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Abstract: This article explores instances of symbol polysemy within mathematics as it manifests 

in different areas within the mathematics register. In particular, it illustrates how even basic 

symbols, such as ‘+’ and ‘1’, may carry with them meaning in ‘new’ contexts that is inconsistent 

with their use in ‘familiar’ contexts. This article illustrates that knowledge of mathematics 

includes learning a meaning of a symbol, learning more than one meaning, and learning how to 

choose the contextually supported meaning of that symbol. 
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Ambiguity in mathematics is recognized as “an essential characteristic of the conceptual 

development of the subject” (Byers, 2007, p.77) and as a feature which “opens the door to new 

ideas, new insights, deeper understanding” (p.78). Gray and Tall (1994) first alerted readers to 

the inherent ambiguity of symbols, such as 5 + 4, which may be understood both as processes 

and concepts, which they termed procepts. They advocated for the importance of flexibly 

interpreting procepts, and suggested that “This ambiguous use of symbolism is at the root of 

powerful mathematical thinking” (Gray and Tall, 1994, p.125). A flexible interpretation of a 

symbol can go beyond process-concept duality to include other ambiguities relating to the 

diverse meanings of that symbol, which in turn may also be the source of powerful mathematical 

thinking and learning. This article considers cases of ambiguity connected to the context-

dependent definitions of symbols, that is, the polysemy of symbols.  

 A polysemous word can be defined as a word which has two or more different, but 

related, meanings. For example, the English word ‘milk’ is polysemous, and its intended 

meaning can be determined by the context in which it is used. Mason, Kniseley, and Kendall 

(1979) observed that word polysemy in elementary school reading tasks was a source of 

difficulty – students demonstrated a tendency to identify the common meaning of words, despite 

being presented contexts in which an alternative meaning was relevant. Durkin and Shire (1991) 

discussed several instances of polysemous words within the mathematics classroom. They noted 

confusion in children’s’ understanding of expressions that had both mathematical and familiar 

‘everyday’ meanings. In resonance with Mason, Kniseley, and Kendall (1979), Durkin and Shire 

found that “when children misidentified the meaning of an ambiguous word in a mathematical 

sentence, the sense they chose was often the everyday sense” (1991, p.75). 

 In addition to potential confusion between a word’s ‘everyday’ meaning and its 

specialized meaning within mathematics, learners are also often faced with polysemous terms 

within the mathematics register. Zazkis (1998) discussed two examples of polysemy in the 

mathematics register: the words ‘divisor’ and ‘quotient’. These words were problematic for a 

group of prospective teachers when confusion about their meanings could not be resolved by 

considering context – both meanings arose within the same context. In the case of ‘divisor’, 

attention to subtle changes in grammatical form was necessary to resolve the confusion. In the 

case of ‘quotient’, a conflict between familiar use and precise mathematical definition needed to 

be acknowledged and then resolved. Zazkis relates to the mathematics register Durkin and 
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Shire’s (1991) suggestion that enriched learning may ensue from monitoring, confronting and 

‘exploiting to advantage’ ambiguity. 

I would like to continue the conversation on polysemy within the mathematics register, 

and extend its scope to consider the polysemy of mathematical symbols. This article examines 

the polysemy of the ‘+’ symbol as it manifests in different areas within the mathematics register. 

The article begins with a reminder of the ‘familiar’ – addition and addends in the case of natural 

numbers – as well as a brief look at an example where meanings of symbols are extended within 

the sub-register of elementary school mathematics. Following that, I focus on two instances 

where meanings of familiar symbols are extended further: the first involves modular arithmetic, 

while the second involves transfinite arithmetic. I chose to focus on these cases for two reasons: 

(i) the extended meanings of symbols such as ‘a + b’ contribute to results that are inconsistent 

with the ‘familiar’, and (ii) they are items in pre-service teacher mathematics education.  

This article presents an argument that suggests that the challenges learners face when 

dealing with polysemous terms (both within and outside mathematics) are also at hand when 

dealing with mathematical symbols by starting with ‘obvious’ and well-known illustrations of 

symbol polysemy in order to prepare the background to analogous but not-so-obvious 

observations. It focuses on cases where acknowledging the ambiguity in symbolism and 

explicitly identifying the precise, context-specific, meaning of that symbolism go hand-in-hand 

with understanding the ideas involved.  

