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events in the earth's crust. Other complex systems that have been modeled include 

snowfields, traffic, and the human brain (see Section 1.4). All of these examples 

qualify as systems in the sense that they are composed of many small interacting 

parts. The earth's crust may be viewed as a collection of small platelets of earth that 

press against each other and occasionally shift. The electrical grid is a web of 

interacting wires and power stations. A snowfield, at its finest level, is a collection 

of snowflakes that pu t weight on each other until a group of them slide downhill.

These systems are complex in that their behaviors, while predictable in 

one sense, are entirely unpredictable in another. If we consider these systems from a 

broad perspective, we can be fairly secure in our predictions about them. For 

example, small earthquakes occur with great frequency, while large earthquakes are 

uncommon. While geologists are able to make relatively accurate predictions about 

when and where the next large earthquake will strike, they rely on macro-level 

observations, like fault lines and historical data, to make their claims as opposed to 

closely observing the tiny interacting chunks of earth. The system they study is far 

too complex for such a micro-level analysis to be helpful; the same is true for power 

blackouts and avalanches.

The models for these complex systems have one feature in common: they 

simulate a network of individuals that, when stimulated, may interact w ith their 

neighbors by distributing some sort of stress. In fact, all of the models mentioned
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thus far are special cases of "chip-firing games", studied in a recent paper by 

Bjomer et al. [6 ]. We turn  now to a discussion of these games.

1.2 Chip-firing games

A chip-firing game takes place on a connected graph; all graphs in this 

thesis are simple. We assume throughout this dissertation that the reader is familiar 

with both basic graph theory, as introduced, e.g., in [19], and basic probability 

theory, as introduced, e.g., in [10]. (A glossary of notation and terminology appears 

in Appendix 1.) The nodes of the graph take the role of the individuals in the 

network. Integer-valued stresses upon each individual are represented by chips 

contained on the nodes. When a node fires, chips are moved to its neighbors in 

accordance w ith a firing rule. A node cannot fire until the num ber of chips it 

contains meets or exceeds a threshold, called the node's critical number.

A generalized chip-firing game that includes as special cases the models 

discussed in Section 1.1 has three features:

(a) the game takes place on a connected graph;

(b) each node v has a critical num ber k v;

(c) if the num ber of chips on v is at least kvi then v can fire, sending 

a chip to kv of its neighbors, according to some rule.

If no node is able to fire, we say that the game is relaxed. A  node v containing exactly 

kv chips is critical. If v contains more than k v chips, we say v is supercritical.
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Figure 1.1. A chip-firing game

In Figure 1.1, the node numbers enumerate the chips resting on their 

respective nodes. The game operates as follows: each node v has critical number 

kv = deg(v); when a node fires, it sends one chip to each neighbor. The figure shows 

a typical sequence of configurations under these stipulations. In each configuration, 

the shaded node is the one about to fire, which leads to the next configuration.

Note that in the first configuration, all but the lower-left node may fire. 

Bjorner et al. [6 ] showed that when more than one node m ay fire, the order in which 

the nodes are fired does not affect either the num ber of firings until the game is 

relaxed or the final configuration of the chips. Note also that the final configuration 

would lead to a configuration identical to the initial one if the shaded node fired. 

This suggests that this particular chip-firing game will be of infinite length. 

Bjomer et al. proved that if the num ber of chips on a graph exceeds a certain value 

(that depends on the num bers of nodes and edges in the graph), the chip-firing 

game will indeed never terminate.
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The chip-firing game studied in this dissertation is similar to that of [6 ], 

with one small difference that will force all games to be of finite length. Before we 

turn our attention to this new game, we formally define "chip-firing game" and a 

few related terms.

1.3 D efinitions involving chip-firing games and bum -off games

Let G = (V,E) be a connected graph. For each node v, we place a 

nonnegative num ber C(v) of chips on v. A particular distribution C : V -*• N of chips 

on V is called a configuration. Any node v that contains at least as many chips as its 

critical number kv—that is, C(v) > kv—m ay be fired) we call such a node v fire-able. A 

node that fires sends a chip to each of its neighbors.

With these definitions in mind, we consider the following chip-firing 

game: Begin with any configuration on G. If there exists a node that may be fired, we 

fire it. This constitutes a turn of the game. As the turns of a game progress, we say 

that the configuration is relaxing. If no node may be fired, the game ends; otherwise, 

a new turn begins in which any fire-able node is fired. The length of the game is the 

number of turns taken from the initial configuration until the game ends. If at the 

start of the game no node may be fired, the game has length zero. If no node is able 

to fire, we say that the configuration is relaxed. To play a new  game, a chip is placed 

on a randomly selected node. This node is called the seed. We also use seed as a verb 

to refer to the process of making this selection.

