschutkin, Crookes, Behrens, Blythe, and many others; in Organic Chemistry, by Remsen, Richter, Prescott, Gatterman, Bernthsen, Sadler, Schorlemmer, and others; in Physical Chemistry, by Ostwald, Van't Hoff, Meyer, Eiloart, Ramsay. Besides these, the four volumes of Watts' Dictionary of Chemistry and works on Toxicology, Industrial and Engineering Chemistry are in the library. The following chemical journals are one file: American Chemical Journal, Journal of the American Chemical Society, The Analyst, Journal of the Chemical Society, Chemisches Central-Blatt, Zeitschrift für Anorganische Chemie.

The lecture room, on the south side of the hall will seat forty persons, and is provided with the usual accommodations for taking notes from lectures. The lecture table, 4x14 feet, is provided with water and gas, and is very convenient for lecture experiments. Over the lecture table is mounted a geological chart. This chart is six feet wide and over 300 feet long, and so mounted by rings sliding on a cable that it can be easily moved along to show the designs thereon presented. It is made to represent the succession of life throughout the different periods of geological history. The plant and animal life is faithfully depicted by paintings in oils, while many of the geological changes and processes, as sedimentation, erosion, volcanic eruptions, faulting, etc., are also depicted. The geological order is faithfully followed, and altogether this chart is a useful and valuable aid in presenting the subject of palaeontology.

In the rear of this room four tables are provided for the use of the students in Determinative Mineralogy, Blow-pipe Analysis and in General Geology. Gas is brought to these tables for the blow-pipe work. Six new and neat mineral cases have been placed here, containing several valuable sets of rocks and minerals for Laboratory work in Geology.

The private Laboratory and office of the professor is a well-
lighted room, 12x18 feet in size, located in the corner of the building. It opens into the lecture room and into the store room. It is provided with a laboratory desk, a hood, balance shelf, and is supplied with water and gas. An accurate analytical balance and a first class assay balance, sensitive to 1-200 milligram are used for the most accurate determinations.

The store room adjoins the office, and opens also into the lecture room. Students can obtain material from this room through a small window opening into the hall. In this way the room is easy of access to the students when working in the laboratories. The store room contains, besides the ample shelves and cases for storage, a desk provided with gas, water and suction. This is used for preparation work and is a great convenience. Ventilation is secured by means of a hood of ample size. The laboratories and rooms are all lighted by electricity, or by gas light from Welsbach burners.

Distilled water is made in a block tin still, placed in the attic above the laboratory, and is conducted to the large laboratory through block tin pipe. The still is connected with the steam heating system and is so arranged that it is impossible for any solid or other foreign substance to pass from the system into the condenser. The water is collected in a 20-gallon stone reservoir, thence conducted to the rooms below. The still is so connected as to require no attention, as it is connected with an overflow into the sewer. On the whole, this plant is a model of its kind for small laboratories.

The gas is made from gasoline by means of a machine from the Detroit Gas Machine Co., of Detroit, Mich. The capacity of the carburetter is 465 gallons of gasoline, and is ample for all uses of the present laboratories connected with it. The plant is provided with a combination mixer, furnished by this company, which is believed to be a valuable adjunct to the machine.

ASSAY LABORATORY.

The Assay Laboratory is fitted with a large two muffle brick furnace, a Cary combination gasoline furnace, and a Brown's portable furnace, a cupel machine, rock crushers and other necessary apparatus. The assay balance made by Wm. Ainsworth of Denver, is sensitive to 1-200 milligram.

COURSES IN CHEMISTRY.

The courses in Chemistry are arranged as nearly as possible like those in the best chemical laboratories in the United States.
As an introduction to all courses in this subject, a course extending over two semesters is given in General Chemistry. This is presented by recitations, lectures and laboratory work, and is required of all students in the University. It should be taken in the Freshman year. In this year's work students gain a clear conception of chemical elements, chemical changes, and the philosophy of Chemistry in general—principles too often indistinctly learned, but absolutely essential for all future work in this Science. The student will be expected to do a large amount of quantitative work in connection with the laboratory course.

One-half year in Qualitative Analysis follows this work. It is taught by lectures and recitations, but the larger proportion of the student's time is spent in the laboratory. It is expected that another semester will be devoted to Quantitative Analysis which involves the principles of analysis by both gravimetric and volumetric methods.

These two years of work should be considered as assential for all other work in Chemistry and for advanced work in Mineralogy. It is recommended that Assaying be not taken up until after this amount of work has been finished, although only the first three semesters of work are required.

Advanced courses in Chemistry are taken up at the student's option. At present a course in Organic Chemistry involving lectures and laboratory work on the chemistry of the compounds of carbon is offered for those students fitted for the work.

The course in Physical Chemistry should be taken by all students specializing in either Physics or Chemistry.

Ample apparatus is at the disposal of the students (see equipment), and with the fine laboratories every inducement is offered to students to make themselves proficient in this interesting line of science.

I. General Inorganic Chemistry: Non-Metals.—Required of all students. Open to all students who have no entrance conditions in Mathematics. Two lectures or recitations per week. Two afternoons of laboratory work. Four hours. First semester.

II. General Inorganic Chemistry: Metals.—A continuation of Course I. Required of all students. Four hours. Second semester.

III. Qualitative Analysis.—Required of all students specializing in Chemistry, and must be preceded by Courses I and II, or their equivalent in some laboratory of acknowledged standing. One lecture and ten hours of laboratory work. Five hours. First semester.

IV. Quantitative Analysis: Introductory—Must be preceded by Courses I, II and III. The principles of gravimetric and volumetric anal-
ysis are presented in this course. Required of all students specializing in Chemistry, Mineralogy and Assaying. Four afternoons of laboratory work with explanatory lectures. Four hours. Either semester.

V. Assaying: Must be preceded by Courses I and II and if possible by III and IV. Students specializing in Chemistry and Assaying will not be permitted to take this course unless preceded by Course II and Mineralogy and accompanied or preceded by Course III. Includes laboratory work in grinding and sampling ores, and the fire assay for gold silver, lead and copper, and the bullion assay. Determinations involving Volumetric methods, or the so-called wet methods, will be given as part of Courses III or V, depending upon the needs of the student.

Lectures on occurrences of ores, methods of sampling and fluxing for the assays of all of the principal metals will be given. Students desiring to specialize in this work are required to precede the course by Mineralogy.

VII. Organic Chemistry.—Lectures and recitations on the Chemistry of the compounds of carbon, including the fatty and the aromatic series. The aim of the course will be to take up very thoroughly the simpler compounds, going with great detail into a study of the relationships and characteristic reactions of the different classes of organic compounds. Remsen's Organic Chemistry is used as a text and Richter's or Berthsen's Organic Chemistry will be used as a reference book. Must be followed by Course VIII.

Prerequisite: General Chemistry and Qualitative Analysis. (Given in 1901-1902). Two hours. First semester in alternate years.

VIII. Organic Chemistry.—A continuation of Course VII. (Given in 1901-1902). Two hours. Second semester, in alternate years.

IX. Organic Preparations.—Laboratory work. Open in connection with Course VII to students who have completed Course III. (Given in 1901-1902). Two afternoons. First semester, in alternate years.

X. Organic Preparations.—A continuation of Course IV. Open to students who are taking Course VIII. (Given in 1901-1902). Two afternoons. Second semester, in alternate years.

XI. Physical Chemistry.—Lectures, assigned readings and reports. Walker's Introduction to Physical Chemistry is used as a text. Course XI is necessary for all students who wish to acquire more than a very elementary knowledge of chemistry. Must be preceded by Courses I, II and III, and by Courses I and II in Physics. This course will not be given during the year in which courses in Organic Chemistry are offered. Three hours. First semester, alternate years.

XII. Fuels, and the Metallurgy of Iron, Steel, Copper and Lead.—Lectures, assigned readings and reports. Each student will be expected to have a copy of Huntington and McMillan's Metals. Two lectures will
be given per week, and each student will be expected to hand in a paper on some practical subject at least once a week. Three hours. First semester, alternate years.

XIII. Industrial Chemistry.—A continuation of Course XII. Will be given only when a sufficient number of students desire to continue the work through this semester. Acid and alkali manufacturing, sugar making and refining, petroleum, etc. Thorp's Industrial Chemistry is used as a reference book. Three hours. Second semester, alternate years.

XIV. Gas Analysis.—A short course in the technical analysis of gases with Hempel’s apparatus. One or two afternoons. Either semester.

XV. Organic Analysis.—Open to students who have completed Courses IV, VII, VIII, IX and X. Two afternoons. Either semester.

XVI. Inorganic Preparations.—A laboratory course in the preparation and purification of inorganic compounds. Lengfeld’s Inorganic Chemical Preparations will be used as a text. Two to four afternoons. Either semester.

XVII. Advanced Inorganic Preparations.—A continuation of Course XVI. Two to four afternoons. Either semester.

XVIII. Physiological Chemistry.—Including Analysis of Urine. Four hours. First semester.

XIX. Physiological Chemistry.—A portion of the time will be spent upon work in Toxicology. Four hours. Second semester.

Department of Physics and Geology.

DESCRIPTION OF PHYSICAL APPARATUS.

The Department of Physics occupies one-half of the floor space on the ground floor of Science Hall. One lecture room and one laboratory are provided, which adjoin each other and are used to supplement each other in many ways. The lecture room has a seating capacity of fifty, with the usual arm-chairs for taking lecture notes. Provision is made for darkening the room by means of rolling shutters, which are easy of manipulation and give a perfect exclusion of all light. A porte luminere has been mounted in a window of southern exposure to furnish illumination in the daytime. The Coul't’s projection apparatus is used for projection, either by sunlight, electricity or by the lime light.

The lecture table is provided with gas, water, and suction. The laboratory is a room 24 feet square, lighted by windows of eastern and southern exposure. It is provided with two rows of tables in which are forty-six lockers for students' apparatus. Twenty-four students can work in this laboratory at one time.
Each desk is provided with gas from taps in the center of the table. Water is brought to the laboratory at two places, where sinks are placed conveniently.

The apparatus is stored in cases, which line the sides of the laboratory and lecture room, and can be drawn out by the student as needed. All of the material necessary for a complete course of elementary physics, as outlined by the Science Department of the National Educational Association, is now available for student's use. Some special pieces for advanced work are also on hand, as, many forms of galvanometers, Atwood's machine for falling bodies, a 9" induction coil, a cylinder of liquid carbon dioxide, an excellent air pump, several X-ray tubes, a large Toepler-Holtz machine, dynamos, electric motors, etc.

GEOLOGY AND MINERALOGY.

The provisions made for laboratory work in these subjects have been much increased during the last year. The laboratory work in Determinative Mineralogy, Lithology, Blow-pipe Analysis, etc., is done in the Chemical Lecture room at tables specially prepared therefor. The work in Palaeontology is done in the research laboratory in University Hall.

The collections have been differentiated during the year into nine distinct collections, as follows: 1. A complete set of minerals which is placed on exhibition in the Museum. 2. A duplicate set of minerals in cases in Science Hall for class work in Determinative Mineralogy. 3. The collection of ores and metallurgical products in the Museum for work in Economic Geology. 4. The Invertebrate Fossils in drawers in the Museum, labelled and recorded. 5. A set of type specimens of rocks, igneous, sedimentary and metamorphic, in Science Hall for class work in Lithology and Geology. 6. A set of rock specimens representing the formations of such parts of the State as has been exploited or studied. 7. One set of specimens to illustrate Structural Geology and the various phenomena of geological action as far as possible, also a set of Frazer's Structural Geology including a large piece of columnar basalt and several beautiful stalactites and stalagmites. 8. One set of Crystal models of 108 figures; and one set of Preston's Modified Celluloid Crystals for study in Crystallography. 9. Crosby's set of 150 Common Rocks and Rock-forming Minerals for study in General Geology. With new and beautiful XIs and a complete set of Invertebrate Fossils, according to Geological Ages.
A large chart has been prepared for the purpose of illustrating the animal life during each of the past Geological epochs. This is mounted in the Chemical Lecture room where the class work is done. The apparatus for field work in Geology consists of a Gurley geologist's compass, and an aneroid barometer reading to 16,000 feet, a 50-foot calibrated steel tape, drawing instruments, etc.

COURSES IN PHYSICS.

This subject is taught by both lectures and laboratory work. In the preparatory courses the students perform nearly all of the experiments after having had the subject presented and explained to them in the recitations.

For the advanced work the subject will be presented also by lectures and laboratory work. In this way the illustrative part of the subject is presented to the student by the lecturer, and the quantitative part is done by the student himself. This arrangement gives the greatest efficiency to the department both for the student and for the professor. The equipment in the way of apparatus is well arranged for both lecture experiments and for physical measurements, while the laboratories are equipped with the modern forms of tables, as described under Equipment.

Course I. College Physics.—Mechanics, Sound and Light. Required of all students in Engineering, and in the Scientific Course. Must be preceded by Courses I and II, Preparatory, or their equivalents, and by Mathematics I and II. Not open to freshmen except by special permission. Students conditioned in the required Mathematics may not take this course. Four hours credit, two lectures and two laboratory periods. Course begins in first semester. Lectures accompanied by experiments of illustrative rather than quantitative nature.

Course II. College Physics, Heat, Electricity and Magnetism. Second semester. A continuation of Course I, and cannot be taken independently of that course. Four hours.

Course III. Electrical Measurements, Testing of Electrical Instruments, and the determination of various Electrical Constants, etc. Lectures and Laboratory work. Three hours. First semester. Required of Engineers.

Course IV. Advanced Experimental Physics. Hours to be taken, optional with the student, but not less than two hours may be taken.
May be taken during either or both semesters. Must be preceded by Courses I and II.

Course V. Light.—Primarily a Laboratory Course. A few lectures will be given on the past theories of light and on manipulation of apparatus. Two hours credit. First or second semester. Must be preceded by Courses I and II.

Course VI. Heat.—A careful study of the subject of heat with both lectures and laboratory work. May be taken either semester. Two hours credit. Must be preceded by Courses I and II.

Course VII. Special Physics.—Work for the more advanced students in Physics or for those desiring to specialize. This must be preceded by Courses I, II, V and VI. A Laboratory Course. May be taken either or both semesters.

COURSES IN GEOLOGY AND MINERALOGY.

At present this work is included in one Department and all courses offered are elective. The subjects treated will be general work in Mineralogy and Petrography, and in Dynamic Geology and Physical Geography. Courses in Palaeontology and Stratigraphic Geology will be given and the subjects will receive treatment as a part of Dynamic Geology. This region offers unsurpassed opportunities for study of the many and varied processes and geological changes and a wonderful diversity of different geological formations, while the State of Montana and neighboring states are noted for the large number of crystallized minerals found within their borders. As these states are distinctively mining states, all must realize the importance of a thorough knowledge of the principles of Mineralogy and Geology as applied to ores of economic importance. Special attention is given to Economic Geology after the students have prepared themselves in the fields of these two sciences.

The subjects are taught by lectures and laboratory work. For Mineralogy and Lithology the laboratory work is the examination of the minerals in museum (see Museum), and the determination of minerals by megascopic and blow-pipe tests. For Geology the laboratory work is applied as field work and excursions to the different exposures of characteristic rocks, and to localities where important geological changes have taken place and left their trace.

Course I. General Geology.—Text book and lectures accompanied by field and laboratory work. Four hours distributed between lectures and field work like course in Mineralogy. Special attention is given to Dynamic Geology, but Physical Geography is also fully treated. Open to all college students. First semester.
Course II. Historical Geology.—Continuation of Course I. In addition to the regular lectures and field work there will be an examination of the most familiar fossils and the determination of 150 common rocks and minerals. Second semester. Four hours.

Course III. Mineralogy.—A study of the minerals from their crystallographic and chemical properties. Subject of Crystallography thoroughly reviewed before the study of minerals is taken up. Must be preceded by Chemistry I. Students deficient in preparatory Mathematics or Physics may not take this course. Four hours credit. Two lectures or recitations, and two laboratory practices. This latter work will include an introduction to blow-pipe analysis which will be studied during the latter portion of the term.

Course IV. Lithology.—A study of rocks from the physical and chemical properties without the use of the microscope. Particular attention is paid to their mineralogical composition. Should be preceded by Courses I and II. Second semester. Four hours credit. Two lectures and two laboratory practices.

Course V. Economic Geology.—Deals with the minerals of gold, silver, copper, lead, iron, zinc, antimony, etc., which occur in quantities of economic importance, modes of occurrence of same, and effect of different gangues on values of ores. Must be preceded by Courses I and II. First semester. Four hours, lectures and field work. Trips to mines and mills will be expected.

Course VI. Blow-pipe Analysis.—Second semester. A continuation of work in determinative mineralogy. Laboratory work only. Credit one or two hours.

Course VII. Invertebrate Palaeontology.—A more complete study of Historical Geology, with special attention paid to Montana fossils. First or second semester. Lectures and Laboratory work. Two hours credit.

Course VIII. Special Work.—For students desiring to specialize in Geology, work to be outlined upon application.

Department of Biology.

GENERAL STATEMENT.

The Biological Laboratories are in University Hall. On the first floor are two rooms and the Museum. In the basement, reached by a private stairway, is the dark room for photography, a store room, and two rooms for laboratory. Across the hall is another room, 24x30, used as an unpacking room and room for general work, and used conjointly by the departments of Biology and Geology.

On the first floor, the first door to the right as one enters from the front opens into the Biological Lecture Room. This
room contains seats for 20, besides laboratory desks for advanced students. It contains one large case for chemicals, one large case for apparatus, a hood case for fumes, a small storage case, and a sink with water.

The room adjoining is used for beginning laboratory work, and contains sixteen tables, besides a large case of material, a microscope case, a sink with four compartments, and a case containing a skeleton.

The tables are of a special pattern, and are admirably adapted to the work. They are 28 inches high, 48 inches long, 28 inches wide. Each table contains on either side two drawers and a space below with a door. The drawers are locked by a wooden bar, and the door has a combination lock. One lock, therefore, locks the three compartments. The tops are of oak, 1½ inches thick. Each student works individually at a table, and the tables are just high enough to permit the use of a microscope vertically without discomfort. Each desk is fitted with gas, and when light is needed the rooms are well lighted by incandescents. The paraffine baths are kept in the fume hood, and by thermostats may be kept at constant temperature night and day.

The microscope case is worthy of notice. This contains thirty-five compartments, each locked with a combination lock. Each microscope is placed in a compartment and locked up. When the students are assigned a microscope they are given the combination, and they alone have access to the instrument. In this way injury to the instruments is easily traced to the proper source.

The large sink is in four compartments, each with an overflow. Living material can thus be kept at all times.

The dark room for photography is nine feet square, contains a long table with sink, has water, gas and electric light. There are shelves and racks for storage of negatives, plates and other material.

At the foot of the stairway, in the basement, a room twenty by twenty-four is used as a work room and laboratory. In this room is a small case for storage, a fume hood, several tables, and shelves. Here is done such work as preparing insects for the Museum, mounting botanical specimens, and assorting material. The basement rooms are light, dry and airy, and as pleasant as any rooms in the building.
Adjoining the preceding room is another room, filled with desks and cases, and used by advanced students in original work. This room accommodates six students, has ample case room with three large cases, and is light, dry and commodious.

Across the hall is a large basement room, fitted with shelves. This room is used for unpacking, for storage, for cleaning up specimens, etc. It is used conjointly by the departments of Biology and Geology. It is fitted with shelves and cases, and is well filled with material which has been collected and for which there is no place in the Museum.

The microscopical equipment is as follows: There are two compound microscopes by Leitz. One of these microscopes is the best made by this firm, and has the following accessories: Three eye pieces, a series of five objectives, one being a one-twelfth oil immersion. It has also a revolving stage, with sub-stage condenser after Abbe, and with the iris diaphragm. It has eye and stage micrometers and accessory Nicol prisms for polarization, and also a camera lucida after Abbe. The other Leitz instrument has two eye pieces and three objectives, and will take the accessory apparatus mentioned under the preceding. By this same maker there is a dissecting microscope with lenses and camera lucida.

There are seventeen microscopes by the Bausch and Lomb Optical Company. Five of these are fitted with substage condensers for illumination. They are all provided with two-thirds and one-sixth objectives and double nose piece. There are two dissecting microscopes made by this same firm, with lenses.

In addition to the microscopes as previously described there is a battery of extra objectives, two inch, one inch, one-half inch, one-fourth inch, one-eighth inch, and a one-tenth inch oil immersion. This gives a wide range of work, and is sufficient for most fields of work.

The additional microscopic and other accessory apparatus is as follows:

A pair of balances; a Miller paraffine bath and a Naples water bath, each with thermostat; an adjustable drawing board for camera lucida; an incubator, with thermostat, for use in bacteriology and embryology; a Minot microtome; a student microtome; three Abbe camera lucidas; a Thoma haemacytometer for counting blood corpuscles; a centrifuge apparatus for analysis
of blood, milk, wine, and for determination of quantity in lacustrine investigations; a mechanical stage for searching slides for minute objects; Wolfhengel's counting apparatus for bacteria; the usual hardware and glassware used constantly in all biological work.

An important part of the equipment of the department is a good collection of necessary chemicals, stains, and reagents for general histological and physiological study. This includes a series of chemicals representing most of the organic compounds of the human body, for elementary and advanced physiology. There is a large series of stains, dyes, oils, and fixatives, imported from Germany, made by Gruebler and Co. This collection is complete enough to permit extensive study and research in animal and vegetable histology.

The working material in photography is as follows: Anthony's copying, reducing and enlarging camera, with accessories for making lantern transparencies. The lenses in this instrument give ample scope for wide range of work; a Leitz vertical camera for photo-micrography; a set of lenses for general photography, Bausch and Lomb Optical Company's Set D, consisting of three anastigmat lenses, one of focus 9½ inches, one of focus 11½ inches, one of focus 14 inches; these may be used separately or in any combination of two, making thus the equivalent of six lenses; this set is provided with diaphragm shutter, ray filter, fitted in case; the outfit is one of the best on the market, and its field of usefulness is very great; the department, in conjunction with that of physics and geology, has the use of stereopticon with long and short focus lenses, accessories for microscopic projection, for prismatic experiments and other physical phenomena.

The department has several hundred lantern slides, and has made considerable use of the stereopticon. It is the intention to increase the number, and make this instrument of greater value. To this end a series of negatives of insects, flowers, and other natural specimens has been made, which will be utilized at an early date. The stock of negatives in the department, including those taken during the summers, now numbers several hundred, and includes some very valuable material.

For working material there is a collection of alcoholic vertebrates and invertebrates, land, fresh water and marine, made by purchase and collecting; more than a thousand skins, of several
hundred species, of North American birds; specimens representing several hundred species of North American shells; a collection of hundreds of mounted and unmounted insects; an herbarium of several thousand species of phanerograms; a collection of fishes; a series of a couple of thousand mounted slides; a large amount of working material from the state, collected by the department, by the Biological Station, and received through donations.

Owing to the fact that the department has been organized but a few years the amount of working material has of necessity been developed from a very small beginning. There is now on hand enough material for original investigations in several fields. During the past year the collection of Montana butterflies has been arranged, spread, and labelled, a total of about 1,500 specimens. The dragon-flies have also been nearly completed. There is yet much material to be worked out, within the ability of undergraduate students, and to which they will be directed as speedily as possible.

COURSES OF STUDY.

This department offers elementary work in general Biology looking toward a specialization either in Botany, Zoology or Microscopy, with advanced work in some lines in either of these three subjects. The rooms for the use of the department are on the first floor and in the basement of University Hall, are commodious and well-lighted, and offer ample facilities for present needs.

The collections of working material are being constantly augmented. In addition to those mentioned under the head Museum there is a good series of marine alcoholics, containing both vertebrates and invertebrates, and a good collection of alcoholics from this region. For comparison in elementary work there is a collection of several thousand mounted slides, additions being constantly made. The University is situated under the shadow of Sentinel Mountain, altitude 6,000 feet, is within a short distance of Missoula River, is but a few miles from the Bitter Root River, and is in the famous Missoula Valley, an agricultural region of great fertility. A few miles away Mt. Lo Lo rises to an altitude of 9,500 feet. The opportunities botanically and zoologically are excellent.

The material which has accumulated from the Biological Station and the collecting trips taken during the past several sum-
mers is deposited in the University, and affords excellent material for original investigations. The material includes several thousand specimens of plants, a large series of land shells, a large collection of entomostraca, a collection of insects, and many fishes. Some of these have been worked upon by students, others await study. The collections are being constantly augmented, and the summer work at Flathead Lake makes possible the study of original problems in the field.

The aim of the department is to bring the student into direct contact with the truths of nature. To do this there are lectures and recitations to give broad and general views, while in the laboratory each student is taught to get the facts for himself first hand. The rich and new field in which the University is located gives students good opportunity for work.

It is the intention of the State Board of Education to make the work of the University as nearly free to residents of the State of Montana as possible. In carrying out this generous plan there are no laboratory fees. The student makes a deposit to cover breakage only. At the close of the semester the balance is returned.

To carry on the work of the department a knowledge of Latin or Greek will be found of great advantage. In all courses an ability to draw well free hand is anticipated, while a knowledge of German and French is very desirable, and for research work indispensable.

In all laboratory work of the department the students work individually at separate tables. Each student is supplied with microscope, glassware, and necessary apparatus, the material being kept in the drawer space of the table. The material is charged to the student and he is held accountable for it. At the close of the semester when the material is returned, in good order, he is credited with the amount returned. Every facility is offered students for successful work in the courses outlined.

The tables have been planned specially for the work to be done upon them. The tops are of oak, stained and paraffined. They are low enough for students to work with microscope vertical, giving all the comfort possible with the least fatigue. There is abundant drawer space for drawings, notes, glassware, etc. The beginners and advanced students work in separate rooms.

A nucleus of a department library has been made, and the library facilities are being increased yearly. The University
is adding to the library facilities as rapidly as funds will permit. The literature in a few special lines is somewhat extensive.

The following publications are at the disposal of the student:

Nature.
Popular Science Monthly.
Psyche.
Entomological News.
American Monthly Microscopical Journal.
Journal of Applied Microscopy.
Zoologischer Anzeiger.
Annals and Magazine of Natural History.
American Naturalist.
Botanical Gazette.
Zeitschrift fur Microscopie.
Science.
Journal of Neurology.
Bird Lore.
The Zoologist.
Journal of the Royal Mic. Soc.
The Auk.
The Nautilus.
American Ornithology.

The following courses are offered for the year 1902-1903: for the year of required Biology the student may take Courses I and II, or V and VI.

Course I. General Biology.—An introduction to the study of living things. It is designed to illustrate by the study of a few organisms the fundamental structure and properties of living matter. A series of animal and vegetable forms is studied in the laboratory, to harmonize with recitations. Two recitations and five hours of laboratory per week. First semester. Required of all students. Four hours credit.

In this course Parker's Biology was used the past year. The students have each a microscope and all necessary material for work. The dissections include Amoeba, Paramecium, Haematococcus, Diatom, Vorticella, Hydroid, Aurelia, Mucor, Penicillus, Yeast, Earthworm, Starfish, Lobster, Dogfish. Each student prepared and mounted a series of about seventy-five slides and was taught to embed in paraffine and use the microtome. To aid in the work reference was made to such works as Marshall and Hurst's Zoology, Brooks' Invertebrate Zoology, Bumpus' Invertebrate Zoology, Dodge's Elementary Biology, Colton's Zoology, Huxley and Martin's Biology, Howes' Atlas of Biology, etc.

At the close of the work of the semester a thesis is written on some approved subject, and presented for criticism. Accurate drawings are
required, which are handed in from time to time for inspection.

Course II. General Biology.—Continuation of Course I, and necessary for the completion of the work therein indicated. Second semester. Required of all students. Four hours credit.

At the beginning of this course the students are given a series of lectures, covering a period of about six weeks, on such topics as are of general interest, mainly in connection with the work in progress, and suggested by the work as it proceeded. Students are required to take notes, to write up the lectures in their own language, and are examined on what has been presented. The lectures are made as practical as possible, and have proven of great value as indicating what is being done in the subject, the theories advanced, what investigations are in progress, and the field for study yet untouched.

Course III. Invertebrate Zoology.—A general course in the morphology and classification of Invertebrates. Laboratory and Class Work. Dissection of typical invertebrates, such as Grantia, Leucosolenia, Metridium, Pennaria, Campanularia, Sea Urchin, Sea-Cucumber, Star-fish, Squid, Lobster, Earthworm, Nereis, Phascolosoma, King Crab, Clam, and Insects. In this as in other work in the department, accurate drawings are required. At the close of the semester a thesis is presented, written on some topic in connection with the work. During the study constant reference is made to such works as Packard, Claus and Sedgwick, Huxley, and Lang. The dissections are from the list of laboratory books referred to under Course I, with others. A fair portion of the time is devoted to the laboratory technique, and each student mounts a series of slides from some of the specimens as the work progresses.

Lectures or recitations occur twice per week. In the latter Thompson’s Outlines are taken as a basis for study. First semester. Four hours credit. Elective.

Course IV. A Continuation of Course III.—Vertebrate Zoology. The dissections include Balanoglossus, Amphioxus, Trout, Frog, Cat, etc. Second semester, elective.

Course V. Botany.—In this course the plan is to give an intelligent idea of the scope of modern Botany. Recitation twice and laboratory practice five hours per week. Besey’s Briefer Course was used during the past year with reference to other works on the subject. In addition to the general exercises as given in the text the student studies such types as Spirogyra, Diatoms, Protococcus, Mucor, Agaricus, Moss and Fern, and a flowering plant, using such laboratory guides as Arthur, Barnes and Coulter’s Plant Dissection, Dodge’s Elementary Biology, Huxley’s Biology, etc. Each student is supplied with a microscope and all necessary reagents, is taught to use the camera lucida and measure with a micrometer scale, and to prepare material for the microtome. First semester. Four hours credit.

Course VI. Systematic Botany.—To be preceded by Course V. The region near the University has a rich flora, of great botanical interest. The valley has an altitude of 3,225 feet above the sea, and plants may be had from this height to 9,500 feet, the height of Mt. Lo Lo some miles distant.
The University herbarium contains over a thousand identified species of Montana plants. The spring of the year is the season for collecting at low altitudes. During the last six weeks of the school year the valley and mountain sides are a garden of flowers, so abundant that bits of color may be distinguished for several miles. The field is new, the material abundant, and the opportunity for satisfactory work exceptionally good.

Laboratory and field work, with lectures or recitations. Second semester. Four hours credit.

Course VII. Microscopy.—Laboratory work with occasional lectures or recitations. A course in microscopical technique, on histological subjects. Students entering must have taken sufficient chemistry to work intelligently with various stains, reagents, and other chemicals. Different methods of hardening, sectioning, and staining histological material is studied.

The student is taught to use the various pieces of necessary microscopical apparatus, such as the polarizing apparatus, micrometer, spectroscope eyepiece, and the condensers. He is instructed in making photo-micrographs and projection material. The course is thoroughly useful and practical. Elective, either semester, for two, four, or six hours credit.

Course VIII. Entomology.—A course in systematic entomology; a study of the anatomy and morphology of insects, followed by systematic study of the different orders and families, with use of keys for determination of species. Comstock's Insect Life is the basis for determination of orders and families. Various works will be used for the specific determinations. Special attention will be given to injurious insects, with means employed for their control. Four or six hours credit. Second semester. Elective.

Course IX. Photography.—Recognizing the fact that photography is such an invaluable aid in all scientific work the work here given has been outlined. Those taking it will be instructed in the different uses of different lenses the value of different styles of plates, the use of color screens or filters, and in the technique of developing, printing and toning. It is very desirable that students taking the course should possess an instrument, as the laboratory material is in almost constant use. During this course students will furnish their own plates.

The course will consist of one lecture and one laboratory practice per week, with two hours credit. Elective, first semester.

Course X. A Continuation of Course Nine.—Devoted to the practical use of the camera in scientific work. Instructions will be given in making lantern slides, transparencies and bromide enlargements. Negatives will be made of scientific objects and groups of objects. Copies of important photographs will be made. Photomicrography will be a prominent feature. Laboratory, five hours per week, two hours credit. Second semester. Elective.

Course XI. Human Anatomy.—An advanced subject, for mature students, and demanding a good foundation in Zoology, Chemistry, and Microscopical Technique. The laboratory work will include a study of
the various organic compounds of the body, experiments with the same, various electrical experiments on nerves and muscle, an examination and study of the various complex organs of the body, with microscopical preparations.

Recitation, lecture and laboratory, either semester. Four or six hours credit.

Courses XII and XIII. Special Work.—Under this heading additional study along biological lines will be outlined for students desiring it, considering both the demands of the students and the capacity of the department for carrying on the work. Special subjects will be assigned under the following heads: Entomology or ornithology within certain limits, physiology with special reference to the histology of the human body, or investigation work on limited groups of animals or plants. Those entering this work must have finished four of the preceding courses, and must have a reading knowledge of French or German. Laboratory work, ten hours per week for four hours credit, or twelve and one-half hours for five hours credit, with work in Seminary. Only students of special fitness will be admitted. They will be encouraged to take up some of the problems which the new field of work about the University presents, and will be offered every facility which the laboratory can afford, and will be given free use of the material collected from the region. Elective, either semester.

Credit from four to twelve hours may be had.

Course XIV. Bacteriology.—This course will be offered for the first time in 1903 and will be similar to that outlined in Kanthack and Drysdale’s book. There will be given general methods of inoculation, of staining, counting, measuring, and photographing bacteria. Instruction will be given in preparation of material, in sterilization, etc. Some time will be devoted to examination of different substances and products for bacteria. First semester. Laboratory subject 4 to 6 hours credit. Those entering this subject should have a knowledge of chemistry and of the manipulations of the microscope.

Course XV. Embryology.—This course will be offered for the first time in 1902-3. It will be devoted largely to the study of the chick, working out the various stages of development. Other studies will be introduced so far as possible. The course will consist of laboratory and library work, with occasional recitations or lectures.

Second semester, elective, 4 to 6 hours credit. Those entering this subject must be familiar with the use of the microscope and microtome.

GRADUATE COURSES.

A Study in Variation.—Problems in variation as presented by the region and illustrated by laboratory material will be assigned individual students for original investigation. Largely Laboratory work, with occasional lectures.

A Study in Ecology.—Work and hours to be arranged.

Histology, with special reference to the human body.
Histology and Pathology of the Blood, with reference to blood in health, disease and legal jurisprudence.

Seminary.—Advanced students will meet once per week at an hour to be agreed upon, to make reports of work or investigations. Occasional theses will be presented for discussion, as also reports on current literature.

In addition to the courses here offered are referred to the description of the work of the Biological Station, carried on under the direction of the Professor of Biology. The courses of summer work are open to all who may choose to attend, and credit on the university record is given for the amount of work satisfactorily completed during this summer.

The following original investigations, leading toward higher degree, have been carried on in the laboratories of the department.

Department of Mathematics.

This department is supplied with an excellent surveying outfit consisting of transit, Y-level, compass, leveling rods, chains, tapes, etc.; with Ross's Dissected Surface Forms and Geometrical Solids; and with other forms and solids part of which have been constructed by students at the University.