Building on the familiar: from natural to rational 

The main goal of this section is to establish some common ground with respect to ‘familiar’ 

meanings of symbols of addition and addends. In the subsequent sections, the meanings of these 

symbols will be extended in different ways, dependent on context. Their extensions will be 

explored so as to highlight ambiguity in meanings which can be problematic for learners should 

it go unacknowledged. 

Since experiences with symbols in mathematics often start with the natural numbers, it 

seems fitting that this paper should start there as well. Natural numbers may be identified with 

cardinalities2, or ‘sizes’, of finite sets – where ‘1’ is the symbol for the cardinality of a set with a 

single element, ‘2’ the symbol for the cardinality of a set with two elements, and so on. With 

                                                 
2 Natural numbers may also be identified with ordinals; however addition of ordinals is not commutative (Hrbacek 
and Jech, 1999), and thus in doing so one loses a fundamental property of natural number arithmetic. 
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such a definition, addition over the set of natural numbers may be defined as the operation which 

determines the cardinality of the union of two disjoint sets (Hrbacek and Jech, 1999; Levy, 

1979). As noted earlier, a symbol such as ‘1+2’ can be considered a procept, and as such may be 

viewed as both the process of adding two numbers and also the concept of the sum of two 

numbers. For the purposes of this paper, it is enough to restrict attention to the concept of ‘1+2’ 

(and hereafter all other arithmetic expressions), though the process of ‘1+2’ is no less 

polysemous.  

A more formal definition of addition over the set of natural numbers, , can be written as 

the following:  

 if A and B are two disjoint sets with cardinalities a, b in , then the sum a + b is 

equal to the cardinality of the union set of A and B, that is, the set (AB).  

Table 1 below summarizes the meanings of the symbols ‘1’, ‘2’, and ‘1+2’ when 

considered within the context of natural number addition: 

Symbol Meaning in context of natural numbers 

1 Cardinality of a set containing a single element 

2 Cardinality of a set containing exactly two elements 

1+2 Cardinality of the union set 

Table 1: Summary of familiar meaning in  

Sensitivity towards various meanings attributed to arithmetic symbols is endorsed by teacher 

preparation guides and texts, such as Van de Walle and Folk’s Elementary and Middle School 

Mathematics, which notes that “each of the [arithmetic] operations has many different meanings” 

and that “Care must be taken to help students see that the same symbol can have multiple 

meanings” (2005, p.116). Van de Walle and Folk highlight as an example the ‘minus sign’, 

which they observe has a broader meaning than ‘take away’. However, they seem to take for 

granted that their readers are familiar with exact mathematical meaning of arithmetic symbols. 

For instance, they introduce addition as a ‘big idea’ which “names the whole in terms of the 

parts” (p.115), but without explicitly defining addition over the natural numbers, nor 

distinguishing conceptually natural number addition from, say, rational number addition. Rather, 

they recommend that “the same ideas developed for operations with whole numbers should apply 

to operations with fractions. Operations with fractions should begin by applying these same ideas 

to fractional parts” (p.244). This advice has dubious implications both conceptually and 
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pedagogically when we consider the definition of natural (and whole) numbers as cardinalities of 

sets. Rational numbers do not have an analogous definition as cardinalities, and indeed, the idea 

that a set might contain ½ or ¼ of an element is not meaningful. Instead, rational numbers may 

be described as numbers that can be represented as a ratio v : w, where v and w are integers. 

Campbell (2006) warns against conflating whole number and rational number arithmetic, 

and suggests that merging the two ideas may be the root of both conceptual and procedural 

difficulties during an individual’s transition from arithmetic to algebra. Campbell identifies a 

source for this confusion as the 

 “relatively recent development in the history of mathematics that has logically 

subsumed whole (and integer) numbers as a formal subset of rational (and real) 

numbers. This development appears to have motivated and encouraged some serious 

pedagogical mismatches between the historical, psychological, and formal 

development of mathematical understanding” (2006, p.34) 

