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Airborne measurements of western U.S. wildfire emissions:
Comparison with prescribed burning and air
quality implications
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County, Baltimore, Maryland, USA

Abstract Wildfires emit significant amounts of pollutants that degrade air quality. Plumes from three
wildfires in the western U.S. were measured from aircraft during the Studies of Emissions and Atmospheric
Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and the Biomass Burning
Observation Project (BBOP), both in summer 2013. This study reports an extensive set of emission factors
(EFs) for over 80 gases and 5 components of submicron particulate matter (PM1) from these temperate
wildfires. These include rarely, or never before, measured oxygenated volatile organic compounds and
multifunctional organic nitrates. The observed EFs are compared with previous measurements of temperate
wildfires, boreal forest fires, and temperate prescribed fires. The wildfires emitted high amounts of PM1 (with
organic aerosol (OA) dominating the mass) with an average EF that is more than 2 times the EFs for
prescribed fires. The measured EFs were used to estimate the annual wildfire emissions of carbon monoxide,
nitrogen oxides, total nonmethane organic compounds, and PM1 from 11 western U.S. states. The estimated
gas emissions are generally comparable with the 2011 National Emissions Inventory (NEI). However, our PM1

emission estimate (1530 ± 570 Gg yr�1) is over 3 times that of the NEI PM2.5 estimate and is also higher than
the PM2.5 emitted from all other sources in these states in the NEI. This study indicates that the source of
OA from biomass burning in the western states is significantly underestimated. In addition, our results
indicate that prescribed burning may be an effective method to reduce fine particle emissions.
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Plain Language Summary Wildfires emit large amounts of pollutants. This work quantifies the
emissions of a range of both gaseous and particulate species from U.S. wildfires using measurements
performed on research aircraft. The results indicate that wildfires are a large source of particulate pollution in
the western states and that the source is currently underestimated by more than a factor of three in
emissions inventories. Comparison of these results to those obtained from prescribed burning indicates
that wildfires are a larger source of pollution.

1. Introduction

Open biomass burning (BB), including wildfires and prescribed agricultural and forest management burns, is a
large global source of trace gases and aerosol [Crutzen and Andreae, 1990]. In the U.S., wildfires are the largest
contributor to the annual total area burned and occur largely in the western continental states and Alaska
(National Interagency Coordination Center, https://www.nifc.gov/fireInfo/fireInfo_statistics.html). While wild-
fires perform many beneficial ecosystem functions [Kilgore, 1981], they also degrade U.S. air quality [Park
et al., 2007; Jaffe et al., 2008; Singh et al., 2012; Brey and Fischer, 2016]. For example, summer wildfires produce
a substantial fraction of the fine aerosol mass in the contiguous U.S., and their interannual variability dominates
the fluctuations of carbonaceous aerosol concentrations [Park et al., 2007]. In the 2011 National Emissions
Inventory (NEI), open fires accounted for 37% of fine particulatematter (PM2.5) emitted in theU.S., withwildfires
contributing more than half of that total. In addition, wildfires release substantial amounts of gaseous pollu-
tants including ozone precursors [Andreae and Merlet, 2001; Akagi et al., 2011]. Ozone (O3) production is com-
mon from wildfires in tropical and temperate regions, while both O3 production and destruction have been
observed in boreal wildfire plumes [Goode et al., 2000; Hobbs et al., 2003; Alvarado et al., 2010; Singh et al.,
2010; Jaffe and Wigder, 2012]. PM, O3, and many other primary emissions and secondary products have nega-
tive health effects, which can be exacerbated when the smoke impacts populated areas [Künzli et al., 2006;
Naeher et al., 2007; Delfino et al., 2009]. A possible mechanism for PM’s adverse health effect is a particle’s ability
to generate reactive oxygen species, referred to as oxidative potential [Donaldson et al., 2005]. Recent studies
based on dithiothreitol assay measurements find that BB plays a large role in PM2.5 oxidative potential, which is
strongly associated with respiratory and cardiovascular diseases in epidemiological studies [Verma et al., 2014;
Fang et al., 2016; Yang et al., 2016]. This further points to the potential of BB PM2.5 for adverse health effects.

Prescribed burning is a commonly used land management practice implemented under specified fuel,
meteorological, and dispersion conditions. It maintains the beneficial role of fire while minimizing smoke
impacts, consuming accumulated fuels that could otherwise be conducive to wildfires, thus reducing wildfire
hazards [Biswell, 1999; Hardy et al., 2001]. Currently, the understanding of the tradeoffs between the use of pre-
scribed fires versus wildfires is limited, as it requires an understanding of fires and their emissions, climate
change, and human activity [Marlon et al., 2012]. Climate change has contributed to increases in wildfire size
and frequency and to the length of the fire season in the western U.S. [Westerling et al., 2006]. Other human
activities, including land use change and wildfire management strategies such as suppression, prevention,
and fuel treatments, impact wildfire frequency and intensity as well [Savage and Swetnam, 1990; Belsky and
Blumenthal, 1997; Stevens et al., 2014]. In addition, a detailed knowledge of the emissions and smoke chemis-
try of wildfires and prescribed burning is crucial to understand potential advantages of prescribed burns rela-
tive to wildfires. For example, wildfires typically consume more fuel per unit area than prescribed fires
[Campbell et al., 2007; Turetsky et al., 2011; Yokelson et al., 2013]. Higher fuel consumption coupled with poten-
tially different emission factors (EFs) [Urbanski, 2013] suggests that prescribed fires and wildfires may have dif-
ferent total emissions and regional smoke impacts. Prescribed forest fire emissions weremeasured extensively
between 2009 and 2013 across the U.S. temperate ecosystems in a series of studies [Burling et al., 2011; Akagi
et al., 2013; Yokelson et al., 2013; May et al., 2014; Müller et al., 2016]. However, the information available on
wildfire emissions in temperate forests of the contiguous U.S. is limited to a few fires sampled from Oregon
and Idaho in the 1980s, Montana in the 1990s, and from the northern Rocky Mountains recently [Radke
et al., 1991; Friedli et al., 2001; Urbanski, 2013]. The goal of this study is to provide information about primary
emissions from western U.S. wildfires to inform future fire management and atmospheric chemistry studies.

In the summer of 2013, two field campaigns sampled multiple wildfires in the western U.S. The Biomass
Burning Observation Project (BBOP) deployed the Department of Energy (DOE) Gulfstream-1 (G-1) aircraft
to study wildfires and agricultural burns and how the impacts of their emissions evolve with time. The G-1
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aircraft was equipped with a suite of instruments for measuring aerosol, trace gases, and atmospheric state
parameters. Emissions from 17 wildfires in the western continental U.S. and over 24 agricultural burns in the
southeastern U.S. were sampled from July to October 2013. Meanwhile, from August to September 2013, the
Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys
(SEAC4RS) airborne field campaign intercepted plumes from 15 agricultural and over 10 forest fires in the
western, central, and southeastern U.S. The heavily instrumented NASA DC-8 research aircraft was deployed
during this mission, which enabled measurements of a wide variety of chemical species and physical
parameters [Forrister et al., 2015; Liu et al., 2016; Toon et al., 2016]. Here we focus on the initial emissions from
the three wildfires where freshly emitted plumes were intercepted by the aircraft: the Colockum Tarps fire
sampled during BBOP and the Big Windy Complex and the Rim Fire sampled during SEAC4RS. We also
compare emissions from the three studied wildfires with those from other temperate and boreal wildfires
and some prescribed fires obtained from aircraft. With the calculated EFs, we estimate the annual wildfire
emissions of carbon monoxide (CO), nitrogen oxides (NOx), nonmethane organic compounds (NMOCs),
and submicron particulate matter (PM1) in the western U.S.

2. Methods
2.1. Platforms and Instrumentation

In situ measurements were conducted from the DOE G-1 aircraft during BBOP and the NASA DC-8 aircraft
during SEAC4RS. Table 1 summarizes the BBOP trace gas and particle measurements used in this work, along
with methodologies, sample intervals, accuracies, and references. The set of SEAC4RS measurements used to
characterize wildfire emissions were almost identical to that used for agricultural fires in the southeastern U.S.,
which can be found in Liu et al. [2016], with the addition of a set of volatile organic compounds (VOCs)
measured by whole air sampling (WAS) [Simpson et al., 2011] and several oxygenated volatile organic
compounds (OVOCs) and organic nitrates measured by chemical ionization mass spectrometry (CIMS)
[Crounse et al., 2006; Paulot et al., 2009a; St. Clair et al., 2014; Teng et al., 2015]. All aircraft data used were
synchronized to a common time scale with 1 Hz resolution.

While full details of most instruments deployed for BBOP are available in the references cited in Table 1, here
we describe a few exceptions. CO was measured on the G-1 by a commercial instrument based on cavity
enhanced absorption (Los Gatos Research, San Jose, CA). O3 was measured by a commercial analyzer
(Thermo Scientific Model 49i) that was modified for internal calibrations. A commercial SO2 analyzer
(Thermo Scientific 43i) was modified to provide an internal chemical zero. The NO/NO2/NOy instrument
was custom built by Air Quality Design, Inc. (Golden, CO). It was calibrated both on the ground and in flight
by a standard addition of a known amount of NO. The instrumental conversion efficiency of NO2 to NO was
determined before each flight. Zero air was sampled periodically during flight to determine artifact signals,
which were then subtracted from ambient signals during data reduction. More details on the methods and
accuracies are listed in Table 1.

