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ABSTRACT

White-throated sparrows (Zonotrichia albicollis) exhibit a ge-
netic polymorphism that affects plumage and behavior in both
sexes. White-striped morphs are more territorially aggressive,
whereas tan-striped morphs provision nestlings at a higher rate.
We investigated testosterone physiology in this species in an
effort to understand hormonal mechanisms for the observed
differences in aggression and parental care between the morphs.
We found a small but significant difference in plasma testos-
terone between free-living white-striped and tan-striped males
over the course of the breeding season. This difference corre-
lates with previously observed differences in aggressive behavior
and suggests that testosterone may mediate these differences.
Testosterone remained higher in white-striped males relative to
tan-striped males when males were provisioning nestlings and
fledglings. Thus, testosterone may also contribute to the rela-
tively reduced levels of parental care exhibited by white-striped
males. In contrast to males, plasma testosterone did not differ
between free-living white-striped and tan-striped females,
which suggests that testosterone does not mediate differences
in aggression between female morphs. Injection with gonado-
tropin-releasing hormone led to greater testosterone secretion
in both captive and free-living males and captive females but
did not differ by morph. Therefore, we conclude that differ-
ences in plasma testosterone between the morphs are due to
differences in testosterone regulation upstream of the pituitary.

Introduction

Hormone/behavior relationships are inherently noisy, so noisy,
in fact, that relationships are best identified between individuals
exhibiting extreme values of the behavior. Unfortunately, these
individuals are rare in any population, making the comparison

difficult. One can circumvent this problem through multispe-
cies comparisons, but this approach introduces confounding
factors such as genetic background, species ecology, and en-
vironment. Another approach that has proved successful is phe-
notypic engineering (Reed et al. 2006), in which treatment with
exogenous hormones is used to exaggerate differences between
endocrine phenotypes within the same species.

Behaviorally polymorphic species offer a natural case of phe-
notypic engineering, providing exaggerated, often bimodal dis-
tributions of a behavioral trait within a single population. This
allows comparison of individuals that exhibit distinct behav-
ioral phenotypes, making hormone/behavior relationships eas-
ier to detect. Thus, these species are a powerful tool for studying
the endocrine bases of behavior.

The majority of behaviorally polymorphic species vary in
reproductive strategies among males, the most common vari-
ations being a territorial, aggressive phenotype and a less ag-
gressive “sneaker” or “satellite” phenotype (Brantley et al. 1993;
Lank et al. 1995; Sinervo and Lively 1996). These species have
been used very successfully to study the hormonal and neural
mechanisms of courtship behaviors and territorial aggression.
The white-throated sparrow (Zonotrichia albicollis), however,
exhibits a very different behavioral polymorphism that is dis-
tinguished by two important features. First, morph types may
be roughly classified as a territorially “aggressive” morph that
expends more effort in pursuit of extrapair matings and a “pa-
rental” morph. White-striped (WS) birds are more aggressive
in response to simulated territorial intrusion, and this difference
persists into the parental phase (Kopachena and Falls 1993a).
WS birds are also estimated to have higher rates of extrapair
copulation (based on rates of intrusion into neighboring ter-
ritories; Tuttle 2003) and to sing more frequently than tan-
striped (TS) birds (Falls and Kopachena 1994). TS birds, the
parental morph, provision nestlings at a higher rate than their
WS counterparts (Kopachena and Falls 1993b). This aggressive/
parental distinction represents a dichotomy very different from
the more common territorial/sneaker morph types and illus-
trates what is thought to be a fundamental trade-off between
mating effort and parental care (Trivers 1972). Thus, this species
presents an ideal opportunity to study hormonal mechanisms
of this trade-off. Second, morph type is determined by a peri-
centric inversion on the second somatic chromosome and is
not sex linked (Thorneycroft 1966, 1975). Thus, females also
exhibit both morph types. This presents a unique opportunity
to study the endocrine bases of aggressive and parental behavior
in females as well as males.

Data from many taxa suggest that testosterone (T) may me-
diate the trade-off between mating effort and parental care
(Wingfield et al. 1990; Reburn and Wynne-Edwards 1999; Flem-
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ing et al. 2002; Young et al. 2005). In the breeding season, T
and other androgens are positively associated with the aggres-
sive and sexual behaviors that are more pronounced in the WS
morph (Balthazart 1983; Wingfield et al. 1987; Schwabl and
Kriner 1991). In contrast, experimentally elevated T often leads
to a reduction in parental care behavior (Schoech et al. 1998;
Van Roo 2004; Schwagmeyer et al. 2005), and males that pro-
vide parental care usually show reduced T levels when they
enter the parental stage of the nesting cycle (Wingfield et al.
1987). However, T does not always lead to a reduction in pa-
rental care. In species where breeding seasons are abbreviated
or male parental care is essential, paternal behavior may be
insensitive to T (Lynn et al. 2002, 2005; Van Duyse et al. 2002).

We measured T levels in white-throated sparrows to deter-
mine whether differences in behavior between morphs corre-
spond to differences in T levels. In addition, we monitored
individual nests to examine how T levels changed in each
morph over the course of the nesting cycle. Given the differ-
ences in aggressive and sexual behavior between the morphs,
we predicted that WS birds, both male and female, would have
higher levels of plasma T than TS birds during the defense
phase. We also predicted that this difference in T will persist
through the nesting phase, contributing to differences in pa-
rental care between morphs. We also performed a gonadotro-
pin-releasing hormone (GnRH) challenge to determine possible
mechanisms underlying the proposed difference between
morphs.

Material and Methods

Study Species

The white-throated sparrow is a migratory songbird that breeds
in the northeastern United States and Canada and winters in
the southeastern United States. This species is primarily socially
monogamous (Tuttle 2003). Males assist with feeding of nest-
lings and fledglings but do not incubate (Falls and Kopachena
1994). Sparrows in our study population (Northwoods
Stewardship Center in East Charleston, VT: 44�50�13�N,
71�59�24�W) may rear two broods per season and will renest
three or more times if nests are depredated (M. B. Swett, per-
sonal observation).

Collection of Field Samples

Samples were collected between May 22 and July 29, 2003,
between May 2 and July 23, 2004, and between April 21 and
July 10, 2005. A total of 53 males (20 TS and 33 WS) and 37
females (13 WS and 24 TS) were sampled. Sparrows were cap-
tured in seed-baited Potter traps or mist nets (there was no
difference in T levels between trapped and netted birds; t-test:

). Either mist nets were placed near the nest or birdsP p 0.54
were attracted to the net with playbacks of conspecific songs.
Blood samples were collected by venipuncture of the alar vein,
and blood was drawn into a heparinized microhematocrit tube
via capillary action. Samples used to measure T were collected
within 10 min of the bird contacting the net or the fieldworker

approaching the potter trap (three were collected within 15
min) so as to minimize the effect of stress on T levels (Moore
et al. 2000; Lance et al. 2004). All birds were banded with a
U.S. Fish and Wildlife Service numbered band as well as a
unique combination of colored plastic leg bands, allowing birds
to be identified visually at a distance. Nests were located and
monitored for as many individuals as possible (46 males and
31 females) in order to determine the stage in the nesting cycle
at which each sample was taken.

Blood samples were kept on ice in the field (up to 4 h). Each
sample was then centrifuged, and plasma was drawn off with
a Hamilton syringe. Plasma was kept frozen at approximately
�20�C until it could be assayed.

GnRH Challenge

Lab. Wintering sparrows were captured in seed-baited Potter
traps or seed-baited mist nets at the Brackenridge Field Station
of the University of Texas and the Center for Environmental
Research at Hornsby Bend in Travis County, Texas (30�20�00�N,
97�48�00�W). Birds were housed in individual -13 # 15 # 17
inch cages in captivity and were photostimulated (14L : 10D)
for 3 wk to bring them into pseudo–breeding condition before
the start of the experiment. A total of 21 males (14 WS and 7
TS) and 10 females (5 WS and 5 TS) were used in this ex-
periment.

We followed a GnRH challenge protocol optimized in dark-
eyed juncos, a closely related and similarly sized species (Jawor
et al. 2006). A 100-mL blood sample was taken from each in-
dividual via venipuncture of the alar vein. Birds were then given
either 50 mL GnRH in saline (25 ng/mL) or saline alone injected
intramuscularly into the pectoralis. They were then held in a
cloth bag for 30 min, at which point a second blood sample
was taken. One week later, the experiment was repeated as
described, except that individuals that had received the GnRH
treatment now received a control injection, and vice versa.

Field. The GnRH challenge experiment was repeated using free-
living breeding birds but was limited to males. Male sparrows
were caught at the field site in Orleans County, Vermont, and
were bled, injected, and bled again as described above, except
that separate sets of birds received the GnRH and saline treat-
ments. All birds included in this experiment were caught be-
tween May 10 and May 27, 2005, before the first egg of the
season. That early in the breeding season, most of the birds
are relatively synchronized in their nesting attempts, and var-
iation in baseline T levels between males should be reduced.

Statistical Analyses. Values of plasma T in all experiments (ex-
cept the field GnRH trial) were not normally distributed (pos-
itively skewed) and were log transformed ( or )log (T � 1) ln T
to correct for this. During the course of the field study, 53
males (33 WS, 20 TS) and 37 females (13 WS, 24 TS) were
sampled. Some individuals were sampled more than once over
the course of the field study, but no individual was bled more
than once in any 7-d period, to minimize the physiological



574 M. B. Swett and C. W. Breuner

Table 1: Testosterone in relation to morph and corrected
day

Fixed Effect
Standard
Estimate Error F df P

Males:
Intercept .874 .056 … … …
Morph �.202 5.705 5.88 40 .019
Corrected day �.013 9.065 9.46 40 .003

Females:
Intercept .3105 .06048 … … …
Morph .05109 .06408 .64 11 .44
Corrected day �.00243 .001191 4.15 11 .066

effects of sampling. A total of 94 samples were collected from
males, with a mean of 1.8 samples per individual (range 1–7).
Forty-three female samples were collected, with a mean of 1.4
samples per female (range 1–3). Field samples obtained from
males and females were analyzed separately. T levels were com-
pared between morphs with mixed-effects models constructed
in SPSS 15.0 (SPSS 2007) or SAS (proc MIXED, SAS 9.1.2; SAS
Institute 1994). Models were constructed with a backward-
elimination strategy, and individual was entered as a random
effect.

Our analysis also considered the effects of phenology. Date
was converted to “corrected day,” the Julian date on which the
sample was taken corrected for the date that the first egg of
that year was found in the study site. Using the corrected-day
value allowed us to standardize our date variable across the
three years of the study. This is advantageous because in 2004,
breeding started approximately 9 d earlier than in 2003 or 2005.

A second analysis on the subset of birds whose nests we had
monitored allowed us to examine the effect of nesting-cycle
stage on differences in T between morphs. Because of sample
size limitations, we grouped birds into two stages: “defense”
and “parental.” Females sampled during territory establish-
ment, nest building, or lay (when females are fertile and so-
liciting copulations) were classified as “defense,” whereas fe-
males captured during incubation, nestling feeding, and
fledgling feeding were considered “parental.” The definition of
the defense and parental stages differed slightly in males because
males of this species do not incubate or feed incubating females
(Falls and Kopachena 1994) and therefore are not engaged in
parental behavior during incubation. Males were classified in
the “defense” stage when sampled during territory establish-
ment, nest building, lay, or incubation and were classified as
“parental” only when they were feeding nestlings or fledglings.
Males ( individuals, 74 samples) and females (n p 46 n p 31
individuals, 38 samples) were analyzed separately. T levels were
analyzed by means of a mixed-effects model with morph and
stage as fixed factors and individual as a random effect.

Results of the laboratory GnRH challenge experiments were
analyzed with repeated-measures ANOVAs in the statistical
software package JMP 5.0.1. Data from the GnRH challenge
performed in the field were analyzed with a two-tailed t-test
(GraphPad Prism 4.00).

Enzyme Immunoassay. White-throated sparrow plasma T levels
were measured with an enzyme immunoassay kit from Assay
Designs (catalog no. 900-065). These kits use raw plasma, which
is added directly to the well. Steroid-binding globulins, which
may interfere with assay reactions, can be degraded by adding
a steroid displacement buffer (SDB). Because these kits are
designed to be used with a variety of biological fluids, plasma
dilution and concentration of SDB must be optimized. Opti-
mization for T was performed in a manner similar to the op-
timization for corticosterone, as detailed in Wada et al. (2007).
For optimization, a sample of pooled white-throated sparrow
plasma was stripped of endogenous T by incubating plasma
with a charcoal solution (1% Norit A charcoal and 0.1% dex-

tran in assay buffer). This stripped plasma was then spiked with
a known concentration of T (500 pg/mL). Spiked stripped
plasma was assayed at four dilutions (1 : 5, 1 : 10, 1 : 20, and
1 : 30, diluted with assay buffer) with three concentrations of
SDB (0%, 1%, and 2%) and compared to a standard curve on
the same plate. Hence, each sample should read at 500 pg/mL
T unless there is interference from the plasma. For T, a plasma
dilution of 1 : 20 with no SDB added removed the interference
of plasma compounds in the assay.