Campbell asserts that the set of natural (and whole) numbers are not a subset of the set of rational 

numbers, but rather are isomorphic to a subset of the rational numbers. As such, this distinction 

is significant as it carries with it separate definitions for the set of natural numbers (and its 

corresponding arithmetic operations) and the subset of the rational numbers to which it is 

isomorphic. In particular, although the symbols appear the same, their meaning in this new 

context is different, as illustrated in Table 2. 
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Symbol Meaning in context of rational numbers 

1 A ratio of integers equivalent to 1:1 

2 A ratio of integers equivalent to 2:1 

1+2 A ratio of integers equivalent to 3:1 

Table 2: Summary of extended meaning in  

Campbell suggests that although the  

“standard view… is to claim that young children are simply not developed or 

experienced enough to grasp the various abstract distinctions and relations to be 

made between whole number and rational number arithmetic… it may be the case 

that the cognitive difficulties in children’s understanding of basic arithmetic is a 

result of selling short their cognitive abilities” (2006, p.34). 

Thus, although it may seem cumbersome to distinguish between 1   and 1 (or 1.0)  , where 

 symbolizes the set of rational numbers, it is conceptually important. In a broad context, the 

operation of addition may be considered as a binary function, and as such, its definition depends 

on the domain to which it applies. Recalling Table 1, we may add another row: 

Symbol Meaning in context of natural numbers 

1 Cardinality of a set containing a single element 

2 Cardinality of a set containing exactly two elements 

1+2 Cardinality of the union set 

+ Binary operation over the set of natural numbers 

Table 1B: Summary of familiar meaning in  

It is useful for purposes of clarity in this paper to distinguish between different definitions of the 

addition symbol as they apply to different domains. The symbol +N will be used to represent 

addition over the set of natural numbers, +Z to represent addition over the set of integers, and +Q 

to represent addition over the set of rational numbers. +N and +Q have, to apply Zazkis’s (1998) 

phrase, the ‘luxury of consistency’ – despite the different definitions, 1 +N 2 = 3 and 1 +Q 2 = 3. 

However, if we consider summing non-integer rational numbers, there are pedagogical 

consequences for neglecting the distinction between natural number addition and rational 

number addition. In particular with respect to motivating and justifying the specific algorithms 

applicable to computations with fractions, and also with respect to interpreting student error. A 
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classic error such as  may be seen as a reasonable interpretation of Van de Walle and 

Folk’s (2005) advice of applying whole number operations to fractional parts. Without 

distinction,  is, for a learner, equivalent to  . This latter expression is logically 

problematic: as a binary function, +N is applicable only to elements in its domain – the set of natural 

numbers – in which the fractions  are not.  may be viewed as an algorithm that 

restricts the function +N to elements of its domain (the two numerators, and the two denominators). 

Adequate knowledge of addition as an operation whose properties depend upon the domain to which it 

applies, offers teachers a powerful tool to address the inappropriateness of this improvised algorithm. 

The following sections build on the idea of addition as a domain-dependent binary 

operation. They explore examples of two domains for which a ‘luxury’ of consistency is absent: 

(i) the set {0, 1, 2} and (ii) the class of (generalised) cardinal numbers. When clarification is 

necessary, the notation +3 will be used to represent addition over the set {0, 1, 2} (i.e. modular 

arithmetic with base 3), and +∞ will be used to represent addition over the class of cardinal 

numbers (i.e. transfinite arithmetic). The sections take a close look at familiar and not-so-familiar 

examples of domains for which an understanding develops hand-in-hand with an understanding 

of the associated arithmetic operations. 
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Extending the familiar: an example in modular arithmetic 

Modular arithmetic is one of the threads of number theory that weaves its way through 

elementary school to university mathematics to teachers’ professional development programs – it 

is introduced to children in ‘clock arithmetic’, it is fundamental to concepts in group theory, and 

it is a concept that has helped teachers develop both their mathematical and pedagogical content 

knowledge. This section considers the context of group theory. It takes as a generic example the 

group 3 – the group of elements {0, 1, 2} with the associated operation of addition modulo 3. 

