C&I 404.01: Teaching Science K-8

Jeff Crews
University of Montana, Missoula, jeff.crews@mso.umt.edu

Follow this and additional works at: https://scholarworks.umt.edu/syllabi
Let us know how access to this document benefits you.

Recommended Citation
https://scholarworks.umt.edu/syllabi/10799

This Syllabus is brought to you for free and open access by the Course Syllabi at ScholarWorks at University of Montana. It has been accepted for inclusion in Syllabi by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
Required Readings:

- Membership in the National Science Teachers Association. Membership includes a subscription to *Science and Children*, *Science Scope* or *Science Teacher* and online access to all journal archives—a veritable feast of science teaching ideas.

Course Description

Welcome to Methods of Teaching Elementary Science! How do K-8 students construct science understandings? Which classroom conditions foster opportunities for students to learn and enjoy science? What teaching strategies engage students in doing and understanding science? These questions will be the guiding framework for this course. You will explore these questions by reflecting on your own and others’ science learning and teaching, and through reading and discussing research about science teaching and learning. We will pay particular attention to the inquiry approach modeled by the National Science Education Standards. Class experiences are designed to help you be able to:

1. Present and defend your beliefs about elementary science teaching and learning;
2. Explain how students’ science ideas influence learning and use questioning strategies to reveal students’ science understandings;
3. Differentiate between elementary science experiences which teach both content and inquiry from those that do not;
4. Use teaching strategies that facilitate student interest and learning in science and are consistent with an inquiry teaching/learning model;
5. Plan learning sequences which integrate science across the curriculum using a model of conceptual change teaching;
6. Apply research to the selection, comparison, and implementation of elementary science curriculum;
7. Understand ways to assess student learning in science; and,
8. Reflect upon your science teaching, noting areas of mastery and areas of emerging growth.
Expectations

This is a course in which all students will be active participants. You must be more than physically present—you must make positive contributions to the ongoing learning of others. Students are responsible for class preparation and discussions during the class period. Preparing for class will involve reading the assigned materials, as well as identifying and reading additional resources. Regular attendance is expected. Due to the nature of the course, attendance, participation, and discussion are crucial components in achieving the course objectives. Absentees are responsible for any in-class announcements, changes in the syllabus, and material discussed in class.

Assignments are due in class on the dates listed. Late assignments will not be accepted unless prior arrangements have been made with the instructor. Assignments will be graded using criterion-referenced methods, i.e., a specific set of standards. As a general guide, a “C” grade represents average work. It means that all assignments are done as described. A “B” grade represents above average work. It indicates that self-initiative has been taken to research topics and bring more to the assignment than just required. An “A” grade represents a high level of mastery with evidence of reflection and research as well as personal innovation, relevant applications, and extensions. Should you have any questions concerning a grade, I am always happy to discuss them but ask that you make an appointment so I can give the matter careful consideration and maintain confidentiality.

It is important to remember that effort alone does not necessarily guarantee above average grades; rather, high quality thought and products ensure above average grades. To meet professional presentation standards required of practicing teachers, your assignments must be word-processed, concisely written, fully referenced, and stapled.

A final note, I know the block schedule is tight, so eating in class is hard to avoid. If you bring food and drink with you, please be sure to dispose of it appropriately. Also, because this is a large group in such a small space, please remember to show respect for your fellow classmates. Outside conversations, newspapers in class, cell phones, and tardiness can be a real distraction to other students.

Graduate Students

The Graduate School assumes that graduate students are taking this course for graduate credit. Please see me by the end of the second week to discuss the graduate project required for graduate credit. If you do not want graduate credit, see Laura Riddle in the Graduate School to make necessary changes in your registration.

Accommodations

Please contact the instructor following the first class meeting to arrange the teaching/learning accommodations you require.

Academic Misconduct

All students must practice academic honesty. Academic misconduct is subject to an academic penalty by the course instructor and/or a disciplinary sanction by the University. All students need to be familiar with the Student Conduct Code. The Code is available for review online at http://www.umt.edu/SA/VPSA/index.cfm/page/1321.
Sequence of Topics & Evaluation

Part I:
Topics: The nature of science, science standards, inquiry, process skills
Assessment: Standards Paper
Due Date: September 18

Part II:
Topics: Students' science ideas, conceptual change teaching model, culturally responsive science curricula
Assessment: Science Lesson & Concept Analysis
Due Date: October 16

Part III:
Topics: Integrating science; assessment
Assessment: Thematic Unit
Due Date: December 4

Part V:
Topics: Science teaching resources
Assessment: Attend Geospatial Technology Workshop and complete geospatial technology paper. A full letter grade will be deducted for each day not in attendance.
Due Date: December 6

Course Assignments

Participation/In-class Activities: This is due daily or as announced. Your attendance and participation are highly valued. I will take roll each class session and give one point for each full class attended.

Standards Paper: Schools across the nation are reviewing their curriculum to ensure that it aligns with the National Science Education Standards. It is important for you to understand what the standards define as best practice and be able to identify non-example and example best-practice science lessons. In this paper, you will identify and print one best-practice science lesson (this lesson must come from one of the following sources: Science Scope or Science and Children; the journal must be dated 1996 or later) and one science lesson that does not model best science practices (this may come from textbooks, curriculum modules, internet, etc.). Your discussion section will provide evidence from the research for your choices, discuss where the lesson is aligned with the NSES content standards, and provide adaptations for the non-example to align it with the standards. This paper, done individually, is due September 18th.

