University of Montana

ScholarWorks at University of Montana

University of Montana Course Syllabi

Open Educational Resources (OER)

Spring 2-1-2019

PHSX 217N.01: Fundamentals of Physics with Calculus II

David A. Macaluso *University of Montana - Missoula*, david.macaluso@umontana.edu

Follow this and additional works at: https://scholarworks.umt.edu/syllabi

Let us know how access to this document benefits you.

Recommended Citation

Macaluso, David A., "PHSX 217N.01: Fundamentals of Physics with Calculus II" (2019). *University of Montana Course Syllabi*. 10334.

https://scholarworks.umt.edu/syllabi/10334

This Syllabus is brought to you for free and open access by the Open Educational Resources (OER) at ScholarWorks at University of Montana. It has been accepted for inclusion in University of Montana Course Syllabi by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

Physics 217N: Fundamentals of Physics with Calculus II

Course Information

Instructor: Dr. David A. MacalusoOffice: C.H. Clapp Building, room 119

• Telephone: (406) 243-6641

• Email: david.macaluso@umontana.edu

• Lectures: MTWTr, 1:00 PM – 1:50 PM, CHCB 131

• Office Hours: M 11-12 & 2-3, Tr 2-3. I'm happy to help students and answer questions outside my scheduled office hours and I strongly encourage students to seek my assistance whenever necessary.

Spring, 2019

Course Description

This course will introduce students to three fundamental fields in Classical Physics: Thermodynamics, Electricity & Magnetism, and Optics. Time permitting we may also briefly explore Modern Physics topics including Relativity and Quantum Mechanics. In addition, this course will *heavily* emphasize the development of **problem solving skills** and **critical thinking**.

Textbook & Required Materials

- Fundamentals of Physics, 10th Edition David Halliday, Robert Resnick, Jearl Walker
- Access to WileyPlus for online homework
- iClicker Remote

We will be using iClicker remotes extensively in this class. Because internet connectivity is poor in the lecture hall all students must use an **actual remote**: i.e. smartphone apps will *not* be supported. Lecture iClicker content will start Week 2.

Add/Drop/Withdraw

Please refer to the University policy on adding, dropping, and withdrawing from the course at http://www.umt.edu/registrar/students/dropadd.php.

From the 16th through the 45th instructional day, all classes must be dropped using Drop forms (instructor signature required, advisor signature required for undergraduates). **\$10** fee applies.

From the 46th to the last instructional day prior to finals week, classes must be dropped using the Drop form (instructor and Dean signatures required, advisor signature required for undergraduates). **\$10** fee applies.

Website(s)

Online homework: www.wileyplus.com

Grades and other materials will be posted on Moodle

General Learning Outcomes

Upon completion of this course, students should have gained:

- 1. A solid conceptual understanding of the foundational concepts of Classical Physics.
- 2. Improved critical thinking and problem solving skills.
- 3. An appreciation for the rigorous nature of scientific methodology in evidence-based inquiry.
- 4. An improved ability to take previously learned concepts and techniques and apply them in new and unfamiliar situations.
- 5. Insight into the thought processes of physical *approximation* and *modeling* and practice in the appropriate application of mathematics to the description of physical reality.

Specific Learning Outcomes

It is expected that the student will:

- 1. Understand basic calorimetry and phase transformation
- 2. Be familiar with entropy and understand its role in limiting engine efficiency
- 3. Be able to perform Coulomb's Law calculations
- 4. Understand the differences between electric field and electric potential
- 5. Be able to apply Gauss' Law to determine electric fields
- 6. Perform simple electric circuit analysis
- 7. Be able to determine magnetic forces and fields in simple geometries
- 8. Be able to apply Lenz' Law and Faraday's Law
- 9. Be familiar with the EM spectrum
- 10. Grasp the basics of geometrical optics;
- 11. Develop an understanding of interference
- 12. Understand optical diffraction and the limitations it places on optical instruments

Expectations

This is a university-level physics course. The expectations are therefore appropriate for students who should all be familiar with the concepts of personal responsibility, accountability, and academic honesty. Specifically:

Attendance

Exams will be based on lectures and in-class problems and discussions. In addition, quizzes and iClicker lecture questions (points which *cannot* be made up without having made prior arrangements with me) represent a significant percentage of the course grade. Thus regular attendance, while not mandatory, is vital to student success. I strongly encourage regular attendance.

Prerequisites/Corequisites

All students must have completed Calculus I (UM-M171 or equivalent), have completed or be concurrently enrolled in the corequisite Calculus II course (UM-M172 or equivalent) and have completed or be enrolled in the associated lab course, PHSX 218N.

Reading Assignments

Students are expected to read the assigned material **before** class. Quizzes will be given during class that will be based at least partially on the reading. These quizzes will not be demanding, so reading ahead will both prepare you for the upcoming lecture and help assure you earn the "low hanging fruit" of reading quizzes.