2.2. Fire Descriptions

Table 2 summarizes the locations, sizes, fuels, and local time of fresh plume intercepts of the three wildfires.
Figure 1 shows the flight tracks near the fires, color-coded by measured CO concentrations. The Colockum
Tarps fire started in the vicinity of Malaga, WA, on 27 July 2013 and grew from 14,000 ha to 24,000 ha 3 days
later on the day when its smoke was sampled. Fuels burned were mainly timber, grass, and brush. The G-1
aircraft sampled fresh and downwind plumes in both the morning and afternoon on 30 July 2013 southeast
of Wenatchee, WA. The four fresh plumes used for this analysis, less than ~20min old, were obtained near the
source at 1.2 to 1.3 km above the ground. The Big Windy Complex started on 26 July 2013 and consisted of
three large fires, which burned approximately 40 km northwest of Grants Pass, OR. On the day of sampling (6
August 2013), the Big Windy Complex grew from 668 ha to 4389 ha, burning timber and brush. Fresh plumes
were intercepted by the NASA DC-8 aircraft at altitudes ranging from 1.5 to 2.3 km above the ground. The Rim
Fire started on 17 August 2013 in the Stanislaus National Forest, about 3 km northeast of Buck Meadows, CA.
On the day of sampling (26 August 2013), the fire was in its intense, primary burning period and burned more
than 8000 ha in 1 day [Peterson et al., 2014; Yates et al., 2016]. The Rim Fire fuel types included timber, brush,
and chaparral. Fresh samples were obtained at ~2.6 km above the ground. For the two SEAC4RS fires, the
DC-8 sampled smoke that extended tens of kilometers during plume penetrations up to 6 min in duration
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(Table 2). The Big Windy Complex plumes used for analysis were estimated to have aged ~1 h after emission
according to wind speeds measured aboard aircraft and the locations of burning spots detected from
Moderate Resolution Imaging Spectroradiometer (MODIS). The Rim Fire samples included near-source
plume penetrations. The age of the relatively fresh Rim Fire samples smoke ranged from ~20 min to ~2 h
as distance from source increased. Figure S2 in the supporting information shows examples of time series
obtained from the three fires.

2.3. Calculation of Emission Ratios, Emission Factors, and Modified Combustion Efficiency

This work considers only fresh smoke samples as described above. For each fresh plume intercept, the
average excess mixing ratio of a species X (ΔX) was calculated by subtracting the average mixing ratio of X
in the background air from that in the fire plume. The background samples were taken just outside the plume
at a similar location and altitude. We computed molar emission ratios (ERs) for gaseous species and mass ERs
for particulate species for each fire as follows. During the two BBOP flights on 30 July 2013, four fresh, thick
plumes from the Colockum Tarps fire with similar enhancement magnitudes were intercepted. To allow
comparison between measurements with different time resolution and response times, we calculated
plume-averaged ERs by dividing the integral of ΔX by the integral of simultaneously measured ΔCO2. Here
the integrals were calculated by summing ΔX values spanning the duration of discrete samples listed in
Table 2. The four plume-averaged ERs were subsequently used to calculate four plume-averaged EFs. The fire
average was calculated from the four plume samples. The fresh plume samples obtained for the Big Windy
Complex and the Rim Fire during SEAC4RS consisted of both thick and thin plumes. To better weight larger
excess mixing ratios that have higher signal-to-noise ratios, fire-averaged ERs for SEAC4RS fires were deter-
mined from the slope of the linear least squares line of a plot of the integral of ΔX versus that of ΔCO2 (or
ΔCO) for each fire with the intercept forced to 0 [Yokelson et al., 1999]. This method works well for relatively
fast measurements with time resolution ≤3 s, since the plume edges can be well defined. However, species
measured by the WAS system were treated differently, since they were collected over a 0.5–1 min period

Table 1. G-1 Aircraft Measurements Used in This Work

Measurement Method Sample Interval Calibration Accuracy Reference/Instrument

CO2 and CH4 Cavity ring down spectroscopy ~1 s <70 ppb for CO2,
<0.5 ppb for CH4

Crosson [2008]/Picarro Inc.

CO Cavity enhanced absorption 1 s 2% Los Gatos Research
NO, NO2, and NOy Chemiluminescence 1 s 10% Air Quality Design, Inc.
VOCs and OVOCs Proton transfer reaction mass spectrometry 0.1 s @ ~3.4 sa 5–15% Lindinger et al. [1998] and Shilling

et al. [2013]
SO2 Pulsed fluorescence 1 s ~5–10% Thermo Scientific 43i
O3 UV optical absorption 1 s 5% Thermo Scientific 49i
Nonrefractory submicron aerosol
(sulfate, nitrate, ammonium,
chloride, and organics)b

Soot particle aerosol mass spectrometry 1 s 38% Bahreini et al. [2009]

aDisjunct sampling.
bParticle diameter less than 1 μm. A collection efficiency of 0.5 was used, though this may overestimate the nonrefractory PM for dual vaporizer modes (refer to

Onasch et al. [2012, Table 1] and discussions in Lee et al. [2015]).

Table 2. Details of the Wildfires Sampled in the Western U.S.

Date Fire Name Latitude Longitude

Final Area
Burned
(ha) Location Fuel Description Fresh Plume Local Time

30 July 2013 Colockum Tarps 47.30 �120.11 32,463 Malaga, WA Timber (mixed conifer),
grass, and brush

09:31–09:32, 10:33–10:35,
13:17–13:19, and 14:08–

14:09
6 August 2013 Big Windy Complex 42.63 �123.86 10,435 Grants Pass, OR Timber (mixed conifer and

oak) and brush
15:53–15:55, 16:17–16:20,
16:21–16:24, and 16:32–

16:38
26 August 2013 Rim Fire 37.86 �120.09 104,176 Buck Meadows, CA Timber (mixed conifer and

oak), brush, and
chaparral

15:59–16:01, 16:03–16:07,
and 16:13–16:19
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every 1–2 min during plume encoun-
ters. A total of 8 and 11 WAS samples
were collected for the Big Windy
Complex and the Rim Fire, respec-
tively. The fire-averaged ERs of WAS
species were determined as the slope
(with the intercept forced to 0) of a
plot of available discrete WAS ΔX
versus WAS ΔCO. The fire-averaged
ERs of the Big Windy Complex and
the Rim Fire were then used for fire-
averaged EF calculations. If we use
the slope-based method to derive
fire-averaged EFs for the Colockum
Tarps fire, the difference is less than
10% compared to the plume-
averaged method. The small differ-
ence was expected since the plumes
of the Colockum Tarps fire were of

similar sizes so the slope-based method weighted each plume similarly.

A set of ERs can be used to calculate a set of EFs, in units of grams of compound X emitted per kilogram of dry
biomass burned. For the Colockum Tarps fire, we used its plume-averaged ERs to calculate a set of plume-
averaged EFs and then derive the fire-averaged EFs by averaging the plume-averaged EFs. The fire-averaged
EFs for the other two fires were derived using the single fire-averaged ERs. All EF calculations were based on
the carbon mass balance method assuming that all of the volatilized carbon was detected [Yokelson et al.,
1999; Liu et al., 2016]. The carbon mass fraction of consumed fuel was set as 45.7% [Santín et al., 2015]. In a
departure from previous studies that generally assume a fraction of 50% based on fuel elemental analysis
[Susott et al., 1996; Burling et al., 2010], Santín et al. [2015] directly quantified C emitted to the atmosphere
by a boreal forest fire. Since charcoal production may be significant for wildfires, using the percentage of car-
bon in the volatilized fuel is a preferred implementation of the carbon mass balance calculation when char-
coal production is significant as discussed elsewhere [Bertschi et al., 2003b]. Note that EFs scale linearly with
the assumed carbon mass fraction. The sum of the emitted carbon was determined from the sum of mea-
sured gaseous and particulate carbon-containing compounds. This sum could underestimate the total car-
bon by 1–2% due to unmeasured carbon, which would lead to an overestimation of EFs by 1–2% [Akagi
et al., 2011], which is small compared to the variability and uncertainty of these EFs. Although fewer VOC spe-
cies were measured during BBOP, the overestimation of EFs using this method would not exceed 4% since
CO2, CO, and methane (CH4) often account for over ~96% of the total emitted carbon [Akagi et al., 2011].
For the two SEAC4RS fires, we report the errors of individual EFs as combined uncertainties that vary by spe-
cies and by fire and that could be quantified here, including (1) the uncertainties in the integrated ΔX, which
are assumed to be instrumental uncertainties given the significant enhancements in fresh plumes and (2) the
uncertainties in the slopes of ΔX versus ΔCO2 (or ΔCO), which are usually<10%. For the Colockum Tarps fire,
we used the standard deviations of the four plume-averaged EFs to represent EF uncertainties, which are
generally larger than the combined instrumental and slope uncertainties.

BB emissions also vary with flaming and smoldering combustion processes. Modified combustion efficiency
(MCE), defined as ΔCO2/(ΔCO2 + ΔCO), was calculated to describe the relative amount of flaming or smolder-
ing [Akagi et al., 2011]. MCE can range over a large range, from <0.8 for smoldering combustion to 0.99 for
flaming combustion. An MCE near 0.9 suggests roughly equal amounts of flaming and smoldering [Akagi
et al., 2011].

3. Results and Discussion

We use the airborne measurements to determine the composition of the emissions generated during major
fire events, which could then lead to widespread air quality impacts via long-range transport. However, these

Figure 1. Map of the three wildfires and flight tracks near the fire sources
during BBOP and SEAC4RS. Flight tracks are colored by measured CO con-
centrations. The dates indicate the day each fire was sampled.
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airborne measurements did not capture smoke that was produced by residual smoldering combustion (RSC),
during which smoke was not lofted by flame-induced convection [Bertschi et al., 2003a]. The RSC emissions
often contribute more to local (near-fire) impacts, but they also impact the total emissions over the lifetime
of the fire. In general, RSC would most often increase the whole fire EF for smoldering dominated species.
Thus, the EFs for smoldering dominated species measured in this work may underestimate the total
emissions from these fires. Another factor that potentially influences the EFs of some very reactive species
(such as monoterpenes and NOx) reported in this work is photochemical processing. Although only relatively
fresh (<20 min to ~120 min) samples were used, elevated O3 (maximum ΔO3 of 100 ppbv in the Rim Fire
plumes) was observed for all three fires and elevated peroxyacetyl nitrate (PAN) up to ~9.4 ppbv was
observed for the two SEAC4RS fires where PAN measurements were available. Both O3 and PAN formation
indicated rapid photochemical processing. The observed ΔO3/ΔCO ratios in these plumes were approxi-
mately 0.01. Similar ERs of ΔO3/ΔCO have also been observed in prescribed forest and agricultural fire plumes
less than ~20 min old [Akagi et al., 2013; Liu et al., 2016].

