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Abstract 

Consistent with a ubiquitous life history tradeoff, trees exhibit a negative relationship between 

growth and longevity among and within species. However, the mechanistic basis of this life 

history tradeoff is not well understood. In addition to tradeoffs among multiple traits based on 

resource allocation conflicts, life history tradeoffs may arise from tradeoffs based on single traits 

under opposing selection. While a myriad of factors likely contribute to the growth-longevity 

tradeoff in trees, we hypothesized that conflicting functional effects of xylem structural traits 

contribute to the growth-longevity tradeoff. We tested this hypothesis by examining the extent to 

which xylem morphological traits (i.e. wood density, tracheid diameters and pit structure) relate 

to growth rates and longevity in two natural populations of the conifer species ponderosa pine. 

We examined xylem morphological traits and growth rates at the base of the trunk. As hydraulic 

constraints arise as trees grow larger, xylem anatomical traits are expected to adjust to 

compensate for these constraints. We therefore disentangled the effects of size through ontogeny 

and growth rates on xylem traits by sampling each individual tree at multiple trunk diameters.  

We found that the oldest trees had slower lifetime growth rates compared to younger trees in the 

populations we studied, indicating a growth-longevity tradeoff. We further provide the first 

evidence that a single xylem trait, pit structure, with known conflicting effects on xylem function 

(hydraulic safety vs. efficiency) contributes to the growth-longevity tradeoff in a conifer species.
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Introduction 

 

Tradeoffs are central to our understanding of ecology and evolution because they impose limits 

to the adaptive potential of organisms (Futuyma & Moreno, 1988). A profound ecological 

consequence of tradeoffs is based on the hypothesis that tradeoffs maintain genetic diversity 

within species. Diversity among species is also likely maintained by tradeoffs across 

environments that limit niche breadth and geographic range of species (Agrawal et al., 2010). 

Therefore, how and why tradeoffs arise has long been of interest to ecologists and evolutionary 

biologists.  

 

A tradeoff can be defined as any case in which fitness is limited by competing demands on an 

organism. Two kinds of tradeoffs can be distinguished on the basis of the selection regimes that 

underlie them. Opposing selection on a single trait by different selective agents (e.g. different 

environments or different components of fitness) can lead to tradeoffs (Agrawal et al., 2010). For 

example, a single-trait tradeoff between force and velocity based on beak morphology in 

Darwin’s finches leads to divergence in beak size as an adaptation to different food sources 

across environments and affects mating song performance (Herrel et al., 2009). On the other 

hand, when two or more fitness-enhancing traits are favored by selection but compete for a 

limiting resource, tradeoffs between multiple traits can occur. Examples of multiple-trait 

tradeoffs include flower size versus number (Worley & Barrett, 2000), offspring size versus 

number (Messina & Fox, 2001), and growth versus defensive mechanisms in plants (Herms & 

Mattson, 1992).  
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Life history tradeoffs are of particular interest to ecologists and evolutionary biologists because 

they represent adaptive constraints among the most proximal components of fitness. They are 

typically interpreted as tradeoffs that result from resource allocation conflicts among multiple 

involved traits (Agrawal et al., 2010). Indeed, life history traits such as growth, reproduction and 

survival require large investments in available resources. The hierarchical nature of phenotypic 

traits means that life history traits are the highest order, because they depend on specific 

functional or morphological traits which require smaller relative investments of available 

resources (Figure 1). Life history tradeoffs are therefore complex and involve tradeoffs operating 

on and among lower-order functional and morphological traits. Single-trait tradeoffs also have 

the potential to contribute to life history tradeoffs. In Darwin’s finches, for example, the force-

velocity tradeoff based on beak morphology can be related to life history traits by determining 

which food sources are available to a species, affecting survival under stressful conditions (Boag 

& Grant, 1981) and mating system divergence (Herrel et al., 2009).  

 

The plant economics spectrum theory is an example that attempts to explain slow-to-fast life 

history strategies in plants through tradeoffs among traits directly related to resource use (Reich, 

2014). This highly-influential theory proposes that tradeoffs among traits lead to universal trait 

covariation in plants, such as the strong correlation found between leaf mass per area (LMA) and 

leaf longevity (LL) among the broad range of plant taxa in the leaf economics spectrum (Wright 

et al., 2004). The strong trait covariation found at broad taxonomic scales is typically explained 

as tradeoffs due to resource allocation or ‘economics’. For example, the positive correlation 

between LMA and LL is often explained in terms of carbon or nitrogen ‘return-on-investment’: 

higher LMA requires more carbon and nitrogen investment in leaf construction, requiring a 
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longer leaf lifespan to recover the construction cost (Reich, 2014). The same principle is evoked 

to explain the positive correlation between wood density and woody plant lifespan emerging 

from the wood economics spectrum (Chave et al., 2009). However, recent studies demonstrate 

that strong trait correlations like the LMA-LL relationship found at broad taxonomic scales are 

not consistent at narrower scales, such as within species (Ramírez-Valiente et al., 2017; 

Anderegg et al., 2018) . These exceptions  highlight that resource economic principles do not 

predictably explain trait covariation across taxonomic scales. While tradeoffs based on resource 

allocation have been the focus of this framework, tradeoffs due to opposing selection on 

individual traits have received much less attention. Yet understanding their role may enhance our 

ability to determine which traits predict life history tradeoffs.  

 

A life history tradeoff common across organisms is that between growth and lifespan. Organisms 

that grow slowly tend to live longer than those with faster growth, indicating that rapid growth is 

associated with reduced longevity(Arendt, 1997) . Consistent with the growth-longevity tradeoff, 

slow early growth in trees has been associated with longer lifespans in several species (Black et 

al., 2008; Bigler & Veblen, 2009; Johnson & Abrams, 2009; Di Filippo et al., 2012, 2015; 

Rötheli et al., 2012; Bigler, 2016). Fluctuating selection dynamics over time in long-lived 

organisms likely drive this life history pattern. In trees, fast growth rates and large size provide 

fitness benefits via increased competitive ability, faster time to reproduction, and increased 

chances of early survival (Lanner, 2002). But selection for fast growth rates early in life may 

conflict with selection for slow growth at mature stages, as shown in adult ponderosa pine trees 

under mountain pine beetle outbreak (de la Mata et al., 2017). But while we can identify some of 
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the selective dynamics influencing these life history patterns, we know little about the tradeoffs 

on and among the traits that underlie them.  

 

Competing functional demands on the stem xylem may contribute to the growth-longevity 

tradeoff found in trees. In woody plants, stem xylem performs several physiological functions 

critical to growth and survival, including efficient water transport, embolism resistance and 

mechanical safety (Baas et al., 2004; Chave et al., 2009). Trees require water to maintain 

stomatal conductance, carbon assimilation, and cellular turgor in order to promote tissue growