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Abstract. In mid-August through mid-September of 2017 a
major wildfire smoke and haze episode strongly impacted
most of the NW US and SW Canada. During this period
our ground-based site in Missoula, Montana, experienced
heavy smoke impacts for ∼ 500 h (up to 471 µg m−3 hourly
average PM2.5). We measured wildfire trace gases, PM2.5
(particulate matter ≤ 2.5 µm in diameter), and black car-
bon and submicron aerosol scattering and absorption at 870
and 401 nm. This may be the most extensive real-time data
for these wildfire smoke properties to date. Our range of
trace gas ratios for 1NH3/1CO and 1C2H4/1CO con-
firmed that the smoke from mixed, multiple sources var-
ied in age from ∼ 2–3 h to ∼ 1–2 days. Our study-average
1CH4/1CO ratio (0.166± 0.088) indicated a large con-
tribution to the regional burden from inefficient smolder-
ing combustion. Our1BC/1CO ratio (0.0012±0.0005) for
our ground site was moderately lower than observed in air-
craft studies (∼ 0.0015) to date, also consistent with a rela-
tively larger contribution from smoldering combustion. Our
1BC/1PM2.5 ratio (0.0095± 0.0003) was consistent with
the overwhelmingly non-BC (black carbon), mostly organic
nature of the smoke observed in airborne studies of wildfire
smoke to date. Smoldering combustion is usually associated
with enhanced PM emissions, but our 1PM2.5/1CO ratio
(0.126± 0.002) was about half the 1PM1.0/1CO measured
in fresh wildfire smoke from aircraft (∼ 0.266). Assuming
PM2.5 is dominated by PM1, this suggests that aerosol evapo-
ration, at least near the surface, can often reduce PM loading
and its atmospheric/air-quality impacts on the timescale of
several days. Much of the smoke was emitted late in the day,
suggesting that nighttime processing would be important in

the early evolution of smoke. The diurnal trends show brown
carbon (BrC), PM2.5, and CO peaking in the early morn-
ing and BC peaking in the early evening. Over the course
of 1 month, the average single scattering albedo for individ-
ual smoke peaks at 870 nm increased from ∼ 0.9 to ∼ 0.96.
Bscat401/Bscat870 was used as a proxy for the size and “pho-
tochemical age” of the smoke particles, with this interpreta-
tion being supported by the simultaneously observed ratios
of reactive trace gases to CO. The size and age proxy im-
plied that the Ångström absorption exponent decreased sig-
nificantly after about 10 h of daytime smoke aging, consistent
with the only airborne measurement of the BrC lifetime in an
isolated plume. However, our results clearly show that non-
BC absorption can be important in “typical” regional haze
and moderately aged smoke, with BrC ostensibly accounting
for about half the absorption at 401 nm on average for our
entire data set.

1 Introduction

Biomass burning (BB) emissions are an important source of
trace gases and particles that can influence local, regional,
and global atmospheric chemistry, air quality, climate forc-
ing, and human health (Crutzen and Andreae, 1990). BB is
one of the largest sources of fine primary organic aerosol
(OA), black carbon (BC), brown carbon (BrC) (Bond et al.,
2004, 2013; Akagi et al., 2011), total greenhouse gases, and
non-methane organic gases (NMOG) (Yokelson et al., 2008,
2009), which are precursors for the formation of ozone and
OA. While the majority of BB occurs in the tropics, the small
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fraction of the global BB in the western US is responsible
for a significant portion of US air quality impacts (Park et
al., 2007; Liu et al., 2017; Wilkins et al., 2018; Zhou et al.,
2018) and contributes to increasing health concerns. Wildfire
smoke has been shown to have adverse respiratory and car-
diovascular health effects, is associated with mortality and
morbidity, and exhibits lung toxicity and mutagenicity (Le
et al., 2014; Liu et al., 2015; Reid et al., 2016; Adetona et
al., 2016; Kim et al., 2018). In some cases, long-range trans-
port of biomass burning emissions can cause air quality stan-
dards to be exceeded hundreds or thousands of kilometers
downwind of the fire source (Jaffe et al., 2013; Wigder et
al., 2013). In addition to health concerns, particulate matter
from wildfires can reduce visibility, which can have impacts
on safety and transportation (United States Environmental
Protection Agency, 2019), and is a concern in protected vi-
sual environments such as national parks and wilderness ar-
eas, most of which are in the western US, where a major-
ity of wildfires occur. The Interagency Monitoring of Pro-
tected Visual Environments (IMPROVE) program initiated
in 1985 implemented long-term monitoring that establishes
current visibility conditions and has helped to improve visi-
bility in protected areas. However, record high temperatures,
drought, and fire-control practices over the last century have
culminated into a situation in which we can anticipate more
frequent fires of a larger size and intensity in the western US
and Canada (Yue et al., 2015; Westerling et al., 2006). These
fires are expected to impact all aspects of air quality in the US
– and have other impacts, including on visibility. In fact, over
the last few decades, the annual number of wildfires in the US
has not changed significantly, but the annual area burned has
increased by a factor of about 3 (United States National Inter-
agency Fire Center, 2019), and many of the highest burned-
area years have coincided with many of the warmest years
on record (United States Environmental Protection Agency,
2019). Despite these important issues, many of the emissions
from BB remain either understudied or completely unstud-
ied. To date, most of the research on the emissions and evo-
lution of smoke from US fires in the field has targeted pre-
scribed fires (Burling et al., 2011; Akagi et al., 2013; Yokel-
son et al., 2013a; May et al., 2014; Müller et al., 2016), and
while there are studies that probe trace gas and optical prop-
erty emissions of wildfire smoke sampled in the field (Liu
et al., 2017; Lindaas et al., 2017; Landis et al., 2017; Col-
lier et al., 2016; Eck et al., 2013; Sahu et al., 2012; Lack et
al., 2012), much of the information is limited in temporal ex-
tent or incomplete chemically and fails to assess important
issues such as the aging and evolution of smoke over vary-
ing and extended amounts of time, nighttime evolution and
oxidation, or the contribution of constituents of increasingly
recognized importance such as BrC (UV-absorbing OA), to
name a few.

BrC emissions are typically mixed with co-emitted BC and
non-absorbing OA, which can result in some measurement
difficulties and uncertainty in isolating and evaluating the op-

tical properties of BrC and its overall radiative impact (Wang
et al., 2017). In lab-simulated wildfires, BrC was associated
with smoldering combustion and accounted for about 86 % of
absorption by particles in the UV in the fresh smoke, which
has several implications in atmospheric chemistry, including
impacts on radiative forcing, UV-driven photochemical reac-
tions producing ozone, and the lifetime of NOx and HONO
(Selimovic et al., 2018). In addition, there are sources of BrC
not directly emitted from BB, including the photo-oxidation
of volatile organic compounds (VOCs) and aqueous-phase
chemistry in cloud droplets. These processes produce BrC
with optical properties and lifetimes that are not yet well
characterized (Graber and Rudich, 2006; Ervens et al., 2011;
Wang et al., 2014; Laskin et al., 2015; Tomaz et al., 2018). In
fact, several factors, such as chemical transformation, mixing
state, combustion conditions, and photochemical aging, can
all influence the absorption of BrC (Wang et al., 2017). Most
modeling studies have found that despite the multiple vari-
ables contributing to the absorption of BrC, including BrC
in climate models would mean the net radiative forcing of
biomass burning would move in a more positive direction.
(Feng et al., 2013; Jacobsen, 2014; Saleh et al., 2014; For-
rister et al., 2015). Unfortunately, observational constraints
on BrC are scarce, making it difficult to assess and enhance
models based on observational evidence. Thus, more field
measurements are required to get an accurate estimate of the
impact of BrC, both regionally and globally.

Most of the western US, including the Rocky Mountains,
constitutes a large fire-prone region. Missoula, Montana, is
the largest city completely surrounded by the Rocky Moun-
tains. Missoula is also located within a large region of the
inland Pacific Northwest, where wildfires have caused air
quality trends to deviate from the pattern in the rest of the
US (McClure and Jaffe, 2018). Missoula frequently experi-
ences smoke impacts typical of much of the urban and ru-
ral west due to local and regional western fires. A few air-
borne studies have sampled western wildfires and are most
sensitive to lofted emissions (Liu et al., 2017; Yates et al.,
2016), but wildfires may produce some unlofted emissions,
especially at night. Ground-based studies could probe these
unlofted emissions but have difficulty to representatively
sample lofted emissions unless advection accompanies trans-
port. Despite these platform-based considerations, our labo-
ratory on the eastern edge of Missoula is a relevant receptor
for mixed-age (1–2 h to 1–2 days) western wildfire smoke.
In this study, we measured the wildfire smoke characteristics
for 500 smoke-impacted hours during August–September
of 2017, which constituted a prolonged period of record-
breaking air quality impacts in Missoula. This very large
sample of wildfire smoke helps address some of the afore-
mentioned observational gaps in current wildfire field data.
Specifically, two photoacoustic extinctiometers (PAXs) and
a Fourier-transform-infrared spectrometer (FTIR) character-
ized the smoke that entered the Missoula valley. A Montana
Department of Environmental Quality (DEQ) PM2.5 (partic-
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ulate matter ≤ 2.5 µm in diameter) monitor provided addi-
tional insight and verified some impacts. The PAXs provided
measurements of scattering and absorption at two wave-
lengths (nominal 405 nm, actual 401 nm; 870 nm), BC, and
derivations of single scattering albedo (SSA), and Ångström
absorption exponent (AAE) for PM1.0. The FTIR measured
the BB “tracer” carbon monoxide (CO) and a few other trace
gases that help estimate effective average smoke age. The
main goals of this work are to document the net combined
effect of numerous fires on a heavily impacted surface site
embedded in the region and, thus, also help assess the repre-
sentativeness of field measurements, emissions inventories,
and models. In more detail, we characterize the smoke im-
pacts on a population center and we document the real-world
regional significance of BrC. Comparisons are possible to
our time series of BC, CO, or PM, etc. or diurnal cycles for
these species for a more relaxed test. Our real-time through
study-average ratios for “inert” tracers such as 1BC/1CO
are compared with 1BC/1CO in the field measurements
that are available to build emissions inventories that serve
as model input. The time-resolved and study-average val-
ues of dynamic ratios (e.g., 1PM/1CO) help elucidate the
net effect of secondary aerosol formation and evaporation.
Our measurements provide real-world aerosol optical prop-
erties (e.g., SSA and AAE) and can be used with the aerosol
mass data at real time through study-average resolution to
probe multi-step, bottom-up calculations of climate-relevant
aerosol optical properties. We present our results and com-
pare them to those previously reported for wildfire field mea-
surements and prescribed fire field measurements.

2 Experimental details

2.1 Site descriptions

Trace gases and particles were measured through co-located
inlets at the University of Montana (UM), ∼ 12.5 m above
the ground through the window of our laboratory on the
fourth (top) floor of the Charles H. Clapp building (CHCB).
The UM campus encompasses an area of ∼ 0.89 km2 and
is located on the eastern edge of Missoula, with the CHCB
located in the southeastern corner of campus. The CHCB is
∼ 1.1 km from the nearest road that gets appreciable traffic
during the summer; thus our measurements were not signif-
icantly influenced by automobile emissions (see Sect. 3.1).
PM2.5 measurements were made by the Montana Department
of Environmental Quality via a stationary PM2.5 monitor lo-
cated in Boyd Park, Missoula, which is ∼ 3.2 km southwest
of our UM laboratory, with both sites being located in the
Missoula valley proper.

2.2 Instrument details

2.2.1 Fourier transform infrared spectrometer

Trace gas measurements were made using an FTIR (Midac,
Corp., Westfield, MA) with a Stirling cycle cooled mercury-
cadmium-telluride (MCT) detector (Infrared Associates, Stu-
art, FL; Ricor USA Inc., Salem, NH) interfaced with a
17.22 m path closed multipass White cell (Infrared Analy-
sis, Inc., Anaheim, CA) that is coated with a halocarbon wax
(1500 Grade, Halocarbon Products Corp., Norcross, GA) to
minimize surface losses (Yokelson et al., 2003). Although
the system was designed for source measurements and is de-
scribed elsewhere in more detail (Akagi et al., 2013; Stock-
well et al., 2016a, b), the FTIR is convenient for ambient
monitoring because the Stirling cooled detector does not re-
quire refilling of liquid nitrogen and thus allows for mostly
autonomous operation. Ambient air was drawn through the
2.47 L White cell at ∼ 6 L min−1 via a downstream IDP-
3 dry scroll vacuum pump (Agilent Technologies) using a
0.635 cm o.d. corrugated Teflon inlet that was positioned out-
side the window (∼ 12.5 m above ground level). Cell temper-
ature and pressure were also logged on the system computer
(Minco TT176 TRD, MKS Baratron 722A). Spectra were
collected at a resolution of 0.50 cm−1 covering a frequency
range of 600–4200 cm−1. A time resolution of approximately
5 min was more than adequate, and sensitivity was increased
by co-adding scans at this frequency. Gas-phase species
(with their respective detection limits in parentheses), includ-
ing carbon monoxide (CO, 20 ppb), methane (CH4, 20 ppb),
acetylene (C2H2, 2 ppb), ethylene (C2H4, 2 ppb), methanol
(CH3OH, 3 ppb), and ammonia (NH3, 2 ppb) were quantified
by fitting selected regions of the mid-IR transmission spectra
with a synthetic calibration nonlinear least-squares method
(Griffith, 1996; Yokelson et al., 2007). The uncertainties in
the individual mixing ratios (ppmv) varied by spectrum and
molecule and were influenced by uncertainty in the reference
spectra (1 %–5 %) or the real-time detection limit, whichever
was larger. The procedure used to correct for gases outside
of the spectrometer cell raised the uncertainty to ∼ 20 ppb
for background CO and CH4 but did not affect the mea-
sured enhancements above the background during smoke
episodes. Calibrations with NIST-traceable standards indi-
cate that peak CO values had an uncertainty of less than 5 %.
The FTIR system was designed for source sampling, and the
sensitivity was adequate to measure a significant amount of
usable trace gas data but not every species on every event. In
addition, an FTIR system problem caused the trace gas data
to terminate about 1 day before the smoke cleared.

2.2.2 Photoacoustic extinctiometers (PAXs) at 870 and
401 nm

Particle absorption and scattering coefficients (Babs, Mm−1,
Bscat, Mm−1) were measured directly at 1 s time resolution
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using two photoacoustic extinctiometers (PAX, Droplet Mea-
surement Technologies, Inc., Longmont, CO; Lewis et al.,
2008; Nakayama et al., 2015), and single scattering albedo
(SSA) at 401 (nominally a 405 nm system) and 870 nm, and
the Ångström absorption exponent (AAE) were derived us-
ing those measurements. Although the PAXs measured ev-
ery second, data were averaged to 5 min, which was deemed
adequate for the final analysis and matched the time reso-
lution used by the FTIR for the same reason. A 1 L min−1

aerosol sample flow was drawn through each PAX using a
downstream IDP-3 dry scroll vacuum pump (Agilent Tech-
nologies) and split internally between a nephelometer and
photoacoustic resonator for simultaneous measurement of
light scattering and absorption. Both PAX instruments con-
tain an internal pump; however these internal pumps were
bypassed to improve measurement sensitivity, as the pumps
can contribute an amount of acoustic noise that is noticeable
in clean-air ambient measurements. Scattering of the PAX
laser light was measured using the wide-angle (6–174◦) re-
ciprocal nephelometer that responds to all particle types re-
gardless of chemical makeup, mixing state, or morphology.
For absorption measurements, the laser beam was directed
through the aerosol stream and modulated at a resonant fre-
quency of the acoustic chamber. Absorbing particles trans-
ferred heat to the surrounding air, inducing pressure waves
that were detected via a sensitive microphone. Advantages of
the PAX include direct in situ measurements, a fast response
time, continuous autonomous operation, and elimination of
the need for filter collection and the uncertainties that come
with filter artifacts (Subramanian et al., 2007).

