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Chaos in Physics and Recurrence in Arithmetic Sets 
 

Jean Dayantis1 
Pignan, France 

 
 
Abstract: After briefly recalling the concepts of recurrence and chaos in physics, the 
recurrence properties of arithmetic sets are examined following Gauss’ method, as exposed in 
part three of his Disquisitiones Arithmeticae. This problem in number theory is related to the 
physical problem of recurrence in deterministic chaos. Most possible forms of moduli are 
examined in detail with respect to their recurrence properties, for application to the 
generalized Bernoulli mapping. The emphasis is put on period lengths, rather than on 
congruences. In an annex the recurrence properties of Arnold’s cat map are briefly examined. 
 
Keywords: Arnold’s cat map; Disquisitiones Arithmeticae; deterministic chaos; number 
theory; period lengths; recurrence 
 
 
 INTRODUCTION 
 
A- The concept of recurrence 
 
 Recurrence is a very  general  concept  and  pervades  almost  every  field of science : 
Astronomy, Physics, Chemistry, Geology,  Biology and so on. In everyday language, 
recurrence means that something that has happened in the past will again happen in the future, 
and this many many times, if not an infinity number of times. Let us first give some examples:   
in astronomy, the revolution of the earth around the sun, responsible for the succession of 
seasons, is a recurring phenomenon; in the same way, the days in the week or the months in 
the year are recurrent; in physics, any oscillatory process, for example the frictionless 
pendulum is a recurrent process; in thermodynamics, the Carnot cycle is recurrent 
phenomenon, in so far as the engine is given the necessary feed to sustain its motion. In 
chemistry, the Belousov-Zhabotinski1 reaction in far from equilibrium thermodynamics, is, 
among other chemical reactions, a recurrent one.  In medicine and biology, the cardiac 
rhythm, the rhythm of breathing are recurrences. In dynamics, there is a theorem, the Poincaré 
recurrence theorem (1890), which states that “in a dynamical system having constant energy, 
any point of the trajectory in phase space2 will again be approached as closely as wanted with 
time”.3 The fact that this Poincaré recurrence time may, in some instances and for all practical 
purposes, be infinite, shall not concern us here. 
 Of course, many if not most phenomena in nature are not recurrent. They are then said 
to be irreversible. For example, in chemistry, an explosion is not a recurrent phenomenon, 
since the initial products are consumed during the explosion to give  final products which are 
stable in time; in the same way, the evolution of most chemical reactions is monotonous, 
heading to equilibrium; in astronomy, the life and death of a star is not recurrent, the  stars 
follow roughly speaking the so-called Herzsprung-Russel diagram (1911-1913) 4, being blue 
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stars when born through accretion of matter and becoming white dwarfs, neutron stars or 
black holes with their death, according to the magnitude of their masses. The same may be 
said in biology with regard to the living organisms on earth, which are born, prosper  and 
finally die. 
 
 

Are there any recurrences in mathematics? Of course there are. In this article however  
the subject of recurrences in mathematics will be restricted to some properties of integer 
numbers, and this in relation to chaos theory. 
 
B- Chaos theory. 
 
 It us outside the scope and the purpose of the present paper to give even a limited 
account of chaos theory. However, as  the inception of this paper is related to chaos in 
physics, a few general notions will be here recalled.5  

The intuitive, everyday language concept  for “chaos” refers to a system where no 
order is apparent, one which appears to be very “disordered”, one which does not seem to 
follow any law whatsoever. A more scientific definition is that, if a particular element in the 
system is chosen, the autocorrelation function6 of this element as a function of time is of finite 
amplitude and tends more or less rapidly to zero. For example, choose a particular molecule in 
a gas enclosed in a container, large with respect to the dimensions of the molecule, and let x0, 
y0, z0 be its coordinates at time t0. It is assumed that the container plus the enclosed gas 
molecules form an isolated thermodynamic system, i.e. no exchange of matter or energy with 
the environment does occur. If at time 1 the coordinates are x1, y1, z1, and if  one is unable  
to determine these coordinates from the previous x0, y0, z0, the autocorrelation function5 is 
said to have reached the value zero at time 1. In other words, the “memory” of the system is 
lost, and the past does not define the future. This is a concept of particular importance. 

 Until near the end of the second third of the twentieth century scientists thought that 
chaos in physical systems resulted from the existence of a very large number of degrees of 
freedom. Thus, let the above container embody N molecules of a gas so that the system has  
6N degrees of freedom. If N is equal to Avogadro’s number, then N=1023 molecules. If the 
position and velocity of each one of these molecules could be exactly known at a the time say 
then, according to Newtonian mechanics and at least in principle, the position and velocity 
of each of these N molecules could be calculated at a later time 1.7 In other words, the future 
evolution of the system would be entirely determined by its past history. However, as in 
practice it is not possible to solve at time some 1023 scalar equations to find the positions 
and velocities of the N gas molecules at time 1, one is happy to be able to specify only 
values for some global parameters in the gas, as the mean temperature or the mean pressure.  
In other words, the “chaos” in the positions and velocities of the gas molecules at any time 
results here from a practical rather than a theoretical impossibility: the impossible knowledge 
of the trajectory of the physical system in phase space  is here due to the large number of 
degrees of freedom involved. However, this is not always so, and there are many physical 
systems where the unpredictability of the evolution is of an intrinsic nature. 

Such physical systems do not require a large number of degrees of freedom. Three  are 
sufficient. These physical systems are mathematically described by systems of non-linear 
differential equations which are generally non-integrable, that is they have no analytical 
solution. The solutions can be found only numerically, using a step by step process in the 
variables, a procedure which generally necessitates the use of computers. This explains why 
such numerical solutions had to wait for the advent of computer science and computers. 
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The first physical system having only a few degrees of freedom and yet displaying 
chaos was discovered in 1963 by the American meteorologist Edward Lorenz.8 The simplified 
model he used to follow the evolution of weather had only three degrees of freedom, yet the 
system was chaotic, it did not follow any regular law, which means that the weather is by 
essence unpredictable for long  enough periods of time. Since Lorenz’s discovery, many 
works have followed concerning physical systems having only a small number of degrees of 
freedom and being nevertheless chaotic. The chaos thus generated by systems displaying only 
a limited number of degrees of freedom is referred to as “deterministic chaos”.9 All such 
deterministic chaotic systems are “dissipative”, which means that they “dissipate” energy: 
they are not thermodynamically isolated, they exchange matter or energy or both with the 
environment, contrary to the previous example of a gas enclosed inside a container.   

A constant feature of chaotic systems is their instability, that is their sensitivity to 
initial conditions: if we very slightly vary the initial conditions, in other words the departure 
point in phase space, then the subsequent trajectories will wildly differ. As was aptly stated by 
Lorenz,  “The flapping of a single butterfly’s wing today produces a tiny change in the state 
of the atmosphere. Over a period of time, what the atmosphere actually does diverges from 
what it would have done. So, in a month's time, a tornado that would have devastated the 
Indonesian coast doesn't happen. Or maybe one that wasn't going to happen, does.” 10 

 
C- Deterministic chaos and mapping. 
 

Because of the difficulty of studying actual physical systems with respect to chaos and 
possible recurrence to the initial state (e.g. in Hamiltonian Mechanics the Poincaré theorem, 
see above), physicists and mathematicians have sometimes resorted to artificial models of 
chaos, in order to capture at least some features of the true, physical chaos. Such models are 
constructed using “mapping”, that is an application of a given (phase) space to itself. The 
simplest possible example of such mapping is the Bernoulli mapping:11 consider the linear 
segment [0,1], (here, the phase space) and take some point xN inside this segment. The 
mapping consists in taking as next point xN+1=2xN+1 if 2xN+1 <1, and xN+1=2xN-1 if 2xN>1. It 
is demonstrated that after a sufficient number of steps, the linear segment [0,1] will be 
uniformly covered by the step points. This Bernoulli mapping is not reversible, since if one 
takes x’=x/2, eventually, whatever the starting point x, the mapping will lead to the origin 
x=0. Nevertheless, it is recurrent (see part A.1 of the main text). Other “popular” mappings 
are the baker’s map and Arnold’cat map12 (See Annexe III). The present article however  is 
particularly devoted to the case of the Bernoulli mapping. 

 
RECURRENCE IN ARITHMETIC SETS 
 
 After this somewhat  lengthy but necessary introduction in order to place the article in 
its context, it is time to proceed to the gist of the matter. This is the recurrence in arithmetic 
sets, and the topic is closely related to congruences in the theory of numbers. 