Individual plasma samples were thawed, picofuged, vortexed,
and diluted with assay buffer to a 1 : 20 concentration. Samples
were aliquotted into separate wells in triplicate. The six-point
standard curve (2,000–8.2 pg/mL) and a separate external stan-
dard were also run in triplicate on each plate. Enzyme-labeled
T and antibody were added, and the plate was incubated at
26�C on a shaker for 2 h. Wells were then emptied and rinsed
with wash buffer, and enzyme substrate was added. The plate
was incubated for 1 h, again at 26�C, but without shaking. Stop
solution was added after this final incubation, and the plate
was immediately read with a Multiskan Ascent microplate
reader at 405 nm, corrected at 595 nm. The lower limit of
detectability for these assays was 1.6 pg per well, and all non-
detectable samples were assigned this value. Samples were dis-
tributed randomly in regard to morph and sex, but not year,
across 18 plates (nine plates of field samples and nine plates
of captive samples). External standards were used to calculate
interplate variability (11.6%), and intra-assay coefficients of
variation were calculated from sample replicates (9.4%).

Results

Testosterone

Time of Year/Season. The linear mixed-effects model revealed
a significant effect of the fixed factors morph ( ) andP p 0.02
date ( ; Table 1). WS males had higher T than TSP p 0.003
males, and levels declined over the breeding season in both
morphs.

There was no significant difference in T between WS and
TS females sampled in 2003 and 2004. The linear mixed-effect
model (Table 1) revealed no significant effect of the fixed factor
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Figure 1. Plasma testosterone (T) in males during defense and parental
stages of nesting cycle. Hatched bars represent mean T in tan-striped
(TS) males; white bars represent mean T in white-striped (WS) males.
Error bars represent SEM. The effect of morph, but not stage, was
significant, according to the model. WS males had significantly higher
T than TS males in both the defense and parental stages. T tended to
be higher during the defense stage in both morphs. Sample sizes:

, , , TS paren-WS defense p 30 TS defense p 26 WS parental p 8
.tal p 9

Table 2: Testosterone in relation to morph and nesting stage

Fixed Effect Numerator df Denominator df F P

Males:
Morph 1 37 5.622 .023
Stage 1 68 2.495 .119

Females:
Morph 1 27 .44 .51
Stage 1 1 5.25 .01

morph ( ). T declined with day in both morphs; how-P p 0.44
ever, this trend was not significant ( ).P p 0.07

Reproductive Substage. WS males had higher T levels than TS
males in both stages ( ; Table 2; Fig. 1). T tended toP p 0.023
be higher in both morphs during the defense stage, although
this effect was not significant ( ; Table 2) There wasP p 0.12
no effect of morph in females (Table 2; Fig. 2), although, as in
males, T was significantly higher during the defense stage. Note,
however, that small sample sizes make our power to detect
differences between female morphs in the defense stage very
low. The lack of difference between WS and TS females during
this stage should be interpreted with caution. There was no
interaction between morph and stage in either males or females.

Playback. Social interactions may increase plasma T in some
species (Wingfield et al. 1990; Wingfield and Hahn 1994). Thus,
longer song playbacks (a simulated social interaction) may in-
fluence T level. However, in this study, the use of playback to
capture birds did not increase T in male white-throated spar-
rows (length of playback defined as time from start of playback
to capture in the net). A linear regression revealed a loose but
significant negative relationship between length of playback and
plasma T levels (adjusted , , ).2r p 0.06 b p �0.13 P p 0.04
The negative slope of the correlation suggests that birds with
higher endogenous T may have responded to playback and been
captured more quickly than those with lower T, that is, that T
was influencing time to capture, not that length of playback
was influencing T within the sampling time frame. Alterna-
tively, Landys et al. (2007), who recently demonstrated a similar
negative relationship between plasma T and the length of play-
back, suggest that the absence of a plasma T increase in response
to social challenge may allow single-brooded birds to avoid the
detrimental effects of T on essential parental care behaviors (see
also Van Duyse et al. 2004). This is a less convincing argument
in our case because white-throated sparrows in this population
may raise two broods per season. Regardless of the cause, the
negative relationship between plasma T and length of playback
should not bias the results here because there was no difference
in the length of playback needed to capture birds of the two
morphs ( , , ).n p 51 F p 1.18 P p 0.3