Science Lesson & Concept Analysis: “Let’s do it again!” Those four words are a strong indication that your students are engaged. Mastery of facilitating meaningful science learning opportunities for your students can best be measured by performance. This assignment will have several parts, each designed to familiarize you with the components of a science lesson based on teaching for conceptual understanding.

For your first step, you and your partner will identify your science topic area and science concept to be taught. Your cooperating teacher will help you with the concept selection. After selecting your science concept to be taught, you will need to learn as much as you can about the concept. The second part of the assignment will be to develop a conceptual change science lesson plan to teach to elementary students as part of your field experience. A detailed lesson plan format will be provided in class. A draft lesson plan will be developed and reviewed with your instructor during a 20 minute
private conference that your team schedules with me during week six. The draft should be as complete as possible.

Effective science teaching requires that students first be made aware of their existing science ideas. As part of your science lesson you teach in the field, you and your partner will develop a strategy to reveal students’ pre-existing science ideas. This may be a student drawing, concept map, prediction sheet, etc. You will ask students to revisit these at the end of your lesson and reflect on their current science understandings. Your science lesson must be taught during week seven.

In the third part of this assignment, you and your partner will complete a teaching analysis of the science lesson. In your analysis you will report on your assessment of the students’ understanding of the science concept based on the data you collected when revealing students’ science ideas. A detailed outline of analysis expectations will be provided in class. The final lesson draft and concept analysis is due on October 16th.

Geospatial Technology Workshop: As part of this class, you will receive a two-week inservice in geospatial technology: GeoViewer, ArcView GIS and GPS. Geotechnology integrates science, social studies, math, technology and literacy using GIS: geographic information systems. GIS is a powerful data analysis tool used for organizing, manipulating, creating, analyzing, and mapping data. To receive full credit, you must attend all of the sessions and submit a one-page paper identifying one image source you located and describing how you would incorporate the image(s) in your student teaching placement. This is due December 6th.

Thematic Unit Plan: When you begin classroom science teaching, a primary task you will face is developing curriculum in the form of units. For this major course assignment, you will work with a partner to design and implement a series of lessons at a local elementary school. This assignment is an integral part of your field experience and is described in depth in your field experience seminar. You will have an opportunity to share your thematic unit with your peers during finals week. Details and times for this will be provided in seminar.

Tentative Course Schedule

Week 1 (August 28, 30)
THE NATURE OF SCIENCE: What is science and why teach it?
Assignments: Light Lesson Plan

Week 2 (September 6 – Labor Day)
SCIENCE STANDARDS: Where do I start? How do I know what/how to teach?

Week 3 (September 11, 13)
CHILDREN’S SCIENCE IDEAS: How do children’s science ideas influence learning? The Private Universe
Week 4 (September 18, 20)

SCIENCE AND INQUIRY:
Assignment: Standards Paper due (September 18th)

Week 5 (September 25, 27)
IMPLEMENTING THE CONCEPTUAL CHANGE MODEL: How do you reveal children’s ideas about science? Introduction to the conceptual change teaching model.

Week 6 (October 2, 4)
LESSON CONFERENCES

Week 7 (October 9, 11)
TEACHING MATH, SCIENCE, & SOCIAL STUDIES LESSONS IN THE SCHOOLS!!

Week 8 (October 16, 18)
SCIENCE-LITERACY CONNECTIONS: Integrating science into your literacy program.
Assignment: Science Lesson and Concept Analysis due (October 16th)

Week 9 (October 23, 25)
INQUIRY USING SCIENCE AND DESIGN: Supporting inquiry through children’s engineering projects and the Invention Convention

Week 10 (October 30, November 1)
SCIENCE AND TECHNOLOGY: Integrating technology into the science classroom.

Week 11 (November 8, 10)
SCIENCE ASSESSMENT: How do you assess students’ ability to do inquiry? To understand and apply science concepts?

Week 12 (November 15, 17)
THEMATIC WORK SESSION
Week 13 (November 20, Thanksgiving)
THEMATIC TEACHING!

Week 14 (November 27, 29)
GEOSPATIAL TECHNOLOGY

Week 15 (December 4, 6)
GEOSPATIAL TECHNOLOGY
Assignment: GeoViewer image paper due (December 6th)

Week 16
Final Exam Meeting Times: Section One – TBA
Section Two - TBA

Grading Policy

Final grades will be calculated based on the following percentages of total points:

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation/In-class Activities</td>
<td>20%</td>
</tr>
<tr>
<td>Standards Paper</td>
<td>20%</td>
</tr>
<tr>
<td>Science Lesson/Concept Analysis</td>
<td>20%</td>
</tr>
<tr>
<td>Geospatial Technology Project</td>
<td>20%</td>
</tr>
<tr>
<td>Thematic Unit Plan</td>
<td>20%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>95-100</td>
</tr>
<tr>
<td>A-</td>
<td>92.94</td>
</tr>
<tr>
<td>B+</td>
<td>90.91</td>
</tr>
<tr>
<td>B</td>
<td>87.89</td>
</tr>
<tr>
<td>B-</td>
<td>84.86</td>
</tr>
<tr>
<td>C+</td>
<td>81.83</td>
</tr>
<tr>
<td>C</td>
<td>78.80</td>
</tr>
<tr>
<td>C-</td>
<td>76.77</td>
</tr>
<tr>
<td>D</td>
<td>68.75</td>
</tr>
<tr>
<td>F</td>
<td>Below 68</td>
</tr>
</tbody>
</table>