The study of the recurrence in numerical sets involves considering the Z/Z(N) 
algebra13. Leonhard Euler (1707-1783) was the first to consider, to our knowledge, 
congruences modulo some integer and also recurrences, and he introduced the notion of 
primitive roots (see below). However the in depth study of recurrences and primitive roots is 
due to Carl Friedrich Gauss (1777-1855) in his Disquisitiones Arithmeticae14 (denoted below 
D.A.). He was followed by many celebrated mathematicians as Poinsot, Jacobi and 
Tchebytcheff and numerous other distinguished mathematicians.15  However, the focus of 
these authors was essentially the finding of primitive roots, not the length of sequences. The 
latter was not considered to be of particular interest. 
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As already started in the introduction, the problem here considered is to analyse the 
status of recurrence in deterministic mappings. To give a striking example, let us consider 
Arnold’s cat map12: In this particular one to one transformation, after a relatively small 
number of successive transformations, the original picture of the cat completely disappears 
and chaos is being established. However, pursuing  further the transformations, the picture of 
the cat finally reappears identically. This may take as many as several hundred of successive 
transformations, or even more. Though the reappearance of the cat’s picture may at first seem 
something miraculous, the mathematical explanation of this remarkable phenomenon is quite 
simple. (See Appendix III).   

Many of the results to follow are already present in the D.A., published more than two 
centuries ago. The derivations however are sometimes somewhat different, and it is hoped 
that this may provide some new insights. The elementary axiomatic status of this work will 
hopefully be easy and useful reading to physicists, non-career or amateur mathematicians, as 
also all propositions are clarified  by numerical examples. However, some questions remain 
open and it is hoped that this might attract the interest of mathematicians for further 
clarification. (See e.g.  the conjecture in C.1.2 or the last sentence in Part D).  Because of the 
purpose of the paper, the emphasis is put on recurrences and length of periods, rather than on 
congruences to unity or other integers, as is the case in many classical works. Gauss’ 
terminology will be followed throughout. 
 
   
PART A.    RECURRENCE MODULO A PRIME P. 
 
        Consider an odd prime number p, an integer  < p not divisible by p, and the successive 
powers 1, 2 …  p-1 of , designed as the base.  Euler and Gauss have shown16 that quite 
generally, for the power t of , called the index, t residues taken among the p-1 possible 
appear modulo p (mod.p in what follows) before the series repeats itself. The number t is 
necessarily a divisor of p-1. If the repetition occurs at the power t = p-1, then all integers from  
1 to p – 1 appear in the period as residues (mod.p), and  is then called a primitive root of p 
(in what follows PR). For example, one easily finds that 2 is a primitive root of five, but not 
of seven. It has been demonstrated by Euler and Gauss that any odd prime has primitive roots. 
In what follows, only the least residues (mod.p) are considered. 
 

A.1.    The base  is a primitive root of p, an odd prime.  
         
           According to convenience, enumeration of the elements in the set may start either from 
1 (enum.1), or from 0=1 (enum.2). Using here enum.1, one has for the last term in the series  
before repetition, from Fermat’s theorem,  p-1 1 (mod. p). This involves that one necessarily 
has for the term (p-1)/2  1 (mod.p), for this is  the only way by squaring each member of the 
above relationship to obtain p-1  1 (mod. p). The value +1 (mod.p) =  0 is excluded, since 
then the series would stop and recurrence will occur at the term  (p+1)/2, and therefore  will  
not  be  a  primitive  root, contrary  to  hypothesis.  Consequently,  one  necessarily  has  
 (p-1)/2  -1 (mod.p)17 and  this  says  that  the  residue of  the term   (p-1)/2 (mod.p) is  equal  
to p – 1. This is easily checked. (Take for example =2 and p=13, or =3 and p=17 and write 
down the period). Let us then write the set of integers in the period (mod.p) as follows : 
                                   p- 1                                                            last term  1  

1, 2, …  (p-3)/2,    (p-1)/2,   (p+1)/2 ,  (p+3)/2 , …  (p + (p-4))/2 ,  (p + (p – 2))/2   (mod.p)            (1) 
 
This set can alternatively be written in the form 
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1, 2, …  (p-3)/2, p – 1, (p – 1),  2(p – 1),  … , (p + (p-4))/2 (p-1), 1             (mod.p)          (1’)                    
 
Now it is evident that   +(-)   p   0 (mod.p), and more generally   
                                                      
                                                   +(-)  0 (mod.p).                                                           (2)   
 
If in the above set we add two by two the terms  ( < (p-1)/2) and +(p-1)/2 = (p-1), the 
result is  
                                                   =(p-1)/2  

                                           [p+(++(p-1)/2)]   0    (mod.p)                            (3)                         
                                                     =1 

 
since the addition of the terms    and  -   is, according to (2), equal to p18. Relationship (3) 
provides another proof of Gauss’ proof,19 that the algebric sum of all the terms in the set (1) is 
zero (mod.p). Gauss’ proof is of course the shortest. It is as follows : using enum.2 and 
writing the successive terms, one has : 
 
                              1+1+2+ … + p-1 =  (p-1)/( -1) = 0  (mod.p)  since p =1                 (4) 

 

Now it is evident, since    - mp (mod.p), where the integer m = 0 if  < p,  that 
replacing the terms in (3) by their value mod.p leads to relationship (4).  
             Nevertheless, relationship (3) is useful in providing a somewhat better insight on the 
structure of the period, and the property that the term of index (p-1)/2 equals p-1 will be used 
later on. 
.     Example : take p=11, base 2. The residues in the period using enum.1 are, 
2,4,8,5,10,9,7,3,6,1, then recurrence occurs. One has, according to (2),  2+9 =11, 4+ 7 = 11, 
etc, the sum of all the terms in the period is p(p-1)/2 =10x11/2 = 55  0 (mod.11). Also, the 
multiplicity m is easily determined for the term  (p-1)/2 through 
 
                                               m = ( (p-1)/2 + 1-p)/p                                                                 (5) 
 
For p=11, =2, one correctly finds m=2. 
            As a practical application, let us consider the simple one dimensional Bernoulli 
mapping XN+1 = 2XN , (mod.1). Starting from the abscissa  1/11, recurrence will occur after 
10 steps, the numerator taking all the above mentioned values for p=11, base =2. Now one 
may of course choose as the denominator an integer for which 2 is not a primitive root, e.g. 
17, and initiate the process at abscissa 1/17.   In this case recurrence will not occur after p-1 
steps, but only (p-1) /2. Also the denominator may be taken a composite integer, for example 
3x11=33, 3x5x7=105 or 22x13=52, an even number. Therefore it is interesting to know the 
recurrence properties in these cases also, which will be examined in the following Parts and 
sections, excluding however irrational denominators. 
                        
                               
                A.2.  The base  is not a primitive root of p, an odd prime. Open and closed 
groups. 

 
          If  is not a PR of p, then the period stops and recurrence is initiated, as shown by 
Gausss,20 for an index  which divides p-1. If p-1 is of the form p-1=2p’, p’>3 prime, then the 
period has necessarily p’= (p-1)/2 terms. This is a sufficient but not a necessary condition in 



                                                                                                                              Dayantis 

 

order that the period be of (p-1)/2 terms. The alternative of having p’ groups of two terms 
beginning with 0  +1  and 1  p+1 is impossible since necessarily a < p. Now since the 
period has only (p-1)/2 residues and there are p-1 integers from 1 to p-1, there are necessarily 
(p-1)/2 integers lacking in the period. The group of integers constituted by the (p-1)/2 residues  
corresponding to the actual powers taken by  before recurrence, will be called the principal 
group, noted Gr1.  
           This group includes necessarily unity. If further p-1=2p’, p’ prime, there can be only 
another group which shall be called the secondary group Gr2, containing the (p-1)/2) integers 
absent in Gr1. In other situations, however, there may be more than one secondary group (see 
below, paragraph A.3). How one will find the elements of Gr2 ? Choose the least prime  not 
included in the period of Gr1, and multiply   by , 2, … (p-1)/2. One obtains in this way (p-
1)/2 new integers (mod.p) all necessarily different from those of Gr1, which will be called 
“residues” to distinguish them from the residues of Gr1. For, suppose that Gr2 contains a term 
 already appearing in Gr1. Then necessarily one has ==  with  > , since  > 1. By 
dividing both members of this relationship by  one has = -, which means that  is a 
residue of Gr1, contrary to hypothesis. Since there are in all  p-1 integers in the range 1… p-1 
(mod.p), the sum of the integers in Gr1 and Gr2 completes the set of all possible integers from 
1 to p-1. Though it is convenient to choose  as the least  prime among those not included in 
Gr1 , this is not a necessary condition.  On the contrary,   should never be chosen to be a 
composite integer not in Gr1, since this will lead to redundancies. Another basic difference 
between the principal group Gr1 and the secondary group Gr2  (beyond the fact that the terms 
in this group are not residues (mod.p) of the powers of ), is that the elements of Gr2 in non 
modular algebra have always in factor , which is never the case for those in Gr1. Notice that 
the notation as groups for GrX complies to the usual definition of groups in mathematics.        
 Examples will make the above clear: Take p=23, base 2, so that p-1=2x11, and p’=11. 
One then finds in the period of Gr1 the residues  [2,4,8,16,9,18,13,3,6,12,1]. To find the 
“residues” of Gr2, choose 5, the least prime not included in the period of Gr1, and multiply 5 
by 2, 22 …2(p-1)/2. This leads to the period  [5,10,20,17,11,22,21,19,15,7,17]. Examination of 
these two periods shows that the residue  p-1 appears in the group Gr2 and that all the 
elements of Gr2 are obtained by subtracting from 23 the elements of Gr1. More generally, 
within the constrain indicated, the terms in Gr2 are obtained by subtracting from p the 
residues of Gr1. If p -   is such a term of Gr2,  it cannot be also a residue m of Gr1, witch 
will lead to +m =p. In the present case, no addition of terms appearing only in either Gr1 
or Gr2 may add up to p.  
PROOF : Suppose that two residues of Gr1, x1 and x2, were such that x1+x2 = p. The 
corresponding terms in Gr2 are then y1 = p – x1 and y2 = p – x2, which added lead to  2p = 
x1+x2, a relationship  not compatible with the previous one. Only one term of Gr2 when 
added to the corresponding residue of Gr1 makes up to p.  