5
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In most models, including the Bjomer et al. model [6 ], we take kv to be the 

degree deg(v) of v. A theorem in [6 ] states that in such a chip-firing game, the nodes 

may be fired in any allowable order, and

(a) the length of the game will not be affected;

(b) the final configuration will not be affected.

This theorem implies that if the graph contains more than one fire-able 

node, the choice of which node to fire has no bearing on the length of the game or 

the final configuration of the chips. The same paper [6 ] points out that some 

chip-firing games may be of infinite length. For example, if the num ber of chips on 

the graph exceeds twice the number of edges, then, by the pigeonhole principle, we 

may always find at least one node that contains enough chips to fire. The paper also 

establishes that if the number of chips on the graph is less than the num ber of 

edges, then every chip-firing game is of finite length.

In our consideration of models for real-world phenomena, it is helpful to 

study a slightly different chip-firing game in which all games are of finite length. 

Our goal is to enumerate games of each possible length, and infinite games obstruct 

this analysis. Further, since many models are linked to phenomena such as 

earthquakes and avalanches that involve friction and kinetics, it is reasonable to 

build into those models some recognition that the energy in the system may be lost 

through escaping heat. Indeed, Kauffmann [12, pp. 71-92] argues that complex
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systems spontaneously exhibit both order and complexity at the cost of 

thermodynamic energy loss.

Therefore, we consider the following variation of the chip-firing game 

above: a node v may only be fired when C(v) > deg(v) + 1, and when v is fired, one of 

its chips is lost from the system. The chip that escapes at each firing models the loss 

of energy from the system. We call such a game a burn-off game. Such a system is 

referred to as "dissipative" by physicists, in contrast with "conservative" systems 

like classical chip-firing games, that do not lose energy as they are processed. We 

also note that critical takes on a new meaning in the context of bum-off games: a 

critical node is one that will fire when a chip is added to it.

The study of modified chip-firing games is not uncommon. In [9], 

Eriksson summarizes and extends the results of [6 ] by considering games on 

directed graphs and games where the edges are weighted. In the latter case, the 

values placed on the nodes are not limited to integers but allow any real numbers. 

A node fires when its value is negative, and this value is added to the values on its 

neighbors. Both modified games exhibit properties of the original described in [6 ], 

although in some ways they differ drastically.

Eriksson continues to explore modified chip-firing games in [8 ], where he 

considers graphs that m utate between games. After a node fires, the edges incident 

with the node may be erased and then new edges may be added. The mutations
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occur in a predetermined order; this order may or may not have a finite period. As 

in the other papers mentioned so far, close attention is given to discovering the 

conditions under which the games are finite or infinite.

The variant studied by Biggs in [4] includes a vertex that can always fire, 

but will only do so if no other node in the graph can fire. Biggs confirms the results 

in [6] for his variant and demonstrates that the set of "stable", "recurrent" 

configurations of a graph has the structure of an abelian group.

A final example of recent interest in this topic is [5]. Bitar and Goles 

consider the periodic nature of chip-firing games in which all nodes that can fire are 

fired simultaneously. These "parallel" chip-firing games are shown to simulate 

logical functions, like OR and NOT, making chip-firing games of nontrivial interest 

to computer scientists.

1.4 Self-organized criticality

Every firing in a bum-off game removes a chip from the system; clearly, 

every bum-off game is of finite length. Later (see Lemma 4.8) we will see that the 

length of a bum-off game is bounded from above by the num ber of nodes. For 

example, bum-off games played on the graph in Figure 1.1 will be of lengths zero 

through four. Figure 1.2 shows the results of 10,000 sim ulated bum-off games 

played on the graph in Figure 1.1; the code, written in Smallbasic, appears in

8
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Appendix 2. The simulation proceeds as discussed in Section 1.3 (p. 5). Note that 

longer games occur with lower frequency.

51 12

0 1 2  3 4
gam e length

Figure 1.2. Results of 10,000 bum-off games

Empirical results like these are common in papers that investigate simple 

models of complex systems. In [7], for example, Dhar models a pile of sand by 

assigning numerical values to cells in a lattice. Each value represents the steepness 

of the sandpile in that region. Stresses are added at random  until a cell's steepness 

exceeds some threshold—at which point the sand slips. In the model, the simulated 

stress is distributed to the cell's neighbors, and again the cells are checked for 

instability. The simulated avalanche continues until all cells of the grid have 

steepnesses w ithin the threshold, at which point the num ber of cells that slipped 

during the avalanche is recorded. This process continues through many 

computer-driven iterations, and when the data is compiled, it compares favorably 

with measurements taken from real sandpiles.