The library also contains a number of reference books for the department.

All students are required to take one course in Mathematics. Students in Scientific Course must take Courses I and II. In addition to these, students in Engineering Course are required to take Courses III, IV and V. Students in Classical Course or the Course in Letters may choose between Courses I and II.

Courses not required are open to all students as electives, but must be taken in the order prescribed under Courses in Mathematics.

COURSES IN MATHEMATICS.

I. Trigonometry.—First semester. 4.

II. Higher Algebra.—Ratio; Proportion; Variation; Binomial Theorem; Arithmetic, Geometric, and Harmonic Progressions; Permutations and Combinations; Undetermined Co-efficients; Summations of Series; Higher Equations. Second semester. 4.

III. Analytical Geometry.—First semester. 4. Must be preceded by Courses I and II.
IV. Differential and Integral Calculus.—Second semester. 4. When required, must be preceded by Courses I, II, and III. If elected may be taken after Courses I and II.

V. Differential and Integral Calculus.—First semester. 4. Must be preceded by Course IV.

IV. Elective Geometry.—Devoted entirely to original work. Either semester. 1. May be taken by any one who has passed the entrance requirements in Mathematics.

VII. Elective Geometry.—Devoted entirely to original work. Either semester. 1. Must be preceded by Course VI or its equivalent.

VIII. Plane Surveying.—Second semester. 4. Must be preceded by Courses I and II.

IX. Differential Equations.—Second semester. 2. Elementary Course. Must be preceded by Course V.

X. Advanced Analytic Geometry.—Second semester. 4. Must be preceded by Courses III, IV, and V.

XI. History of Mathematics.—Either semester. 2. May be taken by any student as an elective.

Department of Free-Hand Drawing.

It is the purpose of this Department to give thorough and systematic instruction in Drawing and Painting, and to instill the refinement and aesthetic taste that attend a true appreciation of art.

This department has at its disposal two large, well-lighted rooms on the first and basement floors of the University Hall. The upper room is one of the most attractive in the building, the walls being hung with casts and with framed photographs of famous paintings. In this room is done most of the antique and black and white work. A set of geometric solids and papier mache reliefs of decorative designs, flowers, and heads, form material for initiative work, while the casts, which are so chosen as to afford gradual progression, serve for more advanced study. They consist of leaves, flowers, and vase forms; parts of the body, as the eye, nose, mouth, hand, and foot; animal heads; and human masques, among which are the following: St. Francis, Voltaire, Cupid of Donatello, the Dying Alexander, Venus de Milos, and Michael Angelo's Slave.

The lower room is used for painting in oils and water colors. It is appropriately furnished and makes an ideal studio. Still
life forms of various shapes and colors form a part of the equip­ment.

The arrangement of the courses follows the general trend of the best art schools. Care is taken that the work does not become narrow and mechanical, the desire being to attain freedom and breadth of understanding and execution.

One year of Free-hand Drawing is required of all students. Two and half hours, twice per week, are devoted to the work.

The first semester's work serves as an introduction into the subject. A variety of exercises is given to develop correct seeing and facility of execution. The fundamental principles of perspective are taught, not theoretically, but from groups of objects and room interiors; value in light and shade is obtained from still life studies; and precision of line from pen and ink work.

In the second semester charcoal work is taken up. The student begins drawing from simple casts of plant life and fragments of the human body and gradually advances to antique heads. Sketching in pen and ink and sepia is also done.

For those that wish to devote more time to the subject two more years of work are given as free electives. In these courses the student may devote two and a half or four hours per week, and will be given credit according to the time spent. It is the desire to afford as much freedom and exercise of individual taste as is consistent with thorough work.

In Courses III and IV (taken in the first elective year) some charcoal work from the antique is required. Besides this a choice of three lines of work is offered; watercolor, oil, and black and white work. In the black and white work, crayon sauce, pen and ink, and wash blacks are the mediums used, and the work leads to illustration. Occasionally quick sketches are made from the draped figure, the models being members of the class. Students in the above elective courses may take up Prynography, (Burnt Wood Etching), if they desire.

In Courses V and VI (taken in the second elective year) the student pursues more advanced work in any of the lines mentioned. He draws and paints from the draped figure, models being furnished by members of the class, studies composition, and, when the weather permits, sketches and paints from landscape.

Two courses are offered in the History of Art. Course VII,
given in the first semester, is devoted to the History of Architecture and Sculpture. Course VIII, given in the second semester, takes up the History of Painting. The work consists of lectures and of recitations from the text-book. A number of reproductions, photographs and reference books furnish adequate illustrative and research material.

A course in Artistic Anatomy is offered and will be found profitable, and even necessary to the student who intends to pursue the study of Art.

COURSES IN DRAWING AND PAINTING.

I. Required Drawing. 2.
 1. Drawing in outline and light and shade from geometric solids.
 2. Drawing in outline from reliefs of decorative designs, leaves, flowers, and heads.
 3. Drawing in pen and ink.
 4. Drawing in outline from single pieces of furniture, and from interiors of rooms.

II. Required Drawing. 2.
 1. Drawing in charcoal from the cast; hands, feet, heads, etc.
 2. Drawing in pen and ink.
 3. Drawing in red crayon.

III. and IV. Drawing and Painting.—Elective. 2 or 4 each.
 1. Drawing in charcoal from the cast.
 2. Painting oil or water colors, or black and white work.
 3. Quick sketching from life.
 4. Pyrography.

V and VI. Drawing and Painting.—Elective. 2 or 4 each.
 1. More advanced work in oil painting, water colors, or black and white work.
 2. Drawing and painting from the draped model.
 3. Sketching and painting from landscape.

VII. History of Architecture and Sculpture.—Elective. 2.

VIII. History of Painting.—Elective. 2.

IX. Artistic Anatomy.—Elective. 2.
The quarters in Science Hall devoted to Mechanical Engineering consist of the following: Mechanical drawing room and office, on the first floor of the two-story front of the building; wood shop, machine shop, forge shop and foundry, located in the one-story extension of the building; and the engine room, located in the basement under this extension.

The drawing room is a well-lighted room, 23x34 feet in size. The office of the Professor of Mechanical Engineering is adjacent to it. Nine drawing tables furnish accommodations for eighteen students. A library of over one hundred volumes of standard works, as well as a large number of engineering catalogues, pamphlets, etc., furnish the student with valuable references.

Passing from the hall of the front part of the building into the one-story extension above referred to, the wood, machine, and forge shops, and foundry, occupy rooms, in the order mentioned. The wood shop is 30x40 feet in size, and is well lighted on both the north and south sides. Work benches with vices and tool cupboards, furnish accommodations for ten students at bench work, while ten lathes of 11-inch swing enable an equal number to engage in wood turning. There is also an excellent wood turning lathe of 16-inch and 12-foot bed, with double-ended spindle, for turning large work. A double circular sawing machine, with cross-cutting and ripsaws, a scroll saw, a wood trimmer and a grindstone complete the equipment of this shop.

The machine shop is adjacent to the wood shop. It is 30x27 1/2 feet in size, and is lighted from both north and south sides.

The equipment comprises one 16-inch by 8-foot engine lathe, with taper-turning attachment, chuck, large and small face plates, a 32-inch swing drill press, a sensitive drill, a 16-inch stroke shaper, a power hack saw, a wet emery grinder, a double emery grinder, and benches with four machinist's vises.

The forge shop opens off the machine shop. It is 30x30 feet in size. Eight Buffalo down draft forges are placed in this shop, and a Buffalo combination blower and exhaust fan fur-
ishes blast and carries off the smoke. There is also a small portable forge with blower attached. A combination shearing and punching machine, and a complete outfit of anvils, hammers, tongs, and other necessary tools, complete the equipment of this shop.

The foundry also opens off the machine shop. It is a well lighted room, 30x30 feet. The equipment consists of a No. 0 Whiting Supola, a Sturtevant steel pressure blower, core oven, core making bench, and the small tools and supplies needed.

In the machine shop there is partitioned off a small tool room. Here are kept all the small tools, such as calipers, taps, scales, etc., for the machine shop, and also many tools for the wood shop. Also a complete stock of supplies, such as machine and wood screws, sand paper, etc., is conveniently stored. A checking system enables the instructor to give out these tools for student's use, without danger of their being lost or mislaid.

A 50-horse-power Automatic Atlas Engine, located in the basement, furnishes power for the shops. It is expected that this engine will be used in connection with work in steam engineering.

It is the purpose of this department to give the student a thorough training in those branches of science that underlie the profession of Mechanical Engineering, as well as technical instruction in the practical lines of shop practice, mechanical drawing, and machine design.

Below is given the special work required in this department. For the general work, and for the arrangement of the work according to years, see the Course of Study of the Mechanical Engineering Course. **The hours per week given are the number of hours credit, each one of which requires one hour's work in recitation or lecture, or two and one-half hours in laboratory, shop or drawing room.**

SHOP WORK.

Instruction in shop work is given in the afternoon throughout the Freshman, Sophomore and Junior years. There are three shop periods per week of three hours each.

FRESHMAN SHOP WORK.—During the first semester attention is given to acquiring a knowledge of the use and care of the tools in this shop. A systematic course of exercises has been laid out to accomplish this, involving the use of the tools at the disposal of the student. On the bench, the exercises in carpentry consist of sawing, planing, joining, splicing, mortising, dovetailing, framing and paneling. On the
lathes exercise is given in turning of cylinders, cones, beads, ogee curves, etc., and in chucking and face turning. The last four weeks of this semester will be devoted to pattern making.

In the second semester pattern making is continued. This work consists in making patterns of machine parts, and also core boxes for the same should they be required. The making of patterns involves a knowledge of both lathe and carpentry work and requires careful and accurate workmanship. A portion of the time in this semester is given to molding and casting. This work is designed to give a general knowledge of foundry practice, and includes making of molds in green sand, core making, and charging and operating the cupola furnace.

SOPHOMORE SHOP WORK.—Molding and casting is continued for the first six weeks, and is followed by twelve weeks of iron and steel forging. Exercises in drawing out, upsetting, welding, punching, and forming, are followed by a course in steel working and the forging and tempering of tools.

The second semester's work is in the machine shop. The work consists, first, of exercises in vise work, involving practice in the use of hammer and cold chisel, file and scraper; and second, of exercises designed to give practice in the working of the various machine tools. The preliminary exercises are followed by work on complete machines.

JUNIOR AND SENIOR SHOP WORK.—During the Junior and first semester of the Senior years, Machine Shop practice is continued, two, three and two hours per week. Additional practice is given in the use of lathe, shaper, and other machine tools, and various machines will be built.

DRAWING.

FRESHMEN DRAWING.—Throughout the year instruction is given in free-hand drawing from models and objects, for which see Department of Free-hand Drawing, and also in Mechanical Drawing. The work in the latter during the first semester (Course I) includes lettering, symbollic cross-hatching, line shading, drawing from copy, and orthographic projection. In the second semester (Course II) drawings to scale are made of simple machines and machine parts. Three hours per week.

SOPHOMORE DRAWING.—The work in Mechanical Drawing is continued throughout the year. Complete sets of working drawings are made of existing machines. The necessary sketches and measurements are first made, thus gaining additional training in free-hand drawing, and from these sketches the finished drawing is made. One semester three hours, and one semester two hours per week.

JUNIOR DRAWING.—Elementary Machine Design. This work consists of the designing of such elementary machine parts as fastenings, riveted joints, keys, journals, bearings, etc. Both rational and empirical formulas are used, and standard authorities are consulted. In the latter part of the year the work in steam engine design is commenced. A series of ideal indicator diagrams are drawn and combined with diagrams of acceleration force, so as to give diagrams of actual force transmitted to crosshead and crank pin. Two semesters, three hours per week.
SENIOR DRAWING.—Steam engine design. The construction of the preliminary diagrams described under Junior Drawing, is followed by calculations as to weight of reciprocating parts, counter-balance weight, and flywheel. The valve gear, shaft governor and other parts are designed, and complete working drawings prepared. One semester, two hours per week.

Advanced Machine Design. The design of various machines, such as machine tools, boilers, etc., the same general methods being pursued as described in the preceding paragraph. One semester, two hours per week.

RECITATION AND LECTURE ROOM.

WOOD WORKING TOOLS.—Fourteen weeks, one hour per week. Instruction is given in the use and care of wood working tools, and in the elements of wood construction. This course supplements the work of the wood shop.

LECTURES IN PATTERN MAKING AND FOUNDRY PRACTICE.—Twenty-two weeks, one hour per week. The elements of pattern making are given, followed by descriptions of a variety or representative pieces of pattern construction. Instruction is given in simple molding, and in care and management of the cupola and other foundry appliances.

LECTURES IN MACHINE SHOP PRACTICE.—One semester, one hour per week. The use of tools, such as hammers, cold chisel and file, are discussed. The engine lathe and other machine tools are described, and various shop processes and operations are given, the purpose being to give the student such knowledge of shop practice as would be most likely to be useful in his future work.

DESCRIPTIVE GEOMETRY.—One semester, four hours per week, recitation and drawing. Woolf's Descriptive Geometry is used. The correct representation of the point, line, plane and solid in space; sections and intersections of various geometrical figures.

KINEMATICS.—One semester, three hours per week. Recitation and drawing. Stahl and Woods Elements of Mechanism is used. A study is made of the motions transmitted by chains of mechanism, velocity ratios in link work, curves of gear teeth, cams, straight line motions, and various mechanical movements.

Analytical Mechanics. Bowser's Analytical Mechanics is used. One semester, three times per week.

VALVE GEARS.—One semester, once a week. Special attention will be given to study of the plain slide valve, Zeuner's valve diagram being used in the solution of problems. Work of the class room will be supplemented by work in the drawing room.

THEORY OF THE STEAM ENGINE AND STEAM BOILER.—One semester, four hours per week. Holmes' Steam Engine will form the basis for this work. The Mechanics of the steam engine is studied. Also, the thermo-dynamics of the subject. Indicator diagrams, and the theory of compounding, receive attention.

The steam boiler is studied, first, as regards correct design for strength, efficiency, and durability; second, as regards boiler management,
inspection, the prevention and removal of scale, firing, smoke prevention, etc.; and third, wear and tear, corrosion, steam boiler explosions.

THERMODYNAMICS OF THE STEAM ENGINE.—One semester, three hours per week. Peabody's Thermodynamics is used. A complete discussion of the properties of gases and vapors, with special reference to its application in the steam and other heat engines. The fundamental laws of thermodynamics, efficiency of the perfect heat engine, the solution of practical problems, and the discussion of data from steam engine tests, are some of the features of this work.

STRENGTH OF MATERIALS.—One semester, four hours per week. Merriman's Mechanics of Materials is the text used. The work consists of a study of the stresses existing in engineering structures, and the proper stresses allowable under various conditions. Simple and continuous beams are analyzed, and numerous practical problems are solved.

GRAPHICAL STATICS.—One semester, twice per week. The text used will be Volume I of Greene's Graphics. Work in recitation and drawing room, consisting of the analysis by graphical means of the stresses in the various members of framed structures, such as roof trusses.

MEASUREMENT AND TRANSMISSION OF POWER.—Lectures, twice per week, one semester. Discussion of the various methods of transmitting power over long and short distances, and the efficiencies of different systems.

ELECTRICAL ENGINEERING.—One semester, three times per week. This course is designed to give an insight into the principles upon which are based the construction and operation of dynamo-electric machinery.

HYDRAULICS.—One semester, two hours per week. Merriman's Hydraulics is used as text book.

Department of Music.

The Department of Music of the University of Montana provides instruction in vocal and instrumental music and opportunities for the study of chorus work.

One of the principal features is the Pianoforte School, which is in a very satisfactory and encouraging condition, both as regards number of students and their proficiency. The school is divided into Upper and Lower, and each of these again into two grades, Senior and Junior. The Juniors of the Lower School use as studies the New England Conservatory Method, Bertini's, Czerny's or Heller's Easier Exercises, little pieces by Bach, Rein- ecke, Gurlitt and others.
The Seniors continue the above with scales in similar and contrary motion, and major arpeggios of the common chord. More advanced pieces given.

In the Upper School the work of the Junior Grade comprises scales in thirds, sixth and tenths, similar and contrary motion, major and minor common chord arpeggios. Carmer's Etudes, Czerny's Virtuosen Schule, and Clementi's Gradus ad Parnassum. The Senior Grade, in addition to the above, takes Arpeggios of the Dominant and Diminished Sevenths and studies by Chopin, Hensel, Moscheles and others.

There will be classes formed for sight reading, elementary harmony, musical form and literature.

The standard set is both high and conscientious, and the students are already showing in a very gratifying manner the result of the training received.

Public recitals are given at least three times during the University year, and are of great benefit to the students, both in encouraging exactness and overcoming nervousness.

The piano used in the assembly room of University Hall is the gift of the manufacturer, Mr. George P. Bent, of Chicago, Ill.

As it becomes financially possible concerts will be given by artists of distinction and these will be open to the general public, students receiving tickets at reduced rates.

TERMS.

The fees for this department are payable monthly, and no deductions are made for lessons missed unless due notice has been received and a reasonable excuse tendered.

Lower School, two lessons weekly............$4.00 per month

Upper School, two lessons weekly............$6.00 per month

Collegiate Courses of Study.

The University offer the following general courses of instruction:

A.—A classical course, leading to the degree of A. B.
B.—A course in letters leading to the degree of A. B.
C.—A Science course, leading to the degree of B. S.
D.—A Pre-Medical course, leading to the degree of B. S.
E.—A course in Mechanical Engineering leading to the degree of B. S. in Mechanical Engineering.