Such couples of groups Gr1 and Gr2 will be called open, since there is 
interconnection of the elements of each group with those of the other. As already stated, in 
open systems, no sum of two terms in the same group adds up to p. 
             Consider now p=17, p-1=16=24 and the base =2. This base is not a PR of 17, as 28 = 
256 = 2(p-1)/2  +1 (mod.17). In principle p-1 might decompose to a principal group Gr1 of 
eight, or four elements, but the latter is impossible since 24 = 16 < 17. Writing down the 
period leads to a series of eight residues [2,4,8,16,15,13,9,1] so there must be a group Gr2 
having also eight terms. To find these terms take the least prime, here 3, not appearing in the 
period of the principal group, and multiply it by 2,22, … mod.17. One thus obtains the period 
[3,6,12,7,14,11,5,10]. 
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            In Gr1, because 4 divides 16 and 2(p-1)/2  +1 one necessarily has 2(p-1)/4   1 
(mod.17), and since the period continues to eight terms as found above, one has 2(17-1)/4  -1, 
that is, to follow Gauss’ terminology, the residue (p-1)/2 “pertains” to the index 4. Here eq. 
(2) applies, and the sum of  the corresponding terms two by two in Gr1 as well as in Gr2 
equals 17=p. Also, one does not here obtain the elements of Gr2 by subtracting to the 
modulus p the residues in Gr1. If this is done, one obtains again the residues of Gr1, and vice-
versa for the terms in Gr2 ; in other words, the groups are cyclic. Such groups will be called 
closed. 
            Generally, from the above, the rationality of open and closed groups is the following : 
if the period has an even number of terms, (p-1)/2, (p-1)/4, etc. then the term obtained by 
dividing by 2, of index (p-1)/4, (p-1)/8, etc. has value  -1 (mod.p), or, to use Gauss’ 
terminology, the residue p-1 pertains to the indices (p-1)/4, (p-1)/8, etc. In such occurrences, 
the group Gr1 is closed, since 1 and p-1 add to p, the property of closed groups. If now the 
period has an odd number of terms, then (p-1)/4, (p-1)/8, etc. do not correspond to any integer 
index, and the residue p-1 is shifted to Gr2. In mod.p arithmetic this means that no power of 
the base , yields the residue p-1. Since unity is always to be found in Gr1, addition of the 
residue unity of Gr1 to the term p-1 of Gr2 adds to p, the property of open groups. If p-1 = 
2p’, p and p’ primes,  not a PR of p, there are always two and only two groups, the principal 
Gr1 and the secondary Gr2, which are either both open or both closed. 
           There does not seem to exist any rule, which will permit to predict whether the groups 
mod.p, base ,  not a PR of p, are open or closed. One has to write down the periods. 
However, at least for small values of the modulus p, it seems that the groups are more often 
open than closed. 
           In secondary groups, beginning with the prime (that is using enum.1), there is also a 
rank or “index” in the integers of the period. This rank  is here called “index”, to distinguish it 
from the index of the integers of Gr1, since these integers are not actual residues of the 
powers of .  
                                         

A.3.  p an odd prime, the base  not a primitive root of p, more than one 
secondary group. 

 
          What now about the general case where p is not such that p-1 = 2p’, p’ a prime? Then a 
priori, all the divisors  of p-1 are possible, leading to periods (p-1)/, with the restriction that 
are forbidden those divisors of p-1 leading to periods of n terms for which n < p. Of course, 
this means that one may have, besides the principal, 2,3 … secondary groups, in which 
groups, together with the principal, all the integers from 1 to p-1 will be present. To find all 
the secondary groups, it suffices to extend the procedure indicated in A.2 : Take the least 
prime  not part of the t residues in Gr1, and multiply it by , 2, … t,  to find the “residues” 
in Gr2. Then choose the least prime ’ not present in Gr1 and Gr2, and multiply it by , 2, 
… t, to find the “residues” in Gr3. Continue in this way until all the secondary groups are 
found. Proof that not two of the groups may share a same residue, may follow along the lines 
developed in A.2. Here are a few examples of prime moduli where more than one secondary 
group exists : 
          Consider p=43, p-1 = 2x3x7, and the base 2, not a PR; writing down the principal group 
one finds the period :  
                              [2,4,8,16,32,21,42,41,39,35,27,11,22,1],   mod.43  
This period has the even number of fourteen residues, and the residue p-1 pertains to the index 
(p-1)/2x3 = 7. The group is closed, the residue 42 appears at the index 14/2=7, and there are 
two secondary groups, which for convenience will be denoted here by the prime initiating the 



                                                                                                                              Dayantis 

 

period, that is Gr3 and Gr7. The elements of these two secondary groups are easily found as 
above indicated. They are: 
[3,6,12,24,5,10,20,40,37,31,19,38,33,23]  and  [7,14,28,13,26,9,18,36,29,15,30,17,34,25]. 
            Consider now p= 73, p-1 =72=2332; neither 2 nor 3 are primitive roots of 73. Let us 
first write the period base 2. Principal group: [2,4,8,16,32,64,55,37,1]. There is an odd 
number of residues and the residue 72 does not appear in the principal group, but in the first 
secondary group Gr71, the period being [71,69,65,57,41,9,18,36,72]. Adding two by two the 
terms of given “indices” of two associated groups, will yield the value 73. There are six other 
secondary groups, namely Gr3, Gr5, Gr11, Gr13, Gr53 and Gr61 which are associated two by 
two, and summing one term of the first to the corresponding term of the second will yield 73= 
p. The association is as follows: Gr5  Gr55, Gr11  Gr13, and Gr3  Gr61. In open 
groups the “residue” p-1 may appear in any group other than the principal and may pertain to 
any “index”. 
            Let us now take  p= 73, base 3. Here there are six groups of twelve terms each, all 
groups are closed, and the residue p-1=72 appears therefore in the principal group at the index 
12/2=6. Here we give the period for only the principal group:  
                                                 [3,9,27,8,24,72,70,64,46,65,49,1].  
The five secondary groups are Gr5, Gr7, Gr13,Gr19 and Gr23.  
  

A.4     The number of groups in base  modulo  the powers of an odd prime p. 
 
 Let us first examine what happens modulo p2, the base  being a PR of p, an odd 
prime. Firstly, the largest possible period has p(p-1) terms, since the multiples of p, which 
number p, cannot be residues. Let as now show that if  is a PR mod.p, it is also a PR mod.p2 
: one first remarks that if a residue is   +1 mod.p2, it is also necessarily   +1 mod.p. The 
period mod.p is p-1, so that within the period mod.p2 there are p periods mod.p. As the last 
term of the last period mod.p  +1, this establishes the fact that if a residue is congruent to 
unity mod.p2, it is also congruent to unity mod.p. Now if  is a PR mod.p, it is also 
necessarily a PR mod.p2. For, let us assume that the period mod.p2 were p(p-1)/q, q being 
some integer dividing p-1. This implies that the residue at the index p(p-1)/q would be  +1 
mod.p2. However, this index will correspond to an index (p-1)/q inside some period mod.p, 
which cannot be  +1, unless q = p-1. In the latter case, however, the period mod.p2 would be 
p, which again is impossible, because this would imply that two adjacent terms mod.p, of 
indices p-1 and p would both be equal to  +1. The conclusion is that if  is a PR of p, it is 
also a PR of p2. This property has long being known.21 

Example. The period of 5 base 3, a PR, is: [3,4,2,1] and that of 25 is [3,9,2,6,18,4,12,11,8, 
24,22,16,23,19,7,21,13,14,17,1]. One immediately checks that the residue p-1 mod.p is at the 
index (p-1)/2=2, and that the residue p2-1 mod.p2 is at the index p(p-1)/2=10. 
 The above considerations generalize to any power of the odd prime p. The period 
mod.pN is pN-1(p-1), and if  is a PR of p, it will also be a PR of pN. As a corollary the term of 
index pN-1(p-1)/2  mod.pN is equal to pN-1.22 