9
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Complex systems like this sandpile model potentially possess what is 

called self-organized criticality (hereafter abbreviated SOC). The important features of 

SOC are listed in [1], a nontechnical introduction to the subject that appeared in 

Scientific American. The primary characteristic of SOC is this: the system, although 

complex, displays predictable behavior when viewed at a macroscopic level. Such 

systems are simulated using computer software that collects data relating the size 

and frequency of events. In a sandpile model, the events are avalanches (as 

measured by the num ber of sand particles that slipped during the event), and they 

can occur every time a bit of sand is added to the system. In a bum-off game, the 

events are games (as measured by the num ber of cells that fire), and they can occur 

every time a chip is added to a cell.

In some systems, the relationship between the size and frequency of 

events in the system follows a power law, that is, if S  is the size of an event, and Fs is 

the frequency of events of size S, then Fs « Cys for some real constants C and 7 . A 

power law relationship is a hallmark of a system that is in a self-organized critical 

state; on page 1 of [11], for example, the author states, "Although the dynamical 

response of the systems is complex, the simplifying aspect is that the statistical 

properties are described by simple power laws." The results in Figure 1.2 suggest 

this relationship for some 7  < 1. We estimate 7  using regression after considering an 

earthquake model due to Bak and Tang [3].

10
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Their simple model works on a 50 x 50 lattice. The neighbors of each cell 

are defined to be those horizontally and vertically adjacent. A cell fires if its value is 

at least four, increasing the value of each neighbor by one while itself decreasing in 

value by four. Cells on the edge of the lattice operate as if an invisible border of cells 

surrounds the lattice: if a cell on the edge fires, one stress (or two stresses, in the 

case of comer cells) is (are) lost from the system. Figure 1.3 shows the results of 

10,000 such games simulated with a Smallbasic program (the code appears in 

Appendix 2).

1 to 5 6 to 10 11 to 15 16 to 20 21 to 25 26 to 30 31 to 35

game length

Figure 1.3. Results of 10,000 Bak games

Before the first game, every cell in the lattice receives between one and 

four stresses with uniform  probability. In Section 2.3, we discuss an alternative 

method of initializing a game. Note that results for games of length zero and of
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length greater than 35 are omitted, and that the results are compressed into groups 

of five; both of these decisions were made simply to neaten the presentation. The 

lefthand bar in each pair shows the results from the simulation, while the righthand 

bar depicts the standard (least squares) exponential regression. For this data, the 

regression gives C = 7.834 and y = 0.924, so Fs ~ 7.834(0.924)5. The results in [3] 

exhibit the same behavior. The agreement between the simulated data and the 

regression is at best marginally satisfying. Applying the same analysis to the data in 

Figure 1.2, we find that C -  39 and y = 0.622, so Fs « 39(0.622)5 (see Figure 1.4). 

The results in this dissertation provide a way to predict the simulated data 

mathematically, and Figure 4.6 (p. 96) demonstrates the close agreement we can 

find using our methods.

60

50

5T 40

51.12

39.00

c  30

979 940 714 510.07

m
gam e length

Figure 1.4. Results of 10,000 bum-off games, revisited
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Since SOC was originally identified [3], its possible links with real-world 

phenomena have been widely explored. While earthquakes [3] and sandpile 

avalanches [7] are the events most commonly connected with SOC, investigation 

has also proceeded along less obvious lines. Nagel and Paczuski [15] created a 

simple traffic model and studied its self-organized critical behavior, using traffic 

jams as the "events" in their model. The model considers a single lane of traffic in 

which all cars move at or below the maximum allowable speed, responding to the 

car ahead according to preset rules of acceleration and deceleration. The model then 

introduces a small random  element that interferes with the deterministic motion of 

the cars. Resultant traffic jams are noted, and the system is allowed to relax into its 

original deterministic state. The authors show that the frequency of the jams has a 

power law relationship with the size of the jams.

