
The Mathematics Enthusiast The Mathematics Enthusiast 

Volume 7 
Number 2 Numbers 2 & 3 Article 10 

7-2010 

A semiotic reflection on the didactics of the Chain rule A semiotic reflection on the didactics of the Chain rule 

Omar Hernandez Rodriguez 

Jorge M. Lopez Fernandez 

Follow this and additional works at: https://scholarworks.umt.edu/tme 

 Part of the Mathematics Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Rodriguez, Omar Hernandez and Lopez Fernandez, Jorge M. (2010) "A semiotic reflection on the didactics 
of the Chain rule," The Mathematics Enthusiast: Vol. 7 : No. 2 , Article 10. 
DOI: https://doi.org/10.54870/1551-3440.1191 
Available at: https://scholarworks.umt.edu/tme/vol7/iss2/10 

This Article is brought to you for free and open access by ScholarWorks at University of Montana. It has been 
accepted for inclusion in The Mathematics Enthusiast by an authorized editor of ScholarWorks at University of 
Montana. For more information, please contact scholarworks@mso.umt.edu. 

https://scholarworks.umt.edu/tme
https://scholarworks.umt.edu/tme/vol7
https://scholarworks.umt.edu/tme/vol7/iss2
https://scholarworks.umt.edu/tme/vol7/iss2/10
https://scholarworks.umt.edu/tme?utm_source=scholarworks.umt.edu%2Ftme%2Fvol7%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.umt.edu%2Ftme%2Fvol7%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://doi.org/10.54870/1551-3440.1191
https://scholarworks.umt.edu/tme/vol7/iss2/10?utm_source=scholarworks.umt.edu%2Ftme%2Fvol7%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu


  TMME, vol7, nos.2&3, p .321 
 
 

 

The Montana Mathematics Enthusiast, ISSN 1551-3440, Vol. 7, nos.2&3, pp.321-332 
2010©Montana Council of Teachers of Mathematics & Information Age Publishing 

 

 
A Semiotic Reflection on the Didactics of the Chain Rule1 
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Abstract. According to (Fried, 2008), there is an intrinsic tension in trying to apply 
the history of mathematics to its didactics. Besides the widespread feeling that the 
introduction of didactic elements taken from the history of mathematics can detract 
the pedagogy of mathematics from the attainment of important goals, (Fried, 2008, p. 
193) describes a pair of specific pitfalls that can arise in implementing such 
historical applications in mathematics education. The description in (Fried, 2008),  is 
presented in the parlance of Sausserian Semiotics and identifies two semiotic 
“deformations” that arise when one fails to observe that the pairing between signs 
and meanings in a given synchronic “cross-section” associated with the development 
of mathematics need not hold for another synchronic cross section at a different time. 
In this exposition, an example related to an application of the history of the chain rule 
to the didactics of calculus is presented. Our example illustrates the semiotic 
deformations alluded by (Fried, 2008), and points out a possible explanation of how 
this may lead to unrealistic pedagogical expectations for student performance. 
Finally, an argument is presented for the creation of a framework for a historical 
heuristics for mathematics education, possibly beyond the bounds of semiotics.  
 
Keywords: chain rule; composition of functions; differentiation; historical heuristics; 
history of analysis; history of mathematics; Sausserian semiotics 

 

1. Application of Sausserian Semiotics to Mathematics  

The problem of applying the history of mathematics to mathematics education and its 

relation to semiotics is broadly discussed by (Fried, 2008). Specific examples are given of distor-

tions that arise in the application of semiotics to the history of mathematics when failure to dis-

tinguish differences between synchronic and diachronic descriptions of the body of mathematics 
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development of the chain rule as a statement of differentiability of the composition of two functions.  
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occurs. We shall not dwell on the elements of semiotics discussed there; in fact, the presentation 

in (Fried, 2008) depicts adequately the elements of semiotics relevant to the reading of this 

article, and also presents some of the details of the development of Sausserian Semiotics and its 

adequacy for framing the problem of applying the history of mathematics to mathematics 

education. Also, (Fried, 2008) dwells in a general fashion on some of the main ideas of 

semiotics, the contributions of Peirce to this field of knowledge, and also presents some exam-

ples related to the distortions that can arise in failing to differentiate between synchronic de-

scriptions of the relations between signs and meanings (both in linguistics and mathematics) that 

occur at different time frames. In this article, we employ the framework put forth by Fried (2008) 

to discuss the application of the history of mathematics to the teaching of calculus, specifically to 

the didactics of the chain rule for the differentiation of the composition of two differentiable 

functions. It will be argued that failure to make the alluded distinction between diachronically 

distinct synchronic descriptions of the body of mathematics can result in unrealistic expectations 

regarding student understanding of the chain rule.  