The PAX sample line was ∼ 4.7 m of 0.483 cm o.d. con-
ductive silicon tubing positioned outside the window ∼
12.5 m above ground level and co-located with the FTIR in-
let. The tubing transferred outside air to a scrubber to re-
move light-absorbing gases (Purafil-SP Media, minimum re-
moval efficiency 99.5 %) and then a diffusion dryer (Sil-
ica Gel 4–10 mesh) to remove water, with post-dryer rela-
tive humidity varying between 13 % and 30 %. The scrub-
ber and dryer were refreshed before any signs of deteriora-
tion were observed (e.g., color change). The diffusion-based
designs will cause small particle losses, but losses were not
explicitly measured. After the dryer, a splitter connected to
the two instruments. After the splitter, each sample line fea-
tured a 1.0 µm size cutoff cyclone and two acoustic notch
filters that reduced noise. Both PAX instruments were cal-
ibrated before, during, and after the experiment using the
manufacturer-recommended scattering and absorption cali-
bration procedures utilizing ammonium sulfate particles and
a propane torch to generate purely scattering and strongly
absorbing aerosols, respectively. The 401 nm data were only
used after 27 August because of frequent clogging of the
PM1.0 cyclone before that date. The estimated uncertainty in
PAX absorption and scattering measurements has been esti-
mated to be ∼ 4 %–11 % (Nakayama et al., 2015).

In the PAX, the incident laser light is absorbed in situ by
light absorbing particles without filter or filter-loading ef-
fects that can be difficult to correct, particularly for sam-
ples with high organic aerosol loadings (Lack et al., 2008;
Li et al., 2019). We directly measure aerosol absorption
(Babs, Mm−1) and used the literature- and manufacturer-
recommended mass absorption coefficient (MAC) (4.74±
0.63 m2 g−1 at 870 nm) to calculate the BC concentration
(µg m−3) at ambient temperature and pressure (Bond and
Bergstrom, 2006), but the BC mass can be adjusted using dif-
ferent MAC values if supported by future work. Because the
PAXs also measured light scattering, scattering and absorp-
tion values can be combined to directly calculate the single
scattering albedo (SSA, the ratio of scattering to total extinc-
tion). SSA is a useful input for climate models, where an
SSA closer to 1 indicates a more “cooling” highly scattering
aerosol:

SSA=
Bscat(λ)

Bscat(λ)+Babs(λ)
. (1)

To a good approximation, sp2-hybridized carbon (includ-
ing BC) absorbs light proportional to frequency (Bond and
Bergstrom, 2006). Thus, the Babs contribution from BC at
401 nm can be calculated from 2.17 times Babs at 870 nm
(an absorption Ångström exponent of 1), where BrC absorp-
tion is expected to be negligible, and any additional Babs at
401 nm can be assigned to BrC (Babs, BrC) subject to lim-
itations due to “lensing” by coatings discussed elsewhere
(Pokhrel et al., 2016, 2017; Lack and Langridge, 2013; Lack
and Cappa, 2010). Coating effects are very difficult to iso-
late from BrC direct absorption effects, and this adds some
uncertainty to the BrC attribution (±25 %) but not to the ab-
sorption measurements themselves. Additionally, the absorp-
tion Ångström exponent (AAE) (401/870) can be calculated
from the 401 and 870 data, where the AAE of pure BC is
usually close to 1, and larger values are indicative of smoke
absorption more dominated by BrC emissions:

AAE=−
log

(
Babs,1
Babs,2

)
log

(
λ1
λ2

) . (2)

The AAE is useful as an indicator of BrC /BC, but in ad-
dition, the full aerosol absorption spectrum is often approxi-
mated with a power law function (absorption= C×λ−AAE),
and thus the AAE determined with any wavelength pair can
be used to approximately calculate the shape of absorption
across the UV–VIS range (Reid et al., 2005b). An equation
similar to Eq. (2) provides the scattering Ångström exponent
(SAE), which can be used to calculate scattering at unmea-
sured wavelengths.

A few other sources of uncertainty in the measurements
and/or calculations are poorly characterized; MAC increases
due to coatings, potential particle losses in the dryer or scrub-
ber, and truncation error in the nephelometer. Mie calcula-
tions provided by the manufacturer suggest the scattering
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could be underestimated by about 1 % at 870 nm and 2.5 % at
401 nm due to truncation error (John Walker, personal com-
munication, 2019). This would reduce the mass scattering
coefficients (Sect. 3.5), and, typically, a 1 % reduction in
scattering would imply approximately a tenth of a percent
of value underestimate of SSA. Miyakawa et al. (2017) re-
ported a size-independent particle transmission up to 400 nm
of 84± 5 % in their diffusion dryer. Larger particles may be
transmitted more efficiently. We did not measure size dis-
tribution or transmission efficiency in this study, and, thus,
we did not adjust the data. Size-independent particle losses
would reduce scattering, absorption, and derived BC but
should only have a small impact on SSA or AAE. Unlike
particle losses, an increased MAC due to lensing via coat-
ings could inflate BC values by up to ∼ 30 % (Pokhrel et al.,
2017).

2.2.3 Montana Department of Environmental Quality
PM2.5

The Montana DEQ uses beta attenuation monitors (Met One
Instruments, Model BAM-1020) in accordance with US EPA
Federal Equivalent Methods (FEMs) for continuous PM2.5
monitoring. At the beginning of each sample hour, a constant
14C source emits beta rays though a spot of clean glass fiber
filter tape. The beta rays are measured by a photomultiplier
tube to determine a zero reading. The BAM-1020 then ad-
vances this spot of tape to the sample nozzle, where it filters
a measured amount of outside air at 16.7 L min−1. At the
end of the sample hour, the attenuation of the beta ray signal
by the filter spot is used to determine the mass (and concen-
tration µg m−3 at ambient temperature and pressure) of the
particulate matter. Hourly detection limits for the BAM-1020
are < 2.4 µg m−3 (1σ ). Current and archived air quality data
for the state of Montana can be accessed using the following
link: http://svc.mt.gov/deq/todaysair/ (last access: 20 March
2019). More information on the BAM-1020 can be found
at http://metone.com/air-quality-particulate-measurement/
regulatory/bam-1020/ (last access: 20 March 2019). Note
the PAX size cutoff throughout this study was 1.0 µm, and
the PM size cutoff is 2.5 µm. The mass in the 1.0–2.5 µm
range is thought to be a small part of the total mass (e.g.,
10 %–20 % in Fig. 2 in Reid et al., 2005a), but the size range
difference does affect data interpretation as detailed later.
(PM2.5 cyclones have now been obtained for the PAXs for
ongoing studies.)

2.2.4 Emission ratios (ERs) and downwind
enhancement ratios

Time series are useful to characterize impacts and evaluate
models, but we also used the time series of mixing ratios or
concentrations for each analyte measured to derive other val-
ues that are broadly useful for study comparisons and imple-
mentation in local to global chemistry and climate models.

As part of this, we produced emission ratios (ERs) and en-
hancement ratios. The calculation of these two types of ra-
tios is the same, but an emission ratio is only the appropriate
term for a ratio measured directly at a source or further down-
wind for relatively inert species such as BC or CO. First,
an excess mixing ratio or concentration (denoted by “1X”
for each species X) is calculated for all species measured by
subtracting the relatively small background value based on a
sloping baseline from before to after a smoke impact. For ex-
ample, the ratio for each species relative to CO (1X/1CO)
is the ratio between the sum of 1X over the entire smoke
impacted period relative to the sum of 1CO over the entire
smoke impacted period. Mass or molar ratios to CO were cal-
culated for BC, PM, and all the gases measured by the FTIR
that exhibited enhancement above background levels for each
smoke impacted period. Emission factors (EFs), which can
be derived by including the molar ER to CO2 in the car-
bon mass balance method were not calculated (Selimovic
et al., 2018). The diurnal variation for CO2 is considerable,
and the smoke was mainly aged (not reflecting initial emis-
sions for most species) in Missoula. The prolonged “small”
1CO2 peaks that persist for times similar to the natural, sub-
stantial variation that CO2 has have uncertain values. For ex-
ample, for CO2, the wildfire smoke impacts in Missoula are
largely diluted and protracted enough to not completely dom-
inate background variability, as is the case for the other gases
and for source sampling (Stockwell et al., 2016a, b; Akagi et
al., 2011, 2012). Since 1CO2 is not as reflective of fire im-
pacts, then by extension, the modified combustion efficiency
(MCE), which is defined as 1CO2/(1CO2+1CO), is not
as useful as an index of the flaming to smoldering combus-
tion ratio in this study as measurements closer to the source
(Yokelson et al., 2013b). Other approximate indicators of the
relative amount of flaming to smoldering combustion such as
1BC/1CO or 1CH4/1CO can still be used.

2.3 Investigating smoke origin and back trajectory
calculations

To investigate the sources contributing to smoke events, we
used a combination of back trajectory calculations, satel-
lite imagery, and local meteorological data that provided in-
sights into mixing and smoke origin. Back trajectories were
calculated utilizing the National Oceanic and Atmospheric
Administration (NOAA) Air Resources Laboratory Hybrid
Single Particle Lagrangian Integrated Trajectory (HYSPLIT;
Stein et al., 2015; Draxler, 1999; Draxler and Hess, 1997,
1998) initialized from UM (46.8601◦ N, 113.9852◦W) at
500, 1200, and 3000 m above ground level during the hour at
which enhancements for that particular smoke event were at
a maximum. Back trajectories were run using the High Reso-
lution Rapid Refresh (HRRR) operational model, which uses
the Weather Research and Forecasting (WRF) modeling sys-
tem combined with observational data assimilation and is run
over the contiguous US at 3 km× 3 km resolution (Benjamin
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et al., 2016). For events that spanned multiple days, multiple
back trajectories were initialized during the hour(s) at which
enhancements for the sub-events were at a maximum. Be-
cause of the complex local topography and micrometeorol-
ogy, the combination of back trajectories, satellite imagery
(GOES “loops”), and other evidence can only suggest a most
likely smoke origin and cannot provide an exact smoke age.
Our best guess at the smoke origin for each event is listed in
Table S1 in the Supplement.

2.4 Brief description of 2017 regional and selected local
fires

Missoula experienced smoke impacts from local (western
Montana) and regional fires with regional fires including
fires in California, Idaho, Oregon, Washington, and British
Columbia. Over∼ 1.2 million ha burned in British Columbia
in 2017 (BC Wildfire Service, 2017). More than 4 million ha
burned in the US during the 2017 fire season, making it
one of the largest to date. Idaho, Oregon, and Washington
had burned areas over 263 000, 283 000, and 161 000 ha, re-
spectively. California and Montana experienced their largest
burned areas to date, with both states experiencing close to
526 000 ha burned each (https://www.predictiveservices.nifc.
gov/intelligence/2017_statssumm/fires_acres17.pdf, last ac-
cess: 21 March 2019). Although the complicated meteorol-
ogy and topography of the Missoula valley makes attribut-
ing smoke sources somewhat difficult (as noted above), we
can say with some degree of certainty that the majority of
the fresh smoke impacting Missoula came from two local
fires, the Lolo Peak Fire and the Rice Ridge Fire (Table S1).
The Lolo Peak Fire started at high elevation ∼ 15 km SW
of Missoula (46.674◦ N, 114.268◦W) on 15 July 2017 and
burned continuously (mostly at lower and lower elevations)
until it eventually grew to over 20 000 ha. The fuel descrip-
tion as given by Inciweb (https://inciweb.nwcg.gov/incident/
5375/, last access: 20 March 2019) is summarized as con-
taining generally sparse or patchy subalpine fir (Abies lasio-
carpa) with dead Whitebark pine (Pinus albicaulis) above
∼ 2100 m. Below 2100 m, fuels were mainly typical of a
variety of coniferous-dominated ecosystems with major tree
species such as ponderosa pine (Pinus ponderosa), subalpine
fir (Abies lasiocarpa), and lodgepole pine (Pinus contorta).
Lower elevations near containment lines were dominated by
ponderosa pine with grassy understory. The Rice Ridge Fire
started 24 July 2017 ∼ 52 km NE of Missoula (47.268◦ N,
113.485◦W). The fire eventually burned over 64 000 ha, with
a notable run on 3 September 2017, where it doubled in size
from ∼ 20000 to ∼ 40000 ha. Fuels involved were timber
(litter and understory) and brush (https://inciweb.nwcg.gov/
incident/5414/, last access: 20 March 2019).

3 Results and discussion

3.1 Overview of 2017 fire season smoke impact in
Missoula

Figure 1 shows the hourly average mixing ratios of CO, BC,
and PM2.5 observed from 11 August to 10 September 2017,
which includes nearly all of the 2017 Missoula smoke im-
pacts. There were more than 20 distinct periods of major
smoke impacts that are readily identified by large simultane-
ous enhancements in CO, BC, and PM2.5. Sustained periods
when PM2.5 was elevated well above the 12.5 µg m−3 EPA
standard for “good” air quality were designated as events
and assigned a letter in Fig. 1 and Table S1. The high-
est hourly values were observed on 4 September 2017, the
morning after the Rice Ridge Fire doubled in size (PM2.5,
471 µg m−3, CO 2.78 ppm, BC 3.62 µg m−3). This event is
discussed in more depth as a case study in a later section
(Sect. 3.6). Numerous other PM2.5 peaks exceeded, e.g., lev-
els of 100 µg m−3. “Cleaner” periods between smoke peaks
became less extensive as the regional atmosphere became in-
creasingly polluted until widespread clearing on 10 Septem-
ber 2017. Overall high correlation of CO and BC to PM2.5
suggests that the smoke was normally well mixed on the spa-
tial scale that separated the PM2.5 and UM monitors. Many
of the longer smoke impacts that spanned several days were
necessarily integrated as a single event for calculating ra-
tios between species, but we also initialized back trajectories
from local maxima to further explore the source region of
the smoke, which was probably always mixed to some extent
(Table S1).

3.2 Trace gas ratios

Table 1 reports study-average ratios weighted by event dura-
tion (time-weighted) to CO for gases measured by the FTIR.
These measurements are representative of moderately aged
regional wildfire smoke. We interpret our results by compar-
ing them to emission ratios measured in the lab (Selimovic
et al., 2018) and other field studies mostly in fresher smoke
(Liu et al., 2017; Landis et al., 2017; Radke et al., 1991). CO
is a major pollutant in the atmosphere, with BB as a main
source. In Missoula, especially in the summer, the CO back-
ground is not strongly influenced by non-fire sources. CH4
on the other hand has more background variability, but at
these smoke levels the ratio of CH4 to CO, while variable,
yields a study average (0.166± 0.088) that mostly reflects
the real average 1CH4/1CO fire emission ratio. Yates et
al. (2016) reported a smoldering stage 1CH4/1CO ER of
0.095 (±0.023) for the Rim Fire, which is lower than our
study-average ER, but the ratio reported in Yates et al. (2016)
comes from airborne measurements closer to the source and
from a single fire source. Our higher study-average ER of
CH4 is indicative of smoldering (Reisen et al., 2018; Yokel-
son et al., 1997). Because the measurement was not in a di-
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Figure 1. Time series of hourly CO, BC, and PM2.5 measurements from Missoula. Sections highlighted in yellow roughly indicate smoke-
impacted periods. A few small peaks that could not be attributed to biomass burning sources were excluded from analysis.

rect downslope flow of smoke into Missoula, this ratio sug-
gests that smoldering emissions from regional fires can be
and were frequently transported to the Missoula valley. This
may be why our study average is higher than observed in air-
borne studies. In a consistent observation, we find that ERs
for 1CH4/1CO are lower when the 1BC/1CO ERs are
higher (Fig. 2), which is indicative of a flaming to smolder-
ing ratio dependence (Christian et al., 2003). This is a useful
result, because our two metrics for combustion characteris-
tics at the fire sources are consistent, and it indicates that
the variability in ratios between species observed at Missoula
was partly due to variable combustion types at the regional
fire sources along with the expected effects of variable aging
that are discussed next.

