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Effects on Growth and Reproduction

Reproduction . Reproductive potential is an important measure of plant health.

In severely polluted regions natural regeneration is limited. For example, very few red 

spruce seedlings were found on Camels Hump Mountain polluted sites. Remaining seed 

source trees are few, cone and seed sizes are small, and capacity for germination is 

reduced (Klein and Perkins 1988). Seedling establishment is generally more sensitive 

to soil acidity, decreasing rapidly below a soil pH of 4 .4  (McLaughlin 1985).

Little information is available on the effects of acidity and heavy metals on the 

flowering physiology of forest trees. Bazzaz et a/. (1979) found substantial variation 

in the photosynthetic rates of flowers and fruits among tree species. An obvious 

problem estimating reproductive photosynthesis arises. But an interesting estimation 

of respiration importance is emphasized. Carbon allocation tends to reflect the 

distribution of other nutrients, but it also tends to be biased toward the most limiting 

resources. Also, a plant with a low cost of reproduction may be able to allocate a larger 

proportion of its resources to reproduction. Bazzaz et a/. (1987) has shown 

reproduction to even enhance vegetative growth in some cultivated crops. Whether a 

nutrient-stressed conifer can afford a long-term investment in resource allocation 

depends on how stressed the tree is regarding nutrients and carbon reserves. A tree 

with high reproductive costs and minimal nutrient resources would probably bypass the 

reproductive efforts.

Growth. Large trees make increased demands for calcium and magnesium from 

fine roots. Reduced cambial growth is probable as fine roots become less able to absorb 

calcium and magnesium because of interference from increased aluminum, manganese, 

and ammonium. Cambial growth suppression over a period of time results in reduced 

sapwood basal area. Reduced sapwood equates to a reduced ability to conduct water and 

store food. When a tree has less than 25% sapwood in a cross-sectional area, 

vulnerability to death from secondary stresses, i.e., cold, drought, pathogens, and 

insects, increases (Shortle and Smith 1988; DeHayes et al. 1991).

Section V

Conclusion: The Starving, Thirsty Tree Scenario

The concentrations of sulfate, nitrate, and ammonia and other ions in rain and fog 

affect nutrient and water uptake and soil-buffering processes. The effects are 

cumulative. Major soil acidic changes appear to take place in well-drained soils with a
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high pH rather than soils already acidified. Interactions among the aluminum ions and 

possible additional manganese toxicity in the soil profile interfere with magnesium, 

calcium, and potassium uptake. With the presence of aluminum, phosphorus is also 

precipitated out. Compounding the problem is the presence of excess ammonia, which 

spruce seedlings will preferentially absorb over magnesium in acidified soils. In 

addition, microbial nitrification is probably inhibited under acidifying soil conditions. 

Ammonium seems to  counteract the effect of aluminum precipitation of phosphorus by 

using it as a counter ion. The interaction has implications on net effects of formation of 

ATP via respiration.

Changes in root allocation patterns result as a consequence of soil acidification. 

Deeper roots die in the more acidified layers, resulting in shallower root depth. In 

addition, the presence of aluminum and other metals causes further root death and 

growth stunting affecting water relations and rendering the tree susceptible to long- and 

short-term drought situations.

Uptake of atmospheric nitrogen promotes canopy growth but interferes with 

general nutrient uptake by inhibiting the tonoplast membrane pump. The nutrient 

imbalance and water deficiency are further exacerbated by leaching of cations and 

organic compounds through damaged needles. The canopy will not translocate remaining 

carbon and nutrients, but preserve the carbon and nutrients for growth, defense, and 

possible reproduction; further demands will be made on a damaged root system, unable to 

adequately respond, for nutrients and water.

Research Im plications

Preliminary literature research indicated no work had been conducted on the 

foliar uptake of heavy metals in the context of acidic deposition. Additionally, no work 

had been done on translocation processes of heavy metals within the seedling. A central 

research question was whether documented toxic effects of heavy metals on plant species 

would have a coinciding effect on Engelmann spruce, a western United States spruce 

species.