Table 3 shows the average EFs and MCEs for the three wildfires along with the study-averaged EFs and MCE.
Among the chemical species that were quantified from the NASA DC-8 platform, we identified over 80 trace
gases and 5 fine particle components that were significantly elevated within the wildfire plumes when
compared with their background levels. Meanwhile, emissions of 14 gases and 5 fine particle components
were acquired from the G-1 aircraft. This represents the most comprehensive suite of species measured in
the field for U.S. wildfires to date. The fire-integrated MCEs derived in this work range from 0.877 to 0.935,
corresponding to ~41%–71% nominal flaming fractions.

3.1. Initial Emissions of Trace Gases

For the Big Windy Complex and the Rim Fire, the emitted gases include carbon dioxide (CO2); CO; CH4; hydro-
gen peroxide (H2O2); sulfur species; hydrochloric acid (HCl); six halocarbons; nitrogen-containing com-
pounds; all the measured alkanes, alkenes, alkynes, and aromatics; and a variety of OVOCs. Benzene and
toluene were measured by both WAS and a proton-transfer-reaction mass spectrometer (PTR-MS). Good
agreement was found between WAS and PTR-MS measurements of benzene (EFs within 8%) and toluene
(EFs within 24%). We reported EFs of benzene and toluene as the averages of the two techniques. The gases
that were measured, but deemed not to be emitted by the fires, were primarily halocarbons that were either
not enhanced or had weak correlations with CO (r2 < 0.6). A list of these gases can be found in Table 4 of
Simpson et al. [2011] with a few exceptions discussed in section 3.1.2. Yates et al. [2016] has also reported
some Rim Fire EFs as measured on 26 August 2013 from the DC-8 aircraft, namely, CO2, CO, CH4, methanol,
acetonitrile (CH3CN), acetone/propanal, benzene, and toluene. Despite potential differences in fresh plume
selection and different assumptions made for the carbon mass balance method, our Rim Fire EFs agree with
those of Yates et al. [2016] to within the stated uncertainties. For the Colockum Tarps fire, the emissions of 14
gases were measured: CO2, CO, CH4, sulfur dioxide (SO2), NOx, two aromatics (benzene and toluene), CH3CN,
and five OVOCs.

Study-averaged EFs were calculated from the EFs of all three fires if available or the two SEAC4RS fires if the
species was not measured during BBOP. The three exceptions are carbonyl sulfide that was only emitted from
the Rim Fire, n-heptane only emitted from the Big Windy Complex, and 2,3-butanedione only measured from
the Colockum Tarps fire during BBOP. The uncertainties reported for the study averages are the standard
deviations of the EFs for single fires and thus represent fire-to-fire variability. Note that for a few species that
were measured with measurement uncertainties of 30–50%, such as hydrogen cyanide (HCN), the fire-to-fire
variability is smaller than the single-fire uncertainty (Table 3).

According to the study-averaged EFs, the major gaseous emissions by mass are (EF> 0.5 g kg�1; Table 3 and
Figure 2): CO2 (1454 ± 78), CO (89.3 ± 28.5), CH4 (4.90 ± 1.50), methanol (2.45 ± 1.43), formaldehyde
(2.29 ± 0.27), 2,3-butanedione (2.10 ± 0.63), acetaldehyde (1.64 ± 0.52), acetone/propanal (1.13 ± 0.82), hydro-
xyacetone (1.13 ± 0.31), ethene (0.91 ± 0.17), ethane (0.72 ± 0.25), H2O2 (0.60 ± 0.60), NO2 (0.58 ± 0.50), and
furan (0.51 ± 0.06). Also listed in Table 3 are average gaseous EFs from previous airborne studies of forest fires:
boreal forest fires over Canada [Simpson et al., 2011], seven prescribed fires burning pine-forest understory in
longleaf pine stands in South Carolina [Akagi et al., 2013], and a compilation by Akagi et al. [2011] of tempe-
rate evergreen forest fires (which included only two confirmed wildfires) in North America. Detailed
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Table 3. Measured MCEs and Emission Factors (g kg�1) for the Three Wildfires in the Western U.S. and Comparison With Aircraft-Measured EFs From Previous
Forest Fire Studiesa

Fire
Colockum

Tarps
Big Windy
Complex Rim Fire

Study
Average

Temperate
Forests

Prescribed Fires in
South Carolina Boreal Forests

Reference This Work This Work This Work This Work Akagi et al.
[2011]

Akagi et al. [2013] Simpson et al.
[2011]

MCE 0.935 0.877 0.923 0.912 0.92 0.931 0.89
Compound Formula
Carbon dioxide CO2 1517 (20) 1367 (47) 1478 (11) 1454 (78) 1637 (71) 1675 (42) 1616 (180)
Carbon monoxide CO 67.6 (12.7) 122 (8) 78.7 (4.0) 89.3 (28.5) 89 (32) 79 (19) 113 (72)
Methane CH4 3.70 (0.31) 6.59 (0.35) 4.43 (0.25) 4.90 (1.50) 3.92 (2.39) 2.66 (1.77) 4.7 (2.9)
Hydrogen peroxide H2O2 � 1.02 (0.35) 0.18 (0.06) 0.60 (0.60) � � �
Sulfur dioxide SO2 0.75 (0.06) 0.11 (0.02) 0.11 (0.02) 0.32 (0.37) 2.03 (1.79) � �
Carbonyl sulfide OCS � � 5.9 (0.9) × 10�3 5.9 (0.9) × 10�3 � 0.01 (0.003) 0.029 (0.007)
Dimethyl sulfide C2H6S � 5.7 (1.2) × 10�3 5.6 (1.2) × 10�4 3.1 (3.6) × 10�3 � 0.008 (0.003) 2.3 (1.2) × 10�3

Hydrochloric acid HCl � 3.2 (1.1) × 10�3 4.6 (1.2) × 10�3 3.9 (1.0) × 10�3 � � �
Methyl chloride CH3Cl � 0.038 (0.005) 0.017 (0.002) 0.027 (0.015) � � 0.029 (0.007)
Dichloromethane CH2Cl2 � 1.9 (0.3) × 10�3 6.5 (1.8) × 10�4 1.3 (0.9) × 10�3 � � �
1,2-Dichloroethane C2H4Cl2 � 1.1 (0.2) × 10�3 5.1 (1.3) × 10�4 8.2 (4.4) × 10�4 � � 6.4 (5.1) × 10�4

Methyl iodide CH3I � 5.5 (1.2) × 10�4 1.9 (0.4) × 10�4 3.7 (2.6) × 10�4 � � 3.9 (0.9) × 10�4

Methyl bromide CH3Br � 1.3 (0.2) × 10�3 2.9 (0.4) × 10�4 8.1 (7.3) × 10�4 � � 1.8 (0.5) × 10�3

Dibromomethane CH2Br2 � 2.0 (0.5) × 10�4 1.6 (0.3) × 10�4 1.8 (0.3) × 10�4 � � 4.1 (8.0) × 10�5

HCFC-141bb C2H3Cl2F � 1.4 (0.2) × 10�3 5.1 (1.1) × 10�4 9.7 (6.5) × 10�4 � � �
HCFC-142bb C2H2ClF2 � 3.9 (1.2) × 10�4 1.3 (0.3) × 10�4 2.6 (1.8) × 10�4 � � �
HFC-152ab C2H4F2 � 1.1 (0.2) × 10�3 2.4 (1.1) × 10�4 6.8 (6.2) × 10�4 � � �
Nitrogen monoxide NO 0.23 (0.04) 8.0 (1.4) × 10�3 0.094 (0.018) 0.11 (0.11) � 0.32 (0.07) �
Nitrogen dioxide NO2 1.1 (0.4) 0.091 (0.011) 0.56 (0.09) 0.58 (0.50) � 1.72 (0.32) �
NOx as NO NOx 0.94 (0.29) 0.067 (0.008)c 0.46 (0.08) 0.49 (0.44) 2.51 (1.02) 1.31 (0.23) �
Hydrogen cyanide HCN � 0.43 (0.22) 0.25 (0.13) 0.34 (0.12) 0.73 (0.19) 0.66 (0.27) 0.89 (0.29)
Acetonitrile CH3CN 0.39 (0.14) 0.23 (0.05) 0.13 (0.02) 0.25 (0.13) � � 0.3 (0.06)
Ethanal nitrate C2O4H3N � 2.6 (1.3) × 10�3 2.9 (1.5) × 10�3 2.7 (0.3) × 10�3 � � �
Ethene hydroxynitrate C2O4H5N � 0.018 (0.010) 8.5 (4.3) × 10�3 0.013 (0.007) � � �
Propanone nitrate C3O3H5N � 4.5 (2.5) × 10�3 3.5 (1.8) × 10�3 4.0 (0.7) × 10�3 � � �
Propene hydroxynitrates C3O4H7N � 0.027 (0.008) 0.015 (0.005) 0.021 (0.008) � � �
Butadiene hydroxynitrates C4O4H7N � 0.017 (0.008) 0.012 (0.006) 0.014 (0.003) � � �
Butene hydroxynitrates C4O4H9N � 0.034 (0.017) 0.024 (0.012) 0.029 (0.007) � � �
Methyl vinyl ketone/
methacrolein hydroxynitrates

C4O5H7N � 0.024 (0.008) 0.017 (0.005) 0.021 (0.005) � � �

Isoprene hydroxynitrates C5O4H9N � 0.021 (0.007) 0.013 (0.004) 0.017 (0.006) � � �
Nitroxyhydroperoxide/
nitroxyhydroxyepoxide

C5O5H9N � 0.017 (0.009) 0.020 (0.010) 0.019 (0.002) � � �

Methyl nitrate CH3NO3 � 1.7 (0.2) × 10�3 1.3 (0.2) × 10�3 1.5 (0.4) × 10�3 � � 1.4 (0.9) × 10�3

