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The history of mathematics as a pedagogical tool: Teaching the integral of the 

secant via Mercator’s projection 
 
 

Nick Haverhals1 & Matt Roscoe2 
Dept of Mathematical Sciences 

The University of Montana 
 

Abstract: This article explores the use of the history of mathematics as a pedagogical tool for the 
teaching and learning of mathematics. In particular, we draw on the mathematically pedigreed 
but misunderstood developmenti of the Mercator projection and its connection to the integral of 
the secant function. We discuss the merits and the possible pitfalls of this approach based on a 
teaching module with undergraduate students. The appendices contain activities that can be 
implemented as an enrichment activity in a Calculus course. 
 
Keywords: conformal mapping; history of mathematics; integrals; Mercator projection; rhumb 
lines; secant function; undergraduate mathematics education 
 
 
Introduction 
There is no shortage of research advocating the use of history in mathematics classrooms 
(Jankvist, 2009).  Wilson & Chauvot (2000) lay out four main benefits of using the history of 
mathematics in the classroom.  Its inclusion “sharpens problem-solving skills, lays a foundation 
for better understanding, helps students make mathematical connections, and highlights the 
interaction between mathematics and society”  (Wilson & Chauvot, 2000, p. 642).  Bidwell 
(1993) also recognizes the ability of history to humanize mathematics. His article opens with 
description of mathematics instruction treated as an island students perceive as “closed, dead, 
emotionless and all discovered” (p. 461).  By including the history of mathematics, “we can 
rescue students from the island of mathematics and relocate them on the mainland of life that 
contains mathematics that is open, alive, full of emotion, and always interesting” (p. 461).  
Marshall & Rich (2000) argue that the history of mathematics can be a facilator for the reform 
called for by the NCTM.   
 
In addition to the benefits mentioned above, Jankvist (2009) identifies more gains that can be had 
by using the history of mathematics.  Among them are increased motivation (that can be found in 
generating interest and excitement) and decreased intimidation - through the realization that the 
mathematics is a human creation and that its creators struggled as they do.  Jankvist (2009) also 
mentions history as a pedagogical tool that can give new perspectives and insights into material 
and even can serve as a guide to the difficulties students may encounter as they learn a particular 
mathematical topic.  Marshall & Rich (2000) conclude their article by saying:  
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To sum up, history has a vital role to play in today’s mathematics classrooms.  It allows 
students and teachers to think and talk about mathematics in meaningful ways. It 
demythologizes mathematics by showing that it is the creation of human beings.  History 
enriches the mathematics curriculum.  It deepens and broadens  the knowledge that 
students construct in mathematics class.   (p. 706) 

 
This is by no means a comprehensive summary of the research advocating the use of history in 
mathematics.  All of the research cited above, particularly Jankvist (2009), provides many more 
sources. Bidwell (1993) also mentions three ways of using history in the classroom.  The first is 
an anecdotal display, which features the display of pictures of famous mathematicians or 
historical facts in the classroom.  The second is to inject anecdotal material as the course is 
presented.  Here, Bidwell is referring to making historical references to coursework while it is 
being covered. Barry (2000), however, cautions against letting the use of history limited to the 
use of anecdotes.  The third use mentioned is to make accurate developments of topics a part of 
the course.  This third use best describes the remaining contents of this article.   
  
 
Background of this research 
The current research evolved out of an assignment given to two of the authors (N. Haverhals & 
M. Roscoe) in a graduate level history of mathematics class at the University of Montanaiiwhich 
mutated into the study that is currently being reported. The remainder of the article is a reporting 
of this research.   
  
Methodology 
The study sought to investigate the merits of employing a historical approach through the 
teaching and learning of the topic of the integral of the secant, a topic that is common to most 
second semester calculus courses at both the high school and university level.  The integral of the 
secant played a key role in the development of the Mercator map in the 16th and 17th centuries.  
The map was a critical tool during the age of discovery due to the fact that it was a conformal 
projection of the globe onto the plane, that is, it projected the globe in such a manner as to 
preserve angles (at the cost of distorting lengths and areas).  This property allowed mariners to 
navigate across large expanses of featureless ocean by following compass bearings that the map 
provided. 
 
In preparation for the investigation, the authors conducted a review of pertinent literature.  In 
particular, we sought material treating the subject of the Mercator projection that was easily 
translated into an educational setting where the integral of the secant is taught through the 
historical reenactment of its discovery.  Furthermore, we wanted to construct a unit that could be 
realistically included in a traditional calculus course.  Since these courses typically allow for 
little divergence from firmly established traditional content, we decided that the unit had to be 
brief, able to be employed in a single class meeting.   
 
After reading a number of articles and several educational units which dealt with the role of the 
integral of the secant in the Mercator projection we set out to design and create our own activity.  
It was decided that two documents would be produced.  The first document consisted of a “take 
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home” primer on the Mercator projection (which can be found in Appendix 1).  This document 
“set the stage” for the investigation.  In it we gave a brief description of the problem of 
conformal projection and motivated the historical need for such a map during the age of 
discovery.  We included new terms such as “rhumb line”, “loxodrome” and “conformal” as well 
as introduced the key historical figure in the development of the map, namely, Gerhardus 
Mercator.  We also included an example of the important role of the conformal map by 
demonstrating how a seaman’s bearing changes for a non-conformal plane projected map leading 
to errors in navigation.   
 
The second document that we produced was conceived as the “in-class” exploration of the 
integral of the secant (Appendix 2).  In this document, we hoped to lead students through a 
“historical reenactment” of the discovery of the integral of the secant motivated by a desire for 
mathematical description of the Mercator projection.  The document first asked students to 
reason about the horizontal scaling of latitudes and then went on to describe the “mechanical 
integration” that was carried out by Edward Wright which determined the vertical conformal 
scaling.  Students were asked carryout and compare the accuracy of two such approximating 
integrations.  A proof of the closed form of the integral was provided with several missing steps 
and students were asked to complete the traditional proof.  Finally, a number of extensions to the 
in class exploration asked students to investigate the way that distance is distorted by the 
projection.   
 
A sample of 16 undergraduate students consisting of 9 males and 7 females participated in the 
study.  The students were all mathematics majors who had completed their calculus sequence.  
Students were given the “take home” document one week before being asked to complete the 
“in-class” document.  A period of two hours was scheduled for the in-class portion.  Students 
completed the exercise in groups of two.  The authors of the study circulated about the 
classroom, answering questions.  At the end of the period, the completed documents were 
collected.   
 
One week after participation in the classroom investigation into the historical account of the 
integral of the secant, two groups of four students each were chosen for separate case study 
analysis.  One group of four students was interviewed to probe for affective reaction to the 
educational activity.  These students were asked the following questions.   
 

1. Describe what you learned in the activity on the historical approach to the integral of the 
secant.  

2. How was the activity different from a typical mathematics class? 
3. Here is the calculus textbook that we use here at the University of Montana.  This is the 

presentation for the integral of the secant.  How does it differ from the historical 
presentation of the integral of the secant that was presented last week? 

4. Did the activity change the way that you view mathematical discovery? 
5. Did the activity change the way that you view learning mathematics? 
6. Would you say that you were more or less motivated to complete the traditional proof of 

the integral of the secant after having placed its discovery in a historical context? 
7. Does including mathematics history make mathematics more meaningful? How?  
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Student response to these questions was audio recorded and transcribed for analysis.  A second 
group of four students was shown a false physical model of the Mercator projection (chosen 
because of its commonality in supposedly “explaining” the projection). These students were 
asked to disprove the physical model using the knowledge that they had acquired through 
participation in the educational activity on the Mercator projection.  Specifically, these students 
were shown the following:   
 
 
 
 

A common misconception about the Mercator projection  
involves a physical model where the globe is projected onto  
a cylinder tangent to its radius through “illumination” of the  
globe from its center.  Use the figure at the right to find the  
vertical stretching factor to determine whether or not this 
physical model gives rise to the Mercator projection.   

 
Student response to this prompt was audio recorded and transcribed for analysis.   
 
Framework 
While the use of history in mathematics classrooms is widely supported, it is probably safe to say 
that implementation is not so widely seen.  Man-Keung Siu (2007) provides the following list of 
16 unfavorable factors that contribute to the lack of history in mathematical classes:   
 
(1) “I have no time for it in class!” 
(2) “This is not mathematics!” 
(3) “How can you set question on it in a test?” 
(4) “It can’t improve the student’s grade!” 
(5) “Students don’t like it!” 
(6) “Students regard it as history and they hate history class!” 
(7) “Students regard it just as boring as the subject mathematics itself!” 
(8) “Students do not have enough general knowledge on culture to appreciate it!” 
(9) “Progress in mathematics is to make difficult problems routine, so why bother to look back?”  
(10) “There is a lack of resource material on it!” 
(11) “There is a lack of teacher training in it!”  
(12) “I am not a professional historian of mathematics.  How can I be sure of the accuracy of the 
exposition?”   
(13) “What really happened can be rather tortuous.  Telling it as it was can confuse rather 
 than to enlighten!” 
(14) “Does it really help to read original texts, which is a very difficult task?” 
(15) “Is it liable to breed cultural chauvinism and parochial nationalism?” 
(16) “Is there any empirical evidence that students learn better when history of mathematics is 
made use of in the classroom?” 
 
The list was compiled by Siu for the purpose of collecting the views of mathematics educators.   
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The authors took used their experience in preparing and administering their Mercator map 
activity to address each of these factors.  The list was divided into groups of related items and 
these sub-lists form the next four sections.   
 
 
 
A Philosophical Response to Three Unfavorable Factors 
 
Many of Siu’s (2007) unfavorable factors for the use of history of mathematics in classroom 
teaching are tied to philosophical questions concerning the nature of mathematics and 
mathematics instruction.  That is, in response to the query of, “Why don’t you use the history of 
mathematics in your classroom?” teachers often disclose personal beliefs about mathematics and 
how it should be taught.  Specifically the following list of three of Siu’s unfavorable factors fit 
this description: 
 

(1) “I have no time for it in class!” 
(2) “This is not mathematics!” 
(9) “Progress in mathematics is to make difficult problems routine, so why bother to  look 
back?”  

 
By stating that there is no time for a historical approach to the teaching of mathematics in the 
classroom, teachers reveal personal beliefs that the history of mathematics is peripheral to other 
content matter in the subject which are given higher priority in classrooms where time is a 
limited commodity.  This is especially the case in the modern American setting where student 
performance in mathematics on state and federally mandated tests is directly tied to school 
funding which places direct pressure on mathematics teachers to produce students who are 
computationally proficient in arithmetic, geometry, algebra and the like. 
 
The statement “this is not mathematics” is a rejection of the history of mathematics as traditional 
mathematical classroom content.  Here, the personal philosophy of mathematics might be seen as 
one which draws a clear line between that which is history and that which is mathematics thereby 
promoting a vision of mathematics that is at once highly specialized while also strictly 
compartmentalized from other areas of study. 
 
Finally, the statement equating progress in mathematics with making “difficult problems routine” 
is a firm expression of a philosophy of mathematics which can be best described as one which 
seeks to avoid the complexities associated with the historical development of the subject in favor 
of routines, algorithms and memorized procedures.   
 
While many authors have written about the role of personal philosophies in the teaching of 
mathematics (Thom, 1973; Hersh, 1986; Ball, 1988; etc), perhaps Paul Ernest’s (1988) 
framework of philosophies of mathematics provide the most succinct and streamlined approach 
to the subject.   Ernest identifies three psychological systems of beliefs about mathematics each 
with components addressing the nature of mathematics, the nature of mathematics learning and 
the nature of mathematics teaching.   
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Ernest identifies the instrumentalist view.  Here the conception of mathematics is one of an 
“accumulation of facts, rules and skills to be used in the pursuance of some external end” 
(Ernest, 1988, p. 2).  Mathematics is then thought of as a useful collection of unrelated rules and 
facts.  The teacher’s role is then envisioned as an instructor who promotes skills mastery and 
correct performance in his or her students through strict adherence to curricular materials.  The 
student of mathematics fulfills a role characterized by compliant behavior leading to the mastery 
of mathematical content, namely, the rules, skills and mathematical procedures presented by the 
teacher.   
 
Ernest secondly describes the Platonist view of mathematics.  Here the conception of 
mathematics is one of a “static but unified body of certain knowledge” (Ernest, 1988, p.2) which 
is discovered (not created) by humans through mathematical investigation.  Thus mathematics is 
inherent to the world in which we live.  It is a “universal language” which exists independently 
from human knowledge or awareness of the subject.  The teacher’s role is then envisioned as an 
explainer, tasked with the promotion of conceptual understanding in his or her students as well 
as a presentation of mathematics as a unified system of knowledge.  The student then learns 
mathematics through reception of mathematical knowledge.  Proficiency is demonstrated 
through student presentation of knowledge possession, usually taking the form of variations of 
the same sorts of problems presented by the teacher during instruction.  
 