Next, we compare other measured trace gas ratios, in-
cluding some more reactive VOC, to the limited amount of
data available from previous airborne and lab studies. Liu et
al. (2017) sampled smoke between 1 and 2 h old on average
and did not report an ER value for NH3. However, Liu et
al. (2017) reported an average wildfire MCE that Selimovic
et al. (2018) used with measurements of very fresh lab fire

smoke to calculate an ER value for 1NH3/1CO based on
the average wildfire MCE reported in Liu et al. (2017). The
predicted NH3 value (0.0279) for wildfires based on an av-
erage wildfire MCE (0.91) is about twice our observed av-
erage 1NH3/1CO (0.0133). Radke et al. (1991) measured
an 1NH3/1CO range from 0.037 for fresh smoke to 0.011
when including samples up to 48 h old. Our 2017 individ-
ual ratios span a range (Table S1). Near the high end we see
1NH3/1CO of 0.0196 for relatively fresh smoke assigned
to the nearby Lolo Peak Fire and 0.0216 for event “S” of
which the origin is unclear. Our lowest ratios are about 1/4
of our highest ratios (0.0044) (Table S1). Akagi et al. (2012)
measured a midday 1NH3/1CO half-life of ∼ 5 h, which
suggests that our average sample age is roughly equivalent
to ∼ 5 h of midday processing, and our oldest samples (with
NH3 data) are aged equivalent to about 10 h of midday pro-
cessing (Table S1). However, the “time since emission” is
potentially longer than indicated by a “photochemical age”,
since, according to the GOES satellite, a lot of smoke was
produced in the evening and OH processing may not have
started fully until the next day. In addition, we note that the
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Table 1. Time-weighted study-average enhancement ratios (ratioed to CO) compared to emission ratios reported in other studies.

Compounds This work Selimovic et Selimovic et Liu et al. Landis et Radke et al. Urbanski
al. (2018)a al. (2018)b (2017) al. (2017) (1991)c (2013)

Methane (CH4) 0.1661 (0.0884) 0.0741 (0.0698) 0.0870 0.0960 (0.0425) 0.104 (0.001) 0.0503 (0.0420) 0.0946 (0.0108)
Acetylene (C2H2) 0.0014 (0.0004) 0.0062 (0.0607) 0.0056 0.0028 (0.0022) – 0.0023 (0.0018) –
Ethylene (C2H4) 0.0114 (0.0022) 0.0209 (0.0193) 0.0199 0.0102 (0.0033) – – –
Methanol (CH3OH) 0.0199 (0.0013) 0.0148 (0.0152) 0.0176 0.0240 (0.0160) – – –
Ammonia (NH3) 0.0133 (0.0064) 0.0232 (0.0350) 0.0279 – – 0.0219 (0.0099) –

a Measured lab values at lab fire MCE. b Calculated from EF versus MCE fit based on average wildfire MCE reported in Liu et al. (2017). c Averages of Myrtle Fall Creek and
Silver Fire.

Figure 2. (a) Methane emission ratio versus black carbon emission ratio. Point shown are for events that have both a CH4/CO ratio and a
BC /CO ratio. (b) Lab average (Selimovic et al., 2018) BC /CO ratio versus modified combustion efficiency (MCE), separated into bins by
0.01 of MCE.

true processing ages have potential to be even longer, since
the true initial 1NH3/1CO may have been higher than our
highest observed ratios as we were not immediately adjacent
to sources. This possibility is supported by the fact that NH3
and CH4 emissions have been shown to be linked (Yokelson
et al., 1997), and our “high” 1CH4/1CO value for event S
(∼ 0.14) could indicate that the real initial1NH3/1CO was
higher than ∼ 0.022. Finally, the 1NH3/1CO ratio is also
related to the size and age of particles, as will be discussed
in future sections (Sect. 3.4).

C2H4 has been observed to decay in isolated plumes with a
similar half-life to ammonia (Akagi et al., 2012; Hobbs et al.,
2003), and our study-average 1C2H4/1CO ratio (0.011) is
again about half that in the other wildfire studies in younger
smoke reported in Table 1 (∼ 0.02) or listed elsewhere (Ak-
agi et al., 2011). Our lower 1C2H4/1CO ratios tended to
occur when the1NH3/1CO ratio was also lower (Table S1),
but unfortunately there are only two events with data for both
gases and not enough measured values to warrant a detailed
analysis. Methanol and acetylene react at least an order of

magnitude more slowly with OH than C2H4. Our average
methanol enhancement ratio (0.019) thus falls in the middle
of the other wildfire values (0.0148–0.024) as might be ex-
pected when any aging effects are smaller than the natural
high variability in initial emissions (Akagi et al., 2011). In
fact 1CH3OH/1CO has been observed to increase or de-
crease slightly or stay the same for several hours of aging
(Akagi et al., 2012, 2013; Müller et al., 2016). We only have
a few data points for 1C2H2/1CO, but their average is sig-
nificantly lower than the other wildfire studies. Since C2H2
is associated with flaming combustion (Lobert et al., 1991;
Yokelson et al., 2013a), this could be due to the prevalence
of smoldering that was also indicated by the high average
1CH4/1CO ratios as noted above. Another point about our
trace gas data is that our mixing ratios for CO are valuable
as an inert tracer for wildfire emissions for comparison to
models, and they can be useful for inferring the initial emis-
sions of other gases if those gases emission ratios to CO have
been measured elsewhere (Selimovic et al., 2018; Koss et
al., 2018; Liu et al., 2017). CO can also be used as a scal-
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ing/normalizing factor for particle emissions, which is dis-
cussed in the next section.

3.3 1BC/1PM2.5, 1BC/1CO, 1PM2.5/1CO

BC is estimated to be the second strongest global climate
warming agent, and BB is the main BC source (Bond et
al., 2004). Accurate BC measurements are challenging, and
aerosol absorption remains poorly understood in atmospheric
models (Bond et al., 2013). In contrast, CO is measured re-
liably at a network of surface sites and in aircraft campaigns
and can also be retrieved by satellite (MOPITT, IASI, AIRS,
etc.). As a result, CO emissions estimates are available for
most sources, including fires, and the estimates are in reason-
able agreement for western wildfires (Liu et al., 2017). BC
and 1BC/1CO measurements using modern methods for
wildfires are rare; thus, our BC, CO, and 1BC/1CO mea-
surements from a large sample of wildfire smoke can be used
with CO emissions to update BC emissions estimates from
wildfires (see below). BC is only made by flaming combus-
tion at a fire source, and despite the fact that its production
rate can vary strongly with flame turbulence, the1BC/1CO
ratio can serve as a rough indicator of the fire’s flaming
to smoldering ratio (Vakkari et al., 2018; Christian et al.,
2003; Yokelson et al., 2009; Shaddix et al., 1994) as demon-
strated earlier in Fig. 2b. Table 2 reports our study-average
ratios (time-weighted) of 1BC/1CO, 1BC/1PM2.5, and
1PM2.5/1CO and compares them to the limited measure-
ments of wildfire smoke available in the lab (Selimovic et
al., 2018) and in the field (Liu et al., 2017; Sahu et al.,
2012; Hobbs et al., 1996). Our 1BC/1CO ratio (0.0012)
is a bit lower than the aircraft-measured averages of Sahu et
al. (2012) (0.0014) and Liu et al. (2017) (0.0016) and the
Selimovic et al. (2018) estimate at the field average MCE
for wildfires from Liu et al. (2017, 0.0018). The Hobbs et
al. (1996) average value for their two fires specifically iden-
tified as wildfires is notably higher than the other values and
is actually an 1EC/1CO measurement that could be biased
high (Li et al., 2019). The Selimovic et al. (2018) lab av-
erage is also higher but obtained at the higher lab-average
MCE. The uncertainty in our value is likely asymmetric be-
cause coatings in aged PM could inflate absorption and our
BC value by a small amount. Taken together, this suite of ob-
servations is roughly consistent with our ground-based site
being impacted by relatively more smoldering combustion
(MCE ∼ 0.87± 0.02, based on Fig. 2b) than airborne stud-
ies on average (MCE 0.91, Liu et al., 2017; 0.90, Sahu et al.,
2012; 0.883, Urbanski, 2013). Liu et al. (2017) calculated
an average annual CO production from western US wildfires
for 2011–2015 of 5240± 2240 Gg, which they reported was
in good agreement with an EPA estimate based on a sim-
ilar burned area in the 2011 National Emissions Inventory
(4894 Gg). Ratioing to the Liu et al. (2017) estimate with the
average field study1BC/1CO in Table 2 (0.0014±0.0002)
suggests that western US wildfires emit 7.3± 3.3 Gg of BC

per year. This is significantly lower than a previous estimate,
but the other estimate is not strictly comparable since it is
based on EC measurements and for a different year (2006)
(Mao et al., 2015).

Changes in the 1PM/1CO ratio as a plume ages can be
used as a metric for the net effect of secondary formation
or evaporation of organic and inorganic aerosol (Yokelson
et al., 2009; Akagi et al., 2012; Jolleys et al., 2012; Vakkari
et al., 2014, 2018). Table 2 indicates that our ground-based
1PM2.5/1CO (0.126± 0.002) is about half that obtained at
aircraft altitudes in fresher wildfire smoke (0.266± 0.134)
as reported by Liu et al. (2017) and ∼ 4 times less than
that reported for very fresh smoke by Hobbs et al. (1996)
(0.492). Further, our lower 1BC/1CO ratio suggests en-
hanced smoldering, which should preclude a large drop in
1PM/1CO (Reisen et al., 2018). Liu et al. (2017) and For-
rister et al. (2015) measured smoke aging for the Rim Fire
(a large California wildfire) as the plume aged and found that
the1OA/1CO ratio started high and then dropped to a value
(0.125±0.025) similar to our1PM2.5/1CO. However, Col-
lier et al. (2016) found no age dependence for 1OA/1CO
for plumes intercepted at Mount Bachelor or on the G-1
aircraft and obtained a value for 1OA/1CO (0.25± 0.07)
close to both the 1OA/1CO and 1PM1.0/1CO of Liu et
al. (2017) in fresh Rim Fire smoke. Taken together, these
observations suggest that, on timescales up to ∼ 1–2 days
for the wildfire smoke studied to date, aging and/or higher
average ambient temperatures at lower elevations may en-
courage some OA evaporation and reduce downwind PM
impacts. Some studies in other fire types have found sec-
ondary formation to dominate at low elevation (Yokelson et
al., 2009; Vakkari et al., 2014), so it is premature to gener-
alize this observation to all BB, and more study is needed.
However, both of the latter studies measured smoke from
smaller fires within a few hours of the source, and our lower
1PM2.5/1CO indicates that evaporation of PM dominated
over formation of PM as smoke was transported to the Mis-
soula valley in smoke that was between several hours and
several days old.

The climate impacts of smoke are strongly related to the
1BC/1PM ratio and also the SSA and BrC, which are de-
scribed in more detail in other sections. The 1BC/1PM
ratio also allows for a rough estimate of ambient BC from
ambient PM data when BC is not measured, but caution
is needed since PM may not be conserved as long as BC,
and 1BC/1PM is also variable at the source. Our study-
average 1BC/1PM2.5 ratio (0.0095; Fig. 3) is higher than
the study-average 1BC/1PM1.0 in Liu et al. (2017, 0.006)
but falls within the range observed for two wildfires mea-
sured in Liu et al. (2017), despite the differences in measure-
ment techniques (PM2.5 versus PM1.0, etc.). It’s possible that
the 1BC/1PM ratio reported in this study is up to ∼ 30 %
too high if we consider the effects of coating on BC and lens-
ing as a positive error (Pokhrel et al., 2017). Previous studies
found that smoldering combustion emits anywhere between
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Table 2. Time-weighted study-average enhancement ratios (g g−1 ratioed to CO) compared to emission ratios reported in other studies.

Ratios This work Selimovic et Selimovic et Liu et al. Sahu et al. Hobbs et al.
al. (2018)a al. (2018)b (2017)c,d (2012) (1996)e

BC /CO 0.0012 (0.0005) 0.0087 0.0018 0.0016 (0.0018) 0.0014 0.0103
BC /PM2.5 0.0095 (0.0003) – – 0.0060 (0.0054) – –
PM2.5 /CO 0.1263 (0.0015) – – 0.2661 (0.1342) – 0.4923

a Measured lab values at lab fire MCE. b Calculated from EF versus MCE fit based on average wildfire MCE reported in Liu et al. (2017).
c Average of Rim Fire and Big Windy Complex. BC data were analyzed for Liu et al. (2017) study but not reported. d PM values reported are
PM1.0. e PM values reported are PM3.5.

Figure 3. 1BC/1PM ratio based on linear regression of 1 h data.

2–49 times more PM than flaming combustion (Jen et al.,
2019; Kim et al., 2018; Reisen et al., 2018; Yokelson et al.,
2013a), so the combination of our1BC/1CO ratio that is in-
dicative of more smoldering combustion and a BC/PM ratio
that is similar to or slightly above measurements closer to fire
sources (Liu et al., 2017) again suggests that some net evap-
oration of PM is occurring at lower, warmer altitudes during
transport between the wildfire sources and our surface site.
Reduced light levels at night or in thick plumes could delay
secondary aerosol formation in wildfire smoke. Again, this
is worth more study since this could modify air quality and
health effects.

OA is the main component of wildfire PM, and the
1BC/1PM ratio is likely similar to the 1BC/1OA ratio.
Our 1BC/1PM ratio (∼ 1 %) then suggests that the aerosol
measured was overwhelmingly organic and thus strongly
cooling, especially if the impact of BrC or lensing was small.
Further, the mass absorption coefficient (MAC) for OA scales
with the 1BC/1OA ratio (Saleh et al., 2014), so we antici-
pate a low MAC, which is explored more next.