Ethyl nitrate C2H5NO3 � 1.3 (0.2) × 10�3 3.5 (0.5) × 10�4 8.4 (6.9) × 10�4 � � 8.8 (4.5) × 10�4

i-Propyl nitrate C3H7NO3 � 3.3 (0.5) × 10�3 5.8 (0.8) × 10�4 2.0 (2.0) × 10�3 � � 1.6 (1.0) × 10�3

n-Propyl nitrate C3H7NO3 � 7.3 (1.1) × 10�4 1.6 (0.2) × 10�4 4.4 (4.0) × 10�4 � � 1.6 (1.2) × 10�4

2-Butyl nitrate C4H9NO3 � 1.9 (0.3) × 10�3 2.6 (0.4) × 10�4 1.1 (1.1) × 10�3 � � 1.9 (1.2) × 10�3

3-Methyl-2-butyl nitrate C5H11NO3 � 6.7 (1.2) × 10�4 1.1 (0.1) × 10�4 3.9 (4.0) × 10�4 � � 5.7 (4.6) × 10�4

3-Pentyl nitrate C5H11NO3 � 4.4 (0.7) × 10�4 4.4 (1.0) × 10�5 2.4 (2.8) × 10�4 � � 2.6 (1.7) × 10�4

2-Pentyl nitrate C5H11NO3 � 5.2 (0.9) × 10�4 5.1 (0.8) × 10�5 2.8 (3.3) × 10�4 � � 4.8 (3.1) × 10�4

Methanol CH3OH 1.81 (0.44) 4.09 (0.93) 1.44 (0.22) 2.45 (1.43) 1.93 (1.38) 1.20 (0.49) 1.2 (0.3)
Formaldehyde HCHO � 2.49 (0.26) 2.10 (0.21) 2.29 (0.27) 2.27 (1.13) 1.87 (0.27) �
Acetaldehyde C2H4O 1.64 (0.27) 2.16 (0.37) 1.12 (0.17) 1.64 (0.52) � � �
Acetone/propanal C3H6O 0.69 (0.13) 2.07 (0.36) 0.62 (0.03) 1.13 (0.82) � � 0.37 (0.10)
Hydroxyacetone C3H6O2 � 1.35 (0.55) 0.90 (0.36) 1.13 (0.31) � � �
Furan C4H4O � 0.55 (0.05)d 0.46 (0.05)d 0.51 (0.06)d 0.20 (0.21) 0.27 (0.19) 0.28 (0.03)
2,3-Butanedione C4H6O2 2.10 (0.63) � � 2.10 (0.63) � � �
MVK/MACR /crotonaldehyde C4H6O � 0.37 (0.05) 0.29 (0.03) 0.33 (0.06) � � �
Isoprene hydroperoxyaldehydes C5O3H8 � 0.18 (0.09) 0.16 (0.08) 0.17 (0.02) � � �
Hydroxymethylhydrogenperoxide CO3H4 � 0.33 (0.17) 0.048 (0.024) 0.19 (0.20) � � �
Peroxyacetic acid/
hydroperoxy glycolaldehyde

C2O3H4 � 0.44 (0.24) 0.045 (0.023) 0.24 (0.28) � � �

Hydroperoxy acetone C3O3H6 � 0.13 (0.07) 0.043 (0.022) 0.086 (0.061) � � �
C4-dihydroxycarbonyls C4O3H8 � 0.075 (0.039) 0.020 (0.010) 0.047 (0.039) � � �
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discussion of the emissions of different compounds and their comparison with these previous airborne mea-
surements is presented below.
3.1.1. Sulfur Compounds
SO2 was the main sulfur-containing gas measured from the three fires, followed by significantly less dimethyl
sulfide (DMS) and carbonyl sulfide (OCS). The study average EF(SO2) (0.32 ± 0.37 g kg�1) is smaller than the
average EF(SO2) (2.03 ± 1.79 g kg�1) for various temperate evergreen fires [Akagi et al., 2011] and
(0.795 ± 0.377 g kg�1) for 15 agricultural fires sampled during SEAC4RS [Liu et al., 2016], though the differ-
ences are not statistically significant. Note that the uncertainty in the SO2 EF is large because it represents

Table 3. (continued)

Fire
Colockum

Tarps
Big Windy
Complex Rim Fire

Study
Average

Temperate
Forests

Prescribed Fires in
South Carolina Boreal Forests

C4-hydroxydicarbonyls/
C5-alkenediols

C4O3H6/
C5O2H10

� 0.12 (0.06) 0.090 (0.045) 0.11 (0.02) � � �

Isoprene hydroxy
hydroperoxides/
isoprene epoxydiols

C5O3H10 � 0.11 (0.04) 0.042 (0.013) 0.076 (0.047) � � �

Ethane C2H6 � 0.89 (0.06) 0.54 (0.04) 0.72 (0.25) 1.12 (0.67) 0.489 (0.359) 0.56 (0.13)
Ethene C2H4 � 1.03 (0.08) 0.79 (0.06) 0.91 (0.17) 1.12 (0.35) � 0.82 (0.09)
Ethyne C2H2 � 0.26 (0.02) 0.21 (0.02) 0.24 (0.04) 0.29 (0.10) � 0.22 (0.09)
Propane C3H8 � 0.32 (0.02) 0.17 (0.01) 0.24 (0.11) 0.26 (0.11) 0.153 (0.099) 0.23 (0.05)
Propene C3H6 � 0.36 (0.03) 0.35 (0.03) 0.35 (0.01) 0.95 (0.54) � 0.38 (0.04)
i-Butane C4H10 � 0.023 (0.002) 0.010 (0.001) 0.016 (0.009) � 0.010 (0.005) 0.021 (0.004)
n-Butane C4H10 � 0.084 (0.006) 0.038 (0.003) 0.061 (0.033) 0.083

(0.10)
0.036 (0.016) 0.076 (0.015)

1,2-Propadiene C3H4 � 0.011 (0.002) 0.011 (0.002) 0.011 (0.000) � 0.015 (0.002) �
trans-2-Butene C4H8 � 2.2 (0.2) × 10�3 0.011 (0.002) 6.8 (6.5) × 10�3 � 0.035 (0.018) 0.020 (0.003)
cis-2-Butene C4H8 � 2.0 (0.3) × 10�3 0.011 (0.002) 6.7 (6.7) × 10�3 � 0.028 (0.016) 0.015 (0.002)
1-Butene C4H8 � 0.079 (0.007) 0.080 (0.006) 0.080 (0.001) � 0.131 (0.034) 0.077 (0.009)
i-Butene C4H8 � 0.043 (0.004) 0.043 (0.004) 0.043 (0.000) � 0.088 (0.017) 0.056 (0.007)
1,3-Butadiene C4H6 � 0.043 (0.005) 0.067 (0.006) 0.055 (0.017) � � 0.070 (0.008)
i-Pentane C5H12 � 0.016 (0.002) 5.0 (0.5) × 10�3 0.010 (0.008) � 0.007 (0.002) 0.019 (0.005)
n-Pentane C5H12 � 0.043 (0.003) 0.017 (0.002) 0.030 (0.019) � 0.019 (0.003) 0.042 (0.008)
1-Pentene C5H10 � 0.029 (0.002) 0.022 (0.002) 0.026 (0.005) � 0.030 (0.005) �
Isoprene C5H8 � 0.043 (0.007) 0.032 (0.003) 0.038 (0.007) � 0.14 (0.03) 0.074 (0.017)
2,3-Dimethylbutane C6H14 � 1.4 (0.1) × 10�3 5.0 (0.6) × 10�4 9.6 (6.4) × 10�4 � � �
2 + 3-Methylpentane C6H14 � 8.2 (0.6) × 10�3 4.0 (0.3) × 10�3 6.1 (4.7) × 10�3 � 0.010 (0.002) 0.018 (0.004)
n-Hexane C6H14 � 0.030 (0.002) 0.012 (0.001) 0.021 (0.012) � 0.012 (0.003) 0.027 (0.006)
n-Heptane C7H16 � 0.014 (0.001) � 0.014 (0.001) � 0.008 (0.005) 0.024 (0.004)
Benzene C6H6 0.39 (0.11) 0.57 (0.04)e 0.34 (0.02)e 0.43 (0.12) � 0.283 (0.043) 0.55 (0.11)
Toluene C7H8 0.25 (0.06) 0.29 (0.02)e 0.20 (0.02)e 0.24 (0.05) � 0.199 (0.031) 0.24 (0.06)
Ethylbenzene C8H10 � 0.031 (0.003) 0.021 (0.002) 0.026 (0.007) � 0.039 (0.016) 0.025 (0.009)
m + p-Xylene C8H10 � 0.086 (0.009) 0.085 (0.010) 0.086 (0.001) � 0.080 (0.055) 0.060 (0.008)
o-Xylene C8H10 � 0.040 (0.004) 0.036 (0.004) 0.038 (0.003) � 0.025 (0.011) 0.027 (0.003)
α-Pinene C10H16 � 0.017 (0.002) 0.018 (0.002) 0.017 (0.001) � 0.094 (0.021) 0.81 (0.10)
β-Pinene C10H16 � 0.014 (0.003) 0.006 (0.001) 0.010 (0.006) � 0.052 (0.013) 0.72 (0.09)
Monoterpenes C10H16 � 0.45 (0.08) 0.37 (0.07) 0.41 (0.06) � 1.61 (1.00) �
Ammonium NH4 0.19 (0.12) 0.49 (0.17) 0.34 (0.12) 0.34 (0.15) � � �
Nitrate NO3 0.73 (0.42) 0.99 (0.34) 0.90 (0.31) 0.87 (0.13) � � �
Chloride Chl 0.42 (0.12) 0.064 (0.022) 0.082 (0.029) 0.19 (0.20) � � �
Sulfate SO4 0.46 (0.10) 0.15 (0.05) 0.29 (0.10) 0.30 (0.16) � � �
Organic aerosol OA 23.3 (4.76) 30.9 (11.8) 18.8 (7.3) 24.3 (6.1) � � �
Submicron aerosol PM1 25.1 (4.8) 32.6 (11.8) 20.4 (7.3) 26.0 (6.2) 12.7 (7.5)f � �

aValues in parenthesis are errors for single fire and standard deviations for all available EFs for study averages.
bHFCs and HCFCs are purely anthropogenic compounds that are not expected from BB.
cNOx emission from the Big Windy Complex is likely much larger (see text).
dEF for furan/pentadienes/cyclopentene, determined as the deference between PTR-MS measured isoprene/furan/pentadienes/cyclopentene and WAS mea-

sured isoprene.
eReported as PTR-MS and WAS averages.
fReported as PM2.5-PM3.5.
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fire-to-fire variability, whereas the uncertainty in the EF for each individual fire is tightly constrained (Table 3).
Since SO2 emissions are found to be highly dependent on fuel sulfur content [Burling et al., 2010; Stockwell
et al., 2014], the reason for our low EF(SO2) relative to other studies is presumably lower sulfur content for
the plants burned, especially for those burned in the two SEAC4RS fires. Since there could be SO2

oxidation to particulate sulfate given high levels of H2O2 in the SEAC4RS plumes, summing up the emitted
SO2 and sulfate may better reflect fuel sulfur content. The resulting combined sulfur emissions from the
SEAC4RS fires (0.21–0.31 g kg�1) were still lower than the above-cited average SO2 EFs.