Finally, Ernest describes the problem solving view of mathematics.  Mathematics is conceived of 
as “a dynamic, continually expanding field of human creation and invention, a cultural product” 
(Ernest, 1988, p.2).  Here mathematics is seen as a process rather than product, a means of 
inquiry rather than a static field of knowledge.  As a human created body of knowledge, 
mathematics is envisioned as uncertain and open to refutation and revision.  The teacher’s role is 
then taken as facilitator and is tasked with the confident presentation of problems.  The student 
then learns mathematics through the act of problem solving, actively constructing knowledge 
through investigation.  Proficiency in mathematics is equated with autonomous problem solving 
and even problem posing.   
 
Placing the historical approach to the integral of the secant into this philosophical framework it 
seems apparent that our approach to this common calculus topic seems most strongly associated 
with the problem solving view of mathematics.  The activity was presented to the student group 
with little more than an introduction concerning the problem of mapping a spherical globe onto a 
planar map.  The questions posed were largely open-ended and lacked any algorithmic approach.  
The role of the teacher (here, the authors) was one of facilitator.  Students were expected to 
construct their own knowledge through active investigation and group collaboration.   

Perhaps more notable is the fact that the presentation of the discovery of the integral of 
the secant, as a necessary component of a conformal projection of the globe, can be thought of as 
a historical argument for the problem solving view of mathematics.  Indeed, the first map 
presented by Mercator was produced without the aid of the integral – Mercator produced his map 
through geometric construction (Rickey, 1980).   The map was improved upon by Wright 
through “mechanical integration” and the use of tables of values of the secant taken at one 
minute intervals (Sachs, 1987).  Finally, the actual exact value for the integral of the secant was 
discovered by Henry Bond through the keen observation that Wright’s sums seemed to agree 
with tables of values of  
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the value of the integral of the secant that is presented in modern calculus textbooks today.  
Certainly this presentation of the subject presents a notion of mathematics that is “dynamic”, 
“continuously expanding” and “open to refutation and revision” as Ernest’s problem solving 
approach describes.   
 
If we place each of the three of Siu’s unfavorable factors listed above into Ernest’s framework of 
mathematical philosophies it seems apparent that these objections are most closely aligned with 
the instrumentalist view of mathematics.  “I have no time for it in class” seems to imply a 
classroom where the teacher’s role is taken as instructor (note the use of “I” instead of “we”).  
“This is not mathematics” seems to reject historical lessons on the basis that they do not promote 
any specific “skill”.  Finally, the instrumentalist approach is especially apparent in the last 
comment that identifies “progress in mathematics” as making “difficult problems routine” which 
presents a truly procedural philosophy of mathematics and mathematics instruction. 
 
While philosophical debate over the true nature mathematical knowledge continues, educators 
from both Platonist and problem-solving perspectives level criticism directed at the 
instrumentalist approaches to mathematics education.  Indeed, Thompson (1992) notes that none 
of the philosophical models of mathematics education have “been the object of more criticism by 
mathematics educators than the model following most naturally from an instrumentalist 
perspective” (p.136).  Critics of the approach argue that computational proficiency is not 
necessarily a measure of mathematical understanding and point to studies that document 
impoverished notions of mathematics by students who display satisfactory performance on 
routine tasks (Schoenfeld, 1985).  Proponents of the problem solving view also object that the 
instrumentalist approach denies the student the opportunity to “construct” their own 
mathematical knowledge thereby disallowing the student true understanding of the structure in 
mathematics which is discovered through active investigation.   
 
It seems evident that these three unfavorable factors for the use of a historical approach to the 
integral of the secant are actually subtle philosophical arguments concerning the nature of 
mathematics and mathematics instruction.  When placed within Ernest’s framework of 
philosophies of mathematics it is apparent that the incorporation of such an activity into 
instruction on the topic most closely aligns with the problem-solving view of mathematics, while 
the reasons not to incorporate such an activity align most closely with the instrumentalist view of 
mathematics.  Perhaps the debate is best concluded through deictic example by imagining a 
classroom where historical approaches to mathematics are strictly forbidden.  In such a world, 
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the student would come away from a mathematics lesson with little notion of where mathematics 
comes from or how it is developed.  There would be no sense of mathematics driven by both 
practical necessity and human curiosity, both of which play into the story surrounding the 
integral of the secant.  Finally, there would be little appreciation for those that have given us the 
wealth of knowledge that we now enjoy or biographical inspiration to further the science.   
 
If we have no time for history in mathematics instruction then we have abandoned crucial 
sources of inspiration and insight.  If history of mathematics is not mathematics then 
mathematics is without a story: alien to the student, not of this world.  And if mathematics is 
meant to “make difficult problems routine” then we should expect our students to excel only in 
that which is “routine” which certainly will not equip them with the tools to adapt in a changing 
world.   
 
Student Responses to Unfavorable Factors 
 
Several of Siu’s (2007) unfavorable factors for the use of the history mathematics in classroom 
teaching relate to teacher’s beliefs regarding student’s opinions about the use of such materials in 
the classroom.  The following four, in particular, fit this description: 
 

(5) “Students don’t like it!” 
(6) “Students regard it as history and they hate history class!” 
(7) “Students regard it just as boring as the subject mathematics itself!” 
(8) “Students do not have enough general knowledge on culture to appreciate it!” 

 
Each of these reasons for not incorporating the history of mathematics into mathematics 
instruction proceeds from the standpoint of the student and argues against its incorporation into 
the mathematics classroom on two fronts.   
 
The first three factors (5, 6, and 7) seem to argue that the inclusion of the history of mathematics 
in the mathematics classroom has a negative (or negligible) outcome on student motivation in the 
subject.  Students who do not like or even “hate” the history of mathematics are likely to be 
unmotivated and even repelled by its inclusion in the classroom.  If historical approaches to 
mathematical topics, such as the integral of secant, are “just as boring” as a more traditional 
approach then, it is argued, such approaches are perceived as a waste of a teacher’s valuable 
classroom and preparation time.  These three factors seem to argue that the benefits of historical 
approaches to mathematical topics do not outweigh the costs that such approaches require of the 
teacher in terms of research, planning and implementation.   
 
The last factor (8) is, perhaps, more severe than the first three.  For here there is a tone of cultural 
superiority on the behalf of the teacher.  The student is perceived as culturally deficient in their 
ability to perceive and understand mathematics when it is placed in a historical context.  There is 
a tone of “teacher knows best” what is “good for the student” in terms of the lessons of history.   
 
Our study, which placed the integral of the secant in a historical context by examining the 
development of the Mercator projection map, found evidence which dispels the factors provided 
by Siu which are outlined above.  During the implementation of the unit, students displayed 



  TMME, vol7, nos.2&3, p.347 
 

 

intense curiosity in the mathematics behind the projection.  With some instructional guidance, all 
student groups were able to successfully finish the unit in the two hour classroom time that was 
allotted for the experiment.   
In a follow up to the activity, four students were chosen at random for interview which was 
conducted one week after the classroom meeting in which the experiment had been conducted.  
Each student was asked the following questions: 
 

1. Describe what you learned in the activity on the historical approach to the integral of the 
secant.  

2. How was the activity different from a typical mathematics class? 
3. Here is the calculus textbook that we use in this mathematics department.  This is the 

presentation for the integral of the secant.  How does it differ from the historical 
presentation of the integral of the secant that was presented last week? 

4. Did the activity change the way that you view mathematical discovery? 
5. Did the activity change the way that you view learning mathematics? 
6. Would you say that you were more or less motivated to complete the traditional proof of 

the integral of the secant after having placed its discovery in a historical context? 
7. Does including mathematics history make mathematics more meaningful? How?  

 
Transcripts from these interviews were analyzed for evidence for or against the merits of Siu’s 
factors outlined above.  All four interviewees were found to respond favorably to the historical 
approach to the integral of the secant.  Consider the following response from student 1 to 
question 4: 
 

I think that it’s unbelievable, first of all.  That people find these connections…and 
 the fact that these guys did it without the tools that I have now.  I mean, Mercator 
 doing this, not perfectly, but pretty good, pretty good, having an idea, um, I just 
 think that it’s really cool that they know there’s an answer.  That these guys are so 
 intelligent that they know something’s up…and through their own intuition and 
 through their own work they get there…and that has to be the greatest feeling ever 
 for these guys.  So, it gives more respect to anyone that has discovered something 
 that we use or even something that we don’t use in our Calc books…it definitely 
 gave me more respect for these guys.  It’s unbelievable that they did these 
 things…(Student 1) 

 
Certainly the response to the question displays a sense of wonder at the use of mathematics in the 
Mercator projection.  Words such as “cool” and “unbelievable” and “respect” are used in 
describing the historical discovery of the integral in the making of the map.  In response to 
question 3, student 1 comments: 
 

And, again, you can show me this and I am going to accept it, ‘cause it’s in my  Calc 
book and we have no choice but to accept it and memorize it…but that is  completely 
different than starting with this [points to historical approach to integral of secant 
activity]…starting with integration and ending with the natural log of the secant of x plus 
the tangent of x.  So, for me and the way that I think and the way that I enjoy school, it 
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was helpful, and I can even imagine seeing myself start out learning about integration 
with this example (Student 1) 

 
Again, student 1 responds favorably to the activity placing it in the category of activities that the 
student “enjoys” in school and calling it “helpful”.  Student number 2 also expressed a positive 
reaction to the activity.  In response to question 5 the student comments: 
 

I found it that it made me feel that my work was more important than it usually is.  
 And the fact that usually when you do a problem, you get an answer, and think 
 you’re done, but, there really is no point to it that you see…I mean…when you’re 
 taking…you’re doing integration by parts, it’s like, okay, what are we ever going 
 to use this for?  And so, you do all this work and you never see really ever where 
 it applies…they’ll try to do stuff and…I mean it’s really, really basic and it 
 doesn’t really  apply, but, if they could take examples and show where its used, 
 the historical context, it makes it feel as if you’re kind of working along side of 
 those people when they were actually doing the work hundreds of years ago…you 
 went through and saw what they did, and so it gives a level of importance that 
 isn’t usually ever there…you know…that was valuable.  (Student 1) 

 
Here the student contrasts “traditional” approaches to common calculus topics (integration by 
parts) with the historical approach to the integral of the secant and describes how the historical 
approach lends a “level of importance” to an otherwise mundane mathematical topic.  Student 3 
in response to question 7 echoes this sentiment: 
 

It’s nice to be able to first learn about the secant and then they’ll show you what  it’s 
used for…then it makes a lot more sense because you have been exposed to it  already 
and you’re already kind of familiar to it.  It’s nicer to see people apply it  to their life 
and situations.  (Student 3) 

 
Here we see the characterization of the historical approach as adding a real world “applied” 
aspect to instruction which is positively characterized as “nice” by the student.  Finally, student 
4, in response to questions 1 and 7, comments that: 
 

I liked the historical context.  It helps me put things in perspective.  It’s cool that  people 
were applying integration before integration was codified.  It also  illustrated the closer 
and closer estimations using smaller rectangles better than  my Calculus study of 
Riemann sums… understanding how anything, especially  math, is related to real world 
problems and solving them makes me more  motivated to understand the methodology 
and consider broader applications of the problem solving technique. (Student 4) 

 
And so, our analysis of student response to the historical approach to the integral of the secant is 
unanimous in its approval of the educational technique.  Rather than Siu’s suggestion that they 
hate it, find it boring and non-motivating, our study group reported that they “enjoy” it and 
characterize the approach as “cool” and “useful” commenting that they are “more motivated” 
and “interested” in mathematics which is given an added “level of importance” when it is 
couched in a historical context.  Furthermore, our data shows that students do have enough 
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cultural maturity to appreciate the approach.  There is a sense that the accomplishment of a 
conformal map was an “unbelievable” achievement won through great intelligence with “the 
tools that they had” before the advent of calculus through mechanical integration.  There is 
evidence of an understanding that these early map makers were “applying integration before 
integration was codified” which displays the student’s ability to imagine a mathematical culture 
before the invention of the calculus.  Finally, there is a sense that the student is “working along 
side of those people when they were actually doing the work hundreds of years ago” which 
certainly indicates a level of cultural respect and admiration. 
  
A Logistical Response to Unfavorable Factors 
 
As expected from a list as comprehensive as Siu’s, a number of the factors that discourage 
teachers from employing the history of mathematics deal with very practical matters.  This list of 
unfavorable factors relating to practicality is divided into two groups: logistics and preparation.   
 
The following list is comprised of the factors the authors would describe as logistical in nature.  
These are factors that might discourage even those who are inclined to include the history of 
mathematics in their teaching.  Each factor in the list will be addressed individually, from the 
perspective of the authors and through the lens of creating and implementing the teaching 
module.  The list of logistical factors, determined by the authors, is as follows: 
 
(3) “How can you set question on it in a test?” 
(4) “It can’t improve the student’s grade!” 
(13) “What really happened can be rather tortuous.  Telling it as it was can confuse rather 
 than to enlighten!” 
(14) “Does it really help to read original texts, which is a very difficult task?” 
 
The first factor on the list, (3), is one that most teachers would probably agree needs to be 
addressed before using the history of mathematics in their classes.  Rarely is anything presented 
by a teacher deemed unimportant.  However, it is generally necessary to test students on material 
in order for them to see it as important.  At the same time, asking students to be accountable for 
historical and/or biographical information is likely to re-enforce the sorts of ideas responsible for 
factor (2).  
 
The trick, then, is to create assessment questions that use the skills developed in the course of 
using the history of mathematics.  This can come in a number of forms.  The first and most 
obvious is the form that assessment generally comes in.  Often, when new material is presented 
in a class, the teacher will lecture for some period of time and then leave the students to practice 
the skills taught for the remainder of the class and on the assigned homework.  However, this 
practice usually only matches a small portion of the lecture time – when the teacher presents 
examples, usually occurring at the end of the lecture.  Typically the practice problems assigned 
does not match a bulk of the lecture – the part when the teacher explains, justifies or proves the 
technique or material to be taught.  Thus if this portion of lecture time is spent presenting 
(explaining, justifying or proving) the material from a historical perspective, little need be 
changed in the way that students are assessed.   
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This response to factor (3) may easily be criticized, however, on the grounds that it still promotes 
the sort of “drill and kill” mentality that the inclusion of the history of mathematics is largely 
meant to discourage.  If the goal for including the history of mathematics in the classroom is to 
get away from this mentality and promote the development of other skills (such as problem 
solving) then assessment should reflect this aim.  For this, the preparers of the historical content 
need to get creative.   
 
For our study, a problem very much related to the Mercator projection was chosen and given to 
four students during a follow-up interview a week after the study.  The students were asked to 
evaluate the validity of a commonly used physical characterization of the Mercator projection.  
The illustration (see methodology section above) was described as follows: students were asked 
to imagine a semi-transparent globe sitting snuggly in a cylinder with a light bulb glowing in the 
center of it.  Light shines through the globe and “shadows” are cast by land masses on the globe.  
These shadows become the placement of the land masses on the cylinder, which is then sliced 
and laid flat to form the map.  While this characterization does share some properties with the 
Mercator projection (the poles of the globe can never be projected and the stretching increases 
with increases in latitude), it is actually a different (non-conformal) projection.  As the students 
were able to deduce, the factor of stretching in this alternative representation is a tangent 
function which is not equal to 

 tansecln  , 

the factor of stretching found in the exploration. 
  
While the students definitely needed some nudging to get them started, once the ball was rolling 
all four were able to deduce that the representation would not yield the Mercator projection.  The 
authors feel that a question such as this would make for a legitimate test question.  Granted, the 
students did need encouragement and some may not have known where to start if the saw it on a 
test they had to work out on their own.  However, the authors believe that this is due in large part 
to the fact that the students are rarely asked to perform this type of task.  If mathematics was 
taught from more of a historical perspective, they would be more accustomed to problem-solving 
and therefore would be more flexible in their thinking.  It is worth noting that the first part of the 
Mercator exploration asked the students to find the factor of stretching for arbitrarily chosen 
latitude.  The potential assessment question had the students do the same thing from a different 
perspective – so it indeed was assessing a skill they used in the activity.   
 
The second item on this sub-list of unfavorable factors, (4), deals with students’ grades.  Like 
before, the way in which using the history of mathematics in the classroom affects students’ 
grades depends on how it is used.  If it is used simply as an alternative lecturing format with little 
or no change in assessment then it is possible that students see no benefit in terms of grade.  
However, the history of mathematics can be used as a guide for how students learn mathematics.  
This can be seen in the difficulties students have in learning particular mathematical ideas 
(Moreno-Armella & Waldegg, 1991; Jankvist, 2009) and in students’ conceptions of 
mathematical proof (Bell, 1976; Almeida, 2003).  By using history as a guide for how students 
learn, it is possible that instruction could be improved.   
 This can even be taken a step further.  Fawcett (1938/1966) describes a high school 
geometry class which, it could be argued, was set up in a fashion that mimics the historical 
development of Euclidean geometry.  Under the guidance and supervision of the teacher and 
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through class discussion and consensus, the experimental geometry class created their own 
textbooks consisting of definitions, axioms and theorems.  The main goal of the experiment was 
to improve the students’ knowledge of mathematical proof, a goal that was achieved.  It should 
be noted, however, that the students also outperformed a control class on a standardized 
geometry test administered state-wide.  This was despite the fact that the experimental class 
covered less material than the control class.  Some of this uncovered material showed up on the 
standardized test, but the students in the experimental class were flexible enough to deal with 
material new to them.   
 
The last two unfavorable factors in this section, (13) and (14), are quite similar and will be 
addressed together.  Basically, they are both speaking to the fact that dealing with historical 
mathematics can be quite difficult.  Much of the time, this is true.  While modern day 
mathematicians can often handle the mathematical content associated with historical 
mathematical documents, other barriers to understanding exist.  One stumbling block stems from 
the fact that the first solution to a problem is rarely the most elegant or straightforward to 
understand, as mentioned in factor (13).  Language (terminology) and notation are two other 
major obstacles, referred to in (14).     
 
The authors believe, however, that the module provided serves as an example that these concerns 
can be addressed.  Although the authors made every effort to make the activity historically 
accurate, much of the historical difficulty was described, rather than recreated.  Students were 
asked to mimic the process of mechanical integration (before they likely realized that was what 
they were doing) used historically but to a far less accurate, but more user friendly, degree.  
Based on student responses this served the intended purpose, as each group was able to recognize 
that smaller intervals gave better approximations.  This was a necessary insight to understand the 
link between the Mercator projection and the integral of the secant.  Also, students were told 
about the “lucky accident” that resulted in the discovery of the closed form for the integral of 
secant; they were not expected to find it on their own.  Relieving the students of unnecessary 
difficulty does not mean they are left with nothing to do on their own.  As is mentioned in the 
module, the original proof for the validity in question was extremely laborious and difficult.  The 
students were then guided through an alternative (and later) historical proof – one that allowed 
the use of methods familiar to the students from their pre-calculus and calculus classes.   
 
The amount of editing of historical material virtually eliminates the factor (14) from the students’ 
perspective.  The only original material that made it into the final teaching module was quotes 
carefully chosen to provide historical context (or humor, as the case may be).  Factor (14) is not 
yet eliminated from the content-preparer’s perspective.  However, this will be addressed in the 
next section. 
 
A Response to Unfavorable Class Preparation Factors 
Factor (14) raises a completely different issue from the teacher’s point of view.  If the students 
can be shielded from difficult to read original texts, are not the teachers responsible for doing the 
shielding?  Not completely, as was seen by the authors in the preparation of the teaching module.  
This issue is tied into the next three factors that Siu mentions.  They are: 
 
(10) “There is a lack of resource material on it!” 
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(11) “There is a lack of teacher training in it!”  
(12) “I am not a professional historian of mathematics.  How can I be sure of the accuracy of the 
exposition?”   
  