Homework Assignments

Weekly homework assignments are the primary tool by which you learn physics and develop your problem solving skills. These assignments usually take 2-5 hours to complete so don't procrastinate. **NOTE: one "unit" represents 3 hours of student work and this is a 4-unit course, so it should occupy 12 hours per week; three hours and twenty minutes in-class, and** *over eight hours* **outside of class per week.**

Mathematics

The language of physics is math. You must be comfortable with algebra, geometry, and trigonometry to succeed. You will also be expected to be familiar with several calculus techniques, such as differentiation and integration.

Do not use cell phones or computers/laptops/notebooks in class. The only electronics permitted in class are your iClicker remotes.

Grading Policy

Exams (four @ 12.5% each)	50%
Cumulative Final Exam	25%
Homework	10%
iClicker Questions	15%

Grades will be based on the traditional letter grade percentage scale (90s = A/A-, 80s = B+/B/B-, etc.). This course can only be taken with **the traditional grading option** (i.e. credit/no-credit is *not* allowed).

Final course grades are assigned based on the final student distribution. Students will not be given a lower grade than what is traditionally assigned to a given final percentage, e.g. a grade of 80% will be at least a B-.

Policies and Procedures

- Late homework will not be accepted and there are no make-up exams except where <u>prior</u> arrangements have been made with me. Otherwise, late homework and missed exams will be scored as a zero.
- Keep phones and tablets/laptops put away during lecture. THIS IS A DEPARTMENT POLICY FOR THIS COURSE. Smartphones/computers are not allowed at any time in class or during exams.
- All email correspondences with me must be to/from an official UM email address.

Academic Honesty

I encourage students to work together and to seek assistance from me whenever necessary. However, work submitted in this class must be the original work of the student. In addition, the majority of your grade will be based on quizzes and exams that test your mastery of the homework problems, so doing the problems on your own will give you the best chance to succeed.

University policy statement on academic honesty: All students must practice academic honesty. Academic misconduct is subject to an academic penalty by the course instructor and/or a disciplinary sanction by the University. All students need to be familiar with the Student Conduct Code: (http://www.umt.edu/vpsa/policies/student_conduct.php).

Students with Disabilities:

Students with disabilities may request reasonable modifications by contacting me. The University of Montana assures equal access to instruction through collaboration between students with disabilities, instructors, and Disability Services for Students. "Reasonable" means the University permits no fundamental alterations of academic standards or retroactive modifications. For more information, visit the Disability Services for Students website at http://life.umt.edu/dss/.

Tentative Course Schedule (dates, topics and readings subject to change)

Week	Chapters	Topics	Notes	PHSX 216 Lab	Exams
Week 1 1/14 – 1/18	Ch. 18	Temperature, Heat & Work, 1 st Law of Thermo		Python/GitHub	
Week 2 1/21 – 1/25	Ch. 19	Kinetic Theory, Ideal Gases	MLK Day No Class Monday	Thermal Expansion	
Week 3 1/28 – 2/1	Ch. 20 Ch. 21	Entropy, 2 nd Law, Electric Force		Mechanical Eq. of Heat	
Week 4 2/4 – 2/8	Ch. 21, Ch. 22	Electric Field and Flux		No Lab	Exam 1: Thursday Feb. 7
Week 5 2/11 – 2/15	Ch. 22, Ch. 23	Fields from Charge Distributions, Gauss' Law		Electric Fields	
Week 6 2/18 – 2/22	Ch. 24, Ch. 25	Electric Potential, Capacitance	President's Day No Class Monday	Raspberry Pi	
Week 7 2/25 – 3/1	Ch. 26, Ch. 27	Current & Resistance, Simple Circuits		Ohm's Law and Simple Circuits	
Week 8 3/4 – 3/8	Ch. 27, Ch. 28	RC Circuits, Magnetic Fields & Forces		Slow and Fast RC Circuits	Exam 2: Thursday March 7
Week 9 3/11 – 3/15	Ch. 29	Magnetic Fields due to Currents, Ampere's Law	Planetarium Show, Mon. 3/11	Magnetic Field Mapping	
Week 10 3/18 – 3/22	Ch. 30	Induction & Inductance		Earth's Magnetic Field	
Spring Break 3/25 – 3/29			Spring Break No Class	No Lab	
Week 11 4/1 – 4/5	Ch. 31 Ch. 32	AC Current, Transformers, Maxwell's Equations		No Lab	Exam 3: Thursday April 4
Week 12 4/8 – 4/12	Ch. 33 Ch. 34	EM Waves, Reflection & Refraction, Mirrors		Lenses	
Week 13 4/15 – 4/19	Ch. 34 Ch. 35	Lenses, Interference		Wavelength of Light	
Week 14 4/22 – 4/26	Ch. 36	Diffraction, Modern, & Course Review/Evaluations	Last Day of Class: Thursday	Interference and Diffraction	Exam 4: Wednesday April 24
Finals Week 4/29 – 5/3		Finals Week		No Lab	FINAL EXAM 5/1 3:20 – 5:20 pm