DMS was clearly released from the two SEAC4RS fires as it was strongly correlated with CO (r2 > 0.97). OCS
was also highly correlated with CO for the Rim Fire (r2 = 0.91). However, OCS from the Big Windy Complex
had no measurable elevation and weak correlation with excess CO (r2 = 0.14). Both DMS and OCS have been
measured previously from prescribed [Akagi et al., 2013] and boreal forest fire plumes [Yokelson et al., 1997;
Simpson et al., 2011] with EFs ranging 0.0023–0.008 g kg�1 and 0.01–0.029 g kg�1, respectively (Table 3).
While the Big Windy Complex EF(DMS) (0.0057 ± 0.0012 g kg�1) is within the range observed from the few
available studies, the Rim Fire EF(DMS) (0.00056 ± 0.00012) and EF(OCS) (0.0059 ± 0.0009) are both lower than
the literature values.
3.1.2. Chlorine Compounds and Halocarbons
The chlorine-containing gases emitted from the two SEAC4RS fires are HCl and six halocarbons, methyl chlor-
ide (CH3Cl), dichloromethane (CH2Cl2), 1,2-dichloroethane, methyl iodide (CH3I), methyl bromide (CH3Br), and
dibromomethane (CH2Br2). In addition, hydrochlorofluororcarbon (HCFC)-142b, HCFC-141b, and hydrofluor-
ocarbon (HFC)-152a were also measurably enhanced in the plumes, as discussed below. The HCl emission
was very low, with an average EF of 0.0039 ± 0.0010 g kg�1. This value is almost the smallest of the existing
HCl emissions from various fuel types burned in field or laboratory, which range from 0.008 to 3.61 g kg�1

[Akagi et al., 2011; Stockwell et al., 2014]. As also shown in Table 3, particulate chloride EFs from these two fires
(0.064–0.082 g kg�1) were near the lower end of a range of EFs from prescribed fires of different ecosystems
(0.13 to 1.3 g kg�1) [May et al., 2014]. HCl and chloride emissions were found in laboratory studies to have a
significant dependence on fuel composition for a variety of biomass fuels [Christian et al., 2003; Hosseini et al.,
2013; Stockwell et al., 2014]. For example, oak, one of the fuels burned in the two SEAC4RS fires, was found to
have low Cl content and low EF(chloride) when compared to some other southwestern U.S. fuels [Hosseini
et al., 2013]. Thus, low EFs of HCl and chloride observed in these two fires may imply a low chlorine fraction
of the fuels burned.

Figure 2. The average emission factors (boxes) and standard deviations (whiskers) for the 20 most abundant trace gases
(excluding CO2, CO, and CH4) measured from the three wildfires.
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The nine halocarbons included in Table 3 showed reasonable correlations with CO (0.61 < r2 < 0.99) and
measurable enhancements compared to the background air. The emissions of CH3Cl, CH3I, CH3Br, CH2Br2,
and 1,2-dichloroethane have been previously reported by Simpson et al. [2011] from Canadian forest fire
plumes. Except for a factor of 4 higher value of EF(CH2Br2) and a factor of 2 lower value of CH3Br, the average
EFs measured in this work are similar to (within 5–28% of) those reported by Simpson et al. [2011]. In addition,
CH2Cl2 was also emitted with an average ER to CO of (4.0 ± 1.8) × 10�6, which is in between the
ERs < (1–6) × 10�7 measured in Tasmania [Simmonds et al., 2006] and the ER = (2.5 ± 0.6) × 10�5 measured
in Africa [Rudolph et al., 1995]. Note that the more smoldering Big Windy Complex consistently emitted more
of these halocarbons than the Rim Fire. Methyl halides (CH3Cl, CH3Br, and CH3I) are thought to form predo-
minantly from smoldering and also reflect halogen content in fuels burned [Reinhardt and Ward, 1995;
Andreae and Merlet, 2001]. It is also known that in the Pacific Northwest, chlorine and bromine concentrations
in vegetation decrease with distance from the coast [McKenzie et al., 1996]. Therefore, both the burning con-
dition and the closer proximity to ocean could possibly account for higher halocarbon emissions from the Big
Windy Complex.

HFCs, CFCs, and HCFCs are produced exclusively by anthropogenic activities and are not expected from BB.
A possible explanation for their enhanced concentrations in the wildfire plumes could be a re-suspension
after being deposited previously onto the forests. Hegg et al. [1990] also observed variable CFC-12
(CF2Cl2) emissions from seven fires in North America, most pronounced in the Los Angeles basin. In contrast,
Simpson et al. [2011] did not see any elevated HFCs or HCFCs over remote regions of Canada. Our observa-
tions may suggest the deposition of HFCs and HCFCs on vegetation in the regions studied. However, since
these compounds are highly volatile, their enhancements in wildfire plumes may result from other
unknown mechanisms.
3.1.3. Nitrogen Compounds
Freshly emitted gaseous nitrogen-containing compounds measured in the plumes are (in descending EF
order) nitrogen dioxide (NO2), HCN, CH3CN, nitrogen monoxide (NO), multifunctional organic nitrates usually
derived from the oxidation of isoprene and other alkenes [Paulot et al., 2009a; Lee et al., 2014; Teng et al.,
2015], and C1–C5 saturated alkyl nitrates. Similar to many other BB studies [Yokelson et al., 2009; Alvarado
et al., 2010; Liu et al., 2016], the observed nitric acid (HNO3) was not significantly elevated within the fresh
wildfire plumes.

Since NO and NO2 are rapidly interconverted, it is also useful to report an EF for NOx as NO. In Table 3, the
derived EFs of NO, NO2, and NOx from the three wildfires are all the smallest among the studies listed. The
Big Windy Complex emitted extremely small amounts of NOx (0.067 ± 0.008 g kg�1). One reason could be
that the smoldering dominated burning conditions did not favor NOx emission [Lobert et al., 1991;
Yokelson et al., 1996; Goode et al., 2000]. However, as the samples of the Big Windy Complex and the Rim
Fire included smoke up to ~1–2 h old, the freshly emitted NOxmight have partially transformed to other reac-
tive nitrogen species such as PAN and particulate nitrate. In support of this, elevated PAN was observed for
both fires, while a decrease in ΔNOx/ΔCO was seen in the Rim Fire plume as the distance from the fire source
increased. Adding in the observed PAN to NOxwould enhance the NOx emissions by ~5 times and by 29% for
the Big Windy Complex and the Rim Fire, respectively. For this reason, the NOx emissions from the Big Windy
Complex are significantly underestimated.

HCN and CH3CN are commonly recognized as BB tracers, and their ER, ΔCH3CN/ΔHCN, ranges between 0.30
and 0.56 for a wide range of fuels burned in the laboratory and field [Li et al., 2000; Christian et al., 2003; de
Gouw et al., 2003; Yokelson et al., 2008; Crounse et al., 2009; Yokelson et al., 2009; Simpson et al., 2011]. Our
CH3CN/HCN ratio is about 0.3 for fires where both species were measured. The average EF(HCN),
0.34 ± 0.12 g kg�1, from the two SEAC4RS fires is low compared to the other forest fires listed in Table 3
(0.66–0.89 g kg�1). Note that the small uncertainty we report, 0.12 g kg�1, only reflects the standard deviation
of the two SEAC4RS EFs, whereas the measurement uncertainty is actually as high as 50%. Previously, forest
fire CH3CN emissions were measured mostly from boreal and tropical regions but rarely from temperate
regions [Akagi et al., 2011; Simpson et al., 2011; Müller et al., 2016]. A typical range for forest fire CH3CN EFs
in the literature is 0.2 to 0.6 g kg�1. While the CH3CN emission from the Rim Fire (EF = 0.13 ± 0.02 g kg�1)
was below this range, those from the other two fires are both within it. Note that the Rim Fire also had a rela-
tively low EF(HCN) of 0.25 ± 0.13 g kg�1. A recent study of BB emissions demonstrated that HCN and CH3CN
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emissions are nonlinearly dependent on the nitrogen level of the fuel [Coggon et al., 2016]. The ERs of
ΔCH3CN/ΔHCN for the two SEAC4RS fires, 0.31 and 0.35, are at the lower end of the generally observed range,
0.30–0.56, as noted above.