The bulk of the material that made its way into the activity came from journal articles or other 
teaching modules relating to the topic.  In this way, the authors were not responsible for dealing 
with the difficult task of reading original material.  Rather, they were free to concentrate on 
preparing the material in such a way as to be appropriate for their students.   
 
This speaks to factor (10) as well.  In preparing the module, the authors found more than enough 
resource material on the topic.  It is true that not all of the material was deemed suitable by the 
authors for their targeted students.  However, the materials found did provide enough for a 
complete, coherent teaching module to be put together.  It should be noted that the authors 
acknowledge the possibility that factor (10) has not been interpreted as Siu intended.  It is 
possible that what is being referred to is a lack of ready-to-use materials that can be implemented 
by teachers with little or no modification.  The authors can not speak to this concern directly.  
Although some of the materials used were indeed designed to be used without modification, as 
mentioned, none were deemed appropriate for the students who were to see it.  This was of no 
concern to the authors, however, because the creation of the module was an end in and of itself.  
Appropriate, ready-to-use materials were not sought.  Instead, enough material was collected to 
complete the activity and that is all.  It is unclear whether or not a completed module that was 
appropriate for the students in question could have been found.   
 
The experience the authors had while completing this activity also helps dispel factor (11).  
While the module was originally meant to be part of a history of mathematics course the authors 
were taking at the time, no skills were explicitly taught in the class that lent themselves to its 
creation.  What was gained from the class, however, was an appreciation for and interest in the 
history of mathematics.  This new motivation, coupled with the authors’ existing mathematical 
skills, was sufficient to see them through to the completion of the project.  As the activity was 
designed for students taking Calculus II, the authors feel that it (or something similar) could have 
been created by any teacher with a grasp of Calculus II material and the desire and interest to do 
so.  Thus, in general, a lack of training in the history of mathematics need not be a deterrent for 
those teachers who wish to use it in their classrooms.   
 
The last factor to be addressed in this section, (12), that will be addressed in this section is 
related to (11).  One may get the feeling that since he or she lacks training in the history of 
mathematics, they may be ill-equipped to judge the accuracy of sources.  The authors were able 
to alleviate this concern through the use of articles from reputable scholarly journals.  The use of 
such journals assures the readers (content-producers) that the materials have been peer-reviewed.  
That way, the burden of verification is placed on professionals and the teachers preparing the 
material can concentrate on making it appropriate for and useful to their students.   
  
A Response to the Final Two Unfavorable Factors 
The authors thought that the last two factors did not relate closely with the others and will be 
addressed briefly here.  They are: 
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(15)  “Is it liable to breed cultural chauvinism and parochial nationalism?” 
(16) “Is there any empirical evidence that students learn better when history of mathematics is 
made use of in the classroom?” 
 
The first of these, (15), speaks to the potential that the history of mathematics has to create a 
classroom setting that is not agreeable to the teacher.  It is possible that the history of 
mathematics could be used to create a narrow view of the development of mathematics.  This 
narrow view, in turn, may lead to the impression that a select group of peoples alone were 
responsible for (and therefore good at) mathematics.  The can easily be avoided by the careful 
inclusion of mathematics from many different cultures.  While the contributions of the ancient 
Greek and later European cultures are well known, they are not the only wells from which to 
draw.  The articles referenced by Katz (1995) and Wang (2009) serve as examples of articles that 
describe methods developed by other cultures. 
 
The last unfavorable factor, (16), is on to which the authors can not respond.  To their 
knowledge, there is no convincing empirical evidence that students learn better when the history 
of mathematics is used in the classroom.  However, the student responses gathered from this 
article suggest that students would welcome the inclusion of the history of mathematics – and 
more enthusiastic students generally make for better learners.   
 
Conclusion 
Siu has done the mathematics educational community a service by playing the role of devil’s 
advocate in maintaining a list of popular reasons why teachers do not use historical approaches 
in mathematics education.  His list provided the framework for analysis of this educational 
experiment on the historical approach to the integral of the secant in the development of the 
Mercator projection map. 
 
We found that several of Siu’s unfavorable factors could be characterized as subtle philosophical 
statements regarding the nature of mathematics and mathematics instruction.  When viewed 
within the framework of Ernest’s (1988) philosophies of mathematics it is apparent that these 
objections most closely align with an instrumentalist view of mathematical knowledge and 
mathematical instruction.  This view equates computational proficiency with mathematical 
understanding and is subject of much criticism in denying true mathematical understanding.  In 
contrast, the historical approach employed in this study placed problem solving at the heart of 
instruction.  By taking a historical approach to the subject, students learn that the closed form of 
the integral of the secant was “needed” to mathematically explain the Mercator projection.  A 
historical approach allows for crucial sources of inspiration, insight and motivation which are 
missing from strict instrumentalist approaches, seen in this light, any argument against historical 
approaches can be seen as an argument in favor of an impoverished notion of mathematics. 
 
A number of Siu’s unfavorable factors were characterized as teacher statements regarding 
negative student predispositions to historical approaches in the mathematics classroom.  Analysis 
of our data disproves these notions.  Student response to the activity was universally positive 
thus affirming the approach from a student standpoint and dispelling misapplied 
characterizations commonly held by teachers.   
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There were unfavorable factors that were seen as logistical concerns.  Our unit demonstrates that 
each of these concerns can be overcome.  We were able to creatively “set a question on a test” to 
the historical approach.  We feel that, in the area of problem solving, the historical approach does 
“help student’s grades” by endowing them with a richer and more meaningful understanding of 
the process of mathematical meaning making.  Finally, student difficulty in confronting historical 
text can be alleviated by careful and thoughtful presentation that is at once historically accurate 
while educationally streamlined toward an intended goal, in this case, an understanding of the 
integral of the secant.   
 
In terms of Siu’s unfavorable classroom preparation factors, our study has shown to dispel many 
of the commonly espoused concerns.  We encountered ample resources that aided the creation of 
the educational unit.  No special teacher training was required.  Lastly we appealed to reputable 
journals to insure accuracy of historical exposition, thus, an educator need not be a professional 
historian of mathematics in order to create educational materials which teach mathematical 
concepts from a historical standpoint.   
  
While we acknowledge the concerns of cultural chauvinism and parochial nationalism raised by 
Siu, we feel that an evenhanded approach to historical topics in mathematics education may lead 
to quite the opposite outcome.  Here the “historically educated” student of mathematics might 
come to an awareness of the great cultural and national diversity that has contributed to the 
development of the subject.   
 