            The next step is to see what happens when  is not a PR of p. In this case the period 
will be (p-1)/r mod.p, r dividing p-1. As shown above there will then exist mod.p r separate 
groups, covering as residues all the integers from 1 to p-1, that is the principal group Gr1 and 
r-1 secondary groups GrX. Now mod.p2 there will also be r groups of equal periods p(p-1)/r. 
For, if the periods differed from the above value, the sum of all the residues of all the groups 
mod.p2 would either exceed or be less than the permissible integers, and in both cases this 
would be irrelevant. The property holds for any integer power of p. 
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             As already stated all the above considerations apply with no modification in mod.1 
algebra,  considering  fractional abscissas /p,  an integer less than p. This is used in 
particular by physicists in defining  deterministic maps of chaos. As one further example, in 
base 2, and enum.2, let p2=49. Since there are two groups mod.7, there are also two groups 
mod.49 of periods (7x6)/2 = 21 terms each. One indeed finds two open groups of 21 residues 
each where p2-1 is found in the secondary group at the “index” 5. Conversion to mod.1 
algebra is readily obtained by dividing each residue by 49. 
            For the physicist’s sake, let us stress that the group he chooses is indifferent regarding 
the length of the period, as all groups have periods of equal length. If for instance he starts his 
mapping experiment with 1/p ( enum.2), the residues will be those of the principal group, 
and the length of the period will be p-1, if the base is a PR of p. If he starts from p’/p, p’ not to 
be found in the principal group, the period shall remain the same, only the “residues” are 
different.  
 
PART B.  RECURRENCE IN COMPOSITE MODULI C OF ODD PRIMES.  
  
            Let us first quote from Hardy and Wright the following excerpt, regarding the 
primitive roots of a congruence : In what follows we suppose that the modulus m is a prime ; 
it is only in this case that there is a simple general theory.23 Regarding however the 
recurrence in composite  moduli C which are the product of odd primes, the problem with 
which we shall now be concerned, it will be shown below that indeed some general rules do 
apply. The one major difference with the prime moduli of the previous part, as shown below, 
is that in this case there are not primitive roots, and therefore that the principal group cannot 
encompass all the permitted integers. There is therefore constantly at least one secondary 
group. However, there are also striking analogies.  For example, in mod.p algebra, p prime, 
one cannot chose as modulus the base p. Analogously, if the modulus is composite, C = p1p2 
… pn, the pi being odd primes, the base  cannot be one of the primes pi, and all the multiples 
of the pi are excluded from the period. (See however Part D.) As a consequence, a parameter 

of major interest is  the quantity F = pi-1), which describes the number of permitted 
residues. In the simplest case of C= p1p2, the number of permitted residues is C – (C/p1+C/p2) 
+ 1, the +1 coming from the fact that the last term p1p2 is deleted twice. This is equal to (p1–
1)(p2 –1), and the relationship generalizes to the product of any number of the first powers of 
odd primes. (See Appendix I). 
            As for prime moduli, there are here also open and closed groups. 
 A point of interest is the following : while the period for prime moduli can only be 
determined though trial and error, that of composite moduli may be predicted, at least in 
principle, from the periods of the component primes. 
 The analysis to follow is based on the two following number properties : a) Fermat’s 
theorem ;  b) The property that if n , n integer, equals +1  mod.p1, mod.p2,… mod.pr , then  
 
                                                    n  +1  mod.p1p2…pr                                                          (6) 
 
This congruence is a direct consequence of Eratosthenes’ sieve, when applied to the powers of 
. If powers qi of the pi enter into the definition of C, the congruences n  +1 mod.pi

qi should 
also be respected. The converse property is true : if n  +1 mod.p1p2…pr  , then  n  +1 
mod.p1, mod.p2, … mod.pr. The relationship is not true if n  is not  +1, and then congruence 
to unity is not achieved for at least one of the primes entering in C at least one of the primes 
pi.               
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           The above will be detailed in what follows. For simplicity, it will often be assumed that 
C is the product of two or three odd primes. Generalization to r distinct primes is 
straightforward. 
 In what follows no distinction will be made between the residues and indices of the 
principal group and the “residues” of secondary groups. All indices and rests of division will 
be called indices and residues.                   . 
   
           B.1.    The modulus C is the product of r odd primes pi, and the base  is a 
primitive root of all  pi. 
              
             Let as begin with C being the product of two primes p1 and p2. Here the number of 
permitted residues is F=(p1–1)(p2 –1). Since  is by hypothesis a primitive of  both p1 and p2 

one has by Fermat’s theorem : 
  
                                              p

1
-1 1 (mod. p1)                                                                    (7a) 

 
                                              p

2
-1 1 (mod. p2)                                                                    (7b) 

 
 
and 
 
                                              (p

1
-1) /2  -1 (mod. p1)                                                               (8a) 

 
                                              (p2-1) /2  -1 (mod. p2)                                                               (8b) 
 
One can elevate (8a) to the power (p2-1) and (8b)  to the power (p1-1) to obtain  
                                              
                                              (p1-1) (p2-1)/2  +1.                                                                       (9) 
 
since both p1-1 and p2-1 are even. Because of (7a), (7b), the relationship holds mod.p1 as well 
as mod.p2, and considering (6) above, the relationship holds also mod.p1p2. 
As a result, for C=p1p2, the period stops and recurrence occurs at most for the index (p1-
1)(p2-1)/2, never for the index (p1-1)(p2-1). Thus the modulus C, the product of two odd 
primes, has no primitive roots. The principal group Gr1 contains (p1-1)(p2-1)/2 elements 
among the permitted integers and there is therefore a secondary group Gr2, which will contain 
those integers which are not residues of  Gr1. To find the residues in Gr2, one should proceed 
as in the case of prime moduli. Here again one will find open and closed groups. 
           Examples: take C = 3x5 = 15, base 2. One has, in enum.1, the  period [2,4,8,1] forming 
the principal group Gr1, and the period [7,14,13,11] forming the secondary group Gr2. 
Multiples of 3 and 5 cannot of course be residues. The groups are open. In open groups the 
residue C-1 = p1p2-1 never pertains to the principal group, since this is the characteristic 
property of closed groups. It is to be found into the secondary group, at some undetermined 
index. Take now C = 3x11 = 33; the principal group Gr1 in base 2 is 
[2,4,8,16,32,31,29,25,17,1] and the secondary group Gr2 is [5,10,20,7,14,28,23,13,26,19]. 
The groups are closed, and the residue p1p2-1 pertains to the index (p1-1)(p2-1)/4 = 5 of Gr1. 
          Though the period cannot exceed F/2, it can be shorter. Example : take C=5x37=185, 
F=144, F/2=72, F/4=36. Writing down the period base 2, one finds that it has 36 terms, that is 
it is equal to F/4. 
          The above can be generalized for C=p1p2 …pr. For example, if one takes r=3, then  
F=(p1-1)(p2-1(p3-1) and a reasoning analogous to the one above will permit to find that 



                                                                                                    TMME, vol7, nos.2&3, p .233 

 

(p1-1) (p2-1)(p3-1)/4  +1, so that the period of a triple product cannot exceed F/4, though it can be 
shorter. Thus, here there are at least four groups, and generally, if C=p1p2 …pn, the maximum 

period is at most  equal to pnn-1=F/n-1. 
         Whether the period is exactly F/n-1 or less, is a problem examined below. As an 
example, the period base 2 of C=3x5x11=165, with F=80, is of F/4=20 terms, while that of 
C=3x5x13=195, with F=96 terms, is of F/8=12 terms. The reason for this difference  is that 
C=195 divides 2F/8 –1, while C=165 divides 2F/4 –1, but not 2F/8 –1. (See the next section and 
Appendix II.) 
           As was the case for prime moduli, it does not seem that there  exists any rule, that will 
permit to predict whether the groups of a composite modulus C are open or closed. One has to 
write down the periods to check. However, as above and at least for small values of C, it 
seems that the groups are more often open than closed.  The above results can be summarized 
in the following theorem: 
THEOREM: When besides the principal there are also secondary groups, as is necessarily 
the case for composite moduli, these groups are either all closed or all open. 
            
       
           B.2.  The modulus C is the product of r odd primes at the first power, and the 
base is a primitive root of none of the component primes. 
 
 Taking again the simplest case of C= p1p2, one can write 
             
                                              (p1-1)/D1  1 (mod.p1)                                                             (10a) 
 
                                              (p2-1)/D2   1 (mod.p2)                                                            (10b) 
 
As in the previous case we can rise (10a) to the power (p2-1)/D2 and (10b) to the power  
(p1-1)/D1 to obtain  (p1-1) (p2-1)  /D1D2,  mod.p1 and  mod.p2. Referring  again  to relationship (6), 
one also has  (p1-1) (p2-1)/D1D2  1 mod.p1p2.  The period is P=(p1-1)(p2-1)/D1D2  and it is the 
longest possible, at least when D1 and D2 are relatively prime. For, in the latter case, if we 
divide P by say q an integer greater than 1, this q should either divide (p1-1)/D1 or (p2-1)/D2, 
which is impossible, if one wants  relationships (10) to be preserved. The same considerations 
can be extended to C=p1p2 …pr, with r integer larger than 2. 
           Examples. Take C=7x17=119, base 2. Then F=6x16=96, F/2=48, F/4=24. Here 
D1=D2=2, so that the period should equal (at most) 96/4=24. One indeed finds for the 
principal group the period 
[2,4,8,16,32,64,9,18,36,72,25,50,100,81,43,86,53,106,93,67,15,30,60,1]. If instead one 
considers C=7x43=301, then F=252 with D1=2 and D2=3, so that the periods could have a 
priori F/6=42 terms. One checks that this is indeed the case. 
          But consider now C=2047=23x89=211-1, with F=22x88=1936. Since it is found that 
D1=2 and D2=8, normally the period should have been of F/16=121 terms. But it is evident 
that the period is in fact of only 11 terms, since 211=2048. One observes however that 
22=11x2 and 88=11x8, so that D1D2 can be multiplied by 11, leading to a period of 11 terms 
and 121 associated groups. 
 
The unmistakable procedure to predict the length of the period for a given composite 
modulus. 
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          As shown above, some ambiguities may exist for the prediction of the length of the 
period for a given composite modulus C and an arbitrary base , if the standard methods 
indicated above are used. Therefore it is convenient to dispose of a method devoid of any 
ambiguities and valid for all situations, whether all the components of C admit as a PR, 
none of them, or part of them. 
         In this respect use shall be made of relationship (6). Let C = p1p2 … pr, and F= 
(p1 –1)(p2 –1) … (pr  -1). Compute all the divisors i of F such that  F/r-1 > F/i  > C. 
Then compute the integers A corresponding to the powers F/i and find, in for example a 
descending way for the i’s, the least divisor min for which the integer A=F/minis 
congruent to unity mod.C. According to (6), as the integer A has a residue +1 mod.(C=p1p2 … 
pr ) it will also have a residue +1 for all the pi’s. The period shall stop and recurrence shall be 
initiated at the index F/min). Notice that here one may have pi=pi+1=pi+2 … to take account 
of the powers involved in the primes defining C. 

The method, certainly safe and of general validity, presents however an inescapable 
drawback: as soon as F is large enough (and especially when the base  is not chosen among 
the first few integers), the exponentiation may lead to numbers so large that they will elude 
the reach of even the most powerful computers in use. Therefore, in addition to this 
unmistakable and of general validity method, one may have, as a first approach, to examine 
the alternative method based on the value of  F/D, as this does not imply integers larger than 
F. 
  
           B.3.   The modulus C is the product of two or more odd primes pi at the first 
power, and the base  is not a primitive root for some of the components of C. 
                      
                     This case is slightly more intricate than the two previous cases, and this is why it 
has been left last. As usual, we begin with the simplest case of C being the product of two odd 
primes, the base  not being a PR for one of these primes.  
Quite generally, one has 
 
                                   p1-1  1           mod.p1                                                                      (11a) 
                                                    
                                    (p 2-1)/D   1     mod.p2                                                                      (11b) 
 
where D is an integer such that (p2-1)/D is the period mod.p2.  As previously, one can raise  
(11a) to the power (p2-1)/D  , and (11b) to the power p1-1 to obtain 
                    
                                (p1-1)(p 2-1)/D   1          mod.p1                                                              
  
                                (p1-1)(p 2-1)/D   1          mod.p2  
 
and consequently, because of (6), also 
 
                                 (p1-1)(p 2-1)/D   1          mod.p1p2                                                                                        (12) 
 
(p1-1)(p2-1)/D  gives the “standard” period when  is not a PR of one of the primes. But the 
period may be shorter (see below).                                                                                         
            Examples. Take C = 5x7 = 35, F=24,  = 2,  is not PR of 7. One finds in enum.1 two 
groups of twelve residues each :  
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                               [2,4,8,16,32,29,23,11,22,9,18,1]         mod.35    (principal group) 
and 
                               [6,12,24,13,26,17,34,33,31,27,19,3]   mod.35    (secondary group) 
 
The groups are open, since the residue C-1 = 34 is found in the secondary group at the index 
seven. The sum of each element of  index  of Gr1 when added to the element of the same 
index of Gr2 sums up to 35, if the index 7 of 34 in Gr2 is circularly pushed as to occupy the 
position of the index 12, previously being the index of 3. 
 Take now C = 3x43 = 129, F = 84,  = 2,  not PR of 43. Here one finds in enum.1 
that there are in all six groups  of fourteen elements each, while relationship (12) states that 
there should be three groups of 28 elements each, but as emphasized this is only the largest 
possible period. Therefore, whenever possible, one should predict the actual length of the 
period using the unmistakable method indicated in B.2. The principal group Gr1 has the 
following residues : 
 
                        [2,4,8,16,32,64,128,127,125,121,113,97,65,1]   mod.129  (principal group) 
 
Obviously here the groups are closed and the element C-1 of index 7 of the principal group 
when added to unity of index 14 yields C = 129. More specifically, the sum of two residues of 
respective indices   and +7 yields C = 129. The detailed residues of all six groups will not 
be given here, since this is not of great interest. 
 For C being the product of r primes p which admit the base  as a PR, and s primes q 
which do not, one can tentatively write as follows for the maximum possible period: 
 

                                          Pmax= 1/2 [(pi-1) /2r-1]  (qj-1)/Dj]
                                                                    (13)                                     

                                                          i,j 
 
          B.4.     The modulus C is the product of the powers of two or more odd primes pi.  

 
          What now happens when C is of the form C=(p1)

u.(p2)
v with at least one of the integers 

u,v, being larger than one? Let us assume first that the base  is a PR of both the components 
of C. Obviously, one should compare this case with the simpler case where one has as above 
C = p1.p2. In the latter case as already shown the number of permissible residues is (p1-1)(p2-
1). Taking the simplest case of only two groups, there will be (p1-1)(p2-1)/2 terms in each 
group.  Assume now that C is of the form C=(p1)

2.p2. The number of permitted residues is 
clearly (p1)

2.p2 –[(p1)
2 p2]/p1- [(p1)

2.p2]/p2 +1, the +1 coming from the fact that the term 
(p1)

2.p2  has been deleted twice. This is p1(p1-1)(p2-1) and thus, each period will have at most 
p1(p1-1)(p2-1)/2 terms. 
           Example. Let C=32x5=45, base 2. The permitted residues are F = 3x2x4=24, so that the 
period of each group should be 12. Writing down the periods one finds indeed : 
            
                [2,4,8,16,32,19,38,31,17,34,23,1]                        (principal group) 
           
                [7,14,28,11,22,44,43,41,37,29,13,26]                  (secondary group) 
 
The groups are open, and the residue 44, is found at the index six of the secondary group. 
        The above are of general validity: if C=(p1)

u.(p2)
v, then the number of permitted residues 

is (p1)
u-1.(p2)

v-1(p1-1)(p2-1). If there are N distinct groups, the period of each, and especially 
the principal, will have (p1)

u-1.(p2)
v-1(p1-1)(p2-1)/N terms.  
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        The above generalize to C being the product of any number of  odd primes for which the 
base is a PR . If only first powers are involved, by a reasoning analogous to that given in B., 
the maximum period P of the product of r primes will be   
  
 
                                                                
                                                     r 

                              Pmax = (pi-1)/2n-1                                                                                                        (14a) 
                                                    i=1 
If powers ui of the pi are also involved, the maximum period will be 
                                                      r 

                              Pmax =  pi 
(ui –1)(pi-1)/2n-1                                                       (14b)                          

                                                    i=1 
In the latter case of a maximum period the total number of groups will be 2n-1, that is as usual 
the principal and 2n-1-1 secondary groups. 

Examples: Take C=3x5x7=105. Then the maximum period will be F/4=2x4x6/4 =12 
terms. One indeed finds for the principal group base 2 the period: 
                                 [2,4,8,16,32,64,23,46,92,79,53,1],   mod.105. 
The maximum period is here achieved. The groups are open, and the maximum residue 104 is 
to be found in the secondary group Gr13 at the index 4. 
Take now C=32x5x7=315. The maximum possible period will here be F=3(3-1)(5-1)(7-1))/4= 
144/4=36, while the least possible will display at least x integers, where 2x > 315. However, it 
is found that the period is in fact again twelve, that is 144/12, so that the maximum period is 
not here achieved. The principal group is: 
                            [2,4,8,16,32,64,128,256,197,79,156,1],   mod.315 
The groups are open, and the residue 314 is found in the secondary group Gr59 at the index 5. 
               The rationality of these distinct behaviours between C=3x5x7  and C=32x5x7 is 
explained in section C.2 and Appendix II. 
               In the general case where C=p1p2 … pnq1q2 … qs , the pi admitting the base  as PR 
and the qj not, one can tentatively write for the maximum possible period : 

 

                 Pmax = (1/2) [pi
(ui –1) (pi-1)/(2r-1)][qj

(uj-1)(qj-1)/Dj]                                     (15) 
                                         i,j 
 

        Because of the ambiguity of the above relationship, one should apply whenever possible 
the unmistakable method of B.2. If the numbers involved are too large to be managed by your  
computer, well, … then write a computer software ordering the computer to write down the 
period, whatever its length ! 

