University of Montana

ScholarWorks at University of Montana

University of Montana Course Syllabi

Open Educational Resources (OER)

Fall 9-1-2005

BMED 661.01: Neuroscience I

Diana Lurie University of Montana - Missoula

Follow this and additional works at: https://scholarworks.umt.edu/syllabi

Let us know how access to this document benefits you.

Recommended Citation

Lurie, Diana, "BMED 661.01: Neuroscience I" (2005). *University of Montana Course Syllabi*. 9709. https://scholarworks.umt.edu/syllabi/9709

This Syllabus is brought to you for free and open access by the Open Educational Resources (OER) at ScholarWorks at University of Montana. It has been accepted for inclusion in University of Montana Course Syllabi by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

Neuroscience I BMED 661

Fall Semester 2005

Coordinator MT: Diana Lurie, University of Montana, Department of Biomedical and

Pharmaceutical Sciences, Skaggs Building Room SB304, 406-243-2103,

(email) diana.lurie@umontana.edu

Coordinator AK: Thomas Kuhn, Annex I, Natural Science Facility, 907-474-5752, fftbk@uaf.edu

Coordinator MSU: Alex Dimitrov, Dept of Cell Biology and Neuroscience, 406-994-6494,

alex@cns.montana.edu

Lecture: Tuesday 3pm - 5 pm

Thursday 3 pm - 5 pm

DHC 023

Textbook: Fundamental Neuroscience (2003) 2nd Edition

Ed. Squire, Bloom, McConnell, Spritzer, Zigmond

Course

This 4 credit collaborative course with Montana State University and the University of Alaska—Fairbanks will provide a comprehensive overview of the architecture and function of neurological systems in mammals, particularly humans. Each topic will address known or suspected pathologies and there will be clinical lectures. This course will be taught using Access Grid Node, an audio/video internet broadcasting system. Topics addressed will include Neuroanatomy, Neurodevelopment, Cellular neuroscience, Neuropharmacology, Electrical properties of cells and neurotransmission, computational neuroscience.

Course Goals:

- Develop an understanding of the function of fundamental neurological systems.
- Understand the development and physiology of the Nervous System.
- Appreciate the organization and function of neural circuits.

Learning Outcomes

- 1. integrative function of several fundamental neurological systems
- **2.** development of the nervous system
- **3.** Electrical properties of cells
- **4.** cellular properties of neural cells
- 5. computational methodology

Instructional Methods:

The teaching methods employed in this collaborative course will include lectures by several instructors from UM, MSU, and UAF. Discussion will be integrated to relevant topics. The entire course will

employ video/audio conferencing technology (Access Grid Node) connecting students and instructors from the three institutions. Blackboard will serve for both students and instructors as a communication and distribution platform.

Grading

There will be three take home exams (100 points each) and an in class presentation (100 points). Class participation will be included in the final grade (25 points).

Point Distribution

Take Home Exam I 100 pts
Take Home Exam II 100 pts
Take Home Exam III 100 pts
Presentation 100 pts
Class participation 25 pts

Total 425 pts

Course Policies

Attendance: Regular student attendance is expected to ensgroup activities and discussions. Active

student participation is expected and will be taken into account in the final

evaluation/grading.

Exams: Three take home exams will be given. These exams will be a combination of long and

short answer questions. Makeup exams will only be allowed with pre-approval of the instructor or with an acceptable, documented reason such as unexpected illness, family

emergencies or other unavoidable events.

Plagiarism Policy

Plagiarism is defined as the use of "other" intellectual property without proper reference to the original author. Intellectual property includes all electronic, spoken or print media. Students are expected to cite all sources used in oral and written presentations. Cases of plagiarism will be taken seriously with a grade 0 for the particular assignment. Severe cases may be referred to the Department Chair or Dean or class failing considered.

Date	Lecture	Topic	Instructor
August 30	1	Introduction/History of Neuroscience	Lurie-UM
Sept 1	2	Vertebrate Neuroanatomy	Lurie (coord) UM
Sept 6	3	Vertebrate Neuroanatomy	Lurie (coord) UM
Sept 8	4	Vertebrate Neuroanatomy	Lurie (coord) UM
Sept 13	5	Invertebrate Neuroanatomy	MSU
Sept 15	6	Neuroanatomy lab (on each separate campus)	
Sept 20	7	Electrical Properties of cells	KavanaughUM
Sept 22	8	Electrical Properties of cells	KavanaughUM
Sept 27	9	Discussion Session/1st Take home Exam	
Sont 20	10	Sympatic Transmission	Voyonough IIM
Sept 29 October 4	11	Synaptic Transmission Synaptic Transmission	KavanaughUM KavanaughUM
October 6	12	• •	KavanaughUM KavanaughUM
October 11	13	Synaptic Transmission Synaptic Transmission	KavanaghUM KavanaghUM
October 13	14	Cellular Neuroscience	KavanagnOM Kuhn-UAF
October 18	15	Cellular Neuroscience Cellular Neuroscience	Kuhn-UAF
October 25	16	Cellular Neuroscience	Kuliii-UAF Kuhn-UAF
October 27	17	Neuropharmacology	Patel-UM
November 1	18	1 0,	Patel-UM
November 3	19	Neuropharmacology Discussion Session/ 2 nd take home exam	Pater-Olvi
November 3	19	Discussion Session/ 2 take nome exam	
November 8	20	Neuropharmacology	PatelUM
November 10	21	Developmental NeuroscienceIntro	KuhnUAF
November 15	22	Developmental NeuroscienceIntro	KuhnUAF
November 17	23	Developmental Neuroscience	MSU
November 22	24	Developmental Neuroscience	MSU
November 24		Thanksgiving Holiday	
November 29	25	Developmental Neuroscience	MSU
December 1	26	Hippocampal Circuitry	MSU
December 6	27	Hippocampal Circuitry	MSU
December 8	28	Discussion Session/ 3 rd take home exam	