Finally, in response to Siu’s assertion that there is a lack of empirical evidence that supports 
historical approaches to mathematics in terms of improving student understanding we stand by 
the fact that student response to the unit pointed to greater interest and enthusiasm in the subject, 
which, we assert, are prerequisites to deep and meaningful learning in mathematics.   
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Appendix 1 
Student take home 

Mercator’s World Map 
A Historical Approach to the Integral of the Secant 
 
Suppose that you are tasked with navigating a ship that is to travel from a point in Europe to the 
“New World” recently discovered across the Atlantic Ocean.  How would you navigate the 
vessel using only 16th century technology? Most mariners during the age of discovery steered 
their ships along lines of constant bearing using a magnetic compass.  A path of constant bearing 
on the globe is called a “rhumb” line named for the Spanish rumbo meaning “way” or 
“direction”.  This concept of a path of constant bearing was later named a loxodrome from the 
Latin loxos signifying “slant” and drome signifying “running”.  So, most mariners of the 16th 
century travelled paths across the ocean that we know call loxodromes. 
 
On the globe a loxodrome intersects all north-south lines of constant longitude at the same angle.  
Parallels, or lines of constant latitude, are therefore loxodromes because they intersect all north-
south lines of constant longitude (meridians) at right angles.  Early sailors, cartographers and 
later mathematicians realized that these paths of constant bearing became spiral-like curves 
whenever the direction chosen was not due east or west.  This effect is due to the fact that as a 
rhumb line moves north the distance separating meridians grows closer and thus the line must 
turn away from the pole to maintain the heading. 
 
 
Figure 1: Two views of a typical rhumb line, a path of constant bearing, on a globe.  All 
rhumb lines, except paths of constant latitude, create spiral paths on the globe differing 
only in slope. 

 
The spiraling nature of lines of constant bearing created the need for a special kind of map in 
which a sailor could draw a line from his present location to his objective and measure the 
bearing by determining the angle that is formed by the path and the meridians that are crossed in 
route.  Such a map was presented to the world in 1569 by Gerhardus Mercator and is today 
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known as the Mercator projection.  The map signified a gigantic improvement over previous 
plane projection maps and is still widely used in navigation today.   
 
Figure 2: A Mercator Projection Map 

 
 
Figure 3: A Plane Projection Map 
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Close inspection of the two maps reveals that the plane projection has evenly spaced lines of 
constant latitude.  In contrast, the distance between lines of constant latitude grows as a function 
of distance from the equator in Mercator’s version.   
 
In order to better understand the effect of Mercator’s special scaling, consider a path on the globe 
that carries a seaman from Colon, Panama to Land’s End, England.  Using a magnetic compass 
(or the North Star) a sailor can successfully make such a trip by following a rhumb line that 
leaves Colon at a bearing of approximately 56° from true north.  Such a path of travel over the 
globe then crosses all meridians at this same angle and thus scribes a spiraling loxodrome across 
the surface of the globe.  If we were to plot the path of such a journey on both the Mercator and 
plane projection maps we would find that only on the Mercator projection would such a journey 
actually cross all meridians at an angle of 56° from true north thus correctly directing the sailor 
to his home (figure 4).  On the plane projection map such a journey crosses all meridians at an 
angle of 60° from true north (figure 5).  If we plot a course that leaves Colon at 60° from true 
north we find that our sailor is erroneously directed to France as indicated on the Mercator map 
(figure 6). 
 
Figure 4: Our Seaman’s Journey on the Mercator Projection Map: Directs Seaman to a   
Bearing of 56 Degrees East of True North
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Figure 5: Our Seaman’s Journey on the Plane Projection Map: Directs Seaman to a   
Bearing of 60 Degrees East of True North

 

 
 
Figure 6: Our Seaman’s Journey on the Mercator Projection Map: Bearing 60 Degrees 
and Bearing 56 Degrees East of True North

 

 
 
 

 
So, it becomes apparent that the Mercator projection provides the seaman with a much more 
useful tool where a line of constant compass direction corresponds to a straight line on the map 
which making it possible for a 16th century seaman to determine the correct line of bearing to 
follow in order to arrive at the intended destination.   
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From a mathematical point of view, Mercator’s projection is conformal, meaning that the 
projection from the globe onto the plane preserves angles.  It should be apparent that the 
projection does not preserve distances.  It is a mathematical fact that any projection from the 
sphere onto the plane cannot preserve both of these quantities, but that is another story best saved 
for another day.   How did Mercator decide on his special scaling?  Mercator himself comments 
on this scaling in the legend of the map of 1596: 
 

In view of these things, I have given to the degree of latitude from the equator 
towards the poles, a gradual increase in the length proportionate to the increase of 
the parallels beyond the length which they have on the globe, relative to the 
equator.  (Sachs, 1987) 

 
Mercator created his special map using a compass and straight edge but mathematicians of the 
era challenged “any one or more persons that have a mind to engage” to mathematically describe 
the scaling that produced the successful map. (Rickey, 1980) 
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Appendix 2 
Mercator in class activity 

Mercator’s World Map 
A Historical Approach to the Integral of the Secant 
 
Mercator wrote, “In making this representation of the world we had…to spread on the plane the 
surface of the sphere in such a way that the positions of places shall correspond on all sides with 
each other both in so far as true direction and distance are concerned and as concerns correct 
longitudes and latitudes…With this intention we have had to employ a new proportion and a new 
arrangement of the meridians with reference to the parallels…It is for these reasons that we have 
progressively increased the degrees of latitude towards each pole in proportion to the lengthening 
of the parallels with reference to the equator.” (Rickey, 1980) 
 
Using the figure provided below determine the function that governs, “The lengthening of the 
parallels with reference to the equator.”  That is, given a parallel at latitude   determine the 
function )(f  that tells us how the latitude lines must be stretched horizontally in order to appear 
equal in length to the equator.  
 

Mercator MapGlobe


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In the previous quote Mercator comments, “…It is for these reasons that we have progressively 
increased the degrees of latitude towards each pole in proportion to the lengthening of the 
parallels with reference to the equator…”   Mercator determined this vertical scaling through 
compass constructions.  It was not until 1610 that Edward Wright, a Cambridge professor of 
mathematics and a navigational consultant to the East India Company, described a mathematical 
way to construct the Mercator map which produced a better approximation than the original.  In 
1599 he published Errors in Navigation Detected and Corrected.  Wright argued that in order to 
preserve angles on the Mercator projection, the vertical scaling factor had to be the same as the 
horizontal scaling factor.  To visualize this phenomena imagine a 45˚ angle drawn on a small 
portion of a globe.   Recall that when this region gets projected to the plane, it gets stretched in 
the horizontal direction by an amount that depends on the latitude.  Notice what happens.  The 
angle as projected is no longer 45˚.  In order for the angle to be preserved, a stretch must occur in 
the vertical direction that matches the horizontal stretch. 
 