3.4 UV absorption by brown carbon

While the attribution of BrC is not exact and varies across
studies (Pokhrel et al., 2017), BrC absorption will offset the
climate cooling calculated for purely scattering OA depend-
ing on the amount emitted, its MAC, and its lifetime (Feng et
al., 2013). One field study of BrC lifetime suggests a signifi-
cant decrease of BrC over the course of a day but a prolonged
persistence of BrC nonetheless (∼ 6 % above background
even after 50 h following emission) (Forrister et al., 2015),
and studies of relevant chemical mechanisms involving BrC
have shown both increases and decreases (Lin et al., 2015;
Liu et al., 2016; Xu et al., 2018). Satellite retrievals employ-
ing reasonable a priori aerosol layer heights indicate that BrC
can have a strong impact in fresh BB plumes and a persistent
significant impact in downwind regional haze (Jethva and
Torres, 2011; Hammer et al., 2016). Here we present in situ
data showing persistent widespread regional impacts of BrC.
Table 3 lists the study-average AAE and percent contribu-
tion to absorption at 401 nm by BrC. We interpret our results
by comparing them to the limited measurements of wildfire
smoke in the lab and field and measurements for “flaming-
dominated” savanna fires (Selimovic et al., 2018; Forrister
et al., 2015; Eck et al., 2013). Theoretically, aerosol absorp-
tion that is dominated by black carbon would have an AAE
close to 1.0 (Bergstrom et al., 2002; Bond and Bergstrom,
2006; Bergstrom et al., 2007), which is the case in Eck et
al. (2013), who report an average AAE of 1.20 for mea-
surements of savannah fires in southern Africa. On the other
hand, Selimovic et al. (2018) and Forrister et al. (2015) cal-
culated AAEs for fresh smoke of 3.31 and 3.75, respectively,
for various mixed coniferous fuels burned in a laboratory and
in the field. Our study-average AAE (1.96± 0.38) is almost
2 times lower than the average value recommended for fresh
wildfire smoke (∼ 3.5) in Selimovic et al. (2018) but higher
than that reported in Eck et al. (2013). This is also the case
for the percent contribution to absorption at 401 nm by BrC,
where a lower AAE corresponds to lower BrC absorption.
The AAE recommended for fresh wildfire smoke implies the
% absorption by BrC at 401 nm is close to 86 %, but we still
see significant (∼ 50 %) absorption by BrC at 401 nm, on av-
erage, despite some aging of the smoke at our site.
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Table 3. Time-weighted study-average AAE and % BrC contribution compared to other studies.

This work Selimovic et Selimovic et Forrister et Eck et al.
al. (2018)a al. (2018)b al. (2015) (2013)

AAE 1.96 (0.38) 2.80 (1.57) 3.31 3.75 1.20
% BrC 50.7 (12.8) 64.2 (17.2) 78.0 – –

a Measured lab values at lab fire MCE. b Calculated from average wildfire MCE reported in Liu et
al. (2017).

Figure 4. (a) Plot of the peak-integrated 1NH3/1CO ratio versus our size and age proxy (401 scattering/870 scattering) for smoke impacts
that have an 1NH3/1CO ratio. (b) Plot of the peak-integrated absorption Ångström exponent versus our size and age proxy (401 scatter-
ing/870 scattering) when both PAXs were operational.

Although we cannot determine precise smoke ages in
this study, we can construct an analysis of our data that
probes the trend in AAE and % absorption by BrC with
aging. We start by noting that Mie scattering calculations
(John Walker, personal communication, 2017) imply that the
ratio of Bscat401/Bscat870 should decrease as average par-
ticle size increases (e.g., Schuster et al., 2006; Eck et al.,
1999; Kaufman et al., 1994), and average particle size is well
known to increase with particle age (Akagi et al., 2012; Eck
et al., 2013; Capes et al., 2008; Carrico et al., 2016). We also
show in Fig. 4a that the 1NH3/1CO ratio decreases with
Bscat401/Bscat870, and we know NH3/CO decreased with
aging with a ∼ 5 h half-life in the fall and under slower pho-
tochemical conditions in Table 2 in Akagi et al. (2012). Thus,
the range in Bscat401/Bscat870 shown in Fig. 4a represents
about 10 h of daytime aging. We also see a weak trend but
significant decrease in AAE over a similar range of our size
and age parameter in Fig. 4b. Our data for AAE versus a
proxy for average age of mixed-age smoke are more variable
than the AAE versus known transport time for a single plume
in Forrister et al. (2015) but still support a similar conclusion:
the net effect of BrC aging is a substantial decrease in AAE
over the course of ∼ 10 h of aging.

We also speculate that, in addition to aging, the time of day
that smoke is formed may impact BrC and AAE. We motivate
that hypothesis next and then explore the issue in subsequent
sections. Selimovic et al. (2018) showed that BrC accounted
for most of the absorption at 401 nm when MCEs were in a
low range associated with dominant smoldering combustion.
Benedict et al. (2017) further observed that smoke impacts
from a nearby wildfire had a much higher smoldering to flam-
ing ratio at night than during the day, which then suggests
the potential for increased BrC formation at night (Saide et
al., 2015). It is also known that smoldering combustion of
biomass emits many precursors, including monoterpenes, fu-
rans, and cresol (Stockwell et al., 2015), which can react
quickly with the major nighttime oxidant, NO3, and osten-
sibly form UV-absorbing organic nitrates that could augment
BrC. In fact, estimates using current data strongly suggest
that a substantial nighttime secondary BrC source could ex-
ist. The EF for primary organic aerosol (POA) produced by
BB typically ranges from 3 to 30 g kg−1 (May et al., 2014;
Liu et al., 2016, 2017). The EF for known plus unidentified
non-methane organic gases (NMOGs) with intermediate to
low volatility ranges from 3 to 100 g kg−1. Converting even
a small percentage of the co-emitted NMOGs that are known
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to react quickly with NO3 could yield substantial amounts of
BrC and build up a reservoir of BrC during dark hours. Once
daytime commences, other studies show that some types of
BrC, depending on the precursor, can experience rapid photo-
chemical degradation or formation via both direct photolysis
and oxidation (Zhao et al., 2015; Lee et al., 2014; Zhong and
Jang, 2014; Sareen et al., 2010). In summary, our extensive
in situ measurements show that even after 1–2 days of ag-
ing, BrC remains a significant component of ambient smoke
and that the climate properties of the regional haze have a
non-BC absorption contribution. However, the details of the
formation and lifetime of BrC are complicated and probably
vary diurnally.

3.5 Single scattering albedo, mass absorption
coefficient, mass scattering coefficient

This section starts with an important reminder/caveat. Our
scattering and absorption data are measured for particles up
to 1.0 µm, but the PM mass reported by the Missoula DEQ
site includes particles up to 2.5 µm. Thus, using our data
to calculate mass absorption coefficients (MACs) and mass
scattering coefficients (MSCs) will produce lower limit val-
ues that are not directly comparable to those obtained when
the range for both optical and mass measurements goes up
to 2.5 µm. Nevertheless it is potentially useful to link PM1.0
and PM2.5 measurements since measurements at 1 µm cut-
offs are common in field campaigns, but PM2.5 still remains
the common measurement in regional networks.

Our MAC and MSC values were calculated by plotting 1 h
averages of Bscat401, Babs401, Bscat870, and Babs870 versus
the 1 h PM2.5 values to calculate an MSC(401), MAC(401),
MSC(870), and MAC(870), respectively (Fig. S1). Val-
ues at other wavelengths were calculated with a power
law fit using the calculated averages (Table 4). Our
(1PM1.0/1PM2.5) MSC values are lower than those re-
ported for PM2.5/PM2.5 but still potentially useful. For in-
stance, the1PM1.0/1PM2.5 MSC at 870 nm is one to a good
approximation, which suggests a convenient way to estimate
PM2.5 directly from PAX-870 scattering data. Using a 1 µm
cutoff probably isolated the combustion-generated OA and
BC pretty well, but dust, ash, and biological particles can
be physically entrained in wildfire plumes (Formenti et al.,
2003; Gaudichet et al., 1995; Hungershoefer et al., 2008).
The particles in the 1.0–2.5 µm range are a small part of
the total mass in smoke emissions (Reid et al., 2005a), but
they contribute disproportionately to the scattering. The addi-
tional absorption that we might have measured with a 2.5 µm
cutoff may be less significant. Our study-average MAC at
401 nm is only 0.19± 0.08 m2 g−1, consistent with a low
BC /OA ratio (Saleh et al., 2014).

SSA, AAE, and SAE are commonly used to calculate
aerosol absorption and scattering in models and satellite re-
trievals (Ramanathan et al., 2001; McComiskey et al., 2008).
Uncertainty in the SSA is one of the largest sources of un-

Figure 5. Plot of single scattering albedo over the course of the
ambient smoke-monitoring period. Points represent SSA from ab-
sorption and scattering integrated over smoke-impacted events.

certainty in estimating the radiative effect of aerosols (Jiang
and Feingold, 2006; McComiskey et al., 2008). Some mod-
els and satellite (e.g., MODIS) retrievals assume a constant
value of SSA for fire aerosol throughout the biomass burning
season and the entire year, which may be an inaccurate ap-
proach. Eck et al. (2013) found an increase in SSA at 550 nm
from 0.81 in July to 0.88 in October in southern Africa. In
Fig. 5 we present evidence for an increase in the SSA for
moderately aged wildfire smoke over a prolonged period of
biomass burning. While we did not directly measure SSA at
550 nm, we did measure SSA at 870 nm for the duration of
the sampling period and SSA at 401 nm for the duration that
the PAX 401 was operational. Figure 5 shows a moderate in-
creasing trend in the SSA at 870 nm but no significant trend
in the SSA at 401 nm. It could be that because the sampling
period of the PAX 401 nm only covers ∼ 2 weeks, any trend
that may be present is not apparent within this time frame.
Table 4 shows our study-average SSA at 870 and 401 nm,
both of which are ∼ 0.93, which is similar to the SSA re-
ported at 550 nm in McMeeking et al. (2005b) of 0.92. Our
SSA and the SSA reported in McMeeking et al. (2005b) are
higher than the sometimes quoted typical surface SSA of the
earth (∼ 0.9; Praveen et al., 2012), which suggests that the
wildfire PM1.0 in regional haze would contribute to regional
cooling (Thornhill et al., 2018; Kolusu et al., 2015). Con-
versely, an SSA range like that reported in Eck et al. (2013)
could contribute to warming, which could potentially con-
tribute to a positive-feedback cycle associated with biomass
burning (Jacobsen, 2014).
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Table 4. Time-weighted study-average SSA, MAC, and MSC compared to other works.

Parameter λ This work Selimovic et Selimovic et Eck et al. McMeeking Reid et al.
(nm) al. (2018)b al. (2018)c (2013) et al. (2005b) (2005b)

SSA 401 0.93 (0.01) 0.79 (0.13) 0.9 – – –
540 0.937a – – – – 0.85 (0.03)
550 0.938a – – 0.81–0.88 0.92 (0.02)d 0.86–0.90
870 0.94 (0.02) 0.64 (0.26) 0.92 – – –

MAC 401 0.23 (0.01) – – – – –
530 0.143 – – – 0.37 (0.05)e –
540 0.138 0.7 (0.4)
550 0.132 – – – – 0.7-0.8
870 0.04 (< 0.01) – – – – –

MSC 401 3.23 (0.06) – – – – –
530 2.13 – – – 5.5 (0.5)e –
540 2.07 – – – – 3.2–4.2
550 2.02 – – – – 3.6–3.8
870 1.01 (0.02) – – – – –

a In this work MAC and MSC values are PM1.0 absorption and scattering divided by PM2.5 mass, and values between 401 and 870 nm are obtained
from power law fits. b Measured values at lab fire MCE. c Calculated from EF versus MCE fit based on average wildfire MCE reported in Liu et
al. (2017). d McMeeking et al. (2005b). e McMeeking et al. (2005a).

3.6 Case study: Labor Day weekend

Figure 6 highlights our data for Labor Day weekend (LDW),
spanning ∼ 50 h from 4 to 5 September 2017. We focus on
this time period because it includes the largest impacts in
Missoula, a regional smoke-production episode detected as
far downwind as Europe (An American Aerosol in Paris,
2019; Ansmann et al., 2018), and an opportunity to com-
pare what is likely smoke from one fire, subjected to differ-
ent processing scenarios. Peak “V ” is smoke that was likely
primarily produced at night and transported to Missoula at
night before subsequent photochemistry and dilution in the
Missoula Valley. In contrast, peak “W” is smoke that was
likely produced and transported during the day before ag-
ing in Missoula. Surface winds observed coming from the
east, our back trajectory calculations, and satellite observa-
tions along with the high concentration values of peak V all
imply that the smoke was mostly sourced from a local fire
(Rice Ridge) and about 2–4 h old. Our peak-integrated proxy
for particle size (4.02, smaller particle size) and the peak-
integrated 1NH3/1CO ratio (9.66× 10−3) for peak V sug-
gest that the smoke retained fairly fresh characteristics even
factoring in the daytime tail on the peak (Table S2). The peak
integrated AAE (2.88) is the highest observed value for AAE
from this study for any peak for which an AAE could be
derived. The same is true for the %401 absorption by BrC
(∼ 77 %). The UV absorption results are within the range
observed for fresh smoke reported in Selimovic et al. (2018)
and reiterated again earlier in Table 3, which lists average
AAE values for fresh smoke between 2.80 and 3.75 (Forris-
ter et al., 2015). Average values for %401 absorption by BrC
in fresh smoke ranged between 64 % and 86 % (Selimovic et

al., 2018), and again our integrated result for peak V falls in
this range. In summary, the moderately aged, strongly night-
influenced peak has properties not inconsistent with signifi-
cant amounts of BrC due to smoldering combustion or sub-
stantial nighttime BrC formation via reactions with NO3 or
O3.

While not readily apparent via satellite observations due
to stacked smoke layers, our back trajectory calculations, a
similar peak shape on an upwind monitor, visual observa-
tions of a wall of smoke arriving from the northeast, and
high concentrations of PM at the Missoula measuring site
strongly suggest that peak W , with an onset in the early
evening, also mostly came from the Rice Ridge Fire as day-
time produced/processed smoke. Peak W has a 401/870
scattering ratio (2.65) that implies larger particle sizes and
an 1NH3/1CO ratio (0.0044) that is ∼ 50 % that of Peak
V . The ratio of 1C2H4/1CO decreases by ∼ 30 % from
peak V to peak W . The AAE for peak W is 2.00, which is
∼ 30 % less than the AAE for Peak V , and corresponds to
a lower %401 absorption by BrC for the evening-onset peak
(∼ 54 %). Taken together, these values imply larger particles
and more photochemically aged smoke. Interestingly, the ra-
tios of 1CH4/1CO and 1BC/1CO are essentially similar
for peaks V and W . This implies the flaming to smoldering
ratio at the source for these events was similar (NO3 chem-
istry could still have been more important for peak V ). While
nighttime wildland fire combustion may normally be more
smoldering-dominated, LDW was marked by an unusual lack
of nighttime RH recovery and an aggressive doubling of the
fire size. Thus data from a different, more typical period are
likely needed to probe diurnal differences in fresh smoke.
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Figure 6. High-resolution (5 min) time series of smoke impacts measured in Missoula over Labor Day weekend (see Sect. 3.6).

3.7 Diurnal cycles

Diurnal cycles of smoke measured in Missoula provide some
insight into regional meteorological effects and have some
potential to further probe the day versus night flaming to
smoldering issues raised in the previous section (Sect. 3.6).
There is, however, a variable delay from production to recep-
tor. Figure 7 shows the diurnal cycle of CO and the average
hourly PM2.5 measured across the entirety of the smoke sam-
pling period. Levels of CO and PM2.5 peak together from
about 05:00 to 11:00, which is consistent with increased
smoldering at night but would also reflect the mixed layer
height. Figure 8 shows the diurnal cycles of PM2.5, hourly
average BC, and hourly average %401 absorption by BrC
(27 August to 10 September 2017). In this case we see that
potential BrC absorption peaks in the early morning while
BC peaks in the evening. One possible explanation for this
is that despite variation in mixed layer height, there is typi-

cally an increase in the flaming to smoldering ratio that pro-
duces more black carbon and less brown carbon during the
day. If nearby (less diluted) fires with shorter transport times
strongly influence the peak times, a signal of diurnal varia-
tion at the source could be partially evident at our site. How-
ever, we cannot rule out that an increase in photo-bleaching
throughout the middle of the day impacts the peak position
for absorption by BrC, but even then, the absorption by BrC
remains about half of the absorption at 401 nm on average.