For the purposes of facilitating the exposition that follows, we review some of the 

descriptions presented by Fried (2008, p. 193) regarding two distortions that can arise when one 

fails to recognize the fact that the relations between signs and meanings in the history of 

mathematics, can be vastly different when diachronic differences between time periods are taken 

into account. The distortions, according to (Fried, 2008, pp. 193) are twofold. The first distortion 

consists of supposing that the synchronic relations between signs and meanings in a given 

historic period coincide with those thought to be the corresponding relations between the 

homologous signs and meanings of the present time (when mathematics education occurs). This 

distortion constitutes, in fact, the worst error a historian can make, that is, the error of 
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anachronism. The error involves contriving non existent or false synchronic relationships be-

tween signs and meanings in the given historic period. The second distortion described by Fried, 

and related to the failure to recognize diachronic differences, is the fabrication of false inferences 

regarding the evolution of signs, meanings and their pairings throughout the history of 

mathematics. In (Fried, 2008) two examples of these distortions are given, one in linguistics, due 

to Saussure (1974) himself, and another one related to the notion of function in Euler’s times 

(Fried, 2008,  p. 194).  

In this note we discuss some of the signs and meanings associated with the notions of 

derivative and composition of functions, as related to the chain rule4. The issue here is the history 

of the chain rule since the publication of L’Hospital Analyse des Infiniment Petits pour la 

Intelligence des Lignes Courbes in 1696. Succinctly stated, the modern statement of the chain 

rule is taken to be one that relates the derivative of the composition of two functions with the 

individual derivatives of the functions composed (provided, of course, certain conditions are 

satisfied). Since the idea of composition of functions seems to have appeared in the literature at 

least a century after the publication of Analyse des infiniment petits5, it is impossible that the 

signs and meanings relevant to the statement of the chain rule in the seventeenth century are the 

same as those associated with the present version of the chain rule.  

2. History of the Chain Rule  

We now present a brief relation of the evolution of the mathematical ideas and relations that 

have come to be known as the “chain rule”. The present day statement of the Chain Rule is a 

rather sophisticated one and presupposes the confluence, and consolidation of many mathemati-

cal ideas. In fact the modern statement of the Chain Rule is the following:  
                                                 
4 that is, to the rule for differentiating the composition of two differentiable functions. 
5 As far as we can tell, the first “modern” version of the chain rule appears in Lagrange’s 1797 Théorie des fonctions 
analytiques, (Lagrange, J. L., 1797, §31, pp. 29); it also appears in Cauchy’s 1823 Résumé des Leçons données a 
L’École Royale Polytechnique sur Le Calcul Infinitesimal, (Cauchy, A. L., 1899, Troisième Leçon, pp. 25). 
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Theorem 1.  

If g is differentiable at c, and f is differentiable at g(c), then gf   is differentiable at c and  

).())(()()( cgcgfcgf    

The possibility of the succinct and beautiful statement contained in Theorem 1 presupposes a 

great deal of evolution of the underlying mathematical ideas and a commensurable amount of 

“negotiations” related to the corresponding signs and meanings. Here, the functions of the state-

ment are assumed to be defined on neighborhoods of their points of differentiability, and the cor-

responding limits for the difference quotients are supposed to exist as real numbers. Furthermore, 

once the “correct” definition of the derivative for Euclidean spaces was discovered, the chain 

rule was extended to state a relation about the differentiation of composite functions on Euclid-

ean spaces, thus changing very little the formal statement of Theorem 1; see (Dieudonné,  1960).  

In (L’Hospital, 1696, p. 2), the difference of a variable y depending on an independent 

variable x is defined as the infinitesimal increment in y when x changes by an infinitesimal 

amount 0dx . In modern notation that needs little explanation: dxxydxxydy )]()([  . In 

fact, in Analysis des infiniment petits (L’Hospital, 1696), curves are considered as polygons of 

an infinite number of sides of infinitesimally small lengths, so that if we were to extend the 

“side” of the curve )(xy  that joins the points ))(,( xyx  and ))(,( dxxydxx   in the graph of y 

as a function of x, we would, in fact, obtain the tangent line to the curve at ),( yx , whose slope is, 

no more and no less, than the quotient dy/dx. It should be noted that L’Hospital (1696) used a 

geometric argument that employs the similarity of infinitesimal triangles to show that the value 

of the desired slope is infinitely close to the indicated value dy/dx. If one follows mathematical 

convention and writes )(xy  for the quotient dy/dx (and this is, indeed, a quotient!) then, the 
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relation dxxydy )(  holds for all infinitesimals dx. In fact, in Analyse des infiniment petits the 

calculus of derivatives is really the calculus of “differences” of variables.  

