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a b s t r a c t

Accurate knowledge of the ambient extracellular glutamate concentration in brain is required for under-
standing its potential impacts on tonic and phasic receptor signaling. Estimates of ambient glutamate
based on microdialysis measurements are generally in the range of �2–10 lM, approximately 100-fold
higher than estimates based on electrophysiological measurements of tonic NMDA receptor activity
(�25–90 nM). The latter estimates are closer to the low nanomolar estimated thermodynamic limit of
glutamate transporters. The reasons for this discrepancy are not known, but it has been suggested that
microdialysis measurements could overestimate ambient extracellular glutamate because of reduced
glutamate transporter activity in a region of metabolically impaired neuropil adjacent to the dialysis
probe. We explored this issue by measuring diffusion gradients created by varying membrane densities
of glutamate transporters expressed in Xenopus oocytes. With free diffusion from a pseudo-infinite 10 lM
glutamate source, the surface concentration of glutamate depended on transporter density and was
reduced over 2 orders of magnitude by transporters expressed at membrane densities similar to those
previously reported in hippocampus. We created a diffusion model to simulate the effect of transport
impairment on microdialysis measurements with boundary conditions corresponding to a 100 lm radius
probe. A gradient of metabolic disruption in a thin (�100 lm) region of neuropil adjacent to the probe
increased predicted [Glu] in the dialysate over 100-fold. The results provide support for electrophysiolog-
ical estimates of submicromolar ambient extracellular [Glu] in brain and provide a possible explanation
for the higher values reported using microdialysis approaches.

� 2014 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license (http://
creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction

During synaptic transmission, glutamate transporters restrict
the spatiotemporal pattern of ionotropic and metabotropic gluta-
mate receptor signaling (for review see Tzingounis and Wadiche,
2007). In addition to their roles in shaping the dynamics of synap-
tically released glutamate, glutamate transporters also help main-
tain low steady-state glutamate levels. Given the stoichiometry of
ion coupling to glutamate uptake, the theoretical lower limit of
extracellular glutamate in brain is approximately 2 nM (Zerangue
and Kavanaugh, 1996; Levy et al., 1998). Many studies using intra-
cerebral microdialysis have reported levels of ambient gluta-
mate P 2 lM, three orders of magnitude higher than the
theoretical lower limit (Benveniste et al., 1984; Lerma et al.,
1986; for reviews see Cavelier et al., 2005; Nyitrai et al., 2006).
By contrast, reports of ambient glutamate concentration estimated
from electrophysiological measurement of tonic NMDA receptor

activity in hippocampal slice range from 87 to 89 nM (Cavelier
and Attwell, 2005; Le Meur et al., 2007) to as low as 25 nM
(Herman and Jahr, 2007).

Accurate knowledge of the ambient glutamate concentration in
different brain regions is important for evaluating its effects on
synaptic transmission. Several ionotropic and metabotropic gluta-
mate receptor subtypes are activated by low micromolar concen-
trations of glutamate, and tonic exposure in this range
profoundly inhibits synaptic circuitry in vitro (Zorumski et al.,
1996). Glutamate transporters play a dominant role in limiting
ambient glutamate, as pharmacological inhibition of transport
has been shown to lead to a rapid increase in ambient glutamate
causing increased tonic NMDA receptor signaling (Jabaudon
et al., 1999; Cavelier and Attwell, 2005; Le Meur et al., 2007;
Herman and Jahr, 2007).

In this work we attempt to integrate data in the literature with
new in vitro measurements and in vivo modeling of diffusion gradi-
ents formed by glutamate transporters. Proceeding from the
assumption that in steady-state conditions, the volume-averaged
rates of release and uptake of glutamate are equal, we show the
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influence of glutamate transporter membrane density on steady-
state diffusion gradients in a density range relevant to in vivo brain
expression. We suggest that metabolic impairment of glutamate
transport in a shallow boundary region of a microdialysis probe
can account for the discrepancies between estimates of ambient
glutamate from dialysis and electrophysiological approaches.