Stassinopolous and Bak [18] turned their attention to the hum an brain, 

modeling the brain as a graph in which neurons are nodes and their connections are 

edges. Each neuron possesses a firing threshold: when its neighbors fire, they add a 

charge to the neuron; if the charge exceeds the threshold, the neuron fires. An 

"event" in this model is a thought—if the proper neurons fire, the thought is a 

successful one, and the neurons that were involved in the thought are "rewarded" 

by having their thresholds decreased.
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Liu et al. [14] investigate the fractal nature of the sandpile model studied 

in [3 ] when the model is allowed to relax from uniform initial conditions—in other 

words, when every cell in the sandpile begins at the same slope. The authors 

experiment with different boundary shapes (e.g., square, triangular) and different 

initial conditions. Despite the uniformity of the initial configurations, the sand 

exhibits behavior typical of systems in a SOC state.

As an example of how the theory of SOC has reached a non-mathematical 

audience, we note a recent article (2002) in Atlantic Monthly [16] that investigates a 

wide variety of systems demonstrating elements of SOC behavior, from persons of 

different ethnic backgrounds tending to live in ethnic neighborhoods, to rival 

religious groups with tendencies toward inter-group violence, to a possible 

explanation for the disappearance of the Anasazi culture of the southwestern 

United States in 1300 A.D.

1.5 SOC and burn-off games

As discussed in Section 1.4, a system that exhibits SOC should 

demonstrate a power law relationship between the frequency and size of the events 

in the system [1 ]. These systems can be modeled by chip-firing games, and the 

particular kind of chip-firing game in question in this work has the bum-off feature 

that not only more realistically models real-world phenomena, bu t also allows us to 

investigate mathematically whether such chip-firing games exhibit SOC. Later, we
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discover the closed formula (5.15) relating bum-off game length to frequency on 

complete graphs; restricting the model to complete graphs, however, produces 

analytic results that do not indicate the presence of SOC. Nevertheless, the model 

exhibits interesting properties of its own, which are the focus of this dissertation.

Jensen [11] devotes a chapter to a discussion of computer models of SOC. 

On p. 29, his list of features that characterize the models he studies are all 

characteristics of bum-off games. These features are: "the dynamical variable or 

field is updated in every time step according to some algorithm"; "the choice of the 

updating algorithm is, to some degree, arbitrary"; and "the criteria for choosing the 

relevant definitions are, for the most part, simplicity and intuition". A burn-off 

game exemplifies these features. Of attempts to formalize the study of SOC, such 

as [7], Jensen writes, "Despite their undeniable beauty, the exact solutions have one 

drawback: the specific mathematics tends to be tailored to the details of the solved 

model." In this dissertation, we find analytical results that apply to bum-off games 

played on any connected graph; although these results are not closed formulas, they 

are certainly not "tailored to the details" of the model. Our strictly mathematical 

approach adds a level of rigor to a field typically centering more on empirical 

results.

15
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1.6 Outline

In Chapter 2, we show that bum-off games possess an important feature 

of other chip-firing games and discover an algorithm that helps determine all 

configurations of chips that can occur during a sequence of bum-off games on a 

connected graph. These results are crucial in subsequent chapters.

In Chapter 3, we investigate complete graphs and find a relationship 

between chip configurations that arise during bum-off games and spanning trees of 

related graphs. As an aside, we demonstrate how this result produces a new proof 

of Cayley's Theorem for enumerating the spanning trees of a complete graph.

Before we use the results of Chapter 3 to find a closed formula relating 

bum-off game lengths to frequency, we extend the results on complete graphs to 

connected graphs in Chapter 4. The chapter concludes w ith a method for 

determining the probability that a bum-off game on a connected graph will be of 

any given length. This method is used to generate analytically results like those in 

Figure 1.1, which were generated by computer simulation.

Finally, Chapter 5 contains the remaining results for bum-off games on 

complete graphs. The methods of Chapter 4 are shown to confirm w hat we discover 

about complete graphs in Chapter 3. We conclude with ideas for further research.
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Chapter 2 

Preliminary results

2.1 Introduction

This chapter establishes results that are fundamental to subsequent 

chapters. We first show that the order in which nodes are fired in a bum-off game is 

irrelevant to the final configuration of chips when the game ends. After discussing 

how we may characterize those relaxed configurations that can occur at the 

beginning of a sequence of bum-off games, we present an algorithm that recognizes 

all relaxed chip configurations that can occur during the sequence of games.
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2.2 Bum-off games exhibit strong convergence

Bum-off games enjoy the property that all are of finite length. This is 

clear: after every turn, the total number of chips decreases by one, so eventually no 

node will be able to fire. We now show that bum-off games possess an additional 

important property called strong convergence, as defined in [9], namely, that nodes 

may be fired in any order without affecting the length or final configuration of a 

game.

Proposition 2.1 In a burn-off game on a connected graph G = (V,E), the nodes may be 

fired in any order without affecting the length or final configuration of the game.