  Within group theory the meanings of symbols such as 0, 1, 2, +, and 1+2 are extended 

from the familiar in several ways. As an element of 3, the symbol 0 is short-hand notation for 

the congruence class of 0 modulo 3. That is, it is taken to mean the set consisting of all the 

integral multiples of 3: {… -6, -3, 0, 3, 6, …}. Similarly, the symbol 1 represents the congruence 

class of 1 modulo 3, which consists of the integers which differ from 1 by an integral multiple of 

3, and 2 represents the congruence class of 2 modulo 3, which consists of the integers which 

differ from 2 by an integral multiple of 3. The symbol ‘+’ also carries with it a new meaning in 

this context: it is defined as addition modulo 3. As Dummit and Foote (1999) caution: 

“we shall frequently denote the elements of /n  [or n] simply by {0, 1, … n-1} 

where addition and multiplication are reduced mod [modulo] n. It is important to 

remember, however, that the elements of /n  are not integers, but rather collections 

of usual integers, and the arithmetic is quite different” (p.10, emphasis in original) 

Pausing for a moment on the symbol ‘1+2’, we might explore just how different the meaning of 

addition modulo 3 is from the ‘usual integer’ addition. Since the symbols ‘1’ and ‘2’ (in this 

context) represent the congruence classes {… -5, -2, 1, 4, 7, …} and {… -4, -1, 2, 5, 8,…}, 

respectively, the sum ‘1+2’ must also be a congruence class. Dummit and Foote (1999) define 

the sum of congruence classes by outlining its computation. In the case of 1+2 (modulo 3), we 

may compute the sum by taking any representative integer in the set {… -5, -2, 1, 4, 7, …} and 

any representative integer in the set {… -4, -1, 2, 5, 8,…}, and summing them in the ‘usual 

integer way’ (i.e. with the operation +Z). Having completed this, the next step is to determine the 

final result: the congruence class containing the integral sum of the two representative integers. 

Defined in this way, addition modulo 3 does not depend on the choice of representatives taken 
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for ‘1’ and ‘2’. Thus, recalling the notation introduced in the previous section, sample 

computations to satisfy this definition include: 

1 +3 2 =  (1 +Z 2) modulo 3 

 =  (1 +Z 5) modulo 3 

 =  (-2 +Z -1) modulo 3 

all of which are equal to the congruence class 0.  

Laden with new meaning, these symbols pose a challenge for students who must quickly 

adjust to a context where the complexity of such compact notation is taken for granted, and 

where inconsistencies arise between the symbols’ specialized meaning and their ‘familiar’, 

‘usual’ meaning. Table 3 below summarizes the meanings of the symbols ‘1’, ‘2’, and ‘1+2’, and 

‘+’ when considered within the context of 3: 

Symbol Meaning in context of 3 

1 Congruence class of 1 modulo 3: {… -5, -2, 1, 4, 7, …} 

2 Congruence class of 2 modulo 3: {… -4, -1, 2, 5, 8,…} 

1+2 Congruence class of (1+2) modulo 3: {…, -3, 0, 3, …} 

+ Binary operation over set {0, 1, 2}; addition modulo 3 

Table 3: Summary of extended meaning in 3 

The process of adding congruence classes by adding their representatives is a special case 

of the more general group theoretic construction of a quotient and quotient group – central ideas 

in algebra, and ones which have been acknowledged as problematic for learners (e.g. Asiala et 

al., 1997; Dubinsky et al., 1994).These concepts are challenging and abstract, and are made no 

less accessible by opaque symbolism. As in the case with words, the extended meaning of a 

symbol can be interpreted as a metaphoric use of the symbol, and thus may evoke prior 

knowledge or experience that is incompatible with the broadened use. In a related discussion of 

the challenges learners face when the meaning of a term is extended from everyday language to 

the mathematics register, Pimm (1987) notes that “the required mental shifts involved can be 

extreme, and are often accompanied by great distress, particularly if pupils are unaware that the 

difficulties they are experiencing are not an inherent problem with the idea itself” (p.107) but 

instead are a consequence of inappropriately carrying over meaning from one register to the 

other. A similar situation arises as learners must stretch and revise their understanding of a 
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symbol within the mathematics register – an important mental shift that is taken for granted 

when clarification of symbol polysemy remains tacit. 