2. Materials and methods

2.1. Xenopus oocyte recording

Approximately 50 ng of human EAAT3 cRNA was microinjected
into stage V–VI Xenopus oocytes and recordings were made 1–6 d
later. Recording solution contained 96 mM NaCl, 2 mM KCl, 1 mM
MgCl2, 1.8 mM CaCl2, and 5 mM Hepes (pH 7.5). Microelectrodes
were pulled to resistances between 1 and 3 MX and filled with
3 M KCl. Data were recorded with Molecular Devices amplifiers
and analog–digital converters interfaced to Macintosh computers.
Data were analyzed offline with Axograph X (v.1.0.8) and Kaleida-
Graph (v 3.6; Synergy) software. For stopped flow measurements,
oocytes were voltage clamped at �60 mV in a perspex recording
chamber in which glutamate depletion in the absence of perfusion
was <1% of the total in the recording chamber. Transporter surface
density was estimated from current measurements assuming a
coupled current of 2 charges/cycle at ECl (�20 mV), turnover rate
of 15/s, oocyte surface area 2.85 � 107 lm2, and transport volt-
age-dependance of e-fold/76 mV (Wadiche et al., 1995; Zerangue
and Kavanaugh, 1996). Current amplitudes were fitted to the
Michaelis–Menten relationship:

I½Glu� ¼ Imax½Glu�=fKM þ ½Glu�g

2.2. Mathematical modeling of [Glu] profile near the microdialysis
probe

Our microdialysis probe model can be described by the follow-
ing diffusion equation in polar coordinates with sink and source in
the right hand side:

@u=@t ¼ D � ð1=rÞ � @=@r ½r � @u=@r� � J � u=ðKm þ uÞ þ KL

where u corresponds to L-glutamate concentration. The first term in
the right hand side is a Laplace operator in polar coordinates mul-
tiplied by a diffusion coefficient D. The second term represents
the Michaelis–Menten transport sink in the tissue, and the third
term KL represents the leak, which is treated as a constant. The
parameter J is a function of distance r from the probe center, and
describes the spatial dependence of transporter impairment
between the healthy and damaged tissue. The spatial metabolic
damage near the probe is approximated as a Gaussian curve, and
we define the function J as:

JðrÞ ¼ 0 when 0 � r � L

JðrÞ ¼ Jmax � 1� e^½�ðr � LÞ2=2 � sigma2� when r > L

where L is the radial boundary for the microdialysis probe and
sigma represents the distance from the probe boundary character-
izing the Gaussian damage function. The boundary conditions for
the model are:

@u=@rjr¼0 ¼ 0

uðt;1Þ ¼ us

The initial condition is

uðt; rÞ ¼ u� when 0 � r � L

uðt; rÞ ¼ us when r > L

This model cannot be solved analytically because of the nonlin-
ear term in the right hand side of the equation, so it was solved
numerically by space discretization, which transforms it into sys-
tem of ordinary differential equations. The leak rate constant (KL)
is related to ambient [Glu], volumetric glutamate transporter con-
centration [GluT] (140 lM, Lehre and Danbolt, 1998), transporter
KM value, and maximal turnover rate Jmax by the equation:

KL ¼ ½Glu�ambient=ðKm þ ½Glu�ambientÞ � ½GluT� � Jmax

3. Results

3.1. Diffusive concentration gradients formed by glutamate
transporters

Co-expression studies of NMDA receptors with transporters for
its co-agonists glycine and glutamate have shown that transporters
can limit receptor activity by establishing diffusion-limited trans-
mitter concentration gradients (Supplisson and Bergman, 1997;
Zuo and Fang, 2005). We studied the concentration gradients
formed by passive diffusion from a pseudo-infinite glutamate
source in a perspex chamber to the glutamate sink established
by transporters on the cell surface. Oocytes expressing the human
neuronal glutamate transporter EAAT3 were voltage-clamped at
�60 mV and superfused with varying concentrations of glutamate
at a linear flow rate of 20 mm/s flow followed by a stopped-flow
interval (Fig. 1). Steady-state currents elicited by glutamate perfu-
sion relaxed to a lower steady-state level when flow was stopped,
and following resumption of flow, currents rapidly recovered to
initial values. The reduction in current amplitude during zero flow
conditions was likely due to the formation of a diffusion-limited
concentration gradient resulting in reduced surface [Glu], because
the ratio of the current amplitudes with and without flow were
dependent on the concentration of glutamate in the perfusate,
and in all cases the amount of glutamate transported was <1% of
the total glutamate in the chamber (i.e. a pseudo-infinite gluta-
mate source; Fig. 1B–D). This gradient was also reflected in a sig-
nificant shift in the concentration-dependance of steady-state
currents in flow and stopped-flow conditions (KM value for L-gluta-
mate of 32 ± 2 and 216 ± 37 lM, respectively, n = 4; p < 0.002),
while the Imax values were not significantly different.