In our proof below, we follow the argum ent in [6 ], establishing the same 

conclusion for the chip-firing game considered there. The authors show that the 

"language" of such games possesses three properties that together imply their 

version of the assertion. In order to discuss the essential ingredients of their 

argument, we need to introduce some terminology and notation.

Label the nodes of G. It may be the case that a particular configuration on 

G can be played in more than one way. For each firing sequence, write down the 

labels that correspond to the nodes in the order that they are fired. The resulting 

sequence of labels is a word, and the set of all possible words, over all possible initial 

configurations, is a language L. The empty word A is a member of every language,

18
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corresponding to a game of length zero. A word need not bring a configuration to its 

eventual relaxed state.

Let n = \V\ be the number of vertices. If a is a word, we define its score 

vector [a] e  N "  as follows:

[a], = k  if the node i occurs k  times in a.

For example, suppose that a four-node graph has labels {1,2,3,4}. If 23424 e £  

(indicating that node 2 fires first, followed by node 3, and so on), then 

[23424] = (0,2,1,2), because node 1 fires 0 times, node 2 fires 2 times, and so on. The 

issue here is whether a firing sequence different from 23424 could result in the same 

final configuration. Now we are ready to state the three aforementioned properties 

sufficient for Proposition 2.1.

Definition 2,2

(1 ) £  is left-hereditary if, whenever a word belongs to £, every initial 

segment of the word also belongs to £. For example, if 

23424 e £, then so m ust A, 2, 23, 234, and 2342 be elements of £.

(2 ) £  is locally-free if, for any a <= £  and any two different nodes x 

and y  w ith ax e £  and ay e £, we also have axy e £. For 

example, if 2342 e £, and both 23421 e £  and 23424 e £, then 

so also are 234214 and 234241 elements of £.
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(3) £  is permutable if whenever a ,p  e £, w ith score vectors 

[a] = [/?], and ax e £  for some node x, then fix e £. In other 

words, if one word is just a permutation of another, then both 

may be extended by the same symbol to obtain a new word of 

£. For example, if 23424 e £  and 22344 e £, and 23424 may be 

extended to 234241 e £, then 223441 is also an element of £.

Proof of Proposition 2.1. We follow the strategy of [6 ], where the authors show that 

any two words (in a language possessing the properties of Definition 2.2) that have 

the same score will describe two different firing sequences, yet will result in the 

same final configuration. Thus, we verify that if £  is the collection of all chip-firing 

words in a burn-off game, then £  possesses the properties of Definition 2.2. Recall 

that in this collection we include all configurations that have not yet relaxed, but are 

merely on their way to a relaxed configuration.

That L  is left-hereditary is clear: for a game to have progressed from one 

configuration to another necessarily means that all intermediate configurations 

must have also belonged to £.

To see that L  is locally free, consider a configuration that allows for two 

different nodes, x and y, to fire. Firing one of them  (say, x) sends one chip to each 

neighbor of x  (and burns one chip from the system). Thus, a node y  that could have

20
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fired before x  fired can certainly still do so, since the number of chips on y  has either 

remained unchanged or increased by one.

Finally, to see that L  is permutable, we argue that any two partial games 

corresponding to words a and J3 with the same score m ust lead to the same 

configuration. There are only two ways that the num ber of chips on a node x can 

change: if x  fires, the num ber of chips on x  decreases by degQt) + 1; if a neighbor of x 

fires, the num ber of chips on x  increases by one. If two partial games a and /? have 

the same score, then x  fires the same num ber of times in each game, as do the 

neighbors of x. Thus, the configurations at the end of either partial game are 

identical. ■

The property that nodes may be fired in any order w ithout affecting the 

length or final configuration of a bum-off game will be essential to almost every 

argument presented in this dissertation.

2.3 Definition of reverse-firing game

In the literature (e.g., [3], [14]), computer models of complex systems are 

initialized into a state that the authors assume will exhibit SOC as soon as the model 

operates on the system. For example, in Bak's paper [3], which studied SOC on a 

checkerboard-grid, the system was initialized by randomly assigning an integer 

larger than four (and smaller than some pre-determined upper bound) to each cell

21
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of the grid. Recall that in Bak's model a cell fires if its value exceeds four. Thus, this 

initialization makes it possible for all cells to fire. This grid is then relaxed until no 

cells can fire. Bak assumes that the resulting graph will immediately begin to 

exhibit SOC as the values in the cells begin to be randomly perturbed.