Beyond the familiar: an example in transfinite arithmetic 

Transfinite arithmetic may be thought of as an extension of natural number arithmetic – its 

addends (transfinite numbers) represent cardinalities of finite or infinite sets. Transfinite 

arithmetic poses many challenges for learners, not the least of which involves appreciating the 

idea of ‘infinity’ in terms of cardinalities of sets. Before one may talk meaningfully about 

polysemy and ambiguity in transfinite arithmetic, it is important to first develop some ideas 

about ‘infinity as cardinality’, which is where this section will begin. 

 Infinity is an example of a term which is polysemous both across and within registers. 

The familiar association of infinity with endlessness is extended into the mathematics register in 

areas such as calculus where the idea of potential infinity is indispensible. Potential infinity may 

be thought of as an inexhaustible process – one for which each step is finite, but which continues 

indefinitely. In calculus for example, the idea of limits which ‘tend to’ infinity relates the notion 

of an on-going process that is never completed. This extension across registers preserves some of 

the meaning connected to the colloquial use of the term ‘infinity’, however it is distinct from 

intuitions which, say, connect infinity to endless time or to the all-encompassing (see Mamolo 

and Zazkis, 2008). Within the mathematics register, the term ‘infinity’ is extended further to the 

idea of actual infinity, which is prevalent in the field of set theory. Actual infinity is thought of as 

a completed and existing entity, one that encompasses the potentially infinite. The set of natural 

numbers is an example of an actually infinite entity – it contains infinitely many elements and, as 

a set, exists despite the impossibility of enumerating all of its elements. The cardinality of the set 

of natural numbers is another instance of actual infinity; it is also the smallest transfinite number. 

 Transfinite numbers are generalised natural numbers which describe the cardinalities of 

infinite sets. As implied, infinite sets may be of different cardinality: the set of natural numbers, 

for example, has a different cardinality than the set of real numbers, though both contain 

infinitely many elements. Cardinalities of two infinite sets are compared by the existence or non-

existence of a one-to-one correspondence between the sets. Two sets share the same cardinality 

if and only if every element in the first set may be ‘coupled’ with exactly one element in the 

second set, and vice versa. This is a useful approach, and I will return to it when illustrating 

properties of transfinite arithmetic. The point I am trying to make here is that the concept of a 
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transfinite number, which intuitively may be thought of as an ‘infinite number’, requires 

extending beyond the familiar idea of infinity as endless (and thus unsurpassable). Also, in 

resonance with Pimm’s (1987) observation regarding negative and complex numbers, the 

concept of a transfinite number “involves a metaphoric broadening of the notion of number 

itself” (p.107). In this case, the broadening includes accommodating some arithmetic properties 

which are both unfamiliar and unintuitive. 

 As in the case with arithmetic over the set of natural numbers, transfinite arithmetic 

involves determining the cardinality of the union of two disjoint sets. The crucial distinction is of 

course that at least one of these sets must have infinite magnitude – its cardinality must be equal 

to a transfinite number. To illustrate some of the distinctive properties of transfinite arithmetic 

consider, without loss of generality, the cardinality of the set of natural numbers, denoted by the 

symbol 0. Imagine adding to the set of natural numbers, , a new element, say β. This union set 

  {β} has cardinality equal to 0 + 1 – there is nothing new here. However, each element in  

can be ‘coupled’ with exactly one element in   {β}, and vice versa. By definition, two infinite 

sets have the same cardinality if and only if they may be put in one-to-one correspondence, thus 

the cardinality of  is equal to the cardinality of   {β}. As such, 0 = 0 + 1. Similarly, it is 

possible to add an arbitrary natural number of elements to the set of natural numbers and not 

increase its cardinality, that is  0 = 0 + υ, for any υ  , and further 0 + 0 = 0.  