GnRH Challenge

Lab. Both males ( : 14 WS, 7 TS; Fig. 3) and femalesn p 21
( : 5 WS, 5 TS; Fig. 4) showed elevated T in response ton p 10

GnRH injection, compared to those injected with saline (P !

and , respectively). However, there was no dif-0.001 P p 0.003
ference between morphs in either sex (males: ; females:P p 0.99

).P p 0.48
Field. We tested response to GnRH in free-living, breeding

male white-throated sparrows ( : 7 WS, 6 TS) to ensuren p 13
that the lack of morph difference observed in the lab was not
due to a lack of environmental cues. As in the lab, there was
no difference between morphs in response to GnRH injection
(Fig. 5; , , ).t p 0.88 df p 11 P p 0.4

Discussion

Testosterone

This study demonstrates a significant difference in plasma T
levels between WS and TS males during the breeding season.
These differences in plasma T are consistent with morph-
specific differences in aggression, suggesting that T may relate
to this difference in male behavior. We have also demonstrated
that WS males have higher T during both the defense and
parental stages of the nesting cycle. Given the negative effects
of T on parental behavior in other species (Schoech et al. 1998;
Van Roo 2004; Schwagmeyer et al. 2005), it is possible that the
higher T detected in WS males may relate to their reduced
parental care.

It must be emphasized that the magnitude of the difference
in plasma T between male morphs is small. In all analyses,
models indicated that the difference between morphs was be-
tween 0.5 and 0.6 ng/mL. The biological relevance of such a
small amount of T is unclear. Individual variation in T levels,
and thus variation within morphs, was high and certainly de-
creased the magnitude of the difference we detected. This vari-
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Figure 2. Plasma testosterone (T) in females during defense and pa-
rental stages of nesting cycle. Hatched bars represent mean T in tan-
striped TS females; white bars represent mean T in white-striped WS
females. Error bars represent SEM. The effect of stage was statistically
significant, according to the model, but that of morph was not. T was
significantly higher during the defense stage in both morphs; however,
there was no significant difference between morphs. Sample sizes:

, , ,WS defense p 3 TS defense p 5 WS parental p 12 TS parental p
.21

Figure 3. Response of captive white-striped (squares; ) and tan-n p 14
striped (circles; ) males to gonadotropin-releasing hormonen p 7
(GnRH; solid lines) or saline (dashed lines) injections. Data are plotted
as . GnRH significantly increased T levels but did somean � SEM
equally in both morphs.

ability is to be expected because an individual’s “testosterone
phenotype” results from an interaction between its genotype
and the environment. Factors in both the developmental and
immediate social environment may modify the testosterone
phenotype (Wingfield 1985). These factors are not expected to
vary systematically with morph type and therefore will add
noise to any morph-specific pattern in T. It should be noted
that Formica et al. (2004) found that WS males settled in areas
with a higher density of territories and therefore had more
neighbors than did TS males. More neighbors could lead to
more frequent territorial interactions. However, we did not
observe differences in territory density between WS and TS
males in our study site.

Despite potential individual differences in developmental
history and social environment, we still detected a consistent
difference between male morphs. In a similar study, Spinney
et al. (2006) also found similar (small) differences in T between
free-living male morphs captured in May (breeding stage un-
known). Taken together with these, our results suggest that
differential regulation of T may play a part in mediating dif-
ferences in behavior between male morphs. However, other
systems are almost certainly involved. For example, Maney et
al. (2005) recently demonstrated that the WS morph has more
vasotocin innervation in brain areas associated with agonistic
behavior. Vasotocin is a neuropeptide hormone that has been
associated with aggressive and courtship behavior in some spe-
cies (Maney et al. 1997; Goodson et al. 2004). Gonadal steroids,
including T, also modulate activity of the vasotocin neurons
themselves and have been shown to have organizational as well

as activational effects on vasotocin immunoreactivity in the
brain (Panzica et al. 2001).