3.8 Brief comparison to prescribed fire data

Of the 718 h we sampled during August and September 2017,
500.5 h were part of a smoke event, which is close to three-
quarters (∼ 70 %) of the total monitoring time period. Of
the total 718 h of monitoring, over half (56 %) violated the
National Ambient Air Quality Standards (NAAQS) for al-
lowable PM2.5 averaged over 24 h (35 µg m−3). The hourly
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Figure 7. Diurnal plot of CO and PM2.5, shown for the entirety of the monitoring period.

Figure 8. Diurnal plot of average PM2.5, hourly average %401 absorption by BrC, and hourly average BC. BC and PM shown for the entirety
of the monitoring period but %401 absorption by BrC only shown for when the PAX 401 was operational.

average for the entire sampling period of ∼ 54 µg m−3 of
PM2.5 is an average exceedance of the 24 h NAAQS stan-
dard by 42 %. One possible approach to minimizing wildfire
air-quality impacts is preemptive prescribed burning. Pre-
scribed fires reduce hazardous fuels, burn less fuel per unit
area, make less smoke per unit fuel consumption, and can
be ignited when conditions are favorable for minimizing air
quality impacts (Liu et al., 2017).

It is of interest to compare our large sample of ambi-
ent wildfire data to the comparatively rare data from air-
borne wildfire studies and prescribed fire data to see if our
large sample size supports the earlier (Liu et al., 2017)

conclusions regarding the nature of the smoke and emis-
sions. More strongly supported conclusions can reinforce the
land management implications. Table 5 lists the1BC/1CO,
1BC/1PM, and 1PM/1CO ratios for our ambient wild-
fire study, the airborne wildfire study from Liu et al. (2017),
and prescribed fire values reported in May et al. (2014).
The 1PM/1CO values for fresh wildfire smoke in Liu et
al. (2017) and aged wildfire smoke (this study) are about 3
and 1.5 times higher than 1PM/1CO for fresh smoke from
prescribed fires in May et al. (2014) when comparing to all
their US prescribed fires (Table 5). For only prescribed fires
in western US mountain coniferous ecosystems (last column
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Table 5. Comparison of wildfire emission/enhancement ratios to prescribed fire emission ratios (g g−1).

Ratios This work Liu et al. May et al. May et al.
(2017)a,b (2014)b (2014)b,c

BC /CO 0.0012 (0.0005) 0.0016 (0.0018) 0.013 (0.007) 0.006
BC /PM2.5 0.0095 (0.0003) 0.0060 (0.0054) 0.163 (0.019) 0.048
PM2.5 /CO 0.1263 (0.0015) 0.2661 (0.1342) 0.080 (0.030) 0.11 (0.01)

a Average of Rim Fire and Big Windy Complex. BC data were analyzed for Liu et al. (2017) study but not
reported. b PM values reported are PM1.0. c Values for the Shaver and Turtle fires (prescribed burns).

Table 5), the 1PM/1CO for fresh smoke is close to our
value for aged wildfire smoke. However, May et al. (2015)
noted that 1PM/1CO decreased by about a factor of 2 after
several hours of aging on at least one prescribed fire.

The 1BC/1CO for prescribed fires is higher than the
wildfire average by a factor of ∼ 9 (all prescribed fires) or
∼ 4 (last column), roughly suggesting a higher MCE for pre-
scribed fires. Ignoring smoke age, the 1BC/1PM for pre-
scribed fires is higher than the wildfire average by a fac-
tor of ∼ 20 (all prescribed fires) or ∼ 6 (last column). The
1BC/1PM observations suggest that wildfire smoke is over-
whelmingly more organic, which is important partly because
many optical properties scale with the BC /OA ratio (Saleh
et al., 2014). In general, our ground-based wildfire study con-
firms the earlier airborne indications that prescribed fires are
less smoky but also less cooling than wildfires. Differences
in smoke production and chemistry between wild and pre-
scribed fires should be researched more and have air quality
and land management implications.

4 Conclusions

A major, prolonged wildfire smoke and haze episode im-
pacted the NW US and SW Canada during August through
September of 2017. During this episode, we collected over
500 h of data characterizing smoke and haze properties with
a FTIR and PAXs at 870 and 401 nm at a ground-based
site in Missoula, Montana. This is probably the most ex-
tensive real-time data on wildfire smoke properties to date.
Our low 1BC/1PM (0.0095± 0.0005) ratio confirmed the
overwhelmingly organic nature of the smoke observed in the
airborne studies of wildfire smoke to date. Our 1BC/1CO
ratio (0.0012± 0.0005) for our ground site was moderately
lower than observed in aircraft studies, suggesting a rela-
tively larger contribution from smoldering combustion. De-
spite our lower 1BC/1CO ratio our 1PM/1CO ratio was
about half that measured in fresh smoke from aircraft. Taken
together with aircraft measurements in aged wildfire smoke,
this suggests that OA evaporation, at higher ambient temper-
atures nearer the surface, may typically reduce wildfire PM
air quality impacts on the timescale of several hours to days.
Bscat401/Bscat870 was used as a proxy for size and age of the
smoke particles, with this interpretation being supported by

the trace gas data. The size and age proxy implied that AAE
decreased significantly after about 10 h of smoke aging, con-
sistent with the single BrC lifetime measurement in an iso-
lated plume. The results clearly show that non-BC absorption
can be important in “typical” regional haze and moderately
aged smoke with BrC accounting for about half the absorp-
tion at 401 nm on average for the entire data set. The diurnal
trends show BrC, PM, and CO peaking in the early morn-
ing and BC peaking in the early evening. Over the course of
1 month, the SSA at 870 nm increased from∼ 0.9 to∼ 0.96.

Data availability. Raw data used to derive ERs and other quantities
reported that are not included in the supplement can be obtained by
contacting the corresponding author.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-19-3905-2019-supplement.

Author contributions. VS and RJY conducted the UM measure-
ments and the data analysis. VS, RJY, GRM, and SC contributed
to the discussion and interpretation of the results and writing of the
manuscript.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. Vanessa Selimovic and Robert J. Yokelson
were supported by the NSF grants AGS-1748266 and AGS-
1349976, NOAA-CPO grant NA16OAR4310100, and NASA grant
NNX13AP46G to UM. Gavin R. McMeeking was supported by
the NOAA-CPO grant NA16OAR4310109. Purchase and prepara-
tion of the PAXs was supported by NSF grant AGS-1349976 to
Robert J. Yokelson. We thank John Walker for providing us with
Mie scattering calculations.

Review statement. This paper was edited by Ilona Riipinen and re-
viewed by three anonymous referees.

Atmos. Chem. Phys., 19, 3905–3926, 2019 www.atmos-chem-phys.net/19/3905/2019/

https://doi.org/10.5194/acp-19-3905-2019-supplement


V. Selimovic et al.: Regional wildfire smoke: trace gases, PM, and aerosol optical properties 3921

References

Adetona, O., Reinhardt, T. E., Domitrovich, J., Broyles, G., Adet-
ona, A. M., Kleinman, M. T., Ottmar, R. D., and Naeher, L. P.:
Review of the health effects of wildland fire smoke on wild-
land firefighters and the public, Inhal. Toxicol., 28, 95–139,
https://doi.org/10.3109/08958378.2016.1145771, 2016.

Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J.,
Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emis-
sion factors for open and domestic biomass burning for use
in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072,
https://doi.org/10.5194/acp-11-4039-2011, 2011.

Akagi, S. K., Craven, J. S., Taylor, J. W., McMeeking, G. R., Yokel-
son, R. J., Burling, I. R., Urbanski, S. P., Wold, C. E., Seinfeld, J.
H., Coe, H., Alvarado, M. J., and Weise, D. R.: Evolution of trace
gases and particles emitted by a chaparral fire in California, At-
mos. Chem. Phys., 12, 1397–1421, https://doi.org/10.5194/acp-
12-1397-2012, 2012.

Akagi, S. K., Yokelson, R. J., Burling, I. R., Meinardi, S., Simp-
son, I., Blake, D. R., McMeeking, G. R., Sullivan, A., Lee, T.,
Kreidenweis, S., Urbanski, S., Reardon, J., Griffith, D. W. T.,
Johnson, T. J., and Weise, D. R.: Measurements of reactive trace
gases and variable O3 formation rates in some South Carolina
biomass burning plumes, Atmos. Chem. Phys., 13, 1141–1165,
https://doi.org/10.5194/acp-13-1141-2013, 2013.

An American Aerosol in Paris: https://earthobservatory.nasa.
gov/images/90980/an-american-aerosol-in-paris, last access:
14 February 2019.

Ansmann, A., Baars, H., Chudnovsky, A., Mattis, I., Veselovskii,
I., Haarig, M., Seifert, P., Engelmann, R., and Wandinger, U.:
Extreme levels of Canadian wildfire smoke in the stratosphere
over central Europe on 21–22 August 2017, Atmos. Chem.
Phys., 18, 11831–11845, https://doi.org/10.5194/acp-18-11831-
2018, 2018.

Benedict, K. B., Prenni, A. J., Carrico, C. M., Sullivan, A. P.,
Schichtel, B. A., and Collett Jr., J. L.: Enhanced concentrations
of reactive nitrogen species in wildfire smoke, Atmos. Environ.,
148, 8–15, 2017.

Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander,
C., Smirnova, T. G., Olson, J. B., James, E., Dowell, D. C., Grell,
G. A., Lin, H., Peckham, S. E., Smith, T. L., Moninger, W. R.,
Kenyon, J., and Manikin, G. S.: A North American Hourly As-
similation and Model Forecast Cycle: The Rapid Refresh, Mon.
Weather Rev., 144, 1669–1694, https://doi.org/10.1175/MWR-
D-15-0242.1, 2016.

Bergstrom, R. W., Russell, P. B., and Hignett, P: Wave-
length dependence of the absorption of black carbon par-
ticles: predictions and results from the TARFOX experi-
ment and implications for aerosol single scattering albedo,
J. Atmos. Sci., 59, 567–577, https://doi.org/10.1175/1520-
0469(2002)059<0567:WDOTAO>2.0.CO;2, 2002.

Bergstrom, R. W., Pilewskie, P., Russell, P. B., Redemann, J., Bond,
T. C., Quinn, P. K., and Sierau, B.: Spectral absorption proper-
ties of atmospheric aerosols, Atmos. Chem. Phys., 7, 5937–5943,
https://doi.org/10.5194/acp-7-5937-2007, 2007.

Bond, T. C. and Bergstrom, R.: Light absorption by carbonaceous
particles: An investigative review, Aerosol Sci. Tech., 40, 27–67,
https://doi.org/10.1080/02786820500421521, 2006.

Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H.,
and Klimont, Z.: A technology-based global inventory of black

and organic carbon emissions from combustion, J. Geophys.
Res., 109, D14203, https://doi.org/10.1029/2003JD003697,
2004.

Bond, T. C., Doherty, S. J., Fahey, D.W., Forster, P. M., Berntsen,
T., DeAngelo, B. J., Flanner, M. G.,Ghan, S., Kärcher, B.,
Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M.
C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H.,
Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacob-
son, M. Z., Kaiser, J. W. , Klimont, Z., Lohmann, U., Schwarz,
J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender,
C. S.: Bounding the role of black carbon in the climate sys-
tem: A scientific assessment, J. Geophys. Res., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013.

Burling, I. R., Yokelson, R. J., Akagi, S. K., Urbanski, S. P.,
Wold, C. E., Griffith, D. W. T., Johnson, T. J., Reardon, J.,
and Weise, D. R.: Airborne and ground-based measurements
of the trace gases and particles emitted by prescribed fires
in the United States, Atmos. Chem. Phys., 11, 12197–12216,
https://doi.org/10.5194/acp-11-12197-2011, 2011.

Capes, G., Johnson, B., McFiggans, G., Williams, P. I., Haywood,
J., and Coe, H.: Aging of biomass burning aerosols over West
Africa: Aircraft measurements of chemical composition, micro-
physical properties, and emission ratios, J. Geophys. Res., 113,
D00C15, https://doi.org/10.1029/2008JD009845, 2008.

Carrico, C., Prenni, A., Kreidenweis, S., Levin, E., McCluskey,
C., DeMott, P., McMeeking, G., Nakao, S., Stockwell, C.,
and Yokelson, R. J.: Rapidly evolving ultrafine and fine
mode biomass smoke physical properties: Comparing labo-
ratory and field results, J. Geophys. Res., 121, 5750–5768,
https://doi.org/10.1002/2015JD024389, 2016.

Christian, T., Kleiss, B., Yokelson, R. J., Holzinger, R., Crutzen,
P. J., Hao, W. M., Saharjo, B. H., and Ward, D. E.: Compre-
hensive laboratory measurements of biomass-burning emissions:
1. Emissions from Indonesian, African, and other fuels, J. Geo-
phys. Res., 108, 4719, https://doi.org/10.1029/2003JD003704,
2003.

Collier, S., Zhou, S., Onasch, T.B., Jaffe, D. A., Kleinman, L., Sed-
lacek III., A. J., Briggs, N. L., Hee, J., Fortner, E., Shilling,
J. E., Worsnop, D., Yokelson, R. J., Parworth, C., Ge, X., Xu,
J., Butterfield, Z., Chand, D., Dubey, M. K., Pekour, M. S.,
Springston, S., and Zhang, Q.: Regional influence of aerosol
emissions from wildfires driven by combustion efficiency: in-
sights from the BBOP campaign, Environ. Sci. Technol., 50,
8513–8522, https://doi.org/10.1021/acs.est.6b01617, 2016.

Crutzen, P. J. and Andreae, M. O.: Biomass burn-
ing in the tropics: Impact on atmospheric chemistry
and biogeochemical cycles, Science, 250, 1669–1678,
https://doi.org/10.1126/science.250.4988.1669, 1990.

Draxler, R. R.: HYSPLIT4 user’s guide, NOAA Tech. Memo. ERL
ARL-230, NOAA Air Resources Laboratory, Silver Spring, MD,
USA, 1999.

Draxler, R. R. and Hess, G. D.: Description of the HYSPLIT_4
modeling system, NOAA Tech. Memo. ERL ARL-224, NOAA
Air Resources Laboratory, Silver Spring, MD, USA, 24 pp.,
1997.