It may come as a surprise to the reader that nowhere in Analyse des infiniment petits, 

(L’Hospital, 1696), is the chain rule stated explicitly. This mystery is rather significant in more 

than one way. First, if we have differentiable variables y depending on u and u, in turn, 

depending on x, then duuydy )(  and dxxudu )( are the basic relations for the differences at 

the appropriate points, so that dxxuuyduuydy )()()(  . From this, again, it is clear that 

dxxuuydy )()(  , and this is the chain rule.  

Furthermore, this is true whether dx is zero or not. It may be even more surprising to realize 

that the statement of the chain rule is also absent in all of Euler’s analysis books, Introductio in 

analysin infinitorum, (Euler, 1748, Vol. 1), (Euler, 1748, Vol. 2), and Institutiones calculi 

differentialis, (Euler, 1755). Furthermore, Euler did define the notion of a function in (Euler, L., 

1748, Vol. 1), but he never treated the topic of the composition of functions in any of his writ-

ings, (Euler, 1748, Vol. 1), (Euler, 1748, Vol. 2) and (Euler, 1755).  

As far as we can tell, the first mention of the Chain Rule6 in the literature of calculus seems 

to be due to Leibniz (Child, 2007, p. 126), and it appears in a 1676 memoir (with various mis-

takes) in which he calculated 2czbzad   by means of the substitution  .czbza x 2  In 

Analyse des infiniment petits (L’Hospital, 1696, pp. 3-4), the rules for calculating the differences 

of the basic algebraic combination of (differentiable) variables are given. L’Hospital posed the 

problem of calculating the difference of rx for any “perfect or imperfect” power r (that is, for any 

rational power r) and he answers his question by proving that dxrxdx rr 1 . In keeping with the 

style of Analyse des infiniment petits, after proving general rules, L’Hospital gave instances of 

                                                 
6 as a rule for finding differences of expressions by means of substitutions.  
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the application of the rule to specific examples. In this case, the first example of the general rule 

dxrxdx rr 1  given by L’Hospital is the calculation of the difference 33 )( xayd  . The 

calculation is, as expected, a direct application of the chain rule and requires no expansion of the 

cube. No comment is made by L’Hospital to the effect that the application of the general rule 

(differentiation of the cube) to more complicated expressions necessitates an application of a 

special rule (the chain rule) whose statement or demonstration is nowhere to be found in his 

work (Campistrous, Lopez, and Rizo, 2009). 

In our view, the example provided illustrates dramatically that the anachronisms that ensue 

from failing to understand the diachronic differences between the mathematics of different times 

can betray the existence of pitfalls and ill practices in the didactics of mathematics. Informal 

experiments performed in an introductory non standard calculus course at the University of 

Puerto Rico have shown that students have significant difficulties in identifying the composed 

functions before they are able to correctly apply the chain rule. On the other hand, the level of 

understanding of the chain rule improves when the algorithm is presented as differentiation after 

a substitution of variables. To the distant observer this may seem to be a trivial difference, but 

the history of mathematics shows that the notion of composition somehow requires a higher level 

of abstraction for its understanding. Similar remarks apply to the understanding of the chain rule 

by students when it is presented in nonstandard analysis parlance as contrasted with the usual 

standard analysis presentation, which requires arguments often seemed as much to do about 

nothing. Perhaps, it should be remarked as a sobering thought, that even if all the diachronic and 

synchronic semiotic deformations in the history of mathematics can be avoided, there will still 

remain what in our view is the most interesting part of the history of mathematics (and, also, the 



  TMME, vol7, nos.2&3, p .327 
 
part most related to mathematics education), and that is the inferences that can be made from it 

regarding optimal strategies for classroom teaching.  

3.  Towards a Historical Heuristics for Mathematics Education  

After (Toeplitz, 1963), it has been amply regarded that the so called “genetic approach” to 

mathematics education has special advantages. Toeplitz (1963) carefully points out the 

difference between history in general, as a compilation of facts, and the history of mathematics 

in particular, as a source of ideas for teaching mathematics. He remarks: “It is not history for its 

own sake in which I am interested, but the genesis, at its cardinal points, of problems, facts and 

proofs” (Toeplitz, 1963, p. xi). In view of the semiotic considerations of this work, we venture to 

suggest the need of a sort of historic heuristics for mathematics education, in the vein, perhaps, 

of the heuristics of (Polya G., 1945) for problem solving, but which attend to the pairings the 

human mind makes between signs and meanings for the purpose of advancing mathematics 

knowledge. In our opinion, in the case of the chain rule, a strong argument can be made for the 

cognitive advantages of defining the derivative as a difference arising from an infinitesimal 

change, just like in (L’Hospital, 1696). To this, in our view, we owe the absence of explanations 

and the familiar and informal handling of the chain rule in (L’Hospital, 1696).  

Kitcher (1983, p. 229) presents some compelling arguments for what we consider to be the 

cognitive advantages of what can be called “Newton’s kinematic metaphors” (thinking of fluents 

and fluxions as positions and velocities, respectively, of moving objects; see (Kitcher, 1983, p. 