The work of the year is divided into two equal semesters. For
convenience in classification, the work of each department of study is divided into courses and fractional courses. One course means the equivalent of one hour's lecture or recitation four times a week for one semester. Two and one-half hours of laboratory work, shop work, or drawing counts the same as one of the lecture or of recitation. At least thirty-two full courses as here defined are required for graduation. A student's choice of elective work is subject to the approval of the Faculty, which reserves the right of refusing to give any elective course for which there are less than three approved applicants.

ADMISSION TO COLLEGIATE COURSES.

Candidates for admission to the Freshman class in any of the collegiate courses of the University, must be at least sixteen years old and present evidences of good moral character.

Students coming from other colleges and universities must bring certificates of honorable dismissal.

Admission may be made:

(a)—By certificate.

1. Graduates of the accredited High Schools of Montana are admitted to the Collegiate Departments of the University on presentation of their Diplomas accompanied by a certificate from the Superintendent of their respective schools.

2. Students coming from any other school or college are requested to bring all grade cards, certificates or diplomas that they may possess, together with written statements from teachers superintendents or principals, in order that a proper estimate may be had of their past work.

(b)—By examination.

Examinations for entrance will be given on days set in calendar of this catalogue.

Preparation is required or may be presented in the following subjects:

I. Algebra.—Fundamental operations (including special rules for Multiplication and Division); Factoring; Highest Common Factor; Lowest Common Multiple; Equations of the First Degree containing one or more unknown quantities (including problems in the same); Involution and Evolution; Fractional and Negative Exponents; Radicals; Quadratic Equations of one or two unknown quantities. The equivalent of Chapters I—XVII, XIX and XX of Wentworth's New School Algebra.

II. Geometry Plane and Solid.—Demonstrations, construction and the solution of numerical problems involving the metric system and logarithms. The equivalent of Wentworth's text and Estill's Numerical Problems in Plane Geometry.
III. English Language and Literature.

The requirements are:

1. Grammar.—A good knowledge of the elements of grammar, including the parts and properties of speech, the various kinds of sentences as to form and meaning, parsing, sentential analysis, and the classification of the elements of sentences.

2. Composition and Rhetoric.—Ability to write clear and idiomatic English, and make practical use of the essentials of Rhetoric, not only form, construction, syntax and punctuation, but also the principles of good style and rhetorical figures.

3. Literature.—Applicants will be expected to be familiar with the form and substance of the works in group (a), and to possess a general knowledge of the subject matter in group (b).

IV. History. Ancient History.—The equivalent of one year's work, with special reference to Greece and Rome.

V. History. Mediaeval and Modern History.—The equivalent of one year's work.

VI. Physics.—One year of Elementary Physics, the equivalent of Carhart and Chute's Elementary Physics, Gage's Principles of Physics, or Avery's Elements, one-half of the time having been devoted to laboratory work. The student's note book in laboratory practice will be considered evidence of having done this work.

VII. Latin.—The reading of four books of Caesar, and four orations of Cicero, or their equivalents, with the grammatical knowledge, which must be acquired in the preparation for and performance in a thorough manner of this reading. Practice in writing Latin to the extent presented in Bennett's or Jones' Latin Composition or similar works.

VIII. German.—Grammar, Joyne's Meissner, Whitney's or their equivalents. Ability to read easy prose fluently, and to translate at sight such a work as "Hauff's Maerchen" (Good).

IX. French.—Grammar, Chardenai's Complete, Edgren's or their equivalents. Ability to read easy prose fluently and to translate at sight such work as "La Pierre de Touche" (Harper).

X. Biology.—One year's work in Biological Science, with half the time given to Laboratory work, the equivalent of Davenport's Elemen-
School Zoology for class, and Kingsley or Colton in Laboratory, with accompanying special reading or study.

XI. Chemistry.—One year's work, the equivalent of Remsen's Beginning Course. One-half of the time must be given to laboratory work, as certified by student's notebook.

XII. Physical Geography.—One-half year, the equivalent of Tarr's Elementary Physical Geography.

XIII. Physiology.—A half year. Martin's Human Body, Briefer Course, or its equivalent, with laboratory work representing a minimum of 75 hours of work.

XIV. Mechanical Drawing and Shop Work.—One year.

REQUIRED FOR ADMISSION.

The subjects required for admission to the various courses are as follows:

Classical Course, I, II, III, IV, V, VI and VII.

Scientific Course, I, II, III, IV or V, VI, X or XI. Two years of study in either ancient or modern languages, and one of IV, V, X, XII and XIII.

Letters Course, I, II, III, IV, V, VI, VII. For VII, wholly or in part, the student may substitute two years of Modern Languages and one year of Science.

Mechanical Engineering Course, I, II, III, IV, V, VI, with any one of the following VII which may be substituted by: VIII or IX, wholly or in part, or by either X or XI with XII, XIII, XIV.

Graduation and Degrees.

In order to secure the recommendation of the Faculty for graduation from the University in any of the respective lines of work that have been outlined, it is necessary for the student to complete the equivalent of at least thirty-two full courses, as already defined in the section concerning collegiate courses, including an acceptable thesis. The thesis may represent a minimum of one course and a maximum of three courses, or such proportion thereof as in the judgment of the professor in charge it may merit.

That the needs and special inclinations of the different students may be consulted as far as possible, certain of these courses are required for each of the respective degrees and the rest are left for the student's selection.

The work required for the completion of the three courses in the College of Letters and Science shows at a glance the difference in the courses. Certain subjects are required of all stu-
dents, others are required in special courses, others must be
elected from definite lines of work, and still others are free elec­
tives. It is understood that the choice in free electives must
in part be governed by the arrangement of subjects on the
daily program, and that precedence will always be given to re­
quired work for the different degrees and the number of partial
elective courses allowed.

GENERAL WORK REQUIRED FOR DEGREES, EXCEPTING B. S. IN
MECHANICAL DRAWING.

Drawing, twice per week for one year, I, II................................. 1 course
Rhetoric I.. 1 "
Political Economy, I... 1 "
Psychology, I.. 1 "
Literature, I, II... 2 courses
Biology, I, II.. 2 "

General required work ... 10 courses

WORK REQUIRED FOR DEGREE B. A.
(Classical Group.)

General required work (given above) .. 10 courses
Special required work, Latin.. 5 "
Special required work, Greek Life... 1 course
Special required work, Roman Life....................................... 1 "
Partial Electives, in Greek, Latin, Modern Languages............ 6 courses
Partial Elective, Trigonometry or Higher Algebra.................... 1 course
Free Electives ... 8 courses

Total.. 32 courses

(Literary Group).

General required work (given above) .. 10 courses
Partial Electives, Ancient and Modern Languages.................. 6 "
Partial Electives, History, Literature and Philosophy.............. 8 "
Partial Elective, Trigonometry or Higher Algebra.................... 1 course
Free Electives ... 7 courses

Total.. 32 courses

WORK REQUIRED FOR DEGREE B. S.
(General Science Group).

General required work (given above) .. 10 courses
Special required work, Trigonometry...................................... 1 course
Special required work, Higher Algebra.................................. 1 "
Special required work, Physics.. 2 courses
Partial Electives, Modern Languages..................................... 4 "
Partial Electives, Science and Mathematics............................ 6 "
Free Electives ... 8 "

Total.. 32 courses
(Pre-Medical Group.)

General required work (given above) .. 10 courses
Partial Electives, Modern Language .. 4 “

Special work required:
- Biology, Course IV, Vertebrate Zoology, Course VI, Microscopy, Course XI, Human Anatomy, Course XIV, Bacteriology, Course XV, Embryology .. 5 courses
- Chemistry, Course III, Qualitative Analysis, Course I, Quantitative Analysis, Courses VII, VIII, Organic Chemistry, Courses IX, X, Organic Preparations 4 courses
- Physics, Courses I and II ... 2 “
- Psychology, Experimental .. 1 course
- Free Electives .. 4 courses

Total... 32 courses

FOR THE DEGREE OF B. S. IN MECHANICAL ENGINEERING.

In Mathematics, I, II, III, IV, V ... 5 courses
Model and Object Drawing, I, II ... 1 course
Physics, I, II .. 2 courses
Political Economy, I .. 1 course
German, I, II .. 2 courses
Chemistry, I, II, XII ... 2 ¾ “
Literature, II .. 1 course

For the technical work required in the Mechanical Engineering course see tabular statement following.

I. The degree of Bachelor of Arts to those who complete either the Classical group or the Literary group in the College of Liberal Arts.
II. The degree of Bachelor of Science to those who complete the Scientific course.
III. The degree of Bachelor of Science in Mechanical Engineering to those who complete the course in Mechanical Engineering.

BACCALAUREATE DEGREES.

The University grants the following baccalaureate degrees for undergraduate work:

I. The degree of Bachelor of Arts to those who complete either the Classical group or the Literary group in the College of Liberal Arts.
II. The degree of Bachelor of Science to those who complete the Scientific course.
III. The degree of Bachelor of Science in Mechanical Engineering to those who complete the course in Mechanical Engineering.

ADVANCED DEGREES.

Master of Arts, Master of Science. The Degree of Master of Arts or Master of Science, will be conferred upon resident graduates on the following conditions:

I. The candidate must be a graduate of this University, or a University or College of good standing, as approved by the faculty.
II. He must have pursued, during one or more years, a course of
graduate study at this University, the minimum requirement of work being represented by forty hours of credit.

III. The candidate may pursue one major study and two minors, one major and one minor, or may devote his entire time to the major, the division of time and arrangement of work to receive the recommendation of the department in which the major work is taken and the approval of the faculty. In any case one-half of the candidate's work must be on the major subject.

IV. The minor, or minors, must be closely allied to the major subject, provided, however, that any candidate, in residence for two or more years, may select any approved subject as a second minor for a degree.

V. All courses of study leading to advanced degrees are subject to the approval first, by the head of the department of the University in which the major subject for each student belongs; second, by the faculty. The signatures of the heads of departments in which chosen minor subjects belong must also be obtained. The list of studies with the approval signatures must be deposited with the secretary of the faculty. No changes may subsequently be made except under the same line of approvals, but extension of time may be arranged with the professors concerned.

VI. He must submit a thesis of at least 5,000 words, showing marked attainment in some branch of learning. The subject of the thesis must be announced to the faculty for approval, not later than the second Friday in December, and the thesis itself must be presented to the examining committee at a date to be set by the professor in charge of the thesis work, not later, in any case, than May 20th of the year in which the degree is expected.

VII. He must, at the close of his course, pass a satisfactory examination, either oral or written, or both, conducted by a committee which shall consist of three professors, selected by the faculty for this purpose.

VIII. The degree of Master of Arts will be conferred only upon the completion of a course mainly literary in character and the degree of Master of Science upon one mainly scientific. The degree of Mechanical Engineer will be conferred on those holding the degree B. M. E. on the same conditions as in the other courses.

IX. Graduate students pursuing courses for the Master's degree may by special permission of the faculty, carry on a portion of the work in absentia; but at least one-half the work must be done in residence.
Scheme of Courses Offered by the University.

* These courses are the general requirements for college courses.

** Technical courses in Mechanical Engineering.

Roman numerals indicate the number of the course; Arabic indicate the number of recitations per week.

<table>
<thead>
<tr>
<th>RHETORIC.</th>
<th>SECOND SEMESTER.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST SEMESTER.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LITERATURE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST SEMESTER.</td>
</tr>
<tr>
<td>* Literature, I. 4.</td>
</tr>
<tr>
<td>Literature, III. 4.</td>
</tr>
<tr>
<td>Literature, V. 4.</td>
</tr>
<tr>
<td>Literature, VII. 4.</td>
</tr>
<tr>
<td>Literature, IX. 4.</td>
</tr>
<tr>
<td>SECOND SEMESTER.</td>
</tr>
<tr>
<td>* Literature, II. 4.</td>
</tr>
<tr>
<td>Literature, IV. 4.</td>
</tr>
<tr>
<td>Literature, VI. 4.</td>
</tr>
<tr>
<td>Literature, VIII. 4.</td>
</tr>
<tr>
<td>Literature, X. 4.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELOCUTION AND PHYSICAL CULTURE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elocution, I. 4.</td>
</tr>
<tr>
<td>Elocution, III. 4.</td>
</tr>
<tr>
<td>Physical Culture.</td>
</tr>
<tr>
<td>Elocution, IV. 4.</td>
</tr>
<tr>
<td>Physical Culture.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LATIN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latin, I. Virgil. 4.</td>
</tr>
<tr>
<td>Latin, V. Comedy. 4.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GREEK.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greek, I. Grammar and Lessons. 4.</td>
</tr>
<tr>
<td>Greek, III. Anabasis. 4.</td>
</tr>
<tr>
<td>Greek, V. Odyssey, Herodotus, Thucyidides. 4.</td>
</tr>
<tr>
<td>Greek, VII. Dramatists. 4.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GERMAN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>German, I. Joynes - Meissner - Grammar. 4.</td>
</tr>
<tr>
<td>Grammar, III. Bernhardt - Composition, Con-</td>
</tr>
<tr>
<td>versation. 4.</td>
</tr>
<tr>
<td>German, V. Schiller Wallenstein - Converse</td>
</tr>
<tr>
<td>and Composition. 4.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
FRENCH.

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>French, I. Chardenal's Complete Grammar</td>
<td>II.</td>
</tr>
<tr>
<td>French, III. Napoleon. L'Abbe Constanti</td>
<td></td>
</tr>
<tr>
<td>French, V. Histoire de la Lit. Francaise. Composition and Conversation</td>
<td></td>
</tr>
<tr>
<td>French, VI. Modern Writers and Classics. Composition and conversation</td>
<td></td>
</tr>
</tbody>
</table>

SPANISH.

FIRST SEMESTER.

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish, I. Schilling's Spanish Grammar</td>
<td>II.</td>
</tr>
<tr>
<td>Spanish, III. Same.</td>
<td></td>
</tr>
<tr>
<td>La vida es Sueño.</td>
<td></td>
</tr>
<tr>
<td>El si de las Ninas.</td>
<td></td>
</tr>
<tr>
<td>Spanish, V. Ruy Bias.</td>
<td></td>
</tr>
</tbody>
</table>

SECOND SEMESTER.

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish, II. Same.</td>
<td></td>
</tr>
<tr>
<td>Spanish, IV. Modern Writers</td>
<td></td>
</tr>
<tr>
<td>Spanish, VI. Cervantes.</td>
<td></td>
</tr>
</tbody>
</table>

CHEMISTRY.

FIRST SEMESTER.

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Inorganic, I.</td>
<td>II.</td>
</tr>
<tr>
<td>Qualitative Analysis, III.</td>
<td></td>
</tr>
<tr>
<td>Introductory Quantitative Analysis</td>
<td></td>
</tr>
<tr>
<td>Mineral Analysis, VI.</td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry, VII.</td>
<td></td>
</tr>
<tr>
<td>Organic Preparations, IX.</td>
<td></td>
</tr>
<tr>
<td>Physical Chemistry, XI.</td>
<td></td>
</tr>
<tr>
<td>Metallurgy, XI.</td>
<td></td>
</tr>
<tr>
<td>Gas Analysis, XIV.</td>
<td></td>
</tr>
<tr>
<td>Organic Analysis, XV.</td>
<td></td>
</tr>
<tr>
<td>Inorganic Preparations, XVI.</td>
<td></td>
</tr>
<tr>
<td>Physiological Chemistry, XVIII.</td>
<td></td>
</tr>
</tbody>
</table>

SECOND SEMESTER.

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Inorganic, II.</td>
<td>II.</td>
</tr>
<tr>
<td>Introductory Quantitative Analysis</td>
<td></td>
</tr>
<tr>
<td>Mineral Analysis, VI.</td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry, VIII.</td>
<td></td>
</tr>
<tr>
<td>Organic Preparations, X.</td>
<td></td>
</tr>
<tr>
<td>Industrial Chemistry, XIII.</td>
<td></td>
</tr>
<tr>
<td>Gas Analysis, XIV.</td>
<td></td>
</tr>
<tr>
<td>Organic Analysis, XV.</td>
<td></td>
</tr>
<tr>
<td>Inorganic Preparations, XVII.</td>
<td></td>
</tr>
<tr>
<td>Physiological Chemistry, XIX.</td>
<td></td>
</tr>
</tbody>
</table>

PHYSICS.

FIRST SEMESTER.

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics, I. 4 hours.</td>
<td>II.</td>
</tr>
<tr>
<td>Physics, III. Electrical.</td>
<td></td>
</tr>
<tr>
<td>Measurements—3 hours.</td>
<td></td>
</tr>
<tr>
<td>Physics, V.—Light. 2 hours.</td>
<td></td>
</tr>
<tr>
<td>Physics, VI.—Heat. 2 hours.</td>
<td></td>
</tr>
<tr>
<td>Physics, VII.—Special. 2 or 4 hrs.</td>
<td></td>
</tr>
</tbody>
</table>

SECOND SEMESTER.

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics, II. 4 hours.</td>
<td></td>
</tr>
<tr>
<td>Physics, IV.—Advanced.</td>
<td></td>
</tr>
<tr>
<td>Experimental Physics. 2 or 4 hrs.</td>
<td></td>
</tr>
<tr>
<td>Physics, V.—Light. 2 hours.</td>
<td></td>
</tr>
<tr>
<td>Physics, VI.—Heat. 2 hours.</td>
<td></td>
</tr>
<tr>
<td>Physics, VII.—Special. 2 or 4 hrs.</td>
<td></td>
</tr>
</tbody>
</table>

GEOLOGY AND MINERALOGY.

FIRST SEMESTER.