3.2. Transporter density influence on kinetic parameters

Glutamate transporters are expressed at different densities
among structures in the CNS, and transporter density and/or kinet-
ics can be altered in different pathological circumstances such as
trauma and ischemia. Because steady-state ambient [Glu] reflects
a homeostatic balance of uptake and leak sources, changes in
transport may result in significantly different steady state gluta-
mate levels. We tested the influence of the surface density of glu-
tamate transporters on the concentration gradient formed by
passive glutamate diffusion during stopped-flow experiments by
monitoring currents induced by 10 lM glutamate. With increasing
transporter expression levels, the steepness of the concentration
gradient formed during stopped-flow conditions was increased,
as reflected in the changing ratio of the steady-state currents in
flow and stopped-flow conditions (Fig. 2A and B).

Even with continuous flow, evidence for formation of a concen-
tration gradient between the cell surface and bulk solution was
observed. Oocyte membranes have a microvillar structure that
can act as tortuous diffusion barrier (see Supplisson and
Bergman, 1997). In a group of 29 oocytes with varying expression
levels, steady-state KM values measured with chamber flow
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Fig. 1. Glutamate transport acts as a sink to form a concentration gradient between the extracellular volume and the membrane surface. (A) Current induced by 10 lM
glutamate decays to a lower steady state flow under stopped-flow conditions at �60 mV. (B) Current responses to varying [Glu] with and without flow at �60 mV. (C)
Glutamate concentration-dependance of steady-state currents in flow and stopped-flow conditions. (km value with flow: 32 ± 2 lM; stopped-flow: 215 ± 37 lM; n = 4,
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intercept = 26.8 lM).

148 W. Sun et al. / Neurochemistry International 73 (2014) 146–151



(20 mm/s) increased approximately 4-fold as transporter current
induced by 1 mM glutamate increased from �200 to �1100 nA
(Fig. 2C and D). Thus, there is an effect of the concentration gradi-
ent formed by transporters even with continuous flow, resulting in
a discrepancy between the measured and actual glutamate KM

value. We extrapolated a linear function relating the measured
KM value to the transport current density (Barry and Diamond,
1984), yielding an estimate of the intrinsic KM value of approxi-
mately 27 lM (r = 0.78; Fig. 2D).

3.3. Surface [Glu] as a function of transporter density

While the dependance of steady-state KM on transporter density
reflects the fact that the true glutamate concentration at the cell
surface is reduced by uptake, the concentration difference associ-
ated with the diffusion gradient is minimal at when high concentra-
tions of glutamate are applied by continuous flow. In oocytes
expressing varying densities of transporters, we recorded currents
induced by superfusion of 1 mM glutamate in order to generate
the theoretically predicted current amplitude in each cell as a func-
tion of [Glu] from the Michaelis–Menten function using the intrin-
sic KM value of 27 lM (Fig. 3A). We then recorded the actual steady-
state current amplitude in each cell in response to 10 lM glutamate
under stopped-flow conditions and compared these to the values
predicted by the Michaelis–Menten function. There was a discrep-
ancy between the theoretically predicted and measured values,
and this difference increased monotonically with transporter den-
sity. We inferred the actual glutamate surface concentration in
the stopped-flow condition with 10 lM glutamate in the chamber
from the measured current amplitudes using the uniquely deter-
mined Michaelis–Menten function for each cell (Fig. 3A and inset).
The inferred surface concentration was then plotted as a function of
transporter density. There was a supralinear effect of transporter
density on surface [Glu] in stopped-flow conditions (Fig. 3B). Trans-
porter density in this group of cells ranged from 234 to 5165 trans-
porters per lm2. At low expression levels, the estimated [Glu]
approached the 10 lM source concentration. However, at trans-
porter densities of �5000 lm�2 (compare with estimates in hippo-
campus of 10,800 lm�2; Lehre and Danbolt, 1998), surface [Glu]
was estimated to be reduced to �50 nM, roughly 200-fold lower.