Alkyl nitrate formation is an important feature of NOx–VOC chemistry, and it also affects organic aerosol (OA)
formation [Perring et al., 2013; Lee et al., 2016]. In general, the average EFs of the saturated C1–C5 alkyl nitrates
from the two SEAC4RS wildfires are similar to those measured from boreal forest fire plumes [Akagi et al.,
2011; Simpson et al., 2011]. In addition, we report the first EFs of multifunctional organic nitrates (isoprene/
butadiene/butene/propene/ethene hydroxynitrates, methyl vinyl ketone/methacrolein hydroxynitrates, pro-
panone nitrate, ethanal nitrate, and nitroxyhydroperoxide + nitroxyhydroxyepoxide) from BB. In the fresh
plumes of the two SEAC4RS fires, most of these nitrates were elevated over background by less than 200 pptv,
corresponding to ERs to CO on the order of 10�6–10�5. Although relatively minor in concentrations, they
exhibit excellent correlations with HCN with r2 generally larger than 0.95, indicating a clear BB source. The
summed emissions of these measured alkyl nitrates are 0.18 g kg�1 (8.5% of HCN by molar ratio) and
0.12 g kg�1 (9.6% of HCN by molar ratio) for the Big Windy Complex and the Rim Fire, respectively.
3.1.4. Nonmethane Organic Compounds
Open biomass burning is the second largest global source of gas-phase NMOCs after biogenic emissions
[Yokelson et al., 2008]. The emitted NMOCs can greatly influence the production of ozone and secondary
organic compounds. Additional NMOCs, especially OVOCs, have been measured by recent work, which can
then improve photochemical model performance [Stockwell et al., 2015; Liu et al., 2016; Müller et al., 2016].
The extensive measurements during SEAC4RS enable the development of a detailed set of EFs of NMOCs
for wildfires. The PTR-MS on board the G-1 aircraft also measured several important NMOCs from the
Colockum Tarps fire. Among the common species, the Big Windy Complex had higher emissions for a variety
of OVOCs measured by PTR-MS and CIMS. Its smoldering dominated burning condition could have contrib-
uted to the higher OVOC EFs, although this observation cannot be fully explained without knowing differ-
ences in fuels.

The most abundant NMOCs emitted from the wildfires are methanol, formaldehyde, acetaldehyde,
acetone/propanal, and hydroxyacetone. They are also often the most abundant OVOCs emitted by other
types of BB [Akagi et al., 2011; Stockwell et al., 2014, 2015; Liu et al., 2016]. Although not measured here, acetic
acid is often another major NMOC emitted from forest fires [Akagi et al., 2011; Yokelson et al., 2013]. In general,
our average EFs of the measured compounds (except for hydroxyacetone) agree within a factor of ~2 with
the other studies listed in Table 3 and from burning different plants as compiled by Akagi et al. [2011].
Hydroxyacetone emissions from a prescribed forest fire have recently been reported by Müller et al. [2016]
with an average EF of 0.28 ± 0.15 g kg�1. The two SEAC4RS fires produced relatively high amounts of hydro-
xyacetone, with an average EF of 1.13 ± 0.31 g kg�1, which is higher than those for a variety of common fire
types studied during the fourth Fire Lab at Missoula Experiment (FLAME-4) except for crop residue fuels.

2,3-butanedione has been found to be an important precursor of peroxyacetyl radicals through photolysis
and has large effects on modeled plume chemistry [Liu et al., 2016; Müller et al., 2016]. We report an EF(2,3-
butanedione) of 2.10 ± 0.63 g kg�1 for the Colockum Tarps fire, which was the second most abundant
NMOC after formaldehyde for that fire, even higher than methanol and acetaldehyde. This EF is much higher
than the measured 0.44 ± 0.18 g kg�1 from a small prescribed fire in Georgia [Müller et al., 2016],
0.73 ± 0.22 g kg�1 for some tropical deforestation fires [Yokelson et al., 2008], and ~0.2–1.2 g kg�1 for a variety
of fuels burned in laboratory fires [Yokelson et al., 2008; Stockwell et al., 2015]. Such high primary 2,3-
butanedione emissions significantly promote peroxyacetyl nitrate (PAN) formation in downwind plumes.

The SEAC4RS data extend previously published emissions by including a few OVOCs that are also important
products from the oxidation of biogenic emissions such as isoprene [Paulot et al., 2009a, 2009b; Crounse et al.,
2011, 2013; Bates et al., 2016]. These species consist of peroxyacetic acid (PAA) and hydroperoxy glycolalde-
hyde (HPGLYC), hydroperoxy acetone, organic peroxides (hydroxymethylhydrogenperoxide (HMHP) and iso-
prene hydroxy hydroperoxides and epoxydiols), isoprene hydroperoxyaldehydes (HPALDs), and some other
hydroxy compounds (C4-dihydroxycarbonyls, C4-hydroxydicarbonyls, and C5-alkenediols). These intermedi-
ate compounds are of particular interest because they are known to affect the atmosphere’s oxidative capa-
city and form secondary organic aerosol (SOA) [Lelieveld et al., 2008; Surratt et al., 2010]. PAA/HPGLYC, HMHP,
and HPALDs are the three compounds that had the highest average EFs: 0.24 ± 0.28, 0.19 ± 0.20, and
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0.17 ± 0.02 g kg�1. HPALDs were also found to be abundant in agricultural fire plumes, with a higher average
EF of 0.406 ± 0.229 g kg�1 [Liu et al., 2016]. While the EF(HPALD) values were similar for the Big Windy
Complex and Rim Fire, EF(PAA/HPGLYC) and EF(HMHP) showed strong fire-to-fire variability, with EFs 7–10
times higher from the Big Windy Complex.

Among the nonmethane hydrocarbons (NMHCs) quantified from the SEAC4RS fires, the shorter-chained
alkanes and alkenes (C2–C3) were most abundant in the plumes on a molar basis, as was also found in other
BB studies [Akagi et al., 2011; Simpson et al., 2011]. Benzene and toluene ranked highest among the longer-
chained hydrocarbons (≥ C4) based on both ERs and EFs. Most of the NMHC EFs were comparable to the other
forest fires listed in Table 3. The NMHCs that had lower EFs for both the two SEAC4RS fires than some litera-
ture values are mainly terpenes including isoprene, α-pinene, β-pinene, and total monoterpenes. The average
EF(α-pinene) and EF(β-pinene) in this study are lower by over 5 times and 40 times than those obtained from
prescribed forest fires in South Carolina [Akagi et al., 2013] and boreal forest fires in Canada [Simpson et al.,
2011], respectively. The highest pinene EFs from the boreal forest fires is consistent with their stronger asso-
ciation with coniferous than deciduous ecosystems [Fuentes et al., 2000]. However, since western forests
burned here are also predominantly coniferous, vegetation type alone may not account for the difference
in pinene emissions. Additionally, Akagi et al. [2013] suggests that α-pinene and β-pinene may be preferen-
tially released from fuels on the ground (duff, dead-down woody fuels, etc.) that burn largely by RSC, and
temperate forests tend to have a smaller loading of dead-down woody fuels than boreal forests.
Compared to the boreal fire plumes, the lower EF(pinenes) determined here may be partially explained by
the fact that less emissions from such fuels were lofted and sampled, possibly due to previous burns and thin-
ning operations in the case of the Rim Fire. However, other factors such as fire variability and photochemical
processing are also expected to contribute to the difference.

3.2. Initial Emissions of PM1

PM emissions from temperate fuels have been measured mainly from prescribed fires and in laboratory
studies [Hosseini et al., 2013;May et al., 2014]. Very recently, Collier et al. [2016] reported aerosol enhancement
ratios from 32 wildfire plumes originating from the Pacific Northwest region during BBOP, which were
sampled at a fixed site located in central Oregon as well as from the G-1 aircraft. In addition, BB OA has been
shown to contain substantial amounts of light-absorbing brown carbon (BrC), which has potential impacts on
climate forcing [Saleh et al., 2013; Forrister et al., 2015;Washenfelder et al., 2015; Liu et al., 2016]. Forrister et al.
[2015] presented a detailed examination of BrC evolution in the smoke of the Rim Fire. Here we report a suite
of emissions of nonrefractory components of PM1 fromwestern wildfires measured by the aerosol mass spec-
trometer (AMS). It is known that the measured fine PM emissions for similar fuel types often vary between
field-measured prescribed burns and laboratory-based burns due to different burning control and fuel con-
ditions such as moisture content [May et al., 2014]. Similarly, fine PM variability may also exist between pre-
scribed fires and uncontrolled wildfires, which tend to burn at lower fuel moisture. However, little information
is available for a detailed comparison. Therefore, we also compare our EF(PM1) with previous airborne and
ground-based studies that measured the same PM1 species from prescribed fires (Table 4).

The major particulate species emitted from all three fires are OA, with an average EF of 24.3 ± 6.1 g kg�1

(Table 3). The Big Windy Complex had the largest EF(OA) among the three studied fires
(30.9 ± 11.8 g kg�1). This high EF(OA) was possibly related to the smoldering burning conditions, although
it could also be affected by gas-particle partitioning of semivolatile compounds during the dilution processes.
Another complication is the net formation of secondary OA (SOA) that could contribute to higher downwind
ΔOA/ΔCO, which could be important for the SEAC4RS plumes as they involved smoke as old as 1–2 h. Highly
variable SOA formation rates in aging BB plumes have been reported, although limited net increase in OA
mass has often been observed [Capes et al., 2008; Yokelson et al., 2009; Cubison et al., 2011; Liu et al., 2016].
In the case of the Rim Fire, besides the relatively fresh plumes (~20–120 min), there were also samples
>4 h old. We found that in the fresh Rim Fire plumes that ranged from ~20 to 120 min old, ΔOA/ΔCO and
the oxygen-to-carbon (O/C) ratio remained at 0.24 g g�1 and ~0.5, respectively, without significant variation.
In contrast, in the ~4 h old plumes, ΔOA/ΔCO decreased to 0.11 g g�1, while the average O/C ratio increased
to ~0.8. This indicated that between ~2 and 4 h, the net effect of oxidation and evaporation resulted in a 54%
decrease in OA mass. Forrister et al. [2015] found that ΔOA/ΔCO exhibited little change afterward in more
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aged Rim Fire plumes up to ~50 h. Similarly, constant ΔOA/ΔCO and O/C ratio were also seen in the fresh Big
Windy Complex plumes. Therefore, the OA EFs in this study represent freshly emitted OA (< 2 h) that did not
undergo a significant change in mass due to aging. As noted below, the higher initial emissions fromwildfires
are important despite the decrease in OA/CO with aging observed in the Rim Fire.