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Geology, I. 4 hours.</td>
<td>II.</td>
</tr>
<tr>
<td>Mineralogy, III. 2 or 4 hrs.</td>
<td></td>
</tr>
<tr>
<td>Lithology, IV. 2 or 4 hrs.</td>
<td></td>
</tr>
<tr>
<td>Palaeontology, VII. 2 or 4 hrs.</td>
<td></td>
</tr>
<tr>
<td>Special Geology, VIII. 2 or 4 hrs.</td>
<td></td>
</tr>
</tbody>
</table>

SECOND SEMESTER.

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Geology, II. 4 hours.</td>
<td></td>
</tr>
<tr>
<td>Mineralogy, III. 2 or 4 hrs.</td>
<td></td>
</tr>
<tr>
<td>Lithology, IV. 2 or 4 hrs.</td>
<td></td>
</tr>
<tr>
<td>Palaeontology, VII. 2 or 4 hrs.</td>
<td></td>
</tr>
<tr>
<td>Economic Geology, V. 4 hours.</td>
<td></td>
</tr>
<tr>
<td>Blow-pipe Analysis, VI. 2 hours.</td>
<td></td>
</tr>
<tr>
<td>Special Geology, VIII. 2 or 4 hrs.</td>
<td></td>
</tr>
</tbody>
</table>
BIOLOGY.

<table>
<thead>
<tr>
<th>Courses</th>
<th>Volume(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Biology, I</td>
<td>4</td>
</tr>
<tr>
<td>Zoology, Invertebrates, III</td>
<td>4</td>
</tr>
<tr>
<td>Botany, Historical, V</td>
<td>4</td>
</tr>
<tr>
<td>Microscopy, VII</td>
<td>2 to 6</td>
</tr>
<tr>
<td>Photography, X</td>
<td>2</td>
</tr>
<tr>
<td>Human Anatomy, XI</td>
<td>4 or 6</td>
</tr>
<tr>
<td>Research, XII</td>
<td>4 to 12</td>
</tr>
<tr>
<td>Bacteriology, XIV</td>
<td>4 to 6</td>
</tr>
<tr>
<td>Graduate Courses</td>
<td></td>
</tr>
</tbody>
</table>

MATHEMATICS.

FIRST SEMESTER.

<table>
<thead>
<tr>
<th>Courses</th>
<th>Volume(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigonometry, I</td>
<td>4</td>
</tr>
<tr>
<td>Analytical Geometry, III</td>
<td>4</td>
</tr>
<tr>
<td>Calculus, V</td>
<td>4</td>
</tr>
<tr>
<td>Elective Geometry, VI</td>
<td>1</td>
</tr>
<tr>
<td>Elective Geometry, VII</td>
<td>1</td>
</tr>
<tr>
<td>Descriptive Geometry</td>
<td></td>
</tr>
<tr>
<td>History of Mathematics, XI</td>
<td>2</td>
</tr>
</tbody>
</table>

SECOND SEMESTER.

<table>
<thead>
<tr>
<th>Courses</th>
<th>Volume(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher Algebra, II</td>
<td>4</td>
</tr>
<tr>
<td>Calculus, IV</td>
<td>4</td>
</tr>
<tr>
<td>Elective Geometry, VI</td>
<td>1</td>
</tr>
<tr>
<td>Elective Geometry, VII</td>
<td>1</td>
</tr>
<tr>
<td>Plane Surveying, VIII</td>
<td>4</td>
</tr>
<tr>
<td>Differential Equations, IX</td>
<td>2</td>
</tr>
<tr>
<td>Advanced Analytical Geometry, X</td>
<td>4</td>
</tr>
</tbody>
</table>

DRAWING AND PAINTING.

<table>
<thead>
<tr>
<th>Courses</th>
<th>Volume(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of Mathematics, XI</td>
<td>2</td>
</tr>
<tr>
<td>Free-hand Drawing, I</td>
<td>2</td>
</tr>
<tr>
<td>Drawing and Painting, III</td>
<td>2 or 4</td>
</tr>
<tr>
<td>Drawing and Painting, V</td>
<td>2 or 4</td>
</tr>
<tr>
<td>History of Architecture and Sculpture, VII</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses</th>
<th>Volume(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artistic Anatomy, IX</td>
<td>2</td>
</tr>
<tr>
<td>Free-hand Drawing, II</td>
<td>2</td>
</tr>
<tr>
<td>Drawing and Painting, IV</td>
<td>2 or 4</td>
</tr>
<tr>
<td>Drawing and Painting, VI</td>
<td>2 or 4</td>
</tr>
<tr>
<td>History of Painting, VIII</td>
<td>2</td>
</tr>
</tbody>
</table>
Mechanical Engineering Course.

Roman numerals indicate courses; Arabic, hours credit.

FRESHMAN YEAR.

<table>
<thead>
<tr>
<th>FIRST SEMESTER.</th>
<th>SECOND SEMESTER.</th>
</tr>
</thead>
<tbody>
<tr>
<td>German, I. 4.</td>
<td>German, II. 4.</td>
</tr>
<tr>
<td>TECHNICAL INSTRUCTION.</td>
<td>TECHNICAL INSTRUCTION.</td>
</tr>
<tr>
<td>Wood Shop Practice, (14 Weeks), I. 3. 5.</td>
<td>Mechanical Drawing, II. 3.</td>
</tr>
<tr>
<td>Pattern Making (4 Weeks), I. 3. 5.</td>
<td></td>
</tr>
<tr>
<td>Mechanical Drawing, I. 3.</td>
<td></td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TECHNICAL INSTRUCTION.</td>
<td>TECHNICAL INSTRUCTION.</td>
</tr>
<tr>
<td>Molding and Casting (6 Weeks), III. 3. 5.</td>
<td>Lectures in Machine Shop Practice, III. 1.</td>
</tr>
<tr>
<td>Forging (12 Weeks), III. 3. 5.</td>
<td>Machine Shop Practice, IV. 3. 5.</td>
</tr>
</tbody>
</table>

JUNIOR YEAR.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics, I. 4.</td>
<td>Physics, II. 4.</td>
</tr>
<tr>
<td>Metallurgy, 3.</td>
<td>TECHNICAL INSTRUCTION.</td>
</tr>
<tr>
<td>TECHNICAL INSTRUCTION.</td>
<td>Machine Shop Practice, VI. or Surveying, 4.</td>
</tr>
</tbody>
</table>

SENIOR YEAR.

<table>
<thead>
<tr>
<th>FIRST SEMESTER.</th>
<th>SECOND SEMESTER.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Measurements, 3.</td>
<td>Hydraulics, 3.</td>
</tr>
<tr>
<td>Machine Shop Practice, VII. 2.</td>
<td></td>
</tr>
</tbody>
</table>
The Preparatory Department.

The Preparatory Course covers a period of three years, outlined in semesters, after the plan employed in the College Courses. It is expected students will take subjects in the order given.

Applicants for admission to the Preparatory Course should be at least fourteen years of age, and well grounded in the elements of an English education.

Admission may be made—

(a) By Certificate.

1) Certificates or certified statements from superintendents, or from any graded school of good standing, showing completion of 8th grade work will be accepted in lieu of examination.

2) Teachers' certificates given by County Superintendents will admit student to Preparatory Department without examination.

3) Students are urged to bring when possible all record cards, certificates and diplomas, together with a written statement from superintendent, principal or teacher, on which the standing of the student is stated.

(b) By Examination.

Examinations in Arithmetic, Grammar, U. S. History, Reading, Spelling, and Geography will be given on days stated in the calendar of this catalogue.

Preparatory Departments of Instruction.

MATHEMATICS.

I. Elementary Algebra.—First semester. 4. Unless admitted on certificate, applicants for admission to this course must pass a satisfactory examination in Arithmetic. This examination will consist of an oral and a written test. Subjects covered will be Factoring, Common and Decimal Fractions, Percentage (including simple applications), elements of Involution and Evolution, and the Metric System.

II. Algebra continued. Second semester. 4.

III. Algebra continued. First semester. 4. With the work of this semester a thorough review of Factoring, Fractions, and other important subjects will be given. In addition to the mastery of principles much drill work will be required, thus enabling the student to fix those
principles and to gain that facility in Algebraic calculation that comes only by practice.

IV. Geometry, Plane.—Second semester. 4.
V. Geometry, Plane.—First semester. 4.
VI. Geometry, Solid.—Second semester. 4.

Throughout the courses in Geometry much original work will be required. This original work will consist of demonstrations, constructions, and the solution of numerical problems involving the metric system and logarithms. In addition to the regular text, Estill's Numerical Problems in Plane Geometry, or its equivalent, will be used.

ENGLISH.

The aims of this work as pursued in the Preparatory Department are to enable the student to write good English with creditable facility, to develop a taste for the best literature, and to give the student a general knowledge of the history of the English language and the great periods in the development of English literature.

Composition and Rhetoric. The work as outlined will include drill in sentence building, a consideration of the principles of punctuation, paragraphing and outlining of Essays, a knowledge of the requisites of style and a familiarity with the figures of speech. The required written exercises will afford the means of applying the principles introduced, enlarging the vocabulary of the student, and enriching his forms of expression.

Literature. The student is directed in the careful study of form, structure and subject matter of the works included in list (a).

Written tests or papers will determine the value of the knowledge gained by the cursory reading of the works included in list (b).

Literary History will receive special attention. "Brooke's English Literature" will be used as an outline for this work.

(a) The following list of books has been selected for critical study: Milton's Paradise Lost, Books I and II, Burke's Speech on Conciliation with America, Shakespeare's Macbeth and Merchant of Venice, Carlyle's Essay on Burns, Macaulay's Essay on Milton, and Macaulay's Essay on Addison.

One hour per week will be devoted to work in Eloquence.
SCIENCE.

PHYSICS I and II. A year's work in Elementary Physics, required of all students. The text of Carhart and Chute will be used. Two recitations per week, five hours of laboratory work. Each student works individually the experiments, and records the results, with drawings, in a note book, which is submitted from time to time for examination. A good equipment of material is supplied, and every facility will be offered to produce the most successful work.

BIOLOGY I and II. Students preparing for Scientific Course must present a year of Biology, or in its stead a year of Chemistry. At present Biology alone is taught in the preparatory. This comes the first year, and consists of two recitations per week and two laboratory practices of two and one-half hours each. Special attention is given to manipulation of material, to the formation of correct habits of work and study, and to the development of the powers of observation. The students receive instruction from the professor of Biology, and work under the same conditions and surroundings as the college students. Much collateral reading is given from time to time. Divenport's Zoology was used the past year in class recitations.

BIOLOGY, III. PHYSIOLOGY. The work is not a mere digest of text books, but is given for the purpose of broadening the view and enlarging the powers as well as gaining information. One-half of the time is spent in the laboratory, where a series of valuable experiments and examinations are made. Students work in the biological laboratory, and are given the same attention as college students.

Peabody's laboratory text is used in experimental study, Colton's Physiology in class.

PHYSICAL GEOGRAPHY. Lectures, laboratory and field work. Gilbert and Brigham's text.

LATIN.

The following general remarks are here made to avoid unnecessary repetitions under courses outlined below.

1. The Roman pronunciation will be used. Pains will be taken to form habits of correct pronunciation. In this connection, the points to be especially emphasized are that long vowels shall be pronounced as long; also that every consonant shall be distinctly enunciated. For preparatory work it is very desirable to use texts which have long vowels marked.

2. Bennett's grammar will be used and pupils are expected to master the elements of Latin grammar, at least as presented in the coarser print of this book.

3. In the preparation of pupils for the University courses, teachers throughout the state are earnestly requested to take pains to form habits of correct pronunciation; and to have almost daily some exercise in reading and translating at sight and in writing Latin. The importance of these points can scarcely be overestimated.
FIRST YEAR—
A First Year Latin Book Completed, comprising a complete presentation of forms, and the principal rules of syntax, with reading and composition for the application of these forms and rules.

SECOND YEAR—
Easy reading in Gradatim, followed by selections from Caesar. The equivalent of four books of Caesar will usually be read. Throughout the year lessons in Grammar and Composition will accompany the reading.

THIRD YEAR—
Cicero's Orations and Letters, composition exercises, and grammatical drill.
Five orations and some letters of Cicero will usually be read.

GERMAN.
Two years of German will be given in the Preparatory Classes.
First Year. Will be devoted to a thorough study of Grammar (Joyne's Meissner or Whitney's) with some easy prose reading, such as Hauff's Maerchen.
Second Year. Study of Syntax, dictation, and prose reading, such as Schiller's "Der Neffe als Onkel."
If students having finished this work wish to elect German in college they may begin with Course IV as shown on page —.

HISTORY.
First Year. The work will deal principally with Grecian and Roman History. The aim of the instruction will be not the memorizing of dates and facts, but the understanding of the relation of the events to each other. The Library of the University contains many excellent reference books, and the work will be carried on by the library method rather than by the use of texts.
Second Year. The second year will be given to the study of Mediaeval and Modern History, with special reference to the development of France and England. Abstracts and theses on historical themes will continue to be a marked feature of the instruction.

MECHANICAL DRAWING AND SHOP WORK.
Second and third preparatory students intending to enter the Mechanical Engineering Course may take work in Mechanical Drawing and Shop Work, four hours per week, equally divided between drawing room and shop.

MECHANICAL DRAWING.—In the first year, instruction is given in the use and care of instruments, lettering and drawing from copy.
During the second year, drawing from copy is continued, and drawings from sketches of simple machine parts, with sections and complete dimensions.

SHOP WORK.—During the first year, a course of exercises in carpentry and wood turning is pursued, for the purpose of teaching the use of ordinary wood working tools, and the simpler processes of construction.
In the second year, work in the wood shop is continued, the student adding to his experience by making book shelves, cupboards, and similar pieces of work. A portion of the time may be given to pattern making and foundry practice.
Classical Course

First Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebra, 4</td>
<td>Algebra, 4</td>
</tr>
<tr>
<td>Composition and Literature, 4</td>
<td>Composition and Literature, 4</td>
</tr>
<tr>
<td>Ancient History, 4</td>
<td>Ancient History, 4</td>
</tr>
<tr>
<td>Latin, 4</td>
<td>Latin, 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebra, 4</td>
<td>Plane Geometry, 4</td>
</tr>
<tr>
<td>Rhetoric and Literature, 4</td>
<td>Rhetoric and Literature, 4</td>
</tr>
<tr>
<td>Mediaeval History, 4</td>
<td>Modern History, 4</td>
</tr>
<tr>
<td>Latin, 4</td>
<td>Latin, 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry, Plane, 4</td>
<td>Geometry, Solid, 4</td>
</tr>
<tr>
<td>Literature, 4</td>
<td>Literature, 4</td>
</tr>
<tr>
<td>Physics, 4</td>
<td>Physics, 4</td>
</tr>
<tr>
<td>Latin, 4</td>
<td>Latin, 4</td>
</tr>
</tbody>
</table>

Literary Course

First Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebra, 4</td>
<td>Algebra, 4</td>
</tr>
<tr>
<td>Composition and Literature, 4</td>
<td>Composition and Literature, 4</td>
</tr>
<tr>
<td>Ancient History, 4</td>
<td>Ancient History, 4</td>
</tr>
<tr>
<td>Latin or Biology, 4</td>
<td>Latin or Biology, 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebra, 4</td>
<td>Plane Geometry, 4</td>
</tr>
<tr>
<td>Rhetoric and Literature, 4</td>
<td>Rhetoric and Literature, 4</td>
</tr>
<tr>
<td>Mediaeval History, 4</td>
<td>Modern History, 4</td>
</tr>
<tr>
<td>Latin or German, 4</td>
<td>Latin or German, 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry, Plane, 4</td>
<td>Geometry, Solid, 4</td>
</tr>
<tr>
<td>Literature, 4</td>
<td>Literature, 4</td>
</tr>
<tr>
<td>Physics, 4</td>
<td>Physics, 4</td>
</tr>
<tr>
<td>Latin or German, 4</td>
<td>Latin or German, 4</td>
</tr>
</tbody>
</table>
SCIENTIFIC COURSE.

First Year.

First Semester.
- Algebra, 4.
- Composition and Literature, 4.
- Ancient History, 4.
- Biology, 4.

Second Semester.
- Algebra, 4.
- Composition and Literature, 4.
- Ancient History, 4.
- Biology, 4.

Second Year.
- Algebra, 4.
- Rhetoric and Literature, 4.
- Mediaeval History, 4.
- Latin or German, 4.

Third Year.
- Geometry, Plane, 4.
- Literature, 4.
- Physics, 4.
- Latin or German, 4.

MECHANICAL ENGINEERING COURSE.

First Year.

First Semester.
- Algebra, 4.
- Composition and Literature, 4.
- Ancient History, 4.
- Latin, Biology or Physical Geography, 4.

Second Semester.
- Algebra, 4.
- Composition and Literature, 4.
- Ancient History, 4.
- Latin, Biology or Physiology, 4.

Second Year.
- Algebra, 4.
- Rhetoric and Literature, 4.
- Mediaeval History, 4.
- Latin, German, Biology, Physical Geography, or Mechanical Drawing and Shop Work, 4.

Third Year.
- Geometry, Plane, 4.
- Literature, 4.
- Physics, 4.
- Mechanical Drawing and Shop Work, Latin or German, 4.
Accredited High Schools.

The State Board of Education in a meeting held June 1, 1896, took the following action:

"Candidates seeking admission to any of the regular courses in any State Educational Institutions must be at least sixteen years of age and must possess a good moral character and good bodily health.