                                                
Part C.  Even composite moduli. 

 
          One in two integers is an even number. Therefore it is necessary to examine also the 
case of even composite moduli, so the more that a physicist interested in deterministic 
mapping, as suggested in the introduction, is free to choose in his mod.1 congruences as 
denominators even integers, for example D=23x5=40 or D=2x72x13=1274. In what follows 
we first examine the case of even composite moduli of the form 2N, and subsequently the 
general case of composite moduli of the form 2N…, where   etc. are odd primes. he 
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definition of the parameter F of the previous case remains valid. For example, for 
C=24x11=176 will correspond the F = 23x10=80. 

 
  
 
 
 
C.1  The modulus C is of the form 2N.  
 

 One should distinguish two cases : two is PR of the base , and two is not a PR of the 
base  

  
C.1.1  Two is a primitive root of the base . 
 

Here the base  is necessarily an odd prime. Trials taking small values of , =3, 5, 
11, … and varying the exponent N, suggested the following relationship, when 2 is a PR of 
the base  : 

                                exp2N-2    1    mod.2N                                                                                             (16)                         

 

                 A proof of this relationship can be given by induction : first it is known24 that for 
any odd integer one has  1 mod.(23=8). Thus, (16) is true for N=3, whatever the value 
of  with 2 being a PR of prove (16), it suffices to establish that if (16) is true for N, it 
is also true for N+1. For this, let us square both sides of this relationship : 

                                           [exp2N-2]2   =   exp2N-1
        =  1 

However, when squaring the exponent in , one also automatically doubles the period. 
Therefore, the above relationship is true mod.2x2N = mod.2N+1 and thus one can write 

 

                               exp2N-1     1     mod.2N+1
          

                                                                           (16’) 
 
which provides the proof of (16) for any N, by substitution of N’=N+1 in (16’). This result 
was known to Gauss who first proved it.25 

 Relationship (16) implies that the period is 2N/4 mod.2N;  since even integers                        
are automatically excluded from the period, the period could have been equal to N/2. 
However, it was not a priori evident that the period is only N/4. Since however the correct 
period mod.2N  is 2N/4, it follows that there are always two groups, the  principal and the 
secondary group. 

Example.  Let the modulus be 25=32  and the base =5. 2 being a PR of 5, there should 
be two groups of eight terms each. One finds indeed, 

                                    [5,25,29,17,21,9,13,1]            principal group 

and 

                                    [3,15,11,23,19,31,27,7]          secondary group  

           One immediately checks that all odd integers from 1 to 31 are covered. One also 
remarks, in this particular case (an unexpected result), that  the succession of these ordered 
odd integers is to be found alternatively in the principal and the secondary groups: one finds 
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in the principal group the odd integers 1,5, 9, 13, 17, 21, 25, 29, and in the secondary 3, 7, 11, 
15, 19, 23, 27, 31. In other cases, the alternation goes two by two, as for the base 3, mod.25 : 

                                   [3, 9, 27, 17, 19, 25, 11, 1]         principal group 

and 

                                   [5, 15, 13,7, 21, 31, 29, 23]        secondary group 

Other bases alternating one by one are 13, 29, 37 …, while others alternating two by two 
are Base 3is special, because 31=25-1. Since unity is always to be found in 
the principal group, and the last residue 2N-1 in the secondary, it follows that the groups are 
necessarily open. That 2N-1 appears in the secondary group is almost evident ; for, 
mod.(23=8), whether the alternation is one by one or two by two, 7=8-1 appears manifestly in 
the secondary group. If now the modulus is 24=16, one has to put side by side in succession 
two quartets of odd integers. And so on. We don’t know if there are alternations of more than 
two successive odd residues. If there are, they should be of the form 2N- c, c integer < N, in 
order that they divide 2N. Whatever the case, one can safely enunciate : if two is a PR of the 
base  the two groups mod.2N are never closed.  
 One final remark is as follows : if one adds index 1 of the principal group and 2 of 
the secondary group, one obtains the residue 1+2 of the secondary group. (If 1+2  exceeds 
the number of terms in the period, one has to subtract from the sum.) This also is evident, 
since equal values of 1+2  correspond to the same integer in non modular algebra, and 
therefore to the same residue in mod.2N algebra. 
 This curious phenomenon of alternation is challenging, however, not being an 
essential feature of recurrences, it shall not be any further examined in this paper. 

 
   

 C.1.2  Two is not a primitive root of the base . 
 

                If now one looks for the principal period of  base 7 mod.23, which corresponds to  
7exp2N-2 = 72 one finds  the expected period of two terms [7,1] which as above equals 2N-2 ; 
now, mod.(25=32), one has 7exp25-2 = 78 = 5 764 8011 mod.32 as expected, and the period 
should have been of eight terms; however, one finds that 74=24011 mod.32 also, and that the 
period displays only the four terms [7,17,23,1], being now equal to 2N-3. The same 
phenomenon occurs for  = 23, and 41, but for =17, 47 and 71,  the period is 2N-4. 
            One should perhaps be able to demonstrate that from the couple of congruences 
 
                                          2(-1)/q  1  mod.
 
                                          N-c  1      mod.2N,                                                                   (17b)  
 
q and c integers, q dividing -1, one can establish a relationship between q and c, so that for 
q=1, c=2, and for q>1, c>2. 
 
CONJECTURE: In the absence however of the proof for such a correlation, the conjecture is 
here made that the length of the period is 2N-2 when 2 is a PR of  and 2N-3or less when 2 is 
not.26  

As previously in C.1.1., the ordered odd integers are distributed in regular patterns 
among the groups, but now these patterns are more complicated. 
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 C.2  The modulus is of the form 2Nor…, where  are odd primes. 
  
 Let us first come back to the examples of section B.2, where it was found that for 
C=(3x5x7)=105 and C=(32x5x7)=315, the periods base 2 had the equal length of twelve 
terms, corresponding respectively to F/4 and F/12. However, when one tries C=(33x5x7)=945, 
the period is three times as large, i.e. of thirty six terms, corresponding again to F/12. For 
C=2Nx17 on the other hand, the period base 7 remains equal to sixteen terms, from N=0 (that 
is mod.17) up to N=6, that is mod.1088. Then the period doubles to thirty two terms for N=7, 
i.e. mod.2176. As a final example, for C=2Nx11, base 3, for N=1  the period is of five terms, 
then for N =2,3 and 4 of ten terms, increases to forty terms for N=5 and goes to eighty terms 
for N=6.    
            At first sight there is no rationality in these examples.  One can make first the 
following observation : Let the penultimate term of index of the period  base 
andmod.mkC beT, where m= 2, , … is the integer defining the increase of the modulus 
when going from one modulus to the next one. Suppose that mkC is such  that T mod.mkC  
1.  For this modulus the period will stop and the index +1 and recurrence will be initiated at 
the index  +2. Let now the next modulus be mk+1C, and the term of index  again be T. If 
now the term T of index +1is less than the modulus mk+1C, the period will not stop at the 
index +1 but will continue : the period is increased. 
 The above observation is however of very limited predictive power. The rationality of 
the question is again found using the unmistakable procedure of section B.2. Let for the 
modulus mkC the period be determined by the associated parameter Fk/kminwhich 
involves that Fk/min 1   mod.mkC. As long as  Fk/min 1 with respect to the moduli   that 
follow, that is mod.mk+1C, … mod.mk+p-1C, the period length remains unchanged. If however 
at mod.mk+pC the congruence to unity is no longer achieved, then the period is increased by a 
factor of m. For, in this case, congruence to unity is achieved at the new index 
Fk+p/k+pminThe examples given above are being detailed in this respect in Appendix II. 
 
PART D. The modulus is composite, and the base is one of the factors of the 
modulus. 

 
                 Prime moduli cannot of course display periods and recurrences, when the base is 
the same as the modulus.   If for instance  one takes as base 5 and modulus 54  = 625, the series 
will stop after four terms, the last one being   0 mod.54. However, when C is the product of 
two primes at their first power, C=p1p2, and only in this case, a normal process of recurrence 
occurs, when one of the primes is taken as basis. To show this, let  p2 > p1, and let x = p2 - p1 > 
0. If one chooses p1=  as the base (to maintain the Greek symbol used throughout for the 
base), and if further it is first assumed that is a PR ofp2, one can write as follows the 
residues:  
 
( p2 -x), (p2-x)2, … (p2-x)p2-1                 mod.p2                                              
 
Developing the powers of (p2-x)t, 1t   p2-1,  it  is easily seen that all the terms are  0 
mod.p2, except for the last one, which is xt

 , and that all these residues are different. Now, 
since is assumed a PR of p2, and p2 does not divide x, one has from Fermat’s theorem  

 

                                                                            x
p2-1

    1 mod.p2                                                                                                  (18) 
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It is now permitted to multiply both terms of the congruence (18) by  and at the same time 
also the modulus by , (because if two integers differ by one, their product by will differ 
also by ) to obtain : 
 
                                                  xp2-1

      mod.p2                                                                                          (19) 
 
Consequently, at the index p2 the residue  is recovered, and there is a period of p2 –1 terms. 
 