For all three fires, OA emissions represented the majority of the mass (>90%) of the emitted PM1. Such a high
OA fraction was also observed frommontane prescribed fires and from burning pines and dense fuels such as
duff and peat in laboratory studies [May et al., 2014]. Based on aircraft observations, May et al. [2014]
observed significantly smaller EF(OA) in young plumes up to 2 h emitted from prescribed fires for three
temperate ecosystems, namely, maritime chaparral (3.9 ± 1.8 g kg�1), montane (11.2 ± 2.7 g kg�1), and
southeastern coastal plain (2.8 ± 1.6 g kg�1). By contrast, by calculating enhancement ratios as
ΔOA/Δ(CO2 + CO), we find that our average value, 30.0 ± 8.1 μg m�3 ppm�1, agrees well with the average
of 31 ± 24 μg m�3 ppm�1 for the 32 wildfire plumes reported by Collier et al. [2016]. It is significant to note
that the plumes sampled in that study includedmany that aged beyond 2–4 h. Thus, the net decrease inmass
after emission observed for the Rim Fire may be unusual. Cubison et al. [2011] and Jolleys et al. [2012, 2015]
summarize some field BB data sets for boreal and tropical wildfires and conclude that fresh ΔOA/ΔCO often
ranged from ~0.02 to 0.33 g g�1. In this study, the ERs of ΔOA/ΔCO for the three fires ranged between 0.24
and 0.34 g g�1, which lies in the upper end of the previously reported range.

The dominant inorganic aerosol species measured by the AMS are ammonium, nitrate, chloride, and sulfate,
with average EFs of 0.34 ± 0.15, 0.87 ± 0.13, 0.19 ± 0.20, and 0.30 ± 0.16 g kg�1. All these average EFs are larger
than the aircraft-measured EFs from U.S. prescribed fires reported by May et al. [2014] (Table 4). For tropical
forest fires, wide ranges of sulfate (~0.05–0.21 g kg�1) and chloride (~0.07–0.51 g kg�1) EFs have been
measured in the field [Yokelson et al., 2009; Akagi et al., 2011]. Compared to the tropical fires, our average
EF(sulfate) is relatively high, while the average EF(chloride) is within the observed range of chloride emis-
sions. Nitrate and ammonium are often found to be minor components of the emitted nitrogen species
when compared to NOx and NH3 from various BB studies, with EFs generally less than ~0.2 g kg�1

[McMeeking et al., 2009; Akagi et al., 2011]. In our work, the emitted nitrogen as nitrate and ammonium
accounted for 87% and 116% of that as NOx on average, respectively. Note that although nitrate and
ammonium have been observed in primary fine PM (e.g., Lewis et al. [2009]), our observations may also
include some secondary production, since NOx conversion to PAN was observed in the Big Windy
Complex and the Rim Fire plumes. Collier et al. [2016] also observed significant nitrate and ammonium
emissions, which were both ~25% lower than our observations based in ERs to Δ(CO2 + CO).

We combined our EF measurements of nonrefractory species to investigate the total PM1 emission from the
temperate wildfires. The average EF(PM1) for the three fires is 26.0 ± 6.2 g kg�1, which is more than 2 times
larger than the average for the montane prescribed fires and ~5–6 times larger than those for the chaparral
and coastal plain fires (Table 4). Although black carbon (BC) is not included in our EF(PM1), we expect the
comparison to be roughly the same since our EF(PM1) is dominated by OA. Our EF(PM1) is also substantially
larger than the temperate forest average reviewed by Akagi et al. [2011], which takes into account two wild-
fires and many prescribed fires (Table 3). Although the analysis is limited, our overall higher EF(PM1) may

Table 4. Comparison of Aerosol EFs (g kg�1) and ERs to Δ(CO2 + CO) for Temperate Fuels Measured From Aircraft

Fire Western Wildfires (This Work)
Prescribed Chaparral Fires

[May et al., 2014]
Prescribed Montane Fires

[May et al., 2014]
Prescribed SE Coastal Plain

Fires [May et al., 2014]
Western Wildfires
[Collier et al., 2016]

MCE 0.912 (0.031) 0.924 (0.019) 0.899 (0.020) 0.936 (0.014) 0.91 (0.046)

EF (g kg�1) ER to Δ(CO2 + CO)
(μg m�3 ppm�1)

EF (g kg�1) EF (g kg�1) EF (g kg�1) ER to Δ(CO2 + CO)
(μg m�3 ppm�1)

OA 24.3 (6.1) 30.0 (8.1) 3.9 (1.8) 11.2 (2.7) 2.8 (1.6) 31 (24)
BC - - 1.43 (0.13) 0.59 (0.13) 1.11 (0.67) -
NH4 0.34 (0.15) 0.42 (0.19) 0.05 (0.05) 0.06 (0.00) 0.07 (0.03) 0.32 (0.32)
NO3 0.87 (0.13) 1.08 (0.18) 0.08 (0.07) 0.20 (0.00) 0.09 (0.03) 0.81 (0.94)
Chl 0.19 (0.20) 0.23 (0.24) 0.08 (0.05) 0.01 (0.00) 0.09 (0.15) -
SO4 0.30 (0.16) 0.37 (0.18) 0.01 (0.01) 0.01 (0.00) 0.17 (0.10) -
PM1 26.0 (6.2) 32.1 (8.2) 5.5 (1.7) 12.1 (2.9) 4.4 (2.0) -
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reflect differences between emissions from prescribed fires and wildfires due to differences in fuel content
and condition, burning condition, and fire size and intensity. For example, inorganic EFs are often found to
have a strong dependence on fuel composition [Christian et al., 2003; Burling et al., 2010; May et al., 2014]
and OA is mainly produced by smoldering combustion [Reid et al., 2005]. Since the observed wildfire MCEs
of both this work and Collier et al. [2016] fall within the range of MCEs that is commonly measured for
prescribed fires (Table 4), other reasons besides the smoldering to flaming ratio of the fire are needed to
explain the higher production of OA fromwildfires. For example, prescribed fires often occur within restricted
meteorological and fuel moisture conditions designed to maintain containment of the fire while still burning
a significant fraction of the fuel [Radke et al., 1991]. Different conditions that drive the wildfire intensity and
movement may result in different PM EFs. In addition, wildfires tend to burn more dead/down fuels and live,
moist canopy fuels, both of which can promote high OA emissions [Yokelson et al., 2008; May et al., 2014]. In
short, this work suggests that the aircraft-measured EF(PM1) from wildfires is more than 2 times that of pre-
scribed fires.

In addition, wildfires typically consume more fuel than prescribed fires [Campbell et al., 2007; Turetsky et al.,
2011; Yokelson et al., 2013]. Higher PM EFs and higher fuel consumption for wildfires suggest that it is possible
to reduce overall PM emissions by prescribed burning. However, this assumes that prescribed burning will
significantly reduce the prevalence of wildfires.

3.3. Relationship Between EF and MCE

BB emissions often vary with different combustion processes such as flaming and smoldering. For this reason,
we examined the correlation between MCEs and the derived EFs for the three wildfires sampled in this study.
Since BB studies for similar western fuels are rare, we also compare our data to the previous U.S. prescribed
fire and boreal fire studies of Burling et al. [2011], Simpson et al. [2011], Akagi et al. [2013], andMay et al. [2014].
The species we chose are CH4, 16 out of the 20 most abundant gases in Figure 2, and the 5 PM1 components,
all of which comprise at least three data points obtained from this work and/or the selected prescribed fire
studies. Despite differences in fuels and burning environments in these studies, we examined EFs as a
function of MCE using all available data to provide a general idea about whether variability in MCE alone
can describe the variability in EFs.

Figure 3 shows all gaseous species with a linear regression slope significantly different from 0, including NOx,
CH4, methanol, benzene, toluene, formaldehyde, furan, and propene. EF(NOx) increases as MCE increases,
consistent with its primary emission from flaming combustion [Yokelson et al., 1996; Lobert et al., 1999;
Goode et al., 2000]. All NMOCs in Figure 3 are negatively correlated with MCE, consistent with their emission
from smoldering combustion. Variability in the EF versus MCE relationship does exist among the different
studies. For example, the EF(NOx) and MCE correlation (r2 = 0.29) might have been degraded by other factors
such as fuel nitrogen content [McMeeking et al., 2009; Burling et al., 2010] and photochemical aging. In addi-
tion, the EFs for propene from this work and Simpson et al. [2011] clearly lie below the overall fit and all other
EFs at a similar MCE range (0.87–0.93).

Ethane, ethene, ethyne, HCN, CH3CN, SO2, acetone/propanal, MVK/MACR, and acetaldehyde are associated
with EF-versus-MCE slopes that are not significantly different from 0 (Figure S4). For these species, data from
different studies are more scattered. Ethane, ethene, HCN, CH3CN, acetone, MVK/MACR, and acetaldehyde
are primarily released from smoldering combustion [McMeeking et al., 2009; Burling et al., 2011; Akagi et al.,
2013]. Except for CH3CN and MVK/MACR, the EFs of these species showed negative correlations, however
not strong, with MCE (r2 ≤ 0.55). SO2 has been established as a flaming combustion product [Yokelson et al.,
1996; Andreae and Merlet, 2001]. In agreement with this, the slope of our linear fit of EF(SO2) as a function of
MCE is positive, although not significant. The unexplained variability in EF(SO2) may partly be due to the
influence of fuel sulfur content and possible oxidation. Ethyne also has a positive slope (r2 = 0.09), and it
has been known as a product of both flaming and smoldering combustion [Yokelson et al., 2008; Burling
et al., 2011; Yokelson et al., 2011].

PM1 components emitted fromwildfires generally follow their own separate and higher trend lines (Figure 4).
When plotted with prescribed fire data, OA is the only component that had a slope significantly different from
0, which is negative and signifies production mainly by smoldering combustion. Inorganic PM1 EFs are less
dependent on MCE and likely more dependent on fuel composition. As shown by the regression results,

Journal of Geophysical Research: Atmospheres 10.1002/2016JD026315

LIU ET AL. WESTERN U.S. WILDFIRE EMISSIONS 6121



Figure 3. Emission factors (g kg�1) of gaseous species as a function of MCE for the three wildfires of this study, the boreal
forest fires of Simpson et al. [2011], and the prescribed fires of Burling et al. [2011] and Akagi et al. [2013]. Gases shown here
are associated with slopes that are significantly different from 0. Correlation coefficients (r2) were derived from bivariate
linear regressions of all plotted data.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD026315

LIU ET AL. WESTERN U.S. WILDFIRE EMISSIONS 6122



numerous factors could affect the variability in emissions, which limits the predictive power of the EF and
MCE relationship.