"Accredited Schools.—Any high school or academy whose course of instruction covers the branches requisite for admission to one or more of the courses of any State Educational Institution may be admitted to its accredited list of preparatory schools, after a satisfactory examination by a committee appointed by the State Board of Education. Application for such examination may be made by any school board to the Secretary of the State Board of Education, whereupon a committee appointed by the State Board of Examination will examine the course of study and methods of instruction of the school, and on the committee's favorable recommendation, and the concurrence of the State Board of Education, it will be entered upon the accredited list of the State Educational Institution for which it applied. Any graduate of such an approved school will be received by the President of the State Educational Institution wherein said graduate is entitled to enter, on presentation of proper diploma and certificate from the Superintendent of said school, into any of the courses of said institution for which said graduate has been fitted.

"Students of any accredited school who are not graduates must expect examinations as other candidates.

"A school once entered upon the accredited list will remain there until its administration is changed, or until notice is given by the State Board of Education of unsatisfactory results. Upon a change of administration application for continuation upon the list, if desired, must be made. If the work of the principal coming into charge has been recently examined in connection with some other school, a new examination may not be required, but such examination should in all cases be invited.

"Annual reports will be asked for by the State Board of Education from all accredited schools."

This legislation is still in force.
At the December meeting of the Board it appointed a committee "to formulate a uniform plan for accredited high schools." The committee met in Helena December 28th, 1897, and formulated a plan, and a brief outline of work for accredited high schools which was adopted at the next meeting of the State Board of Education.

"This committee decided to recommend to the Board that the work of the eight grades, when arranged, shall be the standard for entrance to the high schools."

This recommendation, which was adopted by the Board, became of effect in 1899, when the State Common School Course of Study was published and placed in the hands of school boards, teachers, and superintendents, and it still remains in force.

In June, 1899, the State Board of Education instructed the Diploma Committee to revise the Course of Study for accredited high schools. At the December meeting the committee asked for further time, which was granted. At the regular meeting of the Board in June, 1900, the Diploma Committee reported this outline of work which was unanimously adopted.

List of Accredited High Schools.

COUNTY HIGH SCHOOLS.

<table>
<thead>
<tr>
<th>County</th>
<th>Principal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beaverhead</td>
<td>Hiram Tyree</td>
</tr>
<tr>
<td>Carbon</td>
<td>J. M. Kay</td>
</tr>
<tr>
<td>Fergus</td>
<td>P. M. Silloway</td>
</tr>
<tr>
<td>Teton</td>
<td>A. B. Guthrie</td>
</tr>
<tr>
<td>Flathead</td>
<td>E. A. Steere</td>
</tr>
<tr>
<td>Gallatin</td>
<td>George B. Swan</td>
</tr>
<tr>
<td>Jefferson</td>
<td>Lewis Terwilliger</td>
</tr>
<tr>
<td>Park</td>
<td>O. M. Harvey</td>
</tr>
</tbody>
</table>

CITY HIGH SCHOOLS.

<table>
<thead>
<tr>
<th>City</th>
<th>Superintendent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaconda</td>
<td>J. A. Koontz</td>
</tr>
<tr>
<td>Billings</td>
<td>C. S. Brother</td>
</tr>
<tr>
<td>Butte</td>
<td>R. G. Young</td>
</tr>
<tr>
<td>Great Falls</td>
<td>L. D. Largent</td>
</tr>
<tr>
<td>Hamilton</td>
<td>Adeline R. White</td>
</tr>
<tr>
<td>Helena</td>
<td>W. H. Johnson</td>
</tr>
<tr>
<td>Miles City</td>
<td>H. P. Leavenworth</td>
</tr>
<tr>
<td>Missoula</td>
<td>J. G. McKay</td>
</tr>
</tbody>
</table>
Program of Studies

FOR ACCREDITED SCHOOLS.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepares for entrance to Classical Course, State University.</td>
<td>Prepares for all General Science Courses.</td>
<td>Prepares for all Technical Courses and for the Normal School Professional Course.</td>
</tr>
</tbody>
</table>

FIRST YEAR.

<table>
<thead>
<tr>
<th>Latin</th>
<th>English</th>
<th>Algebra</th>
<th>General History</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latin</td>
<td>English</td>
<td>Algebra</td>
<td>General History</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latin</td>
<td>English</td>
<td>Algebra</td>
<td>General History</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECOND YEAR.

<table>
<thead>
<tr>
<th>Latin</th>
<th>English</th>
<th>Algebra</th>
<th>General History</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latin</td>
<td>English</td>
<td>Algebra</td>
<td>General History</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latin</td>
<td>English</td>
<td>Algebra</td>
<td>General History</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THIRD YEAR.

<table>
<thead>
<tr>
<th>Latin</th>
<th>English</th>
<th>Plane Geometry</th>
<th>Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latin</td>
<td>English</td>
<td>Plane Geometry</td>
<td>Physics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latin</td>
<td>English</td>
<td>Solid Geometry</td>
<td>Physics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latin</td>
<td>English</td>
<td>Solid Geometry</td>
<td>Physics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes
- **Classical Curriculum.** Prepares for entrance to Classical Course, State University.
- **Science Curriculum.** Prepares for all General Science Courses.
- **English Curriculum.** Prepares for all Technical Courses and for the Normal School Professional Course.
University of Montana, Biological Station.

STATION STAFF.

OSCAR J. CRAIG, A. M., Ph. D.,
President of the University.

MORTON J. ELROD, A. M., M. S.,
Director, General Zoology, Plankton Methods.

OSCAR J. CRAIG, A. M., Ph. D.,
President of the University.

MORTON J. ELROD, A. M., M. S.,
Director, General Zoology, Plankton Methods.

P. M. SILLOWAY,
Principal, Fergus Co. High School.
Ornithology. (1900 to 1902.)

DANIEL T. McDougAL, Ph. D.,
Director of Laboratories, New York Botanical Garden.
Botany. (1901.)

MAURICE RICKER, M. S.,
Principal, High School, Burlington, Ia.
Nature Study and Photography. (1901 and 1902.)

HARRY N. WHITFORD, M. S.,
Assistant in Botany, University of Chicago.
Forest Ecology, 1902.

MRS. EDITH RICKER,
Station Artist, 1902.

Postoffice, Big Fork, Flathead Co., Montana.

The laboratory work of the Station for 1902, will open Monday, July 14, and continue five weeks, or until Saturday, Aug. 16.

For a week or ten days before the Station opens and for two or three weeks after the work closes some one of the Station staff will be at or near the Station, and will aid any who may choose to work during such time. The laboratory is at the disposal of students, if it is wanted, from June 15 to September 1st.

EQUIPMENT.

The Station is located on the bank of Swan River at its outlet into Flathead Lake. It was established in the spring of 1899.

The laboratory is a one-story frame structure, 18x24, containing a small store room, a dark room, and tables for twelve students. It is substantially built, well lighted, and well suited to outdoor work.
The Station is in possession of three boats for use in the work; a naphtha launch "Missoula," a row boat "Culex," and a canvas boat "Daphnia." These boats enable the Station force and those attending to get around very nicely. In addition to the above the Station is in possession of numerous smaller pieces of material; a pump after plans of Ward, plankton net after plans of Kofoid, insect nets, dredges, camp material, and other necessary appliances are supplied for the work. Microscopes, chemicals, glassware, and books are taken annually from the University for use at the Station.

ORGANIZATION.

The Biological Station of the University of Montana was established in 1899, for the purpose of offering to the students of the University and to the teachers and students of the State an opportunity for study, collection, investigation and recreation during the summer. By providing the best facilities the state can afford, and making the instruction free to all, the summer work at the Station presents exceptional opportunities for study, and every encouragement is given to those attending to have both a pleasant and a profitable time. The situation of the Station on the largest fresh water lake in the Northwest makes possible a study of inland and cold water life not presented at any other locality.

LOCATION.

The field laboratory is located on the bank of Swan River at its outlet into Flathead Lake. This location affords a fine harbor for boats and a good camping site for the tents of those attending. The adjacent region contains forests, ponds, lakes, swamps, cultivated fields, mountains, rivers and ravines. It is rich in animal and vegetable life. The lake offers rare opportunities for collecting, and presents some beautiful scenery. East of the lake the Mission range comes abruptly to the water's edge. The range slopes from the Swan river on the north to the high peaks, ten thousand feet, at the southern end, and its scenery is wild, rugged and grand, truly Alpine in character, and rivaling the Alps in beauty and magnificence. West of the lake are the Cabinets. Near the Station Swan lake, Rost lake, Echo lake, and other waters, are easily accessible. Daphnia pond, a few minutes walk from the Station, is rich in pond life, while Estey's pond, about as far again, is fully as productive.

It is but two miles to Flathead River, and the region north of
the Station is a rich agricultural and fruit country, whose merits are very imperfectly known. The river immediately above the Station is a series of cataracts for a distance of two miles, the water a sheet of foam coming down with a roar heard day and night for miles.

The location of the Station at Flathead Lake is ideal. The lake is thirty-two miles long, and at its widest part fifteen miles wide. A steamer runs from Demersville on the north to the foot of the lake on the south three times a week. The altitude is about 2,900 feet. Flathead and Swan rivers flow into the lake from the north, the Pend O'Reille flows out of the southern arm. Numerous creeks, arms of the lake, swamps, forests and valleys are close to the Station, which is on the northern shore, offering abundant opportunity for littoral, land, and aerial faunas. Flanking it all the Mission mountains, with snow clad summits and living glaciers, the home of the goat and the sheep, extend the entire length of the lake and valley. The Mission mountains have become famous for their beautiful scenery. The charming lakes, rugged and jagged peaks and beautiful falls.

East of the Station a few miles the Swan range presents some of the most sublime scenery of the world, with remarkable opportunities for study of problems in Ecology and distribution of plants.

COURSE OF STUDY FOR 1902.

Zoology—
(a) Laboratory and field work, including dissection or microscopic study of type forms, with field work and instruction in collecting and preserving for laboratory use and permanent collections. Prof. Elrod.
(b) Field and laboratory course in entomology. Instruction in collecting, preserving and labelling insects. Dissection and study of type specimens. Prof. Elrod.
(c) A course in plankton methods. Collecting of microscopic organism, determination of quantity, examination of material. Prin. Ricker.
(d) Ornithology. A study of birds, with methods of collecting, making and preserving skins; habits and lives of birds of the rich avian region adjacent. Prin. Silloway.

Botany—
(a) Laboratory and field work, including dissection or microscopic study of type forms, with field work and instruction in collecting and preserving for laboratory use and permanent collections. Prof. Elrod.
species of the different orders are found, classification of the more common species, study of structure, with methods of preservation, both dry and in liquid, for immediate and permanent use. Prin. Silloway.

(b) Forest Ecology. This course will consider the problems connected with forest botany. The work will be mainly in the field. Limited areas will be examined carefully to find out, if possible, the order of succession of different forests and to determine the relations of other plant societies. More hasty surveys of larger areas will be made to verify and, if need be, to change the conclusions.

The following lectures, and possibly others, will be given in connection with the field work.

Factors controlling distribution of plants.
The tension zone between the prairie and the forests.
The genetic relations of plant societies in an alpine region:
Mr. Whitford.

(c) Laboratory course, work to be arranged.

Photography—
No regular course will be given in this subject, but every aid which the station can give will be given those who wish to become proficient in this art. Students in photography must supply their own plates or films and paper. There is a dark room at the laboratory and the scenery in the vicinity gives ample scope for a series or negatives either in landscape or of scientific subjects.

Nature Study—
For those who may desire it a course of study and practical work will be outlined which will afford both a fund of information on which to draw during school work and at the same time secure a collection of material to be used in illustration. The scope of the work will include Zoology, Botany, Geology, and Physiography of the region. Prin. Ricker will direct the work.

METHODS OF INSTRUCTION.
The work will consist very largely of field collecting and observation, study of relation to environment supplemented by laboratory dissections and microscopic examination. The general courses will enable teachers to familiarize themselves with methods of field work, and give a store of information from which to draw in nature study subjects. The general courses also give opportunity to students and others to pursue lines of study with better facilities for out door work, with fresh material, than is generally to be had in regular university work.
LECTURES.
During the session the lectures following will be given at the laboratory. They will be given daily, at least one each day. The list will probably be increased, and may be slightly modified. They are free to all students attending, and to any others who may choose to hear them.

Natural Counterfeits, Mimicry and Protective Resemblance, illustrated by water color drawings; The Life History of a Dragonfly, illustrated by specimens; The Life History of an Oak, illustrated by water color drawings; The Anatomy and Distribution of the Hydra, illustrated by specimens; The Entomoptera, their Numbers, Distribution and Utility; Some Animal Allies of Common Plants, stories of adaptation for cross fertilization, illustrated by water color drawings; Recognition of Birds in the Field; Types of Nests of Birds, with special reference to the region; Physiography of the Region Adjacent to the Station; Daphnia Pond, a Study of Environment; How to Study a Bird; Bird Songs and their Significance; Migration of Birds, causes, direction, distance, etc.; Natural History in the Graded Schools; Insects as Friends and as Foes, with practical illustrations; The Game Birds of Montana, recognition, number, habits, etc., Photography, Its Use in the Class Room and in Science; Factors controlling the Distribution of Plants; The Tension Zone between the Prairie and Forests; The Genetic Relations of Plant Societies in an Alpine Region.

EXCURSIONS.
The following excursions will be taken during the session of the Station work, unless the water is unfavorable.
1. A trip to Swan Lake, through the forests, with stop over night at the lake. This is a beautiful lake in the mountains, of great interest biologically and geologically.
2. A trip to Rost Lake, at the base of the Kootenay Mountains. This is a lake almost filled up, a fine collecting field. It is in an admirable location for camps.
3. An ascent of MacDougal Peak via an Indian trail, to an altitude of 7,650 feet. This will afford opportunity for alpine collecting, and will present some of the most sublime scenery in the world.
4. A trip around Flathead Lake, making study of its banks, bays, and swamps.

These trips will be under the personal supervision of Director of the Station. Those taking the trips must bear a proportionate share of the expense necessary. Such will prove of great value and interest biologically aside from the pleasures they bring.
FEES AND EXPENSES.

There are no tuition fees. Students attending will be charged for material consumed, for breakage, for a share of the expense for excursions, and like necessary expense. Necessary books, chemicals, microscopes, and glassware will be supplied free. The intention is to give the best facilities possible, so as to make it worth while for students to attend.

Good board may be had convenient to the laboratory for $5.00 per week, with room extra. It is customary for most of those attending to sleep in tents, on the Station grounds, taking meals only. For those who wish to tent and cook in regular camp style there will be every opportunity given for comfort, the region affording a bountiful food supply of everything necessary, but those attending will be expected to supply their own tents and bedding.

OPPORTUNITIES FOR INVESTIGATION.

Any one wishing to engage in investigation of biological problems pertaining to the life of the locality, before or after the regular work, will be given the freedom of the building, boats and apparatus, and will be offered every facility possible. In such cases no fees will be charged, except for special material or reagents which may be needed.

RECREATION.

Many will wish to combine an outing with study. Fishing near the laboratory is excellent. There are many boats besides those of the Station, and rowing may be indulged in. The field is excellent for photography. Bathing in the lake is always a treat and the beach is fine. The region has an abundance of fruit of all kinds. The hills and forests afford quiet retreats for study or for strolls. Few places have more natural attractions. At the proper season hunting is good. Deer have been seen a few rods from the laboratory. Grouse and pheasants abound in the hills. In season duck shooting is fine. Most of the country affords good wheeling for bicycles.

HOW TO REACH THE STATION.

Students via Northern Pacific will get off at Selish. Stage tri-weekly runs to Flathead Lake, (35 miles), connecting with steamer Klondike, which runs across the lake. Stage fare, one way, $3.00; round trip, $5.00, trunks extra. Boat fare across the lake, one way, $3.00; round trip, $5.00. Stage leaves Selish on Mondays, Wednesdays and Fridays, connecting with the steamer, returning the same day.

Students via Great Northern will get off at Kalispell, connecting by stage with the steamer Klondike at Demersville, a short distance from Kalispell.
Graduating Class, Commencement, 1902.

ACADEMIC DEGREES.

Candidates for degree of Bachelor of Arts. (Literary Group.)

Helene Kennett .. Missoula
Fannie Maley .. Missoula

(Classical Group.)

George Barnes .. Olivet, Mich.
Helen LaCaff ... Carlton
Agnes McDonald ... Anaconda
Helen McPhail .. New Chicago
Katherine Ronan ... Missoula
Pearl Scott .. Phillipsburg
Edith Watson .. Red Lodge

Candidates for the Degree of Bachelor of Science.

William O. Craig .. Missoula
Homer McDonald ... Missoula
Jeannette Rankin .. Missoula
Guy Sheridan .. Missoula
Benjamin Stewart ... Missoula

Candidates for the Degree of Bachelor of Science (in Mechanical Engineering.)

Frederick Anderson .. Missoula
Harold Blake .. Missoula
Grant McGregor ... Stevensville

GRADUATE STUDENTS.

Zoe Bellew .. B. A. Missoula
Lydia Jimmie Mills .. B. S. Lo Lo
Joshima Unoye ... Tokio, Japan

COLLEGIATE STUDENTS.