Contrary to our prediction, we found no difference in T
between WS and TS females, although our power to detect
differences in T levels between female morphs during the de-
fense stage was low and such a difference should not be ruled
out. At this point, we have no evidence suggesting that cir-
culating T concentrations mediate the difference in aggression
between female morphs. Mechanisms of female aggression are
poorly understood, and many studies have found no relation-
ship between T and aggression in females (Elekonich and Wing-
field 2000; Goymann and Wingfield 2004). However, in the
dunnock (Prunella modularis), females involved in repeated
aggressive interactions in competition for mates exhibited
higher T levels than less aggressive females (Langmore et al.
2002). Similarly, female buff-breasted wrens (Thryothorus leu-
cotis) exhibit elevation in T levels after simulated territorial
intrusions during the prebreeding (defense) stage (Gill et al.
2007). It is possible that differences in aggression between WS
and TS females may result from differences in other hormones,
such as estrogen or progesterone, as suggested by work in rep-
tiles and mammals (Kapusta 1998 [Clethrionomys glareolus];
Woodley and Moore 1999; Woodley et al. 2000 [Sceloporus
jarrovi]). Or aggression may even be influenced by the ratio
between two hormones such as T and progesterone, as, for
example, in the mouse Peromyscus californicus (Davis and Mar-
ler 2003).

GnRH Challenge

Male morphs differ in plasma T levels, but what physiological
difference between the morphs leads to this difference in T?
The GnRH challenge can help localize the mechanism that leads
to differences in T secretion. In this experiment, the pituitary
was stimulated with a standard dose of exogenous GnRH, thus
activating the pituitary-gonadal axis to secrete T. A difference
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Figure 4. Response of captive white-striped (squares; ) and tan-n p 5
striped (circles; ) females to gonadotropin-releasing hormonen p 5
(GnRH; solid lines) or saline (dashed lines) injections. Data are plotted
as . GnRH significantly increased T levels but did somean � SEM
equally in both morphs.

Figure 5. Increase in plasma testosterone (T; plasma T after injection
minus plasma T before injection) in free-living males treated with
exogenous gonadotropin-releasing hormone (GnRH). Bars indicate

. There was no significant difference between morphsmean � SEM
(white bar: white-striped males, ; hatched bar: tan-striped males,n p 7

). Power analysis indicates that a sample size of 92 individualsn p 6
per morph would be needed to detect a difference in response between
morphs with .b p .10

in T secretion between individuals indicates that their pitui-
taries or gonads differ in ability to respond to GnRH.

We found no difference between morphs in response to
GnRH injection. The lack of difference in this study suggests
that the morph difference in plasma T stems from a difference
in T regulation at the hypothalamus or in higher brain regions
rather than from a difference in the pituitary or gonad. Our
findings are also consistent with those of Spinney et al. (2006),
who found no differences between morphs in luteinizing hor-
mone levels after GnRH injection. In contrast, their study did
report a greater elevation of T in response to GnRH in WS
males. There are two methodological differences between our
study and the Spinney et al. (2006) study that may have led to
the discrepancies between our results. First, Spinney et al. used
a jugular injection of GnRH rather than an intramuscular in-
jection. It is possible that injection method may have affected
response to GnRH, but there is no a priori reason to expect
such an effect. Second and more important, the birds used in
the Spinney et al. study were captives housed communally out-
doors, whereas we used both captives (housed indoors and
individually) and free-living birds. However, both our study
and Spinney et al.’s found comparable levels of variation in
response to GnRH treatment (based on comparisons of stan-
dard errors), and the possible effects due to differences in hous-
ing (captive vs. free living, individually caged vs. communal)
remain open to speculation. From the results of both studies,
it is not entirely clear at which level in the hypothalamic-
pituitary-gonadal axis differences in T are generated. Potential
hypothalamic mechanisms include morph-specific differences
in the number of T receptors involved in negative feedback or
the number of GnRH-secreting neurons. Indeed, a recent study
by Lake et al. (2008) found differences between WS and TS
females in the number and size of GnRH-immunoreactive neu-
rons in the hypothalamus.

Conclusion

This study demonstrates a difference in plasma T that correlates
with the observed differences in aggression between male white-

throated sparrow morphs. Furthermore, we found that this
difference persists during both the defense and parental phases
of the nesting cycle, suggesting that T may also be involved in
differences in parental care. Our results suggest that the mech-
anism responsible for this difference in plasma T may lie at or
above the hypothalamus. It remains to be seen what mecha-
nisms, hormonal or otherwise, underlie differences in aggres-
sion between female morphs. Our findings constitute an
essential first step in the investigation of the endocrine mech-
anisms responsible for generating a behavioral polymorphism
in the white-throated sparrow. This species is an interesting
case study in and of itself, but it is our hope that it will also
provide a useful model system in which to compare and con-
trast distinct behavioral phenotypes within populations.
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