Define a configuration to be supercritical if every node is supercritical. In 

our analysis, we shall play burn-off games only on those configurations that can 

result from relaxing a supercritical configuration. In fact, our first task in the 

following analysis is to establish, for any given connected graph, how to determine 

if a given configuration of chips can indeed be such a result.

To determine those configurations that are the result of relaxed 

supercritical configurations, it is instructive to consider w hat happens when a 

chip-firing game is played in reverse. A reverse-firing game is defined so as to undo 

the firing rule of the chip-firing game under consideration. For example, recall the 

firing rule for the burn-off model: a node v may be fired only w hen C(v) > deg(v) + 1, 

and when a node is fired, one chip from v is lost from the system. In a reverse-firing 

game, chips are added to the graph at each turn. The reverse-firing rule for the 

burn-off model is: select any node v such that all neighbors of v contain at least one 

chip; from each neighbor, move one chip onto v, then add a chip to v from outside 

the system.

22
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Figure 2.1. An instance of a reverse-firing game. The ellipsis indicates 
that the fifth configuration (lower left) continues to reverse-fire until 
the final supercritical configuration (lower right) is reached.

Example 2.3 Figure 2.1 shows this in action on a graph G. Suppose we begin a 

reverse-firing game on G by reverse-firing v3. Nodes v2 and v4, the neighbors of v3, 

both donate one chip to v3/ and another is added from outside the system, for a total 

of 4 chips on v3. Of course, in the second configuration, v3 is able to fire; if it did, the 

first configuration would be the result. The figure also displays the results if the 

nodes are reverse-fired in the order v3, v4, v2, and vi. In the fifth configuration, the 

nodes v\, v2, and v4 are all able to fire. However, v3 does not have enough chips to 

fire in a bum-off game. If we continued the reverse-firing game by reverse-firing 

the nodes again in the same order, the final configuration would be as shown in the

23
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figure. In this configuration, all nodes are supercritical. If this configuration were 

used to initialize G, then the first configuration in the figure would result from 

playing the bum-off game to relaxation.

While it is certainly possible that this reverse-firing game can continue 

indefinitely, we will only care to play such games until every node is able to fire. 

Any configuration, like the first one in Figure 2.1, that can be reverse-fired to a 

supercritical state shall be called legal. A relaxed legal configuration is a legal 

configuration in which no nodes may fire. Because the rest of this chapter is 

concerned w ith enumerating relaxed legal configurations, we let L(G) denote the 

number of relaxed legal configurations on a graph G. Note that as we define L we 

drop the stipulation that G be connected. The flexibility allowed by dropping this 

stipulation will be useful in Theorem 4.9, which considers relaxed legal 

configurations on disconnected graphs. None of the subsequent results in this 

chapter require that G be connected.

2.4 Characterizing relaxed legal configurations

Not all relaxed configurations are legal; for example, a graph containing 

no chips is clearly relaxed, but just as clearly cannot be reverse-fired into a 

supercritical state. We are now ready to characterize the relaxed legal 

configurations on any given graph G = (V,E). Our characterization uses the 

notation 1 a '• V -► {0,1} to denote the indicator function of a su b se ts  £  V.
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Proposition 2.4 A  relaxed configuration C : V -> N is legal if  and only if there exists an 

ordered partition (If) of independent sets h  ofVso that, for each v e V, ifv  e /,, then

C(v) > ^  1 {x<_̂  andr<J)-

For convenience later, we call the property of (C, (If)) that every node v 

contains at least as many chips as it has neighbors that are members of earlier 

independent sets Property P.

Figure 2.2. A legal configuration

Example 2.5 Let C be the configuration shown in Figure 2.2. We may assign the 

nodes to independent sets as follows: I\ = {vi,v3}; I 2 = {V4}; / 3 = {v2}. Nodes vi 

and v3 have no neighbors in earlier independent sets because they are members of 

I\, the earliest independent set of all. Node v4 has one neighbor, v3, in an earlier 

independent set; since v4 contains at least one chip, Property P  is not violated at v4. 

Node v2 has three neighbors in earlier independent sets, and it contains three chips. 

Thus, Property P holds for this choice of (C, (If)).
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Proposition 2.4 implies that since this configuration is relaxed, it is legal; 

that is, it may be reverse-fired to a supercritical configuration. As we saw in 

Example 2.3, this configuration is indeed legal. Now we verify (in general) that this 

legality is equivalent to the existence of a partition of V with Property P.