<table>
<thead>
<tr>
<th>Name</th>
<th>Course.</th>
<th>Credits</th>
<th>Residence.</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Frederick Anderson</td>
<td>B. M. E.</td>
<td>Senior</td>
<td>Missoula</td>
</tr>
<tr>
<td>George E. Barnes</td>
<td>B. A.</td>
<td>22</td>
<td>Missoula</td>
</tr>
<tr>
<td>Sara Beckwith</td>
<td>B. A.</td>
<td>12</td>
<td>Missoula</td>
</tr>
<tr>
<td>Harold Miles Blake</td>
<td>B. M. E.</td>
<td>Senior</td>
<td>Missoula</td>
</tr>
<tr>
<td>Moncure Cockrell</td>
<td>B. S.</td>
<td>18</td>
<td>Deer Lodge</td>
</tr>
<tr>
<td>Mildred E. Corbin</td>
<td>B. A.</td>
<td>18</td>
<td>Missoula</td>
</tr>
<tr>
<td>William Oscar Craig</td>
<td>B. S.</td>
<td>105</td>
<td>Missoula</td>
</tr>
<tr>
<td>Alice Gertrude Glancey</td>
<td>B. A.</td>
<td>12</td>
<td>Lewistown</td>
</tr>
<tr>
<td>George H. Greenwood</td>
<td>B. A.</td>
<td>56</td>
<td>Anaconda</td>
</tr>
<tr>
<td>Miriam Hatheway</td>
<td>B. A.</td>
<td>91</td>
<td>Tacoma, Wash.</td>
</tr>
<tr>
<td>Walter Goden Hay</td>
<td>B. M. E.</td>
<td>Freshman</td>
<td>Missoula</td>
</tr>
<tr>
<td>Alice Herr</td>
<td>B. A.</td>
<td>24</td>
<td>Bannack</td>
</tr>
<tr>
<td>Roxy Howell</td>
<td>B. A.</td>
<td>42</td>
<td>Missoula</td>
</tr>
<tr>
<td>Herbert Henry Hughes</td>
<td>B. S.</td>
<td>10</td>
<td>Missoula</td>
</tr>
<tr>
<td>Mabel Emily Jones</td>
<td>B. A.</td>
<td>83</td>
<td>Missoula</td>
</tr>
<tr>
<td>Sara Clarinda Jones</td>
<td>B. A.</td>
<td>4</td>
<td>Corvallis</td>
</tr>
<tr>
<td>Martin Jones</td>
<td>B. S.</td>
<td>69</td>
<td>Galloway, Mo.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree</th>
<th>Credits</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lillian Jordan</td>
<td>B. A.</td>
<td>64</td>
<td>Glendive</td>
</tr>
<tr>
<td>Nellie Mae Kellogg</td>
<td>B. S.</td>
<td>48</td>
<td>Fort Missoula</td>
</tr>
<tr>
<td>Helen Kennett</td>
<td>B. A.</td>
<td>130</td>
<td>Missoula</td>
</tr>
<tr>
<td>Helen Marie LaCaff</td>
<td>B. A.</td>
<td>118</td>
<td>Carlton</td>
</tr>
<tr>
<td>Lucy Likes</td>
<td>B. A.</td>
<td>86</td>
<td>Missoula</td>
</tr>
<tr>
<td>Rella Likes</td>
<td>B. A.</td>
<td>80</td>
<td>Missoula</td>
</tr>
<tr>
<td>Fannie Maley</td>
<td>B. A.</td>
<td>129</td>
<td>Missoula</td>
</tr>
<tr>
<td>Claude Otto Marcyes</td>
<td>B. S.</td>
<td>62</td>
<td>Forsythe</td>
</tr>
<tr>
<td>Avery F. May</td>
<td>B. A.</td>
<td>14</td>
<td>Missoula</td>
</tr>
<tr>
<td>Agnes McDonald</td>
<td>B. A.</td>
<td>114</td>
<td>Anaconda</td>
</tr>
<tr>
<td>Homer McDonald</td>
<td>B. S.</td>
<td>101</td>
<td>Missoula</td>
</tr>
<tr>
<td>Alexander Grant McGregor</td>
<td>B. M. E.</td>
<td>Senior</td>
<td>Stevensville</td>
</tr>
<tr>
<td>Jeannette Helena McPhail</td>
<td>B. A.</td>
<td>107</td>
<td>New Chicago</td>
</tr>
<tr>
<td>Fay Abernathy Murray</td>
<td>B. S.</td>
<td>—</td>
<td>Missoula</td>
</tr>
<tr>
<td>Georgia Evelyn Polleys</td>
<td>B. A.</td>
<td>36</td>
<td>Missoula</td>
</tr>
<tr>
<td>Jeanette Pickering Rankin</td>
<td>B. S.</td>
<td>115</td>
<td>Missoula</td>
</tr>
<tr>
<td>Harriet Laura Rankin</td>
<td>B. A.</td>
<td>87</td>
<td>Missoula</td>
</tr>
<tr>
<td>Wellington Duncan Rankin</td>
<td>B. S.</td>
<td>71</td>
<td>Missoula</td>
</tr>
<tr>
<td>James Gilbert Reinhard</td>
<td>B. S.</td>
<td>10</td>
<td>Missoula</td>
</tr>
<tr>
<td>Eloise Rigby</td>
<td>B. S.</td>
<td>86</td>
<td>Carlton</td>
</tr>
<tr>
<td>Ida Rigby</td>
<td>B. A.</td>
<td>89</td>
<td>Carlton</td>
</tr>
<tr>
<td>Katherine Josephine Ronan</td>
<td>B. A.</td>
<td>128</td>
<td>Missoula</td>
</tr>
<tr>
<td>Margaret Teresa Ronan</td>
<td>B. A.</td>
<td>121</td>
<td>Missoula</td>
</tr>
<tr>
<td>Pearl Scott</td>
<td>B. A.</td>
<td>119</td>
<td>Philipsburg</td>
</tr>
<tr>
<td>Sadie Schmalhausen</td>
<td>B. A.</td>
<td>—</td>
<td>Missoula</td>
</tr>
<tr>
<td>Charles Edward Schoonover</td>
<td>B. A.</td>
<td>18</td>
<td>Philipsburg</td>
</tr>
<tr>
<td>Leslie Mitchell Sheridan</td>
<td>B. M. E.</td>
<td>Junior</td>
<td>Missoula</td>
</tr>
<tr>
<td>Guy Emerson Sheridan</td>
<td>B. S.</td>
<td>127</td>
<td>Missoula</td>
</tr>
<tr>
<td>Chas. Edmund Simons</td>
<td>B. A.</td>
<td>12</td>
<td>Missoula</td>
</tr>
<tr>
<td>Blanche Mae Simpson</td>
<td>B. A.</td>
<td>14</td>
<td>Stevensville</td>
</tr>
<tr>
<td>Ona Sloane</td>
<td>B. A.</td>
<td>—</td>
<td>Missoula</td>
</tr>
<tr>
<td>Benjamin Duane Stewart</td>
<td>B. S.</td>
<td>114</td>
<td>Missoula</td>
</tr>
<tr>
<td>Nora Marie Toole</td>
<td>B. A.</td>
<td>22</td>
<td>Anaconda</td>
</tr>
<tr>
<td>Bessie Totman</td>
<td>B. A.</td>
<td>92</td>
<td>Hamilton</td>
</tr>
<tr>
<td>Ray Walters</td>
<td>B. A.</td>
<td>16</td>
<td>Missoula</td>
</tr>
<tr>
<td>Ruth Ward</td>
<td>B. A.</td>
<td>20</td>
<td>Hamilton</td>
</tr>
<tr>
<td>Edith Watson</td>
<td>B. A.</td>
<td>109</td>
<td>Red Lodge</td>
</tr>
<tr>
<td>Myrtle Weber</td>
<td>B. A.</td>
<td>72</td>
<td>Hamilton</td>
</tr>
<tr>
<td>Edward Williams</td>
<td>B. A.</td>
<td>14</td>
<td>Missoula</td>
</tr>
</tbody>
</table>

All credits as recorded at the close of the first Semester.

THIRD PREPARATORY.

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree</th>
<th>Credits</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred Elliott Buck</td>
<td></td>
<td></td>
<td>Stevensville</td>
</tr>
<tr>
<td>Maud Burns</td>
<td></td>
<td></td>
<td>Twin Bridges</td>
</tr>
<tr>
<td>James Henry Bonner</td>
<td></td>
<td></td>
<td>Missoula</td>
</tr>
<tr>
<td>Frederick William Busch</td>
<td></td>
<td></td>
<td>Miles City</td>
</tr>
<tr>
<td>Wilbur Sanders Day</td>
<td></td>
<td></td>
<td>Missoula</td>
</tr>
<tr>
<td>George Thomas Farrell</td>
<td></td>
<td></td>
<td>Missoula</td>
</tr>
<tr>
<td>Grace Serena Flynn</td>
<td></td>
<td></td>
<td>Missoula</td>
</tr>
<tr>
<td>Thomas Leo Greenough</td>
<td></td>
<td></td>
<td>Missoula</td>
</tr>
</tbody>
</table>
Gilbert Joseph Heyfron
Maud Esther Johnson
Florence Matilda Johnson
John D. Jones
Russell Barclay Jones
John Reuben Latimer
Nellie Ray Lewis
William Hovey Polleys
Ivy Ranche
Clarence Herbert Raymond
Fred Rigby
Earl Spencer Smith
Thomas Claude Spaulding
Marguerite Olive Stevens
Edward Martin Tucker
Caroline Mary Wells
Florence Arloine Wood

SECON D PR EPARATORY.

Lura Barnes
Harry Floyd Cahill
Jane Darbee
Charles Schoval Dimmick
Ethel Sara Eisenberg
Thomas Joseph Farrell
Linda Ellen Featherman
Rufus King Garlington
Susie Garlington
Lawrence Edward Goodbourn
Katharin Mary Haines
Laura May Hamilton
Fannie J. Hamilton
Laurens Lind Hechler
Mary Hannah Holland
Agnea Hughes
Anna Josephine Hutter
Elmer Reed Johnson
William Warnford Keith
Ralph Emerson Logan
Simon Ray Logan
Jennie May Manson
Jennie Andrus McGregor
Roy Daniel McPhall
Lucia Bush Mirrielees
Robert Henry Nicol
Edith Pulliam
Tolbert Richardson
Viola Anabel Ross
Lawrence Lee Simpson
Jessie Slaughter

Missoula

Olivet, Mica.
Missoula
Missoula
Missoula
Missoula
Drummond
Missoula

Butte
Browns, Ill.
Ennis
Missoula
Hamilton
Red Lodge
Missoula
Missoula
Stevensville
Stevensville
Missoula
Missoula
Stevensville
New Chicago
Big Timber
Hamilton
Missoula
Canon City, Colo.
Missoula
Stevensville
Missoula
<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joseph William Streit</td>
<td>Highwood</td>
</tr>
<tr>
<td>Harry Mitchell Thompson</td>
<td>Forsythe</td>
</tr>
<tr>
<td>Daisy Fanny Toombes</td>
<td>Missoula</td>
</tr>
<tr>
<td>Masajiro Urase</td>
<td>Nagasaki, Japan</td>
</tr>
<tr>
<td>Amanda Waldbillig</td>
<td>Drummond</td>
</tr>
<tr>
<td>Dale Ward</td>
<td>Hamilton</td>
</tr>
<tr>
<td>Lillian Warren</td>
<td>Missoula</td>
</tr>
<tr>
<td>Arthur Newton Westby</td>
<td>Missoula</td>
</tr>
<tr>
<td>Ethel May Ambrose</td>
<td>Missoula</td>
</tr>
<tr>
<td>May Beatrice Bennett</td>
<td>Missoula</td>
</tr>
<tr>
<td>Douglas Bar Bennett</td>
<td>Missoula</td>
</tr>
<tr>
<td>Bessie Lee Clynick</td>
<td>Bonner</td>
</tr>
<tr>
<td>Vincent Stuart Wiley Craig</td>
<td>Missoula</td>
</tr>
<tr>
<td>Phoebe Adithia Finley</td>
<td>Missoula</td>
</tr>
<tr>
<td>Frank Patrick Flynn</td>
<td>Hamilton</td>
</tr>
<tr>
<td>Frederick Remey Frazer</td>
<td>Florence</td>
</tr>
<tr>
<td>Lurean Isabella Grant</td>
<td>Hamilton</td>
</tr>
<tr>
<td>Warren Earl Greenough</td>
<td>Missoula</td>
</tr>
<tr>
<td>Harris Paul Greenough</td>
<td>Missoula</td>
</tr>
<tr>
<td>Inez Hendricks</td>
<td>Anaconda</td>
</tr>
<tr>
<td>Genevieve Winifred Hogan</td>
<td>Wallace, Idaho</td>
</tr>
<tr>
<td>Chester Emily Jackson</td>
<td>Missoula</td>
</tr>
<tr>
<td>Frank Marcus Jenkins</td>
<td>Missoula</td>
</tr>
<tr>
<td>Mary Johnson</td>
<td>Ellsworth, Wis.</td>
</tr>
<tr>
<td>Sarah Stahl Kennett</td>
<td>Missoula</td>
</tr>
<tr>
<td>Arnum Jesse Knowlton</td>
<td>Fort Benton</td>
</tr>
<tr>
<td>Frank Latimer</td>
<td>Missoula</td>
</tr>
<tr>
<td>John Lucy</td>
<td>Missoula</td>
</tr>
<tr>
<td>Allen Lawrence Mahony</td>
<td>Missoula</td>
</tr>
<tr>
<td>Charles Sims Marshall</td>
<td>Missoula</td>
</tr>
<tr>
<td>Nina Isabelle Mason</td>
<td>Missoula</td>
</tr>
<tr>
<td>Charles Michael McCauley</td>
<td>Missoula</td>
</tr>
<tr>
<td>Herman Cole McGregor</td>
<td>Missoula</td>
</tr>
<tr>
<td>Donald Bunyan McGregor</td>
<td>Missoula</td>
</tr>
<tr>
<td>Fred Andrew Mentrum</td>
<td>Missoula</td>
</tr>
<tr>
<td>William George Morrow</td>
<td>Ft. Benton</td>
</tr>
<tr>
<td>Houston Hadden Parsons</td>
<td>Missoula</td>
</tr>
<tr>
<td>Thomas Pope</td>
<td>Missoula</td>
</tr>
<tr>
<td>Leverett Castle Rennick</td>
<td>Missoula</td>
</tr>
<tr>
<td>Harvey Arthur Rosell</td>
<td>Missoula</td>
</tr>
<tr>
<td>Elizabeth Pauline Schilling</td>
<td>Missoula</td>
</tr>
<tr>
<td>Zona May Shull</td>
<td>Philipsburg</td>
</tr>
<tr>
<td>Lillie Irene Simpson</td>
<td>Sheridan</td>
</tr>
<tr>
<td>William Alonzo Sparks</td>
<td>Missoula</td>
</tr>
<tr>
<td>Eva Lucile Stevens</td>
<td>Missoula</td>
</tr>
<tr>
<td>Thula Toole</td>
<td>Anaconda</td>
</tr>
<tr>
<td>Lola Lovisa Stevens</td>
<td>Toston</td>
</tr>
<tr>
<td>Joseph Waigel</td>
<td>Kallispeil</td>
</tr>
<tr>
<td>Winifred Blanche Whitaker</td>
<td>Missoula</td>
</tr>
</tbody>
</table>
Victoria Violet Whitaker Missoula
Elmer Earl Wilcox Sheldon, Mo.
Roy Lewis Wilhelm River Falls, Wis.
Ida Belle Wright Stevensville
William Pearl Wright Stevensville

SPECIAL STUDENTS.

Chas. Allard Chemistry Polson
Alice Bardwell Drawing Missoula
Frank L. Bean Physical Culture Hamilton
Grace Buker Drawing Missoula
Blanche Chadwick Literature Missoula
Alma Belle Hay Drawing Missoula
Warner Adnah Jennings Botany, Political Economy .. Townsend
Lulu Parsons Jennings Botany, Drawing Townsend
Oscar Sedman Chemistry Missoula
Mary E. Winslett Drawing Missoula

In attendance at the Biological Station at Flathead Lake:
Laura Bevans, Chicago Normal School.
Tonia Baber, School of Education, Chicago.
L. H. Bailey, Big Fork.
S. Claude Burr, Big Fork.
Dr. Henry C. Cowles, Univ. of Chicago.
Mrs. Henry C. Cowles, Univ. of Chicago.
R. A. Campbell, Elgin Academy, Elgin, Ill.
J. A. Fossum, Big Fork.
Pauline Griggs, St. Paul, Minn.
Prof. F. O. Grover, Oberlin College, Oberlin, O.
Katherine Gherrett, Missoula.
Wilson P. Harris, Brooklyn, N. Y.
J. R. Locke, Pony.
Prof. W. S. Leathers, Univ. of Miss., Miss.
Clara Main, Lewistown.
Prof. J. B. Meyers, School of Education, Chicago.
Prof. W. B. McCallum, Armour Institute, Chicago.
Alice Patterson, Normal, Ill.
Katherine Ronan, Missoula.
Jane Stearns, Wauwatosa, Wis.
Prof. L. M. Umbach, Naperville College, Naperville, Ill.
Mary Van Hook, Univ. of Chicago.
Martha Van Hook, Univ. of Chicago.
Harry N. Whitford, Assistant, Univ. of Chicago.
Mary Young, N. Div. High School, Chicago.
Total—27.

SCHOOL OF MUSIC.