Draxler, R. R. and Hess, G. D.: An overview of the HYSPLIT_4
modeling system of trajectories, dispersion, and deposition,
Aust. Meteor. Mag., 47, 295–308, 1998.

www.atmos-chem-phys.net/19/3905/2019/ Atmos. Chem. Phys., 19, 3905–3926, 2019

https://doi.org/10.3109/08958378.2016.1145771
https://doi.org/10.5194/acp-11-4039-2011
https://doi.org/10.5194/acp-12-1397-2012
https://doi.org/10.5194/acp-12-1397-2012
https://doi.org/10.5194/acp-13-1141-2013
https://earthobservatory.nasa.gov/images/90980/an-american-aerosol-in-paris
https://earthobservatory.nasa.gov/images/90980/an-american-aerosol-in-paris
https://doi.org/10.5194/acp-18-11831-2018
https://doi.org/10.5194/acp-18-11831-2018
https://doi.org/10.1175/MWR-D-15-0242.1
https://doi.org/10.1175/MWR-D-15-0242.1
https://doi.org/10.1175/1520-0469(2002)059<0567:WDOTAO>2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059<0567:WDOTAO>2.0.CO;2
https://doi.org/10.5194/acp-7-5937-2007
https://doi.org/10.1080/02786820500421521
https://doi.org/10.1029/2003JD003697
https://doi.org/10.1002/jgrd.50171
https://doi.org/10.5194/acp-11-12197-2011
https://doi.org/10.1029/2008JD009845
https://doi.org/10.1002/2015JD024389
https://doi.org/10.1029/2003JD003704
https://doi.org/10.1021/acs.est.6b01617
https://doi.org/10.1126/science.250.4988.1669


3922 V. Selimovic et al.: Regional wildfire smoke: trace gases, PM, and aerosol optical properties

Eck, T., Holben, B. N, Reid, J., Dubovik, O., Smirnov, A., O’Neill,
N., Slutsker, I., and Kinne, S: Wavelength dependence of the op-
tical depth of biomass burning, urban, and desert dust aerosols,
J. Geophys. Res., 104, 31333–31349, 1999.

Eck, T. F., Holben B. N., Reid, J. S., Mukelabai, M. M., Piketh, S. J.,
Torres, O., Jethva, H. T., Hyer, E. J., Ward, D. E., Dubovik, O.,
Sinyuk, A., Schafer, J. S., Giles, D. M., Sorokin, M., Smirnov,
A., and Slutsker, I.: A seasonal trend of single scattering albedo
in southern African biomass-burning particles: implications for
satellite products and estimates of emissions for the world’s
largest biomass burning source, J. Geophys. Res.-Atmos., 118,
6414–6432, https://doi.org/10.1002/jgrd.50500, 2013.

Ervens, B., Turpin, B. J., and Weber, R. J.: Secondary organic
aerosol formation in cloud droplets and aqueous particles (aq-
SOA): a review of laboratory, field and model studies, Atmos.
Chem. Phys., 11, 11069–11102, https://doi.org/10.5194/acp-11-
11069-2011, 2011.

Feng, Y., Ramanathan, V., and Kotamarthi, V. R.: Brown car-
bon: a significant atmospheric absorber of solar radiation?, At-
mos. Chem. Phys., 13, 8607–8621, https://doi.org/10.5194/acp-
13-8607-2013, 2013.

Formenti, P., Elbert, W., Maenhaut, W., Haywood, J., Osborne, S.,
and Andreae, M. O: Inorganic and carbonaceous aerosols during
the Southern African Regional Science Initiative (SAFARI 2000)
experiment: Chemical characteristics, physical properties, and
emission data for smoke from African biomass burning, J. Geo-
phys. Res., 108, 8488, https://doi.org/10.1029/2002JD002408,
2003.

Forrister, H., Liu, J., Scheuer, E., Dibb, J., Ziemba, L., Thorn-
hill, K. L., Anderson, B., Diskin, G., Perring, A. E., Schwarz,
J. P., Campuzano-Jost, P., Day, D. A., Palm, B. B., Jimenez,
J. L., Nenes, A., and Weber, R. J.: Evolution of brown car-
bon in wildfire plumes. Geophys. Res. Lett., 42, 4623–4630,
https://doi.org/10.1002/2015GL063897, 2015.

Gaudichet, A., Echalar, F., Chatenet, B., Quisefit, J. P., Malingre,
G., Cachier, H., Buat-Menard, P., Artaxo, P., and Maenhaut,W.:
Trace Elements in Tropical African Savanna, J. Atmos. Chem.,
22, 19–39, https://doi.org/10.1007/BF00708179, 1995.

Graber, E. R. and Rudich, Y.: Atmospheric HULIS: How humic-
like are they? A comprehensive and critical review, Atmos.
Chem. Phys., 6, 729–753, https://doi.org/10.5194/acp-6-729-
2006, 2006.

Griffith, D. W. T.: Synthetic calibration and quantitative analysis of
gas phase infrared spectra, Appl. Spectrosc., 50, 59–70, 1996.

Hammer, M. S., Martin, R. V., van Donkelaar, A., Buchard, V.,
Torres, O., Ridley, D. A., and Spurr, R. J. D.: Interpreting the
ultraviolet aerosol index observed with the OMI satellite in-
strument to understand absorption by organic aerosols: implica-
tions for atmospheric oxidation and direct radiative effects, At-
mos. Chem. Phys., 16, 2507–2523, https://doi.org/10.5194/acp-
16-2507-2016, 2016.

Hobbs, P. V., Reid, J. S., Herring, J. A., Nance, J. D., Weiss, R. E.,
Ross, J. L., Hegg, D. A., Ottmar, R. D., and Liousse, C.: Particle
and trace-gas measurements in smoke from prescribed burns of
forest products in the Pacific Northwest, Biomass Burning and
Global Change, vol. 1, MIT Press, New York, USA, 1996.

Hobbs, P. V., Sinha, P., Yokelson, R. J., Christian, T. J.,
Blake, D. R., Gao, S., Kirchstetter, T. W., Novakov, T., and
Pilewskie, P.: Evolution of gases and particles from a sa-

vanna fire in South Africa, J. Geophys. Res., 108, 8485,
https://doi.org/10.1029/2002JD002352, 2003.

Hungershoefer, K., Zeromskiene, K., Iinuma, Y., Helas, G., Trent-
mann, J., Trautmann, T., Parmar, R. S., Wiedensohler, A., An-
dreae, M. O., and Schmid, O.: Modelling the optical properties
of fresh biomass burning aerosol produced in a smoke chamber:
results from the EFEU campaign, Atmos. Chem. Phys., 8, 3427–
3439, https://doi.org/10.5194/acp-8-3427-2008, 2008.

Jacobson, M. Z.: Effects of biomass burning on climate, account-
ing for heat and moisture fluxes, black and brown carbon, and
cloud absorption effects, J. Geophys. Res.-Atmos., 119, 8980–
9002, https://doi.org/10.1002/2014JD021861, 2014.

Jaffe, D. A., Wigder, N., Downey, N., Pfister, G., Boynard, A.,
and Reid, S. B: Impact of wildfires on ozone exceptional events
in the western U.S., Environ. Sci. Technol., 47, 11065–11072,
https://doi.org/10.1021/es402164f, 2013.

Jen, C. N., Hatch, L. E., Selimovic, V., Yokelson, R. J., Weber, R.,
Fernandez, A. E., Kreisberg, N. M., Barsanti, K. C., and Gold-
stein, A. H.: Speciated and total emission factors of particulate
organics from burning western US wildland fuels and their de-
pendence on combustion efficiency, Atmos. Chem. Phys., 19,
1013–1026, https://doi.org/10.5194/acp-19-1013-2019, 2019.

Jethva, H. and Torres, O.: Satellite-based evidence of wavelength-
dependent aerosol absorption in biomass burning smoke in-
ferred from Ozone Monitoring Instrument, Atmos. Chem. Phys.,
11, 10541–10551, https://doi.org/10.5194/acp-11-10541-2011,
2011.

Jiang, H. and Feingold, G.: Effect of aerosol on warm convec-
tive clouds: aerosol-cloud-surface flux feedbacks in a new cou-
pled large eddy model, J. Geophys. Res.-Atmos., 111, D01202,
https://doi.org/10.1029/2005JD006138, 2006.

Jolleys, M. D., Coe, H., McFiggans, G., Capes, G., Allan, J. D.,
Crosier, J., Williams, P. I., Allen, G., Bower, K. N., Jimenez, J. L.,
Russell., L. M., Grutter, M., and Baumgardner, D: Characterizing
the aging of biomass buring organic aerosol by use of mixing
ratios: a meta-analysis of four regions, Environ. Sci. Technol.,
46, 13093–13102, https://doi.org/10.1021/es302386v, 2012.

Kaufman, Y., Gitelson, A., Karnieli, A., Ganor, E., Fraser, R., Naka-
jima, T., Mattoo, S., and Holben, B. N.: Size distribution and
scattering phase function of aerosol particles retrieved from sky
brightness measurements, J. Geophys. Res., 99, 10341–10356,
1994.

Kim, Y. H., Warren, S., Krantz, Q. T., King, C., Jaskot, R.,
Preston, W. T., George, B. J., Hays, M. D., Landis, M. S.,
Higuchi, M., DeMarini, D., and Gilmour, M. R: Mutagenic-
ity and lung toxicity of smoldering versus flaming emis-
sions from various biomass fuels: implications for health ef-
fects from wildland fires, Environ. Health Persp., 126, 017011,
https://doi.org/10.1289/EHP2200, 2018.

Kolusu, S. R., Marsham, J. H., Mulcahy, J., Johnson, B., Dun-
ning, C., Bush, M., and Spracklen, D. V.: Impacts of Ama-
zonia biomass burning aerosols assessed from short-range
weather forecasts, Atmos. Chem. Phys., 15, 12251–12266,
https://doi.org/10.5194/acp-15-12251-2015, 2015.

Koss, A. R., Sekimoto, K., Gilman, J. B., Selimovic, V., Cog-
gon, M. M., Zarzana, K. J., Yuan, B., Lerner, B. M., Brown,
S. S., Jimenez, J. L., Krechmer, J., Roberts, J. M., Warneke,
C., Yokelson, R. J., and de Gouw, J.: Non-methane organic gas
emissions from biomass burning: identification, quantification,

Atmos. Chem. Phys., 19, 3905–3926, 2019 www.atmos-chem-phys.net/19/3905/2019/

https://doi.org/10.1002/jgrd.50500
https://doi.org/10.5194/acp-11-11069-2011
https://doi.org/10.5194/acp-11-11069-2011
https://doi.org/10.5194/acp-13-8607-2013
https://doi.org/10.5194/acp-13-8607-2013
https://doi.org/10.1029/2002JD002408
https://doi.org/10.1002/2015GL063897
https://doi.org/10.1007/BF00708179
https://doi.org/10.5194/acp-6-729-2006
https://doi.org/10.5194/acp-6-729-2006
https://doi.org/10.5194/acp-16-2507-2016
https://doi.org/10.5194/acp-16-2507-2016
https://doi.org/10.1029/2002JD002352
https://doi.org/10.5194/acp-8-3427-2008
https://doi.org/10.1002/2014JD021861
https://doi.org/10.1021/es402164f
https://doi.org/10.5194/acp-19-1013-2019
https://doi.org/10.5194/acp-11-10541-2011
https://doi.org/10.1029/2005JD006138
https://doi.org/10.1021/es302386v
https://doi.org/10.1289/EHP2200
https://doi.org/10.5194/acp-15-12251-2015


V. Selimovic et al.: Regional wildfire smoke: trace gases, PM, and aerosol optical properties 3923

and emission factors from PTR-ToF during the FIREX 2016
laboratory experiment, Atmos. Chem. Phys., 18, 3299–3319,
https://doi.org/10.5194/acp-18-3299-2018, 2018.

Lack, D. A. and Cappa, C. D.: Impact of brown and clear car-
bon on light absorption enhancement, single scatter albedo
and absorption wavelength dependence of black carbon, At-
mos. Chem. Phys., 10, 4207–4220, https://doi.org/10.5194/acp-
10-4207-2010, 2010.

Lack, D. A. and Langridge, J. M.: On the attribution
of black and brown carbon light absorption using the
Ångström exponent, Atmos. Chem. Phys., 13, 10535–10543,
https://doi.org/10.5194/acp-13-10535-2013, 2013.

Lack, D. A., Cappa, C. D., Covert, D. S., Baynard, T., Massoli,
P., Sierau, B., Bates, T. S., Quinn, P. K., Lovejoy, E. R., and
Ravishankara, A. R.: Bias in Filter Based Aerosol Light Ab-
sorption Measurements Due to Organic Aerosol Loading: Ev-
idence from Ambient Measurements, Aerosol Sci. Tech., 42,
1033–1041, https://doi.org/10.1080/02786820802389285, 2008.

Lack, D. A., Langridge, J. M, Bahreini, R., Cappa, C. D., Middle-
brook, A. M., and Schwarz, J. P.: Brown carbon and internal mix-
ing in biomass burning particles, P. Natl. Acad. Sci. USA, 109,
14802–14807, https://doi.org/10.1073/pnas.1206575109, 2012.

Landis, M. S., Edgerton, E. S., White, E. M., Wentworth,
G. R., Sullivan, A. P., and Dillner, A. M: The impact
of the 2016 Fort McMurray Horse River wildfire on am-
bient air pollution levels in the Athabasca Oil Sands Re-
gion, Alberta, Canada, Sci. Total. Environ., 618, 1665—1676,
https://doi.org/10.1016/j.scitotenv.2017.10.008, 2017.

Laskin, A., Laskin, J., and Nizkorodov, S. A: Chemistry of
atmospheric brown carbon, Chem. Rev., 115, 4335–4382,
https://doi.org/10.1021/cr5006167, 2015.

Le, G. E., Breysse, P. N., McDermott, A., Eftim, S. E., Geyh, A.,
Berman, J. D., and Curriero, F. C: Canadian forest fires and
the effects of long-range transboundary air pollution on hospi-
talizations among the elderly, ISPRS Int. Geo-Inf., 3, 713–731,
https://doi.org/10.3390/ijgi3020713, 2014.

Lee, H. J., Aiona, P. K., Laskin, A., Laskin, J., and Nizko-
rodov, S. A.: Effect of solar radiation on the optical proper-
ties and molecular composition of laboratory proxies of atmo-
spheric brown carbon, Environ. Sci. Technol., 48, 10217–10226,
https://doi.org/10.1021/es502515r, 2014.

Lewis, K., Arnott, W. P., Moosmuller, H., and Wold, C. E.: Strong
spectral variation of biomass smoke light absorption and sin-
gle scattering albedo observed with a novel dual-wavelength
photoacoustic instrument, J. Geophys. Res., 113, D16203,
https://doi.org/10.1029/2007JD009699, 2008.

Li, H., Lamb, K. D., Schwarz, J. P., Selimovic, V., Yokel-
son, R. J., McMeeking, G. R., and May, A.: Inter-comparison
of black carbon measurement methods for simulated open
biomass burning emissions, Atmos. Environ., 206, 156–169,
https://doi.org/10.1016/j.atmosenv.2019.03.010, 2019.

Lin, P., Liu, J., Shilling, J. E., Kathmann, S. M., Laskin, J.,
and Laskin, A.: Molecular characterization of brown carbon
(BrC) chromophores in secondary organic aerosol generated
from photo-oxidation of toluene, Phys. Chem. Chem. Phys., 17,
23312–23325, https://doi.org/10.1039/C5CP02563J, 2015.

Lindaas, J., Farmer, D. K., Pollack, I. B., Abeleira, A., Flocke,
F., Roscioli, R., Herndon, S., and Fischer, E. V.: Changes in
ozone and precursors during two aged wildfire smoke events

in the Colorado Front Range in summer 2015, Atmos. Chem.
Phys., 17, 10691–10707, https://doi.org/10.5194/acp-17-10691-
2017, 2017.

Liu, J. C., Pereira, G., Uhl, S. A., Bravo, M. A., and Bell, M. L:
A systematic review of the physical health impacts from non-
occupational exposure to wildfire smoke, Environ. Res., 136,
120–132, https://doi.org/10.1016/j.envres.2014.10.015, 2015.