232)), and the appropriateness of infinitesimals as a cognitive vehicle for the “initial calculus7”, 

striving to describe mathematically the idea of “change”. In fact, in spite of all objections to the 

unclarities of the initial calculus, as voiced (mainly) by Bishop George Berkeley (Wilkins, 2002), 

the calculus was rapidly accepted and it developed in an unprecedented way. In the words of 

                                                 
7 the calculus developed by Newton Leibniz, the Bernoullis, L’Hospital and Euler  
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(Kitcher, 1983, p. 230): “To understand how the power of the methods introduced by Newton 

and Leibniz outweighed the unclarities which attended them, we must begin with the problems 

which interested the mathematicians of the early seventeenth century.”; and further ahead on the 

same page: “Both Newton and Leibniz introduced new language, new reasonings, new 

statements and new questions into mathematics. Some of the new expressions were not well 

understood and the workings of some of the new reasonings were highly obscure. Despite of 

these defects, the changes they proposed were accepted quite quickly by the mathematical 

community, and the acceptance was eminently reasonable.” Thus, in spite of all logical 

difficulties, the methods of the initial calculus were intensely exploited and they yielded a 

dramatic development of mathematics in general and the calculus in particular. From reading 

(Kitcher, 1983) one cannot escape the feeling that the meanings associated to the idea of an 

infinitesimal were quite adequate to capture the underlying idea of “change” and to transform it 

into the body of knowledge we know today as calculus. In fact, there are good reasons to believe 

that the Leibnizian “signs” for the calculus and the formulation of change in terms of 

infinitesimals were responsible for the faster development of European continental mathematics 

when compared to its counterpart in England; see (Grabiner, 1997). In our view these arguments 

strongly suggest a clear cognitive advantage in “thinking change” in terms of infinitesimals and, 

also, explain why the chain rule in the language of infinitesimals is obvious to the point of not 

requiring explicit justification.  

Kitcher (1983, p. 154) argues the contention that mathematical knowledge is cumulative 

when compared with scientific knowledge, which is regarded as being transformed in a more 

disruptive fashion. For instance, in resolving that the Lorenz transformations (which render 

invariant Maxwell’s laws of electromagnetism) are the basic transformations of physics, strictly 
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speaking, it is necessary to admit the incorrectness of Newton’s laws, which remain invariant 

under the Galilean transformations. This is of course consistent with (Kuhn, 1970). In 

mathematics, on the other hand, in dealing with the famous error of (Cauchy, 1882) regarding the 

continuity of the limit of a series of continuous functions, analysis suffered a very profound 

transformation which brought about the ε - δ definition of limits and the notion we know today 

as uniform converge. But, as opposed to physics, in mathematics, the previous body of 

knowledge of the calculus can be reformulated in terms of limits, and all of the “theorems” of the 

initial calculus continue to be valid in the new version of mathematical analysis that ensued from 

Cauchy, Weierstrass and others. Hence, in this sense, mathematical knowledge is cumulative. 

However, any teacher of calculus can attest to the fact of the great amount of difficulty that the 

Cauchy-Weierstrass theory of limits presents to students. This is perhaps to be expected as it 

took roughly a century from the time the initial calculus was invented to the formulation of the 

theory of limits to deal with Cauchy’s “error”. It thus seems reasonable to suggest that when 

paradigms change in mathematics (as the change towards the theory of limits after the infinitesi-

mal approach) they must have a cognitive advantage for dealing with pressing unsolved prob-

lems, but this advantage does not necessarily extend for mathematics education. In fact, teaching 

the old body of mathematical knowledge with the new paradigms, in our view, adds a heavy 

overhead to the pedagogy of the subject matter.  

Reflections related to observed advantages in student understanding when the calculus is pre-

sented in the language of infinitesimals appear in education journals; studies on this very topic, 

using Keisler’s book Foundations of Infinetisimal Calculus (Keisler, 1976)  as a textbook, have 

been made, and the observed results appear discussed in the literature (see, for example, Sullivan 

(1976)).  
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In (Kitcher, 1983, p. 155), the following qualified remark is found: “Unfortunately, the 

history of mathematics is underdeveloped, even by comparison with the history of science”. 

Clearly the topics for the explorations suggested by this brief exposition need a framework for 

the history of mathematics that lies beyond the bounds of semiotics, and these explorations are 

crucial for gaining a better understanding of the cognitive workings of the human mind as it 

strives to understand mathematics.  

It would be, indeed, a framework that must include the discussion of pairings of signs and 

meanings validated by the history of mathematics as being effective, but it must also include the 

discussion of issues like the ones raised here. This framework, a sort of historical heuristics for 

mathematics education, should set the stage for exploring the cognitive workings of the human 

mind as it grapples with signs and meanings in its quest for advancing mathematical knowledge.  
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