Proof of Proposition 2.4. Suppose that we have a relaxed legal configuration C. By 

definition, a legal configuration is one that can be reverse-fired into a configuration 

where all nodes are supercritical. Further, C is relaxed, so none of the nodes in G are 

supercritical. Thus, in any reverse-firing game that reveals a relaxed configuration 

to be legal, all nodes m ust reverse-fire (because reverse-firing is the only way for a 

node to gain chips during a reverse-firing game).

Consider any reverse-firing sequence that shows C to be legal. List only 

the first time each node reverse-fires during the game; suppose that the nodes are 

reverse-fired in the order v i, v2, ..., v„. Put each node y, into its own set f .  Since each 

Ij contains only one node, each member of the ordered family (If) is independent. 

We now need to show that (C, (Iff) possesses Property P.

Any given node y, will reverse-fire only after each node v1,v2)..., y,_i 

reverse-fires at least once. Each of these nodes that is a neighbor of yt takes a chip 

from Vj w hen it reverse-fires. Since each earlier node is a member of an earlier 

independent set, v; m ust contain at least as m any chips in C as it has neighbors that
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are members of earlier independent sets.

To establish the converse, suppose that the nodes can be partitioned into 

r independent sets so that (C, (/*)) possesses Property P. Reverse fire the nodes of /*, 

for k = 1 ,2 ,... ,r, in that order (although within sets, the nodes may be fired in any 

order). We claim that this reverse-firing results in each node increasing its number 

of chips by one.

Consider a node v e Ijr and let C(v) be the num ber of chips on v before the 

reverse-firing process starts. Because of Property P, the node v contains at least as 

many chips as it has neighbors in all h  w ith k < j. Suppose that there are s such 

neighbors. Each neighbor in these sets h  with k < j  reverse-fires before v does, and 

each reverse-firing will pull one chip from v. This leaves C(v) -  s > 0 chips on v. If 

any nodes that are in Ij reverse-fire before v, the num ber of chips on v is unaffected, 

since Ij is independent. When v reverse-fires, it pulls a chip from each of its deg(v) 

neighbors and receives one extra chip for the reverse bum-off. Finally, all nodes in 

sets Im with m > j  reverse-fire, and each neighbor of v in these sets (say there are / of 

these) pulls a chip from v. Therefore, after each node has been reverse-fired once, 

the number of chips on v is decreased by s + / = deg(v) and increased by deg(v) + 1 

(while never becoming negative), for a net increase of one, as claimed.

Notice that reverse-firing each node once, as described in the preceding 

paragraph, preserves Property P. Thus, this process may be repeated until all nodes
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become supercritical. That is, if t = maxv{deg(v) -  C(v)}, then repeating the process 

t + 1 times will result in every node v containing at least deg(v) + 1 chips. Therefore, 

the original configuration was legal. ■

2.5 Checking legality of any configuration on any graph

Given a configuration C (not necessarily relaxed) on a graph G, we may 

be interested in knowing if C is legal. Though we will not use it immediately, we 

take a short detour here to present an algorithm to answer this question. The 

algorithm will often be useful in Chapter 4 as we consider bum-off games on a 

connected graph. Our proof of the algorithm's efficacy leans on Proposition 2.4.

Algorithm 2.6 INPUT: a graph G = (V,E) and a chip configuration

C : V -> N o n G)

OUTPUT: answer to question "Is C legal?"

(1) Find v e V such that C(v) S deg (v) . If this cannot be done,
then stop: C is not legal. Otherwise, let G* = G .

(2) Delete v  from G* . If all nodes are now deleted, then stop:
C is legal. Otherwise, let G* = (V*, E' ) be the new graph.

(3) Find v  e V* such that c|v>(v) ^ degQ.(v). If this cannot be
done, then stop: C is not legal. Otherwise, go to step (2).
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Example 2.7 Figure 2.3 shows two ways in which Algorithm 2.6 might operate on 

the configuration depicted. In both passes from left to right, appropriate nodes are 

deleted until none remain. In the first step, the algorithm may delete either V2 or V4, 

as they both contain at least as many chips as their degree. At the end of either 

execution sequence, all nodes are deleted, so, by Proposition 2.7 below, the starting 

configuration is legal.

©
©

.©—©

©

©

©

©

Figure 2.3. Two execution sequences o f Algorithm 2.6 on the 
same initial configuration

In the proof of Proposition 2.9, we need the following result.

Lemma 2.8 Let C : V(G) -> N be a configuration and G1 a subgraph of G. I f C|KG<) is not 

legal on G', then C is not legal on G.
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Proof. We will argue the contrapositive: if C is legal on G, then so m ust C|^G>) be 

legal on G1. By Proposition 2.4, the legality of C on G implies that it is possible to 

partition V(G) into independent sets (If) enjoying Property P (see p. 25).