Birdie Abbot Missoula
Lucy Arnett Missoula
William Beck Missoula
Saidie Beckwith Missoula
Ivy, Boss Missoula
Lulu Boss Missoula
Grace Burrill Clare, Mich.
Elmer Carter Missoula
<table>
<thead>
<tr>
<th>Name</th>
<th>Town</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bessie Clynick</td>
<td>Missoula</td>
</tr>
<tr>
<td>Mrs. Connors</td>
<td>Missoula</td>
</tr>
<tr>
<td>Bertha Cushing</td>
<td>Missoula</td>
</tr>
<tr>
<td>Mary Elrod</td>
<td>Missoula</td>
</tr>
<tr>
<td>George Greenwood</td>
<td>Anaconda</td>
</tr>
<tr>
<td>Alice Hatheway</td>
<td>Missoula</td>
</tr>
<tr>
<td>Bertha Hammond</td>
<td>Missoula</td>
</tr>
<tr>
<td>Frances Hatheway</td>
<td>Missoula</td>
</tr>
<tr>
<td>Roxy Howell</td>
<td>Butte</td>
</tr>
<tr>
<td>Agnes Hughes</td>
<td>Missoula</td>
</tr>
<tr>
<td>Lillian Jordan</td>
<td>Glendive</td>
</tr>
<tr>
<td>Gertrude Kohn</td>
<td>Missoula</td>
</tr>
<tr>
<td>Larina Latimer</td>
<td>Missoula</td>
</tr>
<tr>
<td>Maime Latimer</td>
<td>Missoula</td>
</tr>
<tr>
<td>Helen La Caff</td>
<td>Missoula</td>
</tr>
<tr>
<td>Nettie McPhail</td>
<td>New Chicago</td>
</tr>
<tr>
<td>Roy McPhail</td>
<td>Missoula</td>
</tr>
<tr>
<td>Dorothy Polleys</td>
<td>Missoula</td>
</tr>
<tr>
<td>Victoria Menard</td>
<td>Missoula</td>
</tr>
<tr>
<td>Edna Mentrum</td>
<td>Missoula</td>
</tr>
<tr>
<td>Hattie Rankin</td>
<td>Missoula</td>
</tr>
<tr>
<td>Mary Rankin</td>
<td>Missoula</td>
</tr>
<tr>
<td>Katherine Ronan</td>
<td>Missoula</td>
</tr>
<tr>
<td>Marjory Ross</td>
<td>Missoula</td>
</tr>
<tr>
<td>Jeanette Ross</td>
<td>Missoula</td>
</tr>
<tr>
<td>Lillie Simpson</td>
<td>Missoula</td>
</tr>
<tr>
<td>Lucile Stephens</td>
<td>Missoula</td>
</tr>
<tr>
<td>Sadie Schmalhausen</td>
<td>Missoula</td>
</tr>
<tr>
<td>Margaret Stevens</td>
<td>Missoula</td>
</tr>
<tr>
<td>Florence Sweetman</td>
<td>Missoula</td>
</tr>
<tr>
<td>Nora Toole</td>
<td>Missoula</td>
</tr>
<tr>
<td>Edith Watson</td>
<td>Red Lodge</td>
</tr>
<tr>
<td>Cora Webster</td>
<td>Missoula</td>
</tr>
<tr>
<td>Sidney Williams</td>
<td>Missoula</td>
</tr>
<tr>
<td>Florence Wood</td>
<td>Missoula</td>
</tr>
</tbody>
</table>

SUMMARY.

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduate Students</td>
<td>3</td>
</tr>
<tr>
<td>Collegiate Students</td>
<td>58</td>
</tr>
<tr>
<td>Third Preparatory</td>
<td>26</td>
</tr>
<tr>
<td>Second Preparatory</td>
<td>40</td>
</tr>
<tr>
<td>First Preparatory</td>
<td>48</td>
</tr>
<tr>
<td>Specials</td>
<td>10</td>
</tr>
<tr>
<td>Music</td>
<td>42</td>
</tr>
<tr>
<td>Summer School of Science</td>
<td>27</td>
</tr>
<tr>
<td>Total</td>
<td>254</td>
</tr>
</tbody>
</table>

Counted twice: 18

Net Total: 236
CONVOCATIONS.

All students are required to attend the regular weekly convocations which are held on Wednesday at 10:30 A.M. Special convocations may be held from time to time as the interests of the University demand.

SOCIEDS.

Two literary societies, the Hawthorne and Clarkia, are open to students. The first-named Society is composed of young men and the second of young women. Both societies are alive and a credit to the University. Students attending the University will find membership in either of these societies most helpful and pleasant. The Athletic Association is well organized and has a large membership of both young men and women.

PRIZES.

THE H. N. BUCKLEY ORATORICAL PRIZE.

Through the generosity of Dr. J. J. Buckley, of Missoula, this prize has been founded in memory of his father, H. N. Buckley. The amount of the prize is twenty dollars and this amount is derived from a permanent investment made to secure its endowment. The conditions of the oratorical contest at which the prize is bestowed are subject to the control of the Faculty.

This prize was awarded in 1896 to Miss Anna Gray; in 1897 to Charles Pixley; in 1898 to Louise Hatheway; in 1899 to Guy H. Sheridan; in 1900 to Ebene Hugh Murray; in 1901 to Kathryne Wilson; and in 1902 to George E. Barnes.

PRIZE CONTEST IN DECLAMATION.

This is open only to preparatory students. The first prize is twenty dollars and the second ten dollars. The winner of the first prize in 1898 was Miss Nina Tibault. In 1899 the first prize was won by Gilbert Heyfron, and the second by William Dickinson. In 1900 the first prize was won by Laurens Lind Hechler, and the second by Washington J. McCormick. In 1901 the first prize was won by Elmer Woodman and the second by Mildred Corbin.

The friend of the University who so liberally donates this prize desires his name to be withheld.

THE COBBAN PRIZES.

Mr. R. M. Cobb, of Missoula, has offered prizes for scientific research in Geology and Physical Geography. In each case the first prize is fifteen dollars and the second five. Papers are to
be prepared on assigned subjects. These papers are submitted to a committee consisting of the donor and two members of the Faculty.

THE STATE ORATORICAL ASSOCIATION.

This association was organized in 1900. The institutions represented are the Montana Wesleyan University, the Montana College of Agriculture and the Mechanic Arts and the University of Montana. The purpose of the association is to promote the interest of work along oratorical lines.

The contest in 1900 gave first place to Laurens Lind Hechler, the representative from the University, and that of 1901 gave first place to Mr. Farris, the representative from the College of Agriculture and Mechanic Arts. In 1902 the honors were won by George E. Barnes of the University.

THE JOHN M. EVANS HALL.

Through the liberality of Hon. J. M. Evans and other citizens of Missoula, the Literary Society Hall has been elegantly furnished. The dedication was held March 18, 1900, and was attended by a large number of students and citizens.

Mr. Evans having taken the initiative in the effort to furnish the room it was considered proper to name the hall after the principal donor and so it was christened the John M. Evans Hall.

THE UNIVERSITY SILVER CORNET AND ORCHESTRAL BAND.

The University is in possession of a full set of mechanical instruments which were donated by the Garden City Cornet Band. A permanent organization has been effected and the band is doing some excellent work. The instruments are used on the same basis as other University material and are thus accessible to any who desire to take up this kind of work.

THE UNIVERSITY PAPER.

The Kaimin, through the effective efforts of its corps of editors, has become a permanent factor in the University life. The various difficulties, incident to the launching of a new enterprise, have been met, and the success of the University paper is assured.

The Board of Editors elected the past year was as follows:

Editor in Chief Benj. D. Stewart
Literary Editor Katherine Ronan
Literary Editor Pearl Scott
Local Editor Leslie Sheridan
Exchange Editor Myrtle Weber
Business Manager Geo. H. Greenwood
THE WEATHER SERVICE.

On the departure of the 25th U. S. Infantry from Fort Missoula, the instruments belonging to the Weather Bureau were placed in the keeping of the University. The instruments consist of a set of maximum and minimum thermometers, a standard thermometer, instrument shelter and rain gauge. A pair of wet and dry bulb thermometers for determining the dew point has been added, and also a standard barometer of the Fortin pattern.

The records at Fort Missoula had been taken continuously for nineteen years. As the University is but four miles from the Fort in practically the same climatic conditions, the continuation of the observations is very desirable.

The work has been placed in charge of Prof. M. J. Elrod of the Department of Biology.

THE UNITED STATES GEOLOGICAL SURVEY.

A topographical map of a portion of the state having Missoula as the center has been prepared by the government. This region is later to be worked up geologically, and will be given in the series of geological maps now being issued by the U. S. Geological Survey. The University is aiding in this work in every way possible, and will be very much benefited by the results reached by the survey. At the present writing a bench mark for altitude has been placed in the stone at the left entrance to the main building, the altitude being 3,312 feet above sea level. This has now been corrected by the survey brought in from the Pacific Ocean whereby the corrected height of 3,223 feet is established. The triangulation party has established a bench mark on the campus, with stone piers making the meridian line, giving the latitude and longitude. The University therefore has altitude, latitude and longitude accurately determined, and these marks will no doubt be starting points for future work.

ATHLETICS AND GYMNASIUM WORK.

A committee from the Faculty, entitled The Committee on Athletics and Gymnasium Work, has general oversight of the athletic sports and gymnasium. The details of the management are in the hands of the Board of Directors of the Athletic Association. Regular gymnasium classes have been organized during the past year, one of young men and one of young ladies. The class of young men have exercises with the dumb bells, Indian clubs, punching bag, etc., together with seventeen "setting up" exercises and military drill. The class of young ladies are drilled with the dumb bells, Indian clubs, free arm exercises, wands and general calisthenics. This has been made possible by one of Missoula's foremost citizens, Mr. C. H. McLeod, who has very kindly equipped the gymnasium with
parallel and horizontal bars, trapeze and swinging rings, chest weight machines, and Whitely exerciser, vaulting horse, punching bag, boxing gloves, fencing foils, Indian clubs, dumb bells, wrist and finger machines, and a rowing machine. Besides these there are two small mats for the bars, and a large gymnasium rug, sixteen feet square, for wrestling and boxing.

The athletic field, located in the northwest corner of the Campus is now in excellent condition. A quarter of a mile running track is nicely finished, and the entire field has been well scraped and leveled. Within this track there is located the base ball diamond and the foot ball field.

The general sports indulged in are foot ball, basket ball and base ball, together with the indoors and out doors field sports.

The Faculty have established the following important regulations:

First. The foot ball season will extend from September 1st to Thanksgiving Day.

Second. Only bona fide students in the University, taking at least eight hours per week of recitations or lectures, can represent the University in any of its games with other college teams. Teams representing the University will not be permitted to play teams representing other schools or colleges unless the latter conform to the same requirement for study.

Third. At least four days before the departure of University teams to play with school and college teams elsewhere, and also four days before games with such teams on the home grounds a list of the students from which names are to be selected for University teams, must be presented by managers to the Faculty for consideration and appproval.

FEES AND DEPOSITS.

Preparatory, or any College Course, per year (Matriculation fee), payable at entrance .. $10.00
Athletic fee, per semester .. 1.00
Physical apparatus (deposit) per semester 3.00
Chemistry I and II—Chemical apparatus (deposit) per semester .. 7.50
Chemistry III—Qualitative apparatus (deposit) per semester .. 6.00
Chemistry IV—Quantitative apparatus (deposit) per semester .. 6.00
Chemistry V and VI—$10.00; each additional hour 2.00
Chemistry IX and X—Organic Chemistry (deposit) per semester .. 10.00
Assaying apparatus (deposit) per semester 10.00
Deposit, Biological Laboratory, per semester 3.00
Deposit, Mechanical Engineering Laboratory, per semester 5.00
Photography ... 5.00
EXPENSES.

There are no dormitories connected with the University, and students are expected to find rooms and board in private families. Good homes can thus be provided for all and at very reasonable rates. Expenses may be very materially lessened by the formation of boarding clubs. Students will not be allowed to board at places not approved by the Faculty.

UNIVERSITY SURROUNDINGS.

Missoula is located in Western Montana, on the main line of the Northern Pacific Railroad, and at its junction with the Bitter Root alley and Coeur d’Alene branches, thus affording easy railroad connections with all parts of the State and the Northwest.

The City of Missoula is noted as being one of the most beautiful in the west; and is unexcelled as regards pure water, healthful surroundings, beautiful scenery, and all of those things that contribute to make student life pleasant and agreeable.

Situated at the head of the Missoula valley and near the outlet of the Bitter Root valley, it is within the limits of the great agricultural and fruit growing regions of the state.
INDEX.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accredited High Schools</td>
<td>77</td>
</tr>
<tr>
<td>Accredited High Schools, Course of Study</td>
<td>79</td>
</tr>
<tr>
<td>Accredited High Schools, List of</td>
<td>78</td>
</tr>
<tr>
<td>Admission to Collegiate Courses</td>
<td>61</td>
</tr>
<tr>
<td>Admission to Preparatory</td>
<td>71</td>
</tr>
<tr>
<td>Assaying, Course in</td>
<td>36</td>
</tr>
<tr>
<td>Athletics</td>
<td>94</td>
</tr>
<tr>
<td>Biological Station</td>
<td>80</td>
</tr>
<tr>
<td>Biology, Courses in</td>
<td>47</td>
</tr>
<tr>
<td>Biology, Equipment</td>
<td>41</td>
</tr>
<tr>
<td>Botany</td>
<td>48</td>
</tr>
<tr>
<td>Buildings</td>
<td>11</td>
</tr>
<tr>
<td>Catalogue of Students</td>
<td>86</td>
</tr>
<tr>
<td>Calendar</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry, Courses in</td>
<td>35</td>
</tr>
<tr>
<td>Chemistry, Equipment for</td>
<td>31</td>
</tr>
<tr>
<td>College Calendar</td>
<td>3</td>
</tr>
<tr>
<td>Collegiate Courses</td>
<td>67</td>
</tr>
<tr>
<td>Convocations</td>
<td>92</td>
</tr>
<tr>
<td>Courses, Scheme of</td>
<td>67</td>
</tr>
<tr>
<td>Degrees</td>
<td>63</td>
</tr>
<tr>
<td>Degrees Conferred</td>
<td>86</td>
</tr>
<tr>
<td>Degrees, Requirements for</td>
<td>64</td>
</tr>
<tr>
<td>Drawing</td>
<td>52</td>
</tr>
<tr>
<td>Elocution</td>
<td>25</td>
</tr>
<tr>
<td>English, Department of</td>
<td>25</td>
</tr>
<tr>
<td>Executive Committee</td>
<td>5</td>
</tr>
<tr>
<td>Expenses</td>
<td>96</td>
</tr>
<tr>
<td>Faculty</td>
<td>6</td>
</tr>
<tr>
<td>Fees and Deposits</td>
<td>95</td>
</tr>
<tr>
<td>French, Courses in</td>
<td>31</td>
</tr>
<tr>
<td>Geological Survey</td>
<td>94</td>
</tr>
<tr>
<td>Geology, Courses in</td>
<td>40</td>
</tr>
<tr>
<td>Geology, Equipment for</td>
<td>39</td>
</tr>
<tr>
<td>German, Courses in</td>
<td>31</td>
</tr>
<tr>
<td>Graduation</td>
<td>63</td>
</tr>
<tr>
<td>Greek, Courses in</td>
<td>30</td>
</tr>
<tr>
<td>High Schools, Accredited</td>
<td>77</td>
</tr>
<tr>
<td>High Schools, Course of Study</td>
<td>71</td>
</tr>
<tr>
<td>History, Courses in</td>
<td>23</td>
</tr>
<tr>
<td>Course/Department</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Latin, Courses in</td>
<td>29</td>
</tr>
<tr>
<td>Latin and Greek Equipment</td>
<td>29</td>
</tr>
<tr>
<td>Library</td>
<td>14</td>
</tr>
<tr>
<td>Literature, Courses in</td>
<td>27</td>
</tr>
<tr>
<td>Mathematics, Courses in</td>
<td>51</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>55</td>
</tr>
<tr>
<td>Mechanical Engineering, Courses in</td>
<td>56</td>
</tr>
<tr>
<td>Mechanical Engineering, Equipment for</td>
<td>55</td>
</tr>
<tr>
<td>Mineralogy, Courses in</td>
<td>40</td>
</tr>
<tr>
<td>Mineralogy, Equipment</td>
<td>33</td>
</tr>
<tr>
<td>Modern Languages, Courses in</td>
<td>31</td>
</tr>
<tr>
<td>Montana State Board of Education</td>
<td>5</td>
</tr>
<tr>
<td>Museum</td>
<td>18</td>
</tr>
<tr>
<td>Museum Donations</td>
<td>20-21</td>
</tr>
<tr>
<td>Music, School of</td>
<td>59</td>
</tr>
<tr>
<td>Philosophy, Courses in</td>
<td>25</td>
</tr>
<tr>
<td>Physics, Courses in</td>
<td>33</td>
</tr>
<tr>
<td>Physics, Equipment for</td>
<td>37</td>
</tr>
<tr>
<td>Political Economy, Courses in</td>
<td>23</td>
</tr>
<tr>
<td>Preparatory Department</td>
<td>71</td>
</tr>
<tr>
<td>Preparatory, Admission to</td>
<td>71</td>
</tr>
<tr>
<td>Preparatory, Courses of Study</td>
<td>75-76</td>
</tr>
<tr>
<td>Preparatory, Instruction in</td>
<td>71</td>
</tr>
<tr>
<td>Prizes</td>
<td>92</td>
</tr>
<tr>
<td>Rhetoric, Courses in</td>
<td>26</td>
</tr>
<tr>
<td>Shopwork</td>
<td>56</td>
</tr>
<tr>
<td>Spanish, Courses in</td>
<td>31</td>
</tr>
<tr>
<td>Societies</td>
<td>92</td>
</tr>
<tr>
<td>University Band</td>
<td>93</td>
</tr>
<tr>
<td>University Endowment</td>
<td>10</td>
</tr>
<tr>
<td>University Grounds</td>
<td>11</td>
</tr>
<tr>
<td>University Paper</td>
<td>93</td>
</tr>
<tr>
<td>University Surroundings</td>
<td>96</td>
</tr>
<tr>
<td>Weather Service</td>
<td>94</td>
</tr>
<tr>
<td>Wood-Work</td>
<td>56</td>
</tr>
<tr>
<td>Zoology</td>
<td>48</td>
</tr>
</tbody>
</table>