Additionally, given the effects of acid rain, how would the application of an 

aerosol particle, such as fog bearing potentially toxic pollution loads, affect the 

physiology of a western United States spruce species? The fog particle was believed to 

be more damaging than a raindrop because of its ability to dehydrate on the leaf surface, 

leaving behind concentrated pollution loads. How these questions were addressed is the 

subject of Chapters II through V.
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DETERMINATION OF EFFECTIVE DOSES AND DAMAGE CRITERIA

Introduction

A toxicological testing protocol has been developed for animal experimentation, 

and the botanical community has tried to mimic this testing protocol, but with 

considerable problems. No clear definitions or guidelines agreed and adhered to by the 

plant research community are available. The first problem arises with the definition of 

a testing period. With the life span of a spruce tree at about 400  years, subacute and 

chronic testing are impractical during human life spans. Sub-acute testing would 

involve a minimum of 1 6 years duration-chronic, 200 years.

This preliminary study was conducted to determine the effective dose-range of pH 

and heavy metal concentrations for two-year-old Engelmann spruce. An effective 

treatment length and damage assessment criteria were also determined.

For practicality, an acute study involving the administration of an effective dose 

response present in 50% of the plants (ED 50) was used (Connell and Miller 1984). 

When such visual symptoms as necrosis, chlorosis (an indication of metal and general 

oxide effects), brown banding on the needles, needle tip color change, needle drop (an 

indication of nitric oxide effects in spruce), or lesions appeared, the preliminary study 

was terminated. A priori if no responses occurred, then the study was to be terminated 

after two months.

O bjectives

The objectives of the preliminary study were:

1. to determine effective dose-range

2. to ascertain correctness of treatment length

3. to identify and evaluate visual damage criteria.

Methods and Materials

Seedling Source

Bare-root, two-year-old (2 /0 )  Engelmann spruce were obtained from
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the Champion Nursery, Plains, Montana in February 1989. The seed source for the 

2 /0  seedlings was from Warland Creek near Libby, Montana (sections 25, 32, and 29 at 

approximately 1433m ), and planted at the Champion Nursery at Plains, Montana in 

1987. Seedlings were transplanted to a peat-vermiculite 1:1 medium in 15cm pots. 

Plants were watered as needed. No fertilizer was applied at any time during the 

treatment because of a possible fertilizer-by-treatment interaction.

Growth Chamber

Seedlings were grown and treated in a Conviron PBW36 walk-in growth 

chamber. A combination of florescent, incandescent, and grow lights maintained a light 

intensity of 107 klux. Light duration was from 0600 to 2200 hours. The 3023

Conviron microprocesser was programmed on a ramp mode to maintain 7°C between

2430 and 0730 hours, escalating to 24°C by 1500 hours. A gradual decline to 7°C 

began at 1800 hours.

Treatm ent Levels

Treatments applied to Engelmann spruce were solutions with combinations of 

different pH levels and concentrations of the heavy metals: manganese, nickel, copper, 

and lead according to Table 2.1:

Table 2.1 Preliminary treatment levels of pH and heavy metals.

pH Metal Increase in Mn^+, Ni2+, Cu2+, Pb2 +

2 2 X 1 3x 4x

3 2 x 3x 4x

4 2 x 3x 4x

5.4 0 0 0

1. x indicates metal level above solution discussed under Chemistry Section.

n = 6 per pH and metal level.
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Hypotheses

(Ho): No visual damage would be apparent in any treatment group after two months.

(H-|): Visual symptoms of stress, i.e., necrosis, chlorosis, brown banding on the 

needles, needle tip color change, needle drop, or lesions would appear within the two 

month treatment period to all the treatment groups other than the control.