Liu, X., Zhang, Y., Huey, L. G., Yokelson, R. J., Wang, Y., Jimenez,
J. L., Campuzano-Jost, P., Beyersdorf, A. J., Blake, D. R., Choi,
Y., St Clair, J. M., Crounse, J. D., Day, D. A., Diskin, G. S.,
Fried, A., Hall, S. R., Hanisco, T. F., King, L. E., Meinardi, S.,
Mikoviny, T., Palm, B. B., Peischl, J., Perring, A. E., Pollack, I.
B., Ryerson, T. B., Sachse, G., Schwarz, J. P., Simpson, I. J., Tan-
ner, D. J., Thornhill, K. L., Ullmann, K., Weber, R. J., Wennberg,
P. O., Wisthaler, A., Wolfe, G. M., and Ziemba, L. D.: Agricul-
tural fires in the southeastern US during SEAC4RS: Emissions of
trace gases and particles and evolution of ozone, reactive nitro-
gen, and organic aerosol, J. Geophys. Res.-Atmos., 121, 7383–
7414, https://doi.org/10.1002/2016jd025040, 2016.

Liu, X., Huey, G. L., Yokelson, R. J., Selimovic, V., Simpson, I. J.,
Müller, M., Jimenez. J. L., Campuzano-Jost, P., Beyersdorf. A. J.,
Blake, D. R., Butterfield, Z., Choi, Y., Crounse, J. D., Day, D. A.,
Diskin, G. S., Dubey, M. K., Fortner, E., Hanisco, T. F., Hu, W.,
King, L. E., Kleinman, L., Meinardi, S., Mikoviny, T., Onasch, T.
B., Palm, B. B., Peischl, J., Pollack, I. B., Ryerson, T. B., Sachse,
G. W., Sedlacek, A. J., Shilling, J. E., Springston, S., St. Clair,
J. M., Tanner, D. J, Peng, A. P., Wennberg, P. O., Wisthaler,
A., and Wolfe, G. M.: Airborne measurements of western U.S
wildfire emissions: Comparison with prescribed burning and air
quality implications, J. Geophys. Res.-Atmos., 122, 6108–6129,
https://doi.org/10.1002/2016JD026315, 2017.

Lobert, J. M., Scharffe, D. H., Hao, W. M., Kuhlbusch, T. A.,
Seuwen, R., Wameck, P., and Crutzen, P. J.: Experimental eval-
uation of biomass burning emissions: Nitrogen and carbon con-
taining compounds, in: Global Biomass Burning: Atmospheric,
Climatic and Biospheric Implications, edited by: Levine, J. S.,
289–304, MIT Press, Cambridge, Mass., USA, 1991.

Mao, Y. H., Li, Q. B., Henze, D. K., Jiang, Z., Jones, D. B.
A., Kopacz, M., He, C., Qi, L., Gao, M., Hao, W.-M., and
Liou, K.-N.: Estimates of black carbon emissions in the west-
ern United States using the GEOS-Chem adjoint model, At-
mos. Chem. Phys., 15, 7685–7702, https://doi.org/10.5194/acp-
15-7685-2015, 2015.

May, A. A., McMeeking., G. R., Lee, T., Taylor, J. W., Craven,
J. S., Burling, I., Sullivan, A. P., Akagi, S., Collett Jr., J. L.,
Flynn, M., Coe, H., Urbanski, S. P., Seinfeld, J. H., Yokelson,
R. J., and Kreidenweis, S. M.: Aerosol emissions from pre-
scribed fires in the United States: A synthesis of laboratory and
aircraft measurements, J. Geophys. Res.-Atmos., 119, 11826–
11849, https://doi.org/10.1002/2014JD021848, 2014.

May, A. A., Lee, T., McMeeking, G. R., Akagi, S., Sullivan, A. P.,
Urbanski, S., Yokelson, R. J., and Kreidenweis, S. M.: Obser-
vations and analysis of organic aerosol evolution in some pre-
scribed fire smoke plumes, Atmos. Chem. Phys., 15, 6323–6335,
https://doi.org/10.5194/acp-15-6323-2015, 2015.

McClure, C. D. and Jaffe, D. A: US particulate matter air quality im-
proves except in wildfire-prone areas, P. Natl. Acad. Sci. USA,
115, 7901–7906, https://doi.org/10.1073/pnas.1804353115,
2018.

www.atmos-chem-phys.net/19/3905/2019/ Atmos. Chem. Phys., 19, 3905–3926, 2019

https://doi.org/10.5194/acp-18-3299-2018
https://doi.org/10.5194/acp-10-4207-2010
https://doi.org/10.5194/acp-10-4207-2010
https://doi.org/10.5194/acp-13-10535-2013
https://doi.org/10.1080/02786820802389285
https://doi.org/10.1073/pnas.1206575109
https://doi.org/10.1016/j.scitotenv.2017.10.008
https://doi.org/10.1021/cr5006167
https://doi.org/10.3390/ijgi3020713
https://doi.org/10.1021/es502515r
https://doi.org/10.1029/2007JD009699
https://doi.org/10.1016/j.atmosenv.2019.03.010
https://doi.org/10.1039/C5CP02563J
https://doi.org/10.5194/acp-17-10691-2017
https://doi.org/10.5194/acp-17-10691-2017
https://doi.org/10.1016/j.envres.2014.10.015
https://doi.org/10.1002/2016jd025040
https://doi.org/10.1002/2016JD026315
https://doi.org/10.5194/acp-15-7685-2015
https://doi.org/10.5194/acp-15-7685-2015
https://doi.org/10.1002/2014JD021848
https://doi.org/10.5194/acp-15-6323-2015
https://doi.org/10.1073/pnas.1804353115


3924 V. Selimovic et al.: Regional wildfire smoke: trace gases, PM, and aerosol optical properties

McComiskey, A., Schwartz, S. E., Schmid, B., Guan, H.,
Lewis, E. R., Ricchiazzi, P., and Ogren, J. A.: Direct
aerosol forcing: calculation from observables and sensitiv-
ities to inputs, J. Geophys. Res.-Atmos., 113, D09202,
https://doi.org/10.1029/2007JD009170, 2008.

McMeeking, G. R., Kreidenweis, S. M., Carrico, C. M., Collett,
J. L., Day, D. E., and Malm, W. C.: Observations of smoke-
influenced aerosol during the Yosemite Aerosol Characterization
Study: Size distributions and chemical composition J. Geophys.
Res., 110, D18209, https://doi.org/10.1029/2004JD005389,
2005a.

McMeeking, G. R., Kreidenweis, S. M., Carrico, C. M.,
Collett, J. L., Day, D. E., and Malm, W. C.: Observa-
tions of smoke-influenced aerosol during the Yosemite
Aerosol Characterization Study: 2. Aerosol scattering
and absorbing properties, J. Geophys. Res., 110, D18209,
https://doi.org/10.1029/2004JD005624, 2005b.

Miyakawa, T., Oshima, N., Taketani, F., Komazaki, Y., Yoshino, A.,
Takami, A., Kondo, Y., and Kanaya, Y.: Alteration of the size dis-
tributions and mixing states of black carbon through transport in
the boundary layer in east Asia, Atmos. Chem. Phys., 17, 5851–
5864, https://doi.org/10.5194/acp-17-5851-2017, 2017.

Müller, M., Anderson, B. E., Beyersdorf, A. J., Crawford, J.
H., Diskin, G. S., Eichler, P., Fried, A., Keutsch, F. N.,
Mikoviny, T., Thornhill, K. L., Walega, J. G., Weinheimer, A.
J., Yang, M., Yokelson, R. J., and Wisthaler, A.: In situ mea-
surements and modeling of reactive trace gases in a small
biomass burning plume, Atmos. Chem. Phys., 16, 3813–3824,
https://doi.org/10.5194/acp-16-3813-2016, 2016.

Nakayama, T. Suzuki, H., Kagamitani, S., and Ikeda, Y.: Character-
ization of a three wavelength Photoacoustic Soot Spectrometer
(PASS-3) and a Photoacoustic Extinctiometer (PAX), J. Mete-
orol. Soc. Jpn., 93, 285–308, https://doi.org/10.2151/jmsj.2015-
016, 2015.

Park, R. J., Jacob, D. J., and Logan, J. A.: Fire and bio-
fuel contributions to annual mean aerosol mass concentra-
tions in the United States, Atmos. Environ., 41, 7389–7400,
https://doi.org/10.1016/j.atmosenv.2007.05.061, 2007.

Pokhrel, R. P., Wagner, N. L., Langridge, J. M., Lack, D. A.,
Jayarathne, T., Stone, E. A., Stockwell, C. E., Yokelson, R.
J., and Murphy, S. M.: Parameterization of single-scattering
albedo (SSA) and absorption Ångström exponent (AAE) with
EC /OC for aerosol emissions from biomass burning, Atmos.
Chem. Phys., 16, 9549–9561, https://doi.org/10.5194/acp-16-
9549-2016, 2016.

Pokhrel, R. P., Beamesderfer, E. R., Wagner, N. L., Langridge, J.
M., Lack, D. A., Jayarathne, T., Stone, E. A., Stockwell, C. E.,
Yokelson, R. J., and Murphy, S. M.: Relative importance of black
carbon, brown carbon, and absorption enhancement from clear
coatings in biomass burning emissions, Atmos. Chem. Phys., 17,
5063–5078, https://doi.org/10.5194/acp-17-5063-2017, 2017.

Praveen, P. S., Ahmed, T., Kar, A., Rehman, I. H., and Ramanathan,
V.: Link between local scale BC emissions in the Indo-Gangetic
Plains and large scale atmospheric solar absorption, Atmos.
Chem. Phys., 12, 1173–1187, https://doi.org/10.5194/acp-12-
1173-2012, 2012.

Radke, L. F., Hegg, D. A., Hobbs, P. V., Nance, J. D., Lyons, J.
H., Laursen, K. K., Weiss, R. E., Riggan, P. J., and Ward, D. E.:
Particulate and trace gas emissions from large biomass fires in

North America, in: Global biomass burning – Atmospheric, cli-
matic, and biospheric implications, MIT Press, Cambridge, MA,
USA, 209–224, 1991.

Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D:
Aerosols, climate, and the hydrological cycle, Science, 294,
2219–2124, https://doi.org/10.1126/science.1064034, 2001.

Reid, C. E., Brauer, M., Johnson, F. H., Jerrett, J., Balmes, J. R.,
and Elliot, C. T.: Critical review of health impacts of wild-
fire smoke exposure, Environ. Health Persp., 124, 1334–1343,
https://doi.org/10.1289/ehp.1409277, 2016.

Reid, J. S., Koppmann, R., Eck, T. F., and Eleuterio, D. P.: A review
of biomass burning emissions part II: intensive physical proper-
ties of biomass burning particles, Atmos. Chem. Phys., 5, 799–
825, https://doi.org/10.5194/acp-5-799-2005, 2005a.

Reid, J. S., Eck, T. F., Christopher, S. A., Koppmann, R., Dubovik,
O., Eleuterio, D. P., Holben, B. N., Reid, E. A., and Zhang, J.:
A review of biomass burning emissions part III: intensive optical
properties of biomass burning particles, Atmos. Chem. Phys., 5,
827–849, https://doi.org/10.5194/acp-5-827-2005, 2005b.

Reisen, F., Meyer, C. P., Weston, C. J., and Volkova, L:
Ground-Based field measurements of PM2.5 emission fac-
tors from flaming and smoldering combustion in euca-
lypt forests, J. Geophys. Res.-Atmos., 123, 8301–8314,
https://doi.org/10.1029/2018JD028488, 2018.

Sahu, L. K., Kondo, Y., Moteki, N., Takegawa, N., Zhao, Y., Cu-
bison, M. J., Jimenez, J. L., Vay, S., Diskin, G. S., Wisthaler,
A., Mikoviny, T., Huey, L. G., Weinheimer, A. J., and Knapp,
D. J: Emission characteristics of black carbon in anthro-
pogenic and biomass burning plumes over California during
ARCTAS-CARB 2008, J. Geophys. Res-Atmos, 117, D16302,
https://doi.org/10.1029/2011JD017401, 2012.

Saide, P. E., Peterson, D. A., da Silva, A., Anderson, B., Ziemba,
L. D., Diskin, G., Sachse, G., Hair, J., Butler, C., Fenn, M.,
Jimenez, J. L., Campuzano-Jost, P., Perring, A. E., Schwarz, J.
P., Markovic, M. Z., Russell, P., Redemann, J., Shinozuka, Y.,
Streets, D. G., Yan, F., Dibb, J., Yokelson, R., Toon, O. B., Hyer,
E., and Carmichael, G. R.: Revealing important nocturnal and
day-to-day variations in fire smoke emissions through a mul-
tiplatform inversion, Geophys. Res. Lett., 42, 2015GL063737,
https://doi.org/10.1002/2015GL063737, 2015.

Saleh, R., Robinson E. S., Tkacik, D. S., Ahern, A. T., Liu,
S., Aiken, A. C., Sullivan, R. C., Presto, A. A., Dubey,
M. K., Yokelson, R. J., Donahue, N. M., and Robinson, A.
L.: Brownness of organics in aerosols from biomass burning
linked to their black carbon content, Nat. Geosci., 7, 647–650,
https://doi.org/10.1038/ngeo2220, 2014.

Sareen, N., Schwier, A. N., Shapiro, E. L., Mitroo, D., and Mc-
Neill, V. F.: Secondary organic material formed by methylglyoxal
in aqueous aerosol mimics, Atmos. Chem. Phys., 10, 997–1016,
https://doi.org/10.5194/acp-10-997-2010, 2010.

Schuster, G. L., Dubovik, O., and Holben, B. N.: Angstrom expo-
nent and bimodal aerosol size distributions, J. Geophys. Res.,
111, D07207, https://doi.org/10.1029/2005JD006328, 2006.

Selimovic, V., Yokelson, R. J., Warneke, C., Roberts, J. M., de
Gouw, J., Reardon, J., and Griffith, D. W. T.: Aerosol optical
properties and trace gas emissions by PAX and OP-FTIR for
laboratory-simulated western US wildfires during FIREX, At-
mos. Chem. Phys., 18, 2929–2948, https://doi.org/10.5194/acp-
18-2929-2018, 2018.

Atmos. Chem. Phys., 19, 3905–3926, 2019 www.atmos-chem-phys.net/19/3905/2019/

https://doi.org/10.1029/2007JD009170
https://doi.org/10.1029/2004JD005389
https://doi.org/10.1029/2004JD005624
https://doi.org/10.5194/acp-17-5851-2017
https://doi.org/10.5194/acp-16-3813-2016
https://doi.org/10.2151/jmsj.2015-016
https://doi.org/10.2151/jmsj.2015-016
https://doi.org/10.1016/j.atmosenv.2007.05.061
https://doi.org/10.5194/acp-16-9549-2016
https://doi.org/10.5194/acp-16-9549-2016
https://doi.org/10.5194/acp-17-5063-2017
https://doi.org/10.5194/acp-12-1173-2012
https://doi.org/10.5194/acp-12-1173-2012
https://doi.org/10.1126/science.1064034
https://doi.org/10.1289/ehp.1409277
https://doi.org/10.5194/acp-5-799-2005
https://doi.org/10.5194/acp-5-827-2005
https://doi.org/10.1029/2018JD028488
https://doi.org/10.1029/2011JD017401
https://doi.org/10.1002/2015GL063737
https://doi.org/10.1038/ngeo2220
https://doi.org/10.5194/acp-10-997-2010
https://doi.org/10.1029/2005JD006328
https://doi.org/10.5194/acp-18-2929-2018
https://doi.org/10.5194/acp-18-2929-2018


V. Selimovic et al.: Regional wildfire smoke: trace gases, PM, and aerosol optical properties 3925

Shaddix, C. R., Harrington, J. E., and Smyth, K. C: Quantita-
tive measurements of enhanced soot production in a flicker-
ing methane/air diffusion flame, Combust. Flame., 99, 723–732,
https://doi.org/10.1016/0010-2180(94)90067-1, 1994.

Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B.,
Cohen, M. D., and Ngan, F.: NOAA’s HYSPLIT atmospheric
transport and dispersion modeling system, B. Am. Meteo-
rol. Soc., 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-
00110.1, 2015.

Stockwell, C. E., Veres, P. R., Williams, J., and Yokelson, R. J.:
Characterization of biomass burning emissions from cooking
fires, peat, crop residue, and other fuels with high-resolution
proton-transfer-reaction time-of-flight mass spectrometry, At-
mos. Chem. Phys., 15, 845–865, https://doi.org/10.5194/acp-15-
845-2015, 2015.

Stockwell, C. E., Jayarathne, T., Cochrane, M. A., Ryan, K. C., Pu-
tra, E. I., Saharjo, B. H., Nurhayati, A. D., Albar, I., Blake, D. R.,
Simpson, I. J., Stone, E. A., and Yokelson, R. J.: Field measure-
ments of trace gases and aerosols emitted by peat fires in Central
Kalimantan, Indonesia, during the 2015 El Niño, Atmos. Chem.
Phys., 16, 11711–11732, https://doi.org/10.5194/acp-16-11711-
2016, 2016a.

Stockwell, C. E., Christian, T. J., Goetz, J. D., Jayarathne, T.,
Bhave, P. V., Praveen, P. S., Adhikari, S., Maharjan, R., De-
Carlo, P. F., Stone, E. A., Saikawa, E., Blake, D. R., Simp-
son, I. J., Yokelson, R. J., and Panday, A. K.: Nepal Ambi-
ent Monitoring and Source Testing Experiment (NAMaSTE):
emissions of trace gases and light-absorbing carbon from wood
and dung cooking fires, garbage and crop residue burning, brick
kilns, and other sources, Atmos. Chem. Phys., 16, 11043–11081,
https://doi.org/10.5194/acp-16-11043-2016, 2016b.

Subramanian, R., Roden, C. A., Boparai, P., and Bond, T. C: Yel-
low beads and missing particles: trouble ahead for filter-based
absorption measurements, Aerosol. Sci. Tech., 41, 630–637,
https://doi.org/10.1080/02786820701344589, 2007.

Thornhill, G. D., Ryder, C. L., Highwood, E. J., Shaffrey, L. C.,
and Johnson, B. T.: The effect of South American biomass
burning aerosol emissions on the regional climate, Atmos.
Chem. Phys., 18, 5321–5342, https://doi.org/10.5194/acp-18-
5321-2018, 2018.

Tomaz, S, Cui, T., Chen, Y., Sexton, K. G., Roberts, J. M., Warneke,
C., Yokelson, R. J., Surratt, J. D., and Turpin, B. J: Photochemi-
cal cloud processing of primary wildfire emissions as a potential
source of secondary organic aerosol, Environ. Sci. Technol., 52,
11027—11037, https://doi.org/10.1021/acs.est.8b03293, 2018.

United States Environmental Protection Agency: “Climate In-
dicators: Wildfires”, available at: http://web.archive.org/web/
20160512002554/https://www3.epa.gov/climatechange/science/
indicators/ecosystems/wildfires.html, last access: 21 March
2019.

United States National Interagency Fire Center: Total Wildland
Fires and Acres (1926–2017), available at: https://www.nifc.
gov/fireInfo/fireInfo_stats_totalFires.html, last access: 21 March
2019.

Urbanski, S. P.: Combustion efficiency and emission factors for
wildfire-season fires in mixed conifer forests of the northern
Rocky Mountains, US, Atmos. Chem. Phys., 13, 7241–7262,
https://doi.org/10.5194/acp-13-7241-2013, 2013.

Vakkari, V., Kerminen, V., Beukes, J. P., Tiitta, P., van Zyl, P. G.,
Josipovic, M., Venter, A. D., Jaars, K., Worsnop, D. R., Kulmala,
M., and Laasko, L: Rapid changes in biomass burning aerosols
by atmospheric oxidation, Geophys. Res. Lett., 41, 2644–2651,
https://doi.org/10.1002/2014GL059396, 2014.

Vakkari, V., Beukes, J. P., Dal Maso, M., Aurela, M., Josipovic,
M., and van Zyl, P. G.: Major secondary aerosol formation in
southern African open biomass burning plumes, Nat. Geosci., 11,
580–583, https://doi.org/10.1038/s41561-018-0170-0, 2018.

Wang, J., Geng, N. B., Xu, Y. F., Zhang, W. D., Tang, X.
Y., and Zhang, R. Q: PAHs in PM2.5 in Zhengzhou:
concentration, carcinogenic risk analysis and source ap-
portionment, Environ. Monit. Assess., 186, 7461–7473,
https://doi.org/10.1007/s10661-014-3940-1, 2014.

Wang, J., Yue, Y., Wang, Y., Ichoku, C., Ellison, L., and
Zeng, J: Mitigating satellite-bassed fire sampling limita-
tions in deriving biomass burning emission rates: applica-
tion to WRF-Chem model over the northern sub-saharan
African region, J. Geophys. Res.-Atmos, 123, 507–528,
https://doi.org/10.1002/2017JD026840, 2017.

Westerling, A. L., Hidalgo, H. G., Cayan, D. R., and Swet-
nam, T. W.: warming and earlier spring increase west-
ern U.S forest wildfire activity, Science, 313, 940–943,
https://doi.org/10.1126/science.1128834, 2006.

Wigder, N. L., Jaffe, D. A., and Saketa, F. A.: Ozone and par-
ticulate matter enhancements from regional wildfires observed
at Mount Bachelor during 2004–2011, Atmos. Environ., 75,
24—31, https://doi.org/10.1016/j.atmosenv.2013.04.026, 2013.

Wilkins, J. L., Pouliot, G., Foley, K., Appel., W., and Pierce, T.:
The impact of US wildland fires on ozone and particulate mat-
ter a comparison of measurements and CMAQ model predic-
tions from 2008 to 2012, Int. J. Wildland Fire, 27, 684–698,
https://doi.org/10.1071/WF18053, 2018.

Xu, J., Zhang, Q., Shi, J., Ge, X., Xie, C., Wang, J., Kang,
S., Zhang, R., and Wang, Y.: Chemical characteristics of sub-
micron particles at the central Tibetan Plateau: insights from
aerosol mass spectrometry, Atmos. Chem. Phys., 18, 427–443,
https://doi.org/10.5194/acp-18-427-2018, 2018.

Yates, E. L., Iraci, L. T., Singh, H. B., Tanaka, T., Roby, M. C.,
Hamill, P., Clements, C. B., Lareau, N., Contezac, J., Blake, D.
R., Simpson, I. J., Wisthaler, A., Mikoviny, T., Diskin, G. S.,
Beyersdorf, A. J., Choi, Y., Ryerson, T. B., Jimenez, J. L., and
Gore, W.: Airborne measurements and emissions estimates of
greenhouse gases and other trace constituents form the 2013 Cal-
ifornia Yosemite Rim wildfire, Atmos. Environ., 127, 293–302,
https://doi.org/10.1016/j.atmosenv.2015.12.038, 2016.

Yokelson, R. J., Susott, R., Ward, D. E., Reardon, J., and Grif-
fith, D. W. T.: Emissions from smoldering combustion of
biomass burning measured by open-path Fourier transform in-
frared spectroscopy, J. Geophys. Res.-Atmos., 102, 18865–
18877, https://doi.org/10.1029/97JD00852, 1997.

Yokelson, R. J., Christian, T. J., Bertschi, I. T., and Hao, W. M.:
Evaluation of adsorption effects on measurements of ammo-
nia, acetic acid, and methanol, J. Geophys. Res., 108, 4649,
https://doi.org/10.1029/2003JD003549, 2003.

Yokelson, R. J., Karl, T., Artaxo, P., Blake, D. R., Christian, T. J.,
Griffith, D. W. T., Guenther, A., and Hao, W. M.: The Trop-
ical Forest and Fire Emissions Experiment: overview and air-

www.atmos-chem-phys.net/19/3905/2019/ Atmos. Chem. Phys., 19, 3905–3926, 2019

https://doi.org/10.1016/0010-2180(94)90067-1
https://doi.org/10.1175/BAMS-D-14-00110.1
https://doi.org/10.1175/BAMS-D-14-00110.1
https://doi.org/10.5194/acp-15-845-2015
https://doi.org/10.5194/acp-15-845-2015
https://doi.org/10.5194/acp-16-11711-2016
https://doi.org/10.5194/acp-16-11711-2016
https://doi.org/10.5194/acp-16-11043-2016
https://doi.org/10.1080/02786820701344589
https://doi.org/10.5194/acp-18-5321-2018
https://doi.org/10.5194/acp-18-5321-2018
https://doi.org/10.1021/acs.est.8b03293
http://web.archive.org/web/20160512002554/https://www3.epa.gov/climatechange/science/indicators/ecosystems/wildfires.html
http://web.archive.org/web/20160512002554/https://www3.epa.gov/climatechange/science/indicators/ecosystems/wildfires.html
http://web.archive.org/web/20160512002554/https://www3.epa.gov/climatechange/science/indicators/ecosystems/wildfires.html
https://www.nifc.gov/fireInfo/fireInfo_stats_totalFires.html
https://www.nifc.gov/fireInfo/fireInfo_stats_totalFires.html
https://doi.org/10.5194/acp-13-7241-2013
https://doi.org/10.1002/2014GL059396
https://doi.org/10.1038/s41561-018-0170-0
https://doi.org/10.1007/s10661-014-3940-1
https://doi.org/10.1002/2017JD026840
https://doi.org/10.1126/science.1128834
https://doi.org/10.1016/j.atmosenv.2013.04.026
https://doi.org/10.1071/WF18053
https://doi.org/10.5194/acp-18-427-2018
https://doi.org/10.1016/j.atmosenv.2015.12.038
https://doi.org/10.1029/97JD00852
https://doi.org/10.1029/2003JD003549


3926 V. Selimovic et al.: Regional wildfire smoke: trace gases, PM, and aerosol optical properties

borne fire emission factor measurements, Atmos. Chem. Phys.,
7, 5175–5196, https://doi.org/10.5194/acp-7-5175-2007, 2007.

Yokelson, R. J., Christian, T. J., Karl, T. G., and Guenther, A.:
The tropical forest and fire emissions experiment: laboratory fire
measurements and synthesis of campaign data, Atmos. Chem.
Phys., 8, 3509–3527, https://doi.org/10.5194/acp-8-3509-2008,
2008.

Yokelson, R. J., Crounse, J. D., DeCarlo, P. F., Karl, T., Urbanski,
S., Atlas, E., Campos, T., Shinozuka, Y., Kapustin, V., Clarke, A.
D., Weinheimer, A., Knapp, D. J., Montzka, D. D., Holloway, J.,
Weibring, P., Flocke, F., Zheng, W., Toohey, D., Wennberg, P. O.,
Wiedinmyer, C., Mauldin, L., Fried, A., Richter, D., Walega, J.,
Jimenez, J. L., Adachi, K., Buseck, P. R., Hall, S. R., and Shet-
ter, R.: Emissions from biomass burning in the Yucatan, Atmos.
Chem. Phys., 9, 5785–5812, https://doi.org/10.5194/acp-9-5785-
2009, 2009.

Yokelson, R. J., Burling, I. R., Gilman, J. B., Warneke, C., Stock-
well, C. E., de Gouw, J., Akagi, S. K., Urbanski, S. P., Veres,
P., Roberts, J. M., Kuster, W. C., Reardon, J., Griffith, D. W. T.,
Johnson, T. J., Hosseini, S., Miller, J. W., Cocker III, D. R., Jung,
H., and Weise, D. R.: Coupling field and laboratory measure-
ments to estimate the emission factors of identified and uniden-
tified trace gases for prescribed fires, Atmos. Chem. Phys., 13,
89–116, https://doi.org/10.5194/acp-13-89-2013, 2013a.

Yokelson, R. J., Andreae, M. O., and Akagi, S. K.: Pitfalls with the
use of enhancement ratios or normalized excess mixing ratios
measured in plumes to characterize pollution sources and aging,
Atmos. Meas. Tech., 6, 2155–2158, https://doi.org/10.5194/amt-
6-2155-2013, 2013b.

Yue, C., Ciais, P., Cadule, P., Thonicke, K., and van Leeuwen, T.
T.: Modelling the role of fires in the terrestrial carbon balance by
incorporating SPITFIRE into the global vegetation model OR-
CHIDEE – Part 2: Carbon emissions and the role of fires in
the global carbon balance, Geosci. Model Dev., 8, 1321–1338,
https://doi.org/10.5194/gmd-8-1321-2015, 2015.

Zhao, R., Lee, A. K. Y., Huang, L., Li, X., Yang, F., and Ab-
batt, J. P. D.: Photochemical processing of aqueous atmo-
spheric brown carbon, Atmos. Chem. Phys., 15, 6087–6100,
https://doi.org/10.5194/acp-15-6087-2015, 2015.

Zhong, M. and Jang, M.: Dynamic light absorption of
biomass-burning organic carbon photochemically aged un-
der natural sunlight, Atmos. Chem. Phys., 14, 1517–1525,
https://doi.org/10.5194/acp-14-1517-2014, 2014.

Zhou, L., Baker, K. R., Napelenok., S. L., Pouliot, G., Elleman,
R., O’Neill, S. M., Urbanski, S. P., and Wong, D. C: Model-
ing crop residual burning experiments to evaluate smoke emis-
sions and plume transport, Sci. Total Environ., 627, 523–533,
https://doi.org/10.1016/j.scitotenv.2018.01.237, 2018.

Atmos. Chem. Phys., 19, 3905–3926, 2019 www.atmos-chem-phys.net/19/3905/2019/

https://doi.org/10.5194/acp-7-5175-2007
https://doi.org/10.5194/acp-8-3509-2008
https://doi.org/10.5194/acp-9-5785-2009
https://doi.org/10.5194/acp-9-5785-2009
https://doi.org/10.5194/acp-13-89-2013
https://doi.org/10.5194/amt-6-2155-2013
https://doi.org/10.5194/amt-6-2155-2013
https://doi.org/10.5194/gmd-8-1321-2015
https://doi.org/10.5194/acp-15-6087-2015
https://doi.org/10.5194/acp-14-1517-2014
https://doi.org/10.1016/j.scitotenv.2018.01.237

	In situ measurements of trace gases, PM, and aerosol optical properties during the 2017 NW US wildfire smoke event
	Let us know how access to this document benefits you.
	Recommended Citation

	Abstract
	Introduction
	Experimental details
	Site descriptions
	Instrument details
	Fourier transform infrared spectrometer
	Photoacoustic extinctiometers (PAXs) at 870 and 401nm
	Montana Department of Environmental Quality PM2.5
	Emission ratios (ERs) and downwind enhancement ratios

	Investigating smoke origin and back trajectory calculations
	Brief description of 2017 regional and selected local fires

	Results and discussion
	Overview of 2017 fire season smoke impact in Missoula
	Trace gas ratios
	BC/PM2.5, BC/CO, PM2.5/CO
	UV absorption by brown carbon
	Single scattering albedo, mass absorption coefficient, mass scattering coefficient
	Case study: Labor Day weekend
	Diurnal cycles
	Brief comparison to prescribed fire data

	Conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Review statement
	References