Angle on Globe Horizontal Scaling Conformal Scaling 

x

y

 
sec(x)

y
sec(y)

sec(x)
 

 
Wright also realized that the correct interval of placement of a parallel on the Mercator 
projection was the result of the addition of any subintervals into which it could be divided.  To 
this end, Wright made a table of secants taken at a common interval, added these results and then 
multiplied by the interval widths to determine the location of a particular parallel on the map.  
So, if the location of the 60th parallel is desired and an interval width of 10  is used then Wright 
would have performed the following: 
 

Table of Secants Multiply by Interval 
Width 

Location on Mercator 
Map 

 
Secant 10  = 1.0154 
Secant 20  = 1.0642 
Secant 30  = 1.1547 
Secant 40  = 1.3054 
Secant 50  = 1.5557 
Secant 60  = 2.0000 
Total          = 8.0954 

 
954.800954.810   

 
Place the 60th parallel at a 

location that is 80.954 
north of the equator. 
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Use Wright’s method to determine the location of each of the following parallels using an 
interval length of 5 degrees.  
 

Latitude on the Globe Location on Mercator Projection 

15   

30   

45   

60   

75   

90   

 
 
 
 
You should notice that the location of the 60th parallel that you just calculated is different than 
the one that was calculated in the example that proceeded.  Which placement produces a more 
accurate map?  How do you know?   
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What difficulty did you encounter in determining the placement of 90 Latitude?  What is this 
location on the Globe?  What are the implications for the Mercator Map? 
 
 
 
 
 
 
 
 
 
 
 
Historically, Wright’s table of secants had an interval width of one minute or one sixtieth of a 
degree.  Describe mathematically, using modern notation, the process that Wright is carrying out 
in determining the vertical scaling of the Mercator projection.  Is Wright’s method exact?  How 
could it be improved? 
 
 
 
 
 
 
 
 
 
 
 
 
As you have probably discovered, the exact mathematical explanation for Wright’s technique in 
developing the vertical scaling for the Mercator projection hinges on a closed form for the 
integral of the secant.  In Wright’s time this result was still some 50 years from being discovered.  
However, with Wright’s charts at his disposal, Henry Bond in the 1640s had a very lucky 
accident.  Bond, who fancied himself a teacher of navigation and mathematics, compared 
Wright’s table to a table of values in which the tangent function was composed with the natural 
logarithm. This led him to conjecture that the closed form for the integral of the secant equaled 
 







 

42
tanln


 ,  

which can be shown to equal 
 

  tansecln  . 
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The first proof of the integral of the secant was provided in 1668 by James Gregory.  Edmund 
Halley commented on the proof, “The excellent Mr. James Gregory in his Exercitationes 
Geometricae, published Anno 1668, which he did not, without a long  train of consequences and 
complication of proportions, whereby the evidence of the demonstration is in a great measure 
lost, and the reader wearied before he attain it.” (Rickey, 1980).  And so we avoid this proof and 
instead offer guidance through a proof offered by Isaac Barrow.  Complete the missing steps in 
the proof 
 

 d sec  =  

 =  

 =     


sin1sin1

cos d  

 =  

 =  

 =  

 =  


 





sin1

cos

sin1

cos

2

1 d  

 =  

 =  

 =   c  sin1lnsin1ln
2

1
 

 =  

 = 
 
 

c


2

2

cos

sin1
ln

2

1




 

 =  

 =  tansecln  +c 
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The angle   in the previous integral assumes a radian measure.  If   is measured in degrees then 
a change of variables will yield the following: 
 





0

sec d  = 


tansecln
180

  

 
Use this result to determine the exact location of each of the following parallels.   
 

Latitude on the Globe Location on Mercator Projection 

15   

30   

45   

60   

75   

90   

 
How do these placements compare to those found earlier in the exercise?   
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EXTENSIONS 
 

1.   How do distances vary on the Mercator map relative to latitude?  Consider travelling 
 parallel to the equator at various latitudes on the map.  Consider travelling perpendicular 
 to the equator at various latitudes on the map. 

 
 
 
 
 
 
 
 
 
 
2.   How do areas vary on the Mercator map relative to latitude?  What happens to the      
 area of a region as one moves farther from the equator?  Give examples. 
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i The mathematics behind the Mercator map has nothing to do with the way the map ended up being used for 
political purposes. A number of critical theorists who have no idea of the mathematics behind the map run around 
saying “the map was purposefully made that way” . Gerhardus Mercator (1512-1594) created the map for 
navigational purposes with the goal of preserving conformality, i.e., angles of constant bearing crucial for plotting 
correct navigational courses on charts . In other words a line of constant bearing on a Mercator map is a rhumb line 
on the sphere. Conformality as achieved by Mercator with his projection came at the price of the distortion that 
occurred when projecting the sphere onto a flat piece of paper. The history of the map is also linked to the 
limitations of the Calculus available at that time period, and the difficulty of integrating the secant function (see 
Carslaw, 1924). Mercator himself comments, “…It is for these reasons that we have progressively increased the 
degrees of latitude towards each pole in proportion to the lengthening of the parallels with reference to the 
equator…” Mercator determined this vertical scaling through compass constructions. It was not until 1610 that 
Edward Wright, a Cambridge professor of mathematics and a navigational consultant to the East India Company, 
described a mathematical way to construct the Mercator map which produced a better approximation than the 
original (Sriraman, Roscoe & English, 2010). 
 
ii Math 606 was a topics course in the history of mathematics taught by Professor Bharath Sriraman in Spring 2009.  
One of the assignments in the course was to take Carslaw’s (1924) paper and rewrite in such a way as to make it 
readable by modern students.  In an effort to get more mileage out of the work to be done, the students asked if it 
would be possible to turn the assignment into something that could be used in the future – namely an activity 
designed for use in a calculus classroom.  Dr. Sriraman allowed for the change and arranged for the activity to be 
completed by undergraduate students who had completed Honors Calculus II.  He also encouraged us to use the 
opportunity to perform some research. 


	The history of mathematics as a pedagogical tool: Teaching the integral of the secant via Mercator’s projection
	Let us know how access to this document benefits you.
	Recommended Citation

	Microsoft Word - HavehalsRoscoe_TMMEvol7nos2and3_pp.339_368