C hem istry

Solutions used for immersion background ions were derived from the averages of 

chemical analyses for southern California fog (Table 3.1). Background ions were added 

to deionized water and titrated to treatment pH levels. A 2.5:1 ratio of nitric-sulfuric 

acids was used based on the acid ratios reported in southern California fog and 

international analyses (Brewer etal. 1983; Munger eta/. 1983; Galloway etal.

1982; Jacob et a/. 1985; Waldman etal. 1982).

Immersion Design

Seedlings were immersed in 58 liter plastic containers. To control chemical and 

water costs, yet allow for seedling growth, adjustable platforms were designed (Fig.

2.1). Prior to immersion, the seedling pot was wrapped in plastic and a cotton band 

surrounded the stem base, sealing the root area from contact with the immersion 

solution.

Duration of immersion was four hours; frequency of immersion was three times 

weekly for two months; six seedlings were treated per metal and pH level. Thus pH 2 at 

a twice ambient metal level was used to test six seedlings. The pH 5.4 and no metal level 

was used to treat a group of six seedlings (Table 2.1). This treatment period was 

derived by studying length of recorded fog events both from western United States coastal 

and from Rocky Mountain weather records. Also, cost of treatment, availability of the 

Conviron growth chamber, and other published treatment protocol were taken into 

consideration.
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Fig. 2.1 Immersion platform used in preliminary testing

Preliminary Testing Platform
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The preliminary study revealed significant acute treatment effects. At pH 2, all 

heavy metal concentration treatment combinations were terminated after 30 days. 

“Firing” of new and old growth appeared. Damaged needles were either a light brown or 

light brown to  orange coloration. Both types of damage gradually increased, giving a 

dark orange to red coloration after about 30 days of treatment. In some instances, 

entire browning of new shoot growth was apparent. Leith etal. (1 9 8 9 ) found similar 

needle responses using acid mist containing equimolar ammonium sulfate and nitric 

acid. Skeffington and Roberts (1985 ) also reported “firing” symptoms after 3-year- 

old Norway spruce were exposed to acid mist at pH 3. In a study of red spruce growing 

in an Appalachian spruce decline region at Newfound Gap, North Carolina (elevation 

1548m), needle browning, similar to the reported damage in all laboratory studies 

noted, was described by Sheppard etal. (1 9 8 8 ) .

Stress shoots were observed at pH 2. These usually appeared as a whorl of new 

growth around the lead shoot. Apical tips browned and then bent over in both metal 

concentration level 2 (ambient) and 3 (2x ambient) within the first month. At the 

time of establishing damage criteria for the preliminary experiment, neither symptom 

had appeared in the literature. Both were included as part of the damage assessment 

criteria in the formal study.

At pH 2, root damage was also prevalent. In some instances, root growth was 

less than 20%  of the control. The majority of previous air pollution research had 

focused on aboveground biomass. However, several studies in the 1980s indicated roots 

could be a more sensitive indicator of air pollution than needles (Chappelka et a/. 1985; 

Hogsettet a/. 1985; Chappelka and Chevone 1986; Cooley and Manning 1987). Root 

growth was shown to be sensitive to acidic precipitation (Chevone 1985) and heavy 

metals (Tyler e t a/. 1989). Root biomass was therefore included along with shoot 

biomass in the formal portion of the study.

At pH 3 and for all metal concentrations, loss of new needle growth and browning 

similar to firing appeared in the second month. Extensive needle loss was observed for 

both old and new growth affected by “firing" in both pH 2 and 3 after the two-month 

treatment period. Similar needle loss was also noted by Leith et a/. (1 9 8 9 ).

At pH 4 and all metal concentrations, an increase in root, stem, and needle 

growth, needle chlorosis, and stress shoots within the two-month time frame was 

indicated. This was attributed to the additional nitrogen provided by the treatment;

Seiler and Paganelli (1987 ) found acidic mists and rain to often stimulate growth and
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photosynthesis.