3.4. Emission Estimates From Western U.S. Wildfires

We used the measured EFs to estimate the annual emissions of CO, NOx, SO2, total NMOC, and PM1 from
wildfires in the western contiguous U.S. (defined here as 11 states: Arizona, California, Colorado, Idaho,
Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming). The wildfire season in the
western U.S. is June–October [Urbanski, 2013]. Thus, the EFs of this study, which were derived within the
wildfire season, may serve as reasonable estimates for typical wildfires in the western region. BB emissions
are typically estimated as the product of EF, area burned, and fuel consumption per unit area [Seiler and
Crutzen, 1980]. The burned area by state from 2011 to 2015 was obtained from the National Interagency
Fire Center (NIFC; http://www.nifc.gov/fireInfo/fireInfo_statistics.html). Fuel consumption depends on the
biomass available to burn and the fraction of biomass consumed by fire. Fuel consumption likely varies

Figure 4. Emission factors (g kg�1) of all fine particle species as a function of MCE for the three wildfires of this study and
the prescribed fire data ofMay et al. [2014]. Correlation coefficients (r2) were derived from bivariate linear regressions of all
plotted data (black) and of data from this study (red). When fitted with prescribed fire data, only the slope of EF(OA) versus
MCE is significantly different from 0.
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across different western U.S. ecosystems. For example, compared with the Colockum Tarps fire, the Big Windy
Complex and the Rim Fire were in more humid forests with more large trees and surface (e.g., dead wood)
and ground fuels (e.g., duff and litter). Thus, the Big Windy Complex and the Rim Fire possibly had higher
fuel consumption than the Colockum Tarps fire. However, fuel consumption for western wildfires is not
well quantified [van Leeuwen et al., 2014]. Here we averaged the field-measured fuel consumptions of a
large wildfire in western Oregon (41.6 Mg ha�1 if assuming a carbon fraction of 45.7%) [Campbell et al.,
2007] and a prescribed boreal forest fire in Northwest Territories, Canada (27.6 ± 8.7 Mg ha�1) [Santín et al.,
2015], which gave 34.6 ± 9.9 Mg ha�1, to represent the average fuel consumption for western wildfires. The
components used for emission estimates can all contribute to uncertainty in emission estimates. Quantitative
assessments of overall uncertainty in emissions are difficult to make due to limited knowledge about EFs of
different fuels and wildfire fuel consumption in different ecosystems. We estimated the emission uncertainty
by combining the variations in our EFs and in the two fuel consumption measurements. As mentioned
before, the airborne EFs for smoldering species are likely underestimated without including RSC emissions.
This could cause our central estimates for CO, total NMOC, and PM1 (dominated by OA) to be conservative.

Table 5 lists the estimated annual emissions of gases and fine particles from the 11 western states between
2011 and 2015. Also listed are the emissions from wildfires and all other sources in these western states
reported by the 2011 NEI (version 2) (http://www.epa.gov/air-emissions-inventories/2011-national-emis-
sions-inventory-nei-data), which is the most recent NEI that has detailed technical documentation available.
The 2011 NEI estimated wildfire emissions using EFs from the Fire Emissions Prediction Simulator (FEPS) v2
that relies on EFs from the literature apportioned by flaming and smoldering combustion, fire activity data
from multiple sources based on surveys and remote sensing, fuel loading from the Fuel Characteristic
Classification System, and fuel consumed estimated by the CONSUME model. The 2011 NEI also states that
they have compared area burned by state to the NIFC data to ensure that the values are within a reasonable
range. The NIFC burned area in 2011 in these western states is 1,646,695 ha, which is very close to (6.6% less
than) the NEI wildfire area (1,762,654 ha). Note that the NIFC 5 year average (1,698,115 ha) is also similar to the
2011 NEI burned area (Table 5). Since uncertainties associated with the NEI estimates are not available, the
following comparisons are solely based on the NIFC 5 year average and the NEI values.

Given similar areas burned, the 5 year averaged gas emissions using our EFs show considerable consistency
with the 2011 NEI estimates, especially for CO (Table 5). Our estimated flux of CO from wildfires is
5240 ± 2240 Gg yr�1 and accounts for ~40% of emissions from all other sources. The total NMOC estimates
were based on the EFs measured for the two SEAC4RS fires, which had a more complete suite of NMOC
measurements as compared to BBOP. In view of the fact that some important but unmeasured NMOCs (such
as acetic acid) were not incorporated into our estimate, the annual emission of 905 ± 437 Gg is likely to be a
lower limit. NOx and SO2 emissions from western wildfires are 44 ± 41 and 19 ± 22 Gg yr�1, respectively, and
are both smaller than the NEI estimates, although not statistically different. The wildfire emissions of NMOC,
NOx, and SO2 are on the order of a few percent of the total emissions from all other sources.

On the other hand, the western wildfires significantly contribute to the emission of fine particles. Our PM1

emission of 1530 ± 570 Gg yr�1 is over 3 times the NEI PM2.5 estimate and almost twice the PM2.5 emitted
from all other sources. We investigated the possible reason causing our much higher fine PM estimate. As

Table 5. Area Burned (ha) and Estimated Annual Emissions (Gg yr�1) by Western U.S. Wildfires

This Work NEI Wildfire NEI All Other Sources This Work Wildfire/NEI Wildfire This Work Wildfire/NEI All Other Sources

Year 2011–2015 2011 2011 - -
Area burned 1,698,115a 1,762,654 - 0.96 -
Emission by species
CO 5,240 (2,240) 4,894 13,222 1.07 0.40
NOx as NO2 44 (41) 62 2,588 0.71 0.02
SO2 19 (22) 35 352 0.54 0.05
NMOC 905 (437)b 1,153 14,361 0.78 0.06
PM1 or PM2.5

c 1,530 (570) 418 858 3.66 1.78

aSource: NIFC, http://www.Nifc.Gov/fireInfo/fireInfo_statistics.Html.
bIdentified NMOC only.
cPM1 and PM2.5 were estimated by this work and the 2011 NEI, respectively.
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mentioned before, the burned areas used in this work and by the 2011 NEI are close. In addition, the NEI-used
EF(CO) given by the FEPS user’s guide is ~107 g kg�1 at our average combustion efficiency (~0.87) [Anderson
et al., 2004], which is ~20% larger than our average EF(CO) of 89.3 ± 28.5 g kg�1. Given similar burned areas,
EF(CO)s, and total CO estimates, we would presume that our fuel consumption term should also be similar to
that of the NEI, despite our simplified assumptions. Thus, it is likely that our high fine PM emission is due to a
higher EF than the values used by the NEI. This is also supported by the FEPS user’s guide [Anderson et al.,
2004], in which EF(PM2.5) is only ~9 g kg�1 at our average combustion efficiency, according to the provided
empirical equation of EF as a function of combustion efficiency, as opposed to our average EF(PM1) of
26.0 ± 6.2 g kg�1. The application of FEPS determined values to the NEI estimates was also confirmed by a
U.S. Environmental Protection Agency official.

The magnitude of PM1 emitted by western U.S. wildfires indicate that a significant fraction of ambient aerosol
loading has a BB component, which has important implications for the management of regional air quality. If
the EF(PM1) measured here is a common value for temperate wildfires, the BB-influenced fraction may have
been underestimated previously. For example, BB aerosol is difficult to identify after aging due to the decay
of marker species such as levoglucosan [Cubison et al., 2011]. As OA constitutes themajority of aerosol mass, a
better understanding of wildfire impacts downwind requires future emission estimates to account for
gas-particle partitioning and photochemical processing of POA emissions.

4. Conclusions

This study significantly updates and expands the range of species measured from temperate wildfires. We
present EFs of over 80 trace gases and 5 fine particle components, which will improve emission estimates
and the modeling of smoke chemistry and air quality impacts. The EFs of multifunctional organic nitrates
and a few OVOCs that are important products from isoprene oxidation were measured for the first time from
BB plumes. We also compared our EFs with those from the limited airborne measurements of temperate
wildfires, boreal forest fires, and temperate prescribed fires. Among the commonly measured species, most
of the NMOC EFs were comparable to the other forest fires listed in Table 3, while the discrepancies in some
other NMOCs and sulfur-, nitrogen-, and chlorine-containing gases may be explained by fire variability,
chemical and physical properties of fuels, combustion conditions, and photochemical aging. This work also
suggests that the aircraft-measured EF(PM1) from wildfires is substantially larger than that from prescribed
fires, which may reflect different fire behavior and fuel conditions between prescribed fires and wildfires.
The EFs as a function of MCE were also examined by including data from previous boreal forest fire and
prescribed fire studies in North America. The linear fit for EF versus MCE showed good correlation (or anti-
correlation) and slopes significantly different from 0 for NOx, CH4, several NMOCs, and OA. The EFs of other
gases and inorganic PM1 components are less dependent on MCE and probably more influenced by fuel
characteristics and fire variability.

The annual emissions of CO, NOx, SO2, total NMOC, and PM1 fromwestern wildfires in the U.S. were estimated
using the observed EFs. The estimated gas emissions are generally comparable with the 2011 NEI. However,
due to the high EF(PM1) measured in this study, our regional PM1 emissions are over 3 times larger than the
NEI PM2.5 estimate and almost 2 times larger than the NEI PM2.5 emitted from all other sources.

The findings of the large PM EFs and annual emissions from western U.S. wildfires suggest that the current
attributions of the percentage of aerosol mass from BB sources may have been significantly underestimated.
In addition, these findings could better inform fire management and support the practice of prescribed
burning to reduce the impact of PM on air quality. A definitive assessment of the trade-offs between wildfires
and prescribed fires will also require confirmation that wildfire events can be reduced significantly by
prescribed burning.
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