 This ‘tutorial’ in transfinite arithmetic is relevant to the discussion on polysemy as it 

illustrates how the symbol ‘+’ in this context is quite distinct in meaning from addition over the 

set of natural numbers. Whereas with ‘+N’ adding two numbers always results in a new (distinct) 

number, with ‘+∞’ there exist non-unique sums. Further, since the concept of a set of numbers 

must be extended to the more general ‘class’ of transfinite numbers, the symbol ‘1’ in the 

expression ‘ 0 + 1’ also takes on a slightly new meaning since it must be considered more 

generally as a class (rather than set) element3. Extended meanings connected to transfinite 

arithmetic are summarized in Table 4: 

Symbol Meaning in context of transfinite arithmetic 

1 Cardinality of the set with a single element; class element 

0 Cardinality of ; transfinite number; ‘infinity’ 

                                                 
3 For distinction between set and class, see Levy (1979). 
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0 + 1 Cardinality of the set   β; equal to 0  

+ Binary operation over the class of transfinite numbers 

Table 4: Summary of extended meaning in transfinite arithmetic 

 A specific challenge related to the polysemy of + in this context derives from the 

existence of non-unique sums, a consequence of which is indeterminate differences. Explicitly, 

since 0 = 0 + υ, for any υ  , then 0 - 0 has no unique resolution. As such, the familiar 

experience that ‘anything minus itself is zero’ does not extend to transfinite subtraction. This 

property is in fact part and parcel to the concept of transfinite numbers. Identifying precisely the 

context-specific meaning of these symbols (‘+∞’ and ‘∞’) can help solidify the concept of 

transfinite numbers, while also deflecting naïve conceptions of infinity as simply a ‘big unknown 

number’ by emphasizing that transfinite numbers are different from ‘big numbers’ since they 

have different properties and are operated upon (arithmetically) in different ways.  

In this section, to address issues of polysemy of symbols, it was necessary to first glance 

at the polysemy of the term infinity. It is a complex concept that can encompass different 

connotations across and within different registers. Within mathematics, it is difficult to think of 

infinity – even in the context of transfinite numbers – without imagining that well-known symbol 

‘∞’. Informally, the symbol ‘ 0 + 1’ might be thought of as ‘∞ + 1’. This informal symbolism 

suggests the idea of adding 1 to a ‘concept’ rather than a ‘set number’, of adding 1 to 

endlessness. Notwithstanding the formal use of ‘ 0’, an intuition of ‘∞’ may persist (if only 

tacitly), carrying with it all sorts of inappropriate associations.  
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Concluding Remarks 

This article examined instances of symbol polysemy within mathematics. The intent was to 

illustrate how even basic symbols, such as ‘+’ and ‘1’, may carry with them meaning that is 

inconsistent with their use in ‘familiar’ contexts. It focused on cases where acknowledging the 

ambiguity in symbolism and explicitly identifying the precise (extended) meaning of that 

symbolism go hand-in-hand with developing an understanding of the ideas involved. While this 

article focused on particular examples of distinguishing among the symbolic notation for 

arithmetic over the set of natural numbers, rational numbers, equivalence classes, and transfinite 

cardinals is fundamental to appreciating the subtle (and not-so-subtle) differences among the 

elements of those sets, this argument has broader application. I suggest that the challenges 

learners face when dealing with polysemous terms (both within and outside mathematics) are 

also at hand when dealing with polysemous symbols. Just as knowledge of languages such as 

English include “learning a meaning of a word, learning more than one meaning, and learning 

how to choose the contextually supported meaning” (Mason et al., 1979, p.64), knowledge of 

mathematics includes learning a meaning of a symbol, learning more than one meaning, and 

learning how to choose the contextually supported meaning of that symbol. Further, echoing 

Pimm’s (1987) advice and extending its scope to include mathematical symbols: 

 “If … certain conceptual extensions in mathematics [are] not made abundantly clear 

to pupils, then specific meanings and observations about the original setting, whether 

intuitive or consciously formulated, will be carried over to the new setting where 

they are often inappropriate or incorrect” (p.107). 

Sfard (2001) suggests that symbols – such as the ones discussed here, but also in a more 

general sense – are not “mere auxiliary means that come to provide expression to pre-existing, 

pre-formed thought” but rather are “part and parcel of the act of communication and thus of 

cognition” (p.29). As such, attending to the polysemy of symbols, either as a learner, for a 

learner, or as a researcher, may expose confusion or inappropriate associations that could 

otherwise go unresolved. Research in literacy suggests that students “may rely on context when a 

word does not have a strong primary meaning to them but will choose a common meaning, 

violating the context, when they know one meaning very well” (Mason et al., 1979, p.63). 
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Further research in mathematics education is needed to establish to what degree analogous 

observations apply as students begin to learn ‘+’ in new contexts. 
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