At all metal concentrations, aside from the control: (1 ) banding, (2 ) needle 

breakage due to tip necrosis, (3 ) chlorotic and necrotic tips, and (4 ) stress shoots 

were observed. Banding, tip discoloration, and breakage are usually considered 

indications of S02 damage in a gaseous form (Evans and Miller 1975; Carlson and

Gilligan 1983).

Since all pH levels below 5.4 and all metal concentrations other than 0 showed 

effects within the prescribed time period, pH 2 and 3 were retained for the formal 

experiment. The pH 3 treatment level was changed to pH 3.5 to represent a pH level of 

greater concern as an episodic event in documented fog occurrences. Metal 

concentrations for the formal study were set at 0 (as a control), ambient 

(concentrations indicated in the chemistry solution Table 3.1), and a twice ambient 

concentration (worst case parameter).

At the strong suggestions of Bill Hoggsett’ and Paul Miller2 in 1989, seedlings in 

both the preliminary and formal portion of the experiment were retained two years 

following termination of treatment combinations to study aftereffects. In this study, all 

seedlings at pH 2 and all seedlings at the 3x and 4x metal concentrations died within a 

year. At all metal concentrations, seedlings exposed to pH 3 and pH 4  seemed the least 

affected. However, all seedlings at the 2x metal concentrations died within the two year 

period. In the preliminary experiment, controls pH 5.4 and 0 metal concentrations 

remained relatively unaffected visually for the two-year period.

In addition, the question of confounding effects due to fertilization of seedlings by 

using a nutrient solution were addressed. The pollutant pH and metal concentration of 

concern in this study is the documented pH 3.5 and ambient metal level. One aspect of 

this study was to determine whether responses to treatments were adverse or adaptive. 

Such determinations are critical in toxicology studies involving sublethal effects 

(Connell and Miller 1984). In most polluted systems, a diverse range of toxicants 

rather than a single agent is the usual scenario. Such is the case in this study. Not only 

is a 2.5:1 ratio of nitrogen-sulfate present, raising the question of a possible 

fertilization effect, but also the heavy metals copper, nickel, manganese, and lead are 

present. The possibility of interactions between these pollutants is present, which may

' 1989 . Personal communication. U.S. Environmental Protection Agency.
Western Conifers Research Cooperative. Corvallis Environmental Research Laboratory. 200  
SW 35th  Street, Corvallis, Oregon.
2 1 9 8 9 . Personal communication. U.S.D.A., Forest Service, Pacific Southwest 
Forest and Range Experiment Station, 4 9 5 5  Canyon Crest Drive, Riverside, California.
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enhance or inhibit toxic responses. Additionally, at times, copper and manganese are 

applied to plants as part of a nutrient program. Because of these considerations, no 

fertilizer was applied during the preliminary or formal study.

As a result of the preliminary study, an effective dose range and duration of 

treatments and observation period were determined. For the formal study, pH levels 

would be 5.4, 3.5, and 2, with 5.4 representing normal atmospheric pH; 3.5 

representing repeated episodic fog occurrences of questionable damage potential; and pH 

2 representing a documented damage event, but of rare occurrence. Metal levels would 

be 0, ambient ( lx )  and double the ambient (2x) with 0 acting as the control; ambient 

(1 x) representing the level of concern; and 2x representing damage levels recorded in 

the preliminary study. Based on the preliminary study, an ED 50 had been determined. 

Damage should occur to a portion of the formal study seedlings at the pH 2, 2x metal 

level. This treatment level and the pH 5.4 metal level 0 would act as outside treatment 

parameters.

Damage criteria were also established. These included old and new needle damage 

as evidenced by firing, banding, stress shoots, apical tip damage, chlorotic and necrotic 

needle tips, and needle breakage. New root and shoot growth by length and dry biomass 

would also be used as indicators of any damage.

The preliminary study successfully ended with method of treatment developed, 

and the establishment of dose-range, treatment duration, and damage criteria. Whether 

damage response in 50% of the seedlings after two months of treatment and at what 

treatment level it would occur was determined in the formal portion of the study.
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