For each k, consider the partition Jk = Ik r1 V(G') of V(G'). Collect all 

nonempty sets J k into the ordered family (Jr) of independent sets, and focus on a 

node v e V(G'). Since (C,(Ik)) has Property P, the node v (considered now in G) 

contains at least as m any chips as it has neighbors (in G) that are members of earlier 

independent sets. In G', the node v may have fewer such neighbors/but it obviously 

cannot have more. Thus, (C\nG^, (Jk)) has Property P, so C|^G») is legal on G1. ■

Let L  be the set of legal configurations on G. Now we are ready to 

establish the correctness of Algorithm 2.6.

Proposition 2.9 Given a graph G = (V,E) and a configuration C : V -> N, Algorithm 2.6 

correctly determines whether C e L .

Proof. First, we show that if at any point during the operation of Algorithm 2.6 

(say, when we have arrived at a subgraph G*) every node v contains fewer than 

degG,(v) chips, then the original configuration is not legal. Suppose, by way of
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contradiction, that an original configuration C* leading to this situation on G* is 

legal. By Lemma 2.8, C*\y^Gr) is legal; then the nodes of G* may be partitioned into 

independent sets (J r) so that (C*|^G»), (Jr)) has Property P. Consider a node v that is 

a member of the last set Js. Since all of its neighbors are members of earlier 

independent sets, v contains at least degG, (v) chips, contradicting our assumption in 

the first sentence. Thus, if every v e V(G*) contains fewer than degG„(v) chips, then 

C* is not legal.

Second, we show that if the algorithm proceeds until all nodes are 

deleted, then C is legal. Suppose that the algorithm's deletion order is ... ,vi.

Place each node Vj into its own set Ij. For y, to be deleted from G* by the algorithm, 

it m ust contain at least as many chips as it has neighbors in G*. Since every one of 

these neighbors is in an earlier independent set, our choice of (C ,(h )) has 

Property P, and so C is legal. ■

2.6 The poset of configurations

Now that we have characterized legal configurations, we turn  our 

attention to a result that allows us (in Chapter 4) to enum erate the relaxed legal 

configurations on any given connected graph. We assume the reader is familiar 

with the topic of posets as discussed, e.g., in [13].

Chip-firing games proceed in cycles beginning with the random  

placement of a stress (one chip) that may trigger a game of nontrivial length. We
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therefore consider configurations that arise from adding a single chip to a legal 

configuration. To this end, it is useful to consider the set (B of all configurations on a 

fixed graph G as a poset (<S, <) whose ordering relates to the numbers of chips on 

the nodes of G as follows: for P,Q  e (B and < the usual (total) ordering on N, let

P < Q iff each v e V(G) satisfies P(v) < Q(v).

Recall that a legal configuration is one that can be reverse-fired to a supercritical 

configuration (see Section 2.3).

Proposition 2.10 IfP  is a legal configuration, then any Q with P < Q is also legal.

Proof. We clearly need only consider those configurations Q w ith P <Q. Such a Q 

has at least as many chips on any given node v as does P, and since P < Q, there 

exists a node x w ith P(x) < Q(x). Starting from the configuration P, add one chip to x 

to create a new configuration P1.

Since P is legal, there exists a reverse-firing sequence that results in a 

supercritical configuration. "Freeze" the new chip on x, and carry out the same 

reverse-firing sequence starting w ith P ]. The frozen chip will not affect the 

reverse-firing game (since it is frozen), and once P is reverse-fired to a supercritical 

configuration, the chip m ay be "thawed". The resulting supercritical configuration 

shows that P' is legal.
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If P' = Q, the assertion is proved; if not, the argument above can be 

repeated with P' in the role of P. ■

Now suppose that a relaxed legal configuration Q has a chip added to a 

randomly selected node v, creating the configuration Q+. By Proposition 2.10, we 

know that Q+ is legal. Suppose that v may fire in Q+, and let R be the relaxed 

configuration that results. Since R  can be reverse-fired back to the legal 

configuration Q+, we know that R is also legal. Thus, if we initialize a sequence of 

bum-off games by relaxing an arbitrary supercritical configuration, then all relaxed 

configurations that occur during the sequence of bum-off games will be legal.

We have demonstrated in this chapter how we may begin playing a 

series of bum-off games on a connected graph and how to recognize when a relaxed 

configuration is legal. This knowledge will be important in Chapter 4, where we 

analyze bum-off games on any given connected graph. First, we consider the 

special case of complete graphs in Chapter 3.
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