             Example : mod.(51=3x17), base 3, 3 being a PR of 17, one finds the period of sixteen 
terms [3,9,27,30,39,15,45,33,48,42,24,21,12,36,6,18] and then back to 3. Conversely, one 
may choose as the base 17, leading to the period of two terms [17,34]. Of course, never unity 
appears as a residue, as both p1 and p2 > 1. This is the essential difference with the normal 
procedure where the base is not part of the primes entering C, and where there is always a 
principal group containing unity, absent from the secondary groups. 
               If now  is not a PR of p2, the period length will be (p2-1)/D, D dividing p2-1, with a 
total of D groups, the principal and D-1 secondary,  the principal group being here defined as 
the one containing the base . 
 Example : mod.(34=2x17), base 2, 2 not being a PR of 17. Here there are two groups 
base 2 : 
                  [2,4,8,16,32,30,26,18]  principal      [6,12,24,14,28,22,10,20]  secondary 
 
In base 17 there is a period constituted by the single term 17. One checks that these residues 
cover exactly those integers which are forbidden residues in normal periods, i.e. those 
constructed taking as base a prime not entering the definition of the composite modulus C. 
(Except for the residue C, since this would put an end to the recurrence.) 
 The situation is more complex when more than two primes enter into the definition of 
C, or when C is the product of powers of primes. Analysis of such cases, though not devoid of 
interest, lies outside the scope of the present work.  
 
 
CONCLUSION.  
 
 As emphasized in the introduction, the incentive for writing this article originates in 
the recurrence properties of deterministic mapping, a subject lying in the frontier between 
physics and modern mathematics. The emphasis was put on periods and groups, rather than 
on congruences.  

The above analysis is especially oriented towards the Bernoulli mapping. This 
mapping has been generalized to any basis and any modulus, instead of been restricted to 
basis two and modulus one. Put another way, any rational point inside the segment [0,1] may 
be taken as a starting point using any integer modulus. Such a detailed analysis is not known 
to the author to have been made elsewhere. Emphasis  was put on secondary groups, as 
defined in the text. Such secondary groups are always present in composite moduli while in 
prime moduli they may or may not be present, depending on whether the base is a primitive 
root of the modulus or not. The secondary groups have been classified as open or closed 
secondary groups. Also, special attention has been given to composite moduli, including even 
composite moduli. 

All propositions have been followed by numerical examples, so that the reader, 
whatever his mathematical status, may acquire a good and easy knowledge of the topic. 

In retrospect, it appears that the only difference between the principal and the 
secondary groups lies in the fact that unity appears only in the principal group. (Except in the 
case where the base is one of the components of a composite modulus which is the product of 
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two primes, in which case unity is never present, neither in the principal nor in the secondary 
groups). If one is not interested in this difference, there is a perfect symmetry in the properties 
of the groups. The periods are the same, the groups are all open or all closed at the same time. 
In even moduli, the scheme  representing the distribution of the permitted odd integers within 
the groups respects perfectly regular patterns. Though for the mathematician the presence of 
unity may be important, for the physicist interested in deterministic mapping, the presence or 
absence of unity in the period is not necessarily of outstanding interest. He can as well use, 
with the same success as far as recurrence is concerned, the principal or a secondary  group. 
He can also use the recurrence of a composite modulus being the product of two primes, and 
take as the basis one of the primes. 

In Annexes I and II below some points in the main text are further analysed. In 
Annexe III, an interesting recurrent mapping, Arnold’s cat map, is briefly examined. 
 
 
 
 
APPENDIX I: The F parameter.                                                       
 
 It was stated in Part B. that for composite moduli C=pi, where the pi are the primes 
entering into the definition of C, (first assumed to be at the first power), the number of 

permitted residues was given by the parameter F = pi-1). A proof of this in the general case 
may be given by induction. 
 Let us begin, as in  Part B, with the simplest case where C is the product of two 
distinct primes, C2=p1p2. To C2 should be subtracted as non possible residues the multiples of 
p1 and p2, which are C2/p1+C2/p2= p1 + p2. To this however should be added unity, for the 
term p1p2 has been subtracted twice instead of once, so the number of permitted residues is 
p1p2 – (p1 + p2) + 1 . This is clearly equal to F2=(p1-1)( p2-1). 
 Let us now multiply C2 by a third distinct prime p3, so that the new modulus is 
p3C2=C3=p1p2p3. Again we have to exclude as non possible residues all the multiples of p1, p2, 
p3, which number C3/p1+C3/p2+C3/p3= p1p2+ p1p3+ p2p3. However, a number of these 
excluded residues has been counted twice. These are the multiples of the pij, whose number is 
C3/p1p2+C3/p1p3+C3/p2p3= p1+p2+p3, and this quantity should be added to the previous one. 
Finally, one should remark that the term p1p2p3 was counted three times instead of two as 
being a twice slashed non residue, so that –1 should be added to the final result, which is 
therefore p1p2p3-( p1p2+ p1p3+ p2p3)+( p1+p2+p3) – 1. This is clearly equal to  
F3=(p1-1)(p2-1)(p3-1). 
 To continue, let us multiply C3 by a fourth distinct prime p4, so that C4= 
p4C3=p1p2p3p4. Following the same procedure as above, one must search for the non residues 
being the multiples of p1, p2, p3, p4. These are C4/p1+C4/p2+C4/p3+ C4/p4= p1p2p3+ 
p1p2p4+p1p3p4+ p2p3p4. However, among these terms, a number have been counted twice. 
These are all the terms C4/pij (i ≠ j), which here are six, respectively p12, p13, p14, p23, p24, and 
p34, yielding the term –( p12+p13+p14+p23+p24+p34); when so doing, however, some terms have 
been counted thrice instead of twice, and should therefore be subtracted  to the partial result. 
These are all the terms of the form C4/pijk, (i ≠ j≠ k), yielding the term -(p1+p2+p3+p4). Finally, 
the last permitted residue, i.e. p1p2p3p4, has been deleted four times instead of three, so that 
unity should be added, and the final result is F4= p1p2p3 p4 – (p1p2p3 + p1p2p4+p1p3p4+ p2p3p4)– 
( p12+p13+p14+p23+p24+p34) - (p1+p2+p3+p4)+ 1. This is equal to F4= (p1-1)(p2-1)(p3-1) )(p4-1).  
 And so on, having constantly terms with alternating + and – signs. The last term is  
(-1)n, so that when n is even unity should be added, and when n is odd, unity should be 
subtracted. 
 If now to Cn, (n=2, 3 …), one or more component primes are in present in some power 
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u, v, …, Fn is simply multiplied by the corresponding primes at the powers u-1, v-1, … For, it 
is readily seen that in such cases all the terms in the above sums are  also multiplied by u-1, 
 v-1, … 
 
APPENDIX II: Moduli of the form 2N 
          

In this Appendix we shall work out in more detail the examples given in section C.2. 
            1) As a first  exercise let us consider the second example of section C.2, the modulus 
2Nx17, base 3. Since 3 is a PR of 17, the period of 3 mod.17 (has sixteen terms. Of 
course the period cannot be shorter for powers of N Thus for N=1, one finds 
mod.(2x17=34) the following period of sixteen terms : 