3.4. Modeling the glutamate concentration profile near a microdialysis
probe

We constructed a diffusion model to simulate the spatial profile
of glutamate near a microdialysis probe (see Section 2). From

quantitative immunoblotting, the glutamate transporter density
in hippocampus has been estimated to be between 0.14 and
0.25 mM (Lehre and Danbolt, 1998). From the transporter density,
glutamate transport averaged over a given volume of neuropil can
be estimated for any given ambient glutamate value based on
Michaelis–Menten kinetics (neglecting exchange, which becomes
significant near the equilibrium thermodynamic limit). At steady
state, sources and sinks are equal, and the steady-state leak and
uptake of glutamate are equal. With ambient [Glu] = 25 nM (Her-
man and Jahr) and using the lower transporter density estimate
of 0.14 mM (Lehre and Danbolt, 1998), the volume-averaged
steady-state glutamate leak is predicted to be approximately
2100 molecules lm�3 sec�1 (but see Cavelier and Attwell, 2005).
This tonic leak will cause increased ambient glutamate if transport
is reduced, as could occur in a metabolically impaired region of
neuropil near a microdialysis probe (Benveniste et al., 1987;
Clapp-Lilly et al., 1999; Amina et al., 2003; Bungay et al., 2003;
Jaquins-Gerstl and Michael, 2009). We used the diffusion model
to describe the spatial profile of [Glu] near a 100 lm radius micro-
dialysis probe with an adjacent damaged region described by a
Gaussian gradient of impaired transport (Fig. 4A). Although trans-
porter reversal can occur with severely impaired ion gradients, we
neglected this effect, which may underestimate effects of meta-
bolic damage on glutamate measured in the probe. Starting the
simulation at time = 0 with no glutamate in the interior of the
probe, the glutamate concentration rises with an exponential time
constant � 8.5 s to a steady state level (data not shown). At steady
state, [Glu] inside the probe is elevated relative to the healthy
region far from the probe (Fig. 4B1). With sigma = 0 (i.e. no tissue
damage), [Glu] in the probe is equal to the ambient [Glu] in the
healthy tissue. With gradients of damage from sigma = 100 to
300 lm, steady-state glutamate levels in the probe range from
�3 to 10 lM (Fig. 4B1). Decreasing the glutamate diffusion coeffi-
cient from its value in buffer, which is higher than in brain
(Kullmann et al., 1999), increases the predicted steady state [Glu]
measured in the probe (Fig. 4B2). Increasing or decreasing the leak
rate L (Fig. 4B3) also influences steady state [Glu] predicted in the
probe volume.

4. Discussion

Glutamate transporters limit receptor activity on different time
scales in the brain by restricting the spread of synaptically released
glutamate as well as by maintaining low ambient glutamate con-
centrations (for reviews, see Danbolt, 2001; Tzingounis and
Wadiche, 2007; Vandenberg and Ryan, 2013). The steady-state
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ambient concentration of extracellular glutamate at any point in
brain reflects the balance of fluxes through sources and sinks in
the neuropil. The data presented here indicate that transporters
can establish steep concentration gradients when glutamate is
supplied by passive diffusion from a pseudo-infinite source.
Although we have used the neuronal transporter EAAT3 in these
studies, its equilibrium thermodynamics are indistinguishable
from the predominant astroglial transporter EAAT2 (Levy et al.,
1998). With EAAT3 transporter densities similar to those reported
for EAAT2 in hippocampal astroglial membranes (�104/lm2; Lehre
and Danbolt, 1998) the concentration gradient between a 10 lM
source concentration and the cell surface was found to exceed
two orders of magnitude. The steepness of the gradient formed
would be further increased if diffusion were reduced, as for exam-
ple in tortuous neuropil (Kullmann et al., 1999). Conversely, reduc-
tion of transporter density or activity will reduce the steepness of
the gradient and increase [Glu] at the cell surface. Reduced gluta-
mate transport by loss or metabolic impairment is implicated in
a broad range of neurodegenerative disorders (Sheldon and
Robinson, 2007) including stroke (Rossi et al., 2000), traumatic
brain injury (Goodrich et al., 2013), epilepsy (Coulter and Eid,
2012), Huntington’s disease (Faideau et al., 2010), ALS (Rothstein,
2009), and Alzheimer’s disease (Scimemi et al., 2013).

While a precise knowledge of the concentration of ambient glu-
tamate in various brain regions in normal and neuropathological
conditions is desirable, reports of this value in the literature vary
widely, with microdialysis approaches consistently providing esti-
mates approximately two orders of magnitude greater than esti-
mates based on electrophysiological measurement of tonic
glutamate receptor activity. In the absence of transporter inhibi-
tion, ambient [Glu] has been reported as being too low to activate
AMPA receptors, even when desensitization is pharmacologically
blocked (Le Meur et al., 2007). In contrast, ambient [Glu] has been
reported to tonically activate high-affinity NMDA receptors (Sah

et al., 1989; Cavelier and Attwell, 2005; Le Meur et al., 2007;
Herman and Jahr, 2007). Several patch clamp studies in acute hip-
pocampal slice have provided estimates of ambient [Glu] based on
analyses of the tonic NMDA receptor currents in CA1 pyramidal
neurons. These have been reported as �25 nM at 32� (Herman
and Jahr, 2007), 27–33 nM at 25� and 77–89 nM at 35� (Cavelier
and Attwell, 2005), and 83–87 nM at 25� (Le Meur et al., 2007).
These estimates are not likely to be artifactually low due to loss
of glutamate from the surface of the slice, because inclusion of
2 lM glutamate in the recording chamber did not alter the level
of tonic receptor activity (Herman and Jahr, 2007). The major
source of glutamate in these studies was of non-vesicular origin.
A range of possible molecular mechanisms may underlie glutamate
release, including glutamate-permeable anion channels, the cys-
tine-glutamate exchanger xCT, and passive membrane diffusion
(Kimelberg et al., 1990; Baker et al., 2002; Cavelier and Attwell,
2005; for review see Cavelier et al., 2005). Elevation of ambient
[Glu] by inhibition of glutamine synthetase suggests that a major
contribution of glutamate release is from glia (Cavelier and
Attwell, 2005; Le Meur et al., 2007).

The data and the diffusion model presented here suggests that a
thin layer of damaged tissue with disrupted glutamate transport
could underlie the significant quantitative discrepancy between
the ambient glutamate estimates provided by electrophysiological
studies in slices and those from microdialysis studies, which gen-
erally report ambient [Glu] values in the range P2 lM (reviewed
by Cavelier et al., 2005; Featherstone and Shippy, 2008). Histolog-
ical analyses of tissue surrounding microdialysis probes provide
evidence for a layer of damaged tissue up to hundreds of microns
surrounding the probe (Clapp-Lilly et al., 1999; Bungay et al.,
2003; Amina et al., 2003; Jaquins-Gerstl and Michael, 2009). Diffu-
sion modeling suggests that disrupted transport in this region
could lead to artifactually large concentrations in the probe vol-
ume. A critical assumption in our model is that the glutamate leak
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source is constant in a volume of metabolically damaged tissue
where transport is impaired. The precise spatial changes in meta-
bolic activity in a traumatized or ischemic region of tissue are
unknown, but the assumption that the leak is constant is conserva-
tive. For example, glutamate release is increased by reversed gluta-
mate transport due to impaired Na/K gradients during metabolic
challenge (Rossi et al., 2000). With a spatial distribution of trans-
porter impairment modeled with a Gaussian distribution, sigma
values as small as 100 lm lead to significant elevation of predicted
probe [Glu] (Fig. 4B1).

In addition to pharmacological block of glutamate uptake lead-
ing to increased activation of AMPA and NMDA receptors
(Jabaudon et al., 1999, 2000; Cavelier and Attwell, 2005; Le Meur
et al., 2007; Herman and Jahr, 2007), ischemia-induced reversed
transport also leads to large increases in extracellular [Glu] and
pathological receptor signaling (Rossi et al., 2000). Changes are also
predicted by the probe diffusion model probe as a consequence of
increases in basal glutamate release (Fig. 4B3). While the value of
extracellular [Glu] in the probe dialysate is predicted to signifi-
cantly exceed ambient [Glu] in healthy tissue far from the probe,
the dialysate concentration is also predicted to change in approxi-
mate proportion to changes in glutamate homeostasis in distant
tissue (Fig. 4B3). This behavior of the model is consistent with
reported changes in dialysate [Glu] in response to factors including
transport block, ischemia, and trauma (Benveniste et al., 1984;
Hagberg et al., 1985; Baker et al., 2002; Del Arco et al., 2003;
Nyitrai et al., 2006).
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