                         [3,9,27,13,5,15,11,33,31,25,7,21,29,19,23,1]  
          Now the question arises up to what modulus (=which value of N) the period keeps the 
length of sixteen terms ? The F parameter is here equal to 2 N-1x16. Here however we can 
dispense ourselves from actually determining the values of F/minfor each valueof N , 
corresponding to the least value F/min) for which  F/min)  is congruent to unity.  We can 
use the following shortcut : let us first compute A=316 = 43 046 721 and let us divide A-1 by 
the successive moduli when increasing N, i.e. 34, 68, 136, 272, 564, 1088 and 2176. All these 
divisions up to 1088, corresponding to N=6, yield integer numbers, meaning that the period 
keeps the value of sixteen terms. Division however by 2176 yields 19785,5, a non integer, 
meaning that 316 is not congruent to unity, mod.2197. To achieve congruence, the period has 
to be doubled to thirty-two terms, and this is verified by actually writing down the period. 
 2) For a second exercise consider now the case of C=3Nx5x7, base 2. This example 
will be worked out in detail.  
          First consider C=3x5x7=105, with F=2x4x6=48. The divisors iof F are, in decreasing 
values, i.e. increasing period lengths, 24, 16, 12, 8, 6, 4 and 2. The divisors 24, 16, 12, and 8 
are at once excluded, since these would lead respectively, for the last residues, to 22 = 4,  23 
=8, 24=16 and 26=64 which are less than the modulus 105. Let as then try the divisor 6, F/6=8, 
28  = 256. F/6 –1 should be, if correct,  0 mod.105, that is 105 should divide 255. This is not 
the case, so that a period of eight terms is too short. Let us then try F/4=12, corresponding to a 
period of 12 terms ; now 212 = 4096, F/4-1=4095, which is divisible by 105, yielding 39. Thus 
minand the period should be of  twelveterms. One indeed finds the period, 
                                  [2,4,8,16,32,64,23,46,92,79,53,1], mod.105.  
         Consider now the modulus C=32x5x7=315, leading to F=3x48=144. Since by increasing 
the modulus the period cannot become shorter, let us first examine the case of a period of 
twelve terms as above, corresponding to F/12 : F/12 –1= 4095 should be divisible by 315, and 
this is the case, 4095/315=13. One finds again a period of  twelve terms : 
                                [2,4,8,16,32,64,128,256,197,79,158,1], mod.315. 
          Let now C=33x5x7=945, F=432. One can again try a period of twelve terms, 
corresponding to F/36. F/36-1= 4095, but this is not divisible by 945. So the period should be 
larger, necessarily a multiple by three of the previous one. F/12=36, 236= 68 719 476 736, and 
one checks that 236 – 1 is divisible by 945, yielding 72 719 023. The corresponding period is, 
[2,4,8,16,32,64,128,256,512,79,158,316,632,319,638,331,662,379,758,571,197,394,788,631,
317,634,323,646,347,694,443,886,827,709,473,1],  mod.945. 
          Finally, consider C=34x5x7=2835, with F=1296. One may try again the period of thirty-
six terms, in case the period length had remained unchanged. However, 2835 does not divide 
68 719 476 735, so that the period should be trice as large, that is of 108 terms, corresponding 
again to F/12. If now one computes 2108 = A, and divides this by 2835, one finds the integer, 
114 468 625 629 074 683 168 661 735 653. Therefore 2835 divides A, and the period should 
have 108 terms. If he so wishes, the reader can check this for himself. 
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          Of course, as already pointed out, if the exponentiation of the base leads to intractable 
numbers, and if consideration of the divisors of F leaves some doubts, the only solution would 
be to write a software directly computing the periods. However, the unmistakable procedure 
has at least the merit to explain the apparently irregular increase of the period when the 
exponents in the primes defining C are increased. 
 
 
 
 ANNEXE III : Arnold’s cat map and Arnold numbers and series.12,27 

 
This deterministic chaotic map was devised as an example of a recurrent mapping by 

the Russian mathematician Vladimir I. Arnold (1935-…) in his book with A. Avez. Ergodic 
Problems in Classical Mechanics.12 (See Wikipedia at the link Arnold’s cat map.) Here 
follow succinct indications on this mapping. 

Restricting ourselves in what follows to integer values for the variables x and y, 
Arnold’s cat map is defined as follows: 

 
                      xk+1 = 2xk+ yk                y k+1= xk+ yk                                                                        (1a),  (1b)  

 
or, equivalently, in matrix notation : 
               

                         2   1          xk             xk+1           
                                   X            →           

                               1   1          yk             yk+1           
 
(In fact with respect to ref.12, x has been substituted for y and vice versa. This however has 
no effect on what follows.) 

 
                                     2   1     

Arnold’s  matrix       A =           
                            1   1     

 
has a determinant one and is therefore unitary. It is inversible, the inverse matrix being 
 

                                        1  -1    
                           A-1 =                       
                                        -1  2    
 
 

The  two eigenvalues  of  the  Arnold’s  matrix  are  λ1= (3+√5)/2  and   λ2=(3-√5)/2, so that 
λ1>1 and 0<λ2<1. To λ1 corresponds an eigenvector in an expanding direction and to λ2 a 
perpendicular eigenvector in a contracting direction.  

As remarked by Dyson and Falk27 there is a simple relationship between the matrix 
generating Arnold integers and that generating the well known Fibonacci integers: 28                                   

               
                                                 0   1     
                                      F =               
                                                 1   1     
 
that is F2 = A. Also, from (1a) and ((1b) one easily finds that 
   
                       xk+1 = 3xk- xk-1   and analogously   y k+1= 3yk- yk-1                                                    (2a),  (2b)        
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Here one of the variables has disappeared, but by compensation two of the previous 
xk+1 or yk+1 are now needed to define the next term. However, xk+1 still defines the 
corresponding y k+1, through y k+1= xk+1- xk 
          These numbers we shall call here to forth Arnold numbers ai, so that ai ≡ xi in eq. (1a),  
in honor of the above indicated contemporary mathematician, V. I. Arnold, and 
correspondingly the succession of Arnold numbers, Arnold series. The definition of these ai 

numbers presents the analogy with the definition of the Fibonacci numbers fi, in that each ai as      
each fi are defined through the two previous terms in the series, ai-1, ai-2 and fi-1, fi-2.                 

In modular algebra it is clear that both the Arnold A and Fibonacci F matrices are 
periodic. For, in eqs (1a) and (1b) mod.M  there are 2M(M-1)/2= M(M-1) couples of different 
integers xj , yk to which should be added M-1 couples of equal integers xj , yi , the identical 
couple 0, 0 being forbidden. The total sums up to M2 – 1 possible couples. It follows that at 
most after M2 – 1 steps some couple of integers which has already appeared should appear 
again, and so a new period initiated. If it is assumed that there are no closed loops after a 
number of initial steps which do not repeat themselves, the new period shall begin with the 
first two terms initiating the process. In fact, the periods are much shorter than M2 –1. In ref. 
27 it has been shown that the period cannot exceed 3M. 

It may be demonstrated that if the Arnold matrix A has a periodicity P mod.M, then 
the periodicity of a couple of numbes xk, yk    initiating Arnold’s   mapping, or equivalently the 
periodicity of the unitary vector originating in xk, yk    on a bidimensional grid on which acts 
the matrix (1) is also P. If this were not so, the length of the trajectories on the grid would be 
dependent on xk, yk, and an asymmetry introduced in the problem which would completely 
change the periodicity, and consequently the reappearance of the cat. Analogous reasoning 
holds for the periodicity of the Fibonacci series in modulo M algebra. However, for a same 
modulus M, the Arnold and Fibonacci periods are not the same. 

The proper Fibonacci series begins with 1, 1. In the same manner one can define a 
proper Arnold series by putting in (1a) and (1b) x1=1 and y1=1. However, one may also 
consider a generalized Arnold series, in analogy with the generalized Fibonacci series, where 
x1, and y1 may be any integers. Considering such generalized Arnold series and taking into 
account eq. (2a), the following proposition is evident: Any integer number may be an element 
of an Arnold series, and this in an infinity of ways. 

Example: Taking x1= a1 =1  and x2= a2 =1, the twenty first Arnold numbers of the 
proper  Arnold series are, according to relation (2a): 
 
1, 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10 946, 28 657, 75 025, 196 418, 514 229,  
1 346 269, 3 524 578, 9 227 465, 24 157 817. 
 
The period mod.5 is: 1,1,2,0,3,4,4,3,0,2, that is P=2M; it is easily checked that the period 
mod.7 has eight terms, that is P=M+1, and mod.11 five terms, that is (M-1)/2. 
 Using (2a) it is found that  
 
                           akak+2 – (ak+1)

2 
 =  ak-1ak+1 -  ak

2 = constant                                                    (3)                             
 
whatever k. Therefore, from the above three first terms of the proper Arnold series one has 
 
                                               ak-1 .ak+1 -  ak

2 = 1           (for the proper Arnold series)          (4) 
 
whatever k.  Of course, if a different Arnold series is considered, (3) will take other values. 
For example, if the two first terms are a1 =  3, a2 = 7, leading to the series 3, 7, 18, 47, 123, 
322, 843…,  one  finds  from the  three  first  terms of  the series  that  relationships  (3)  equal  
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now 5.  
Notice that to obtain Arnold series differing from the proper one, one should choose 

initial integers which are different from two successive integers appearing in the proper series. 
 Using relationships (2) and (4), one also finds that 
 
                                 ak+1ak-2 - ak ak-1 = constant                                                                        (5)                                  

 

whatever k, the constant being equal to 3 for the proper  Arnold series.                      
 Quite certainly other such relationships can be found, however we shall be content 
here with the two examples (3) and (5) given above.  

As a final remark, notice that three successive Arnold numbers are mutually coprime,  
because the sum or difference of two coprime integers never have common decomposition 
factors with these two coprimes.29  From this and eqs (2a), (2b) it follows that no Arnold 
number is divisible by three and from y k+1= xk+1- xk it follows that the x and y series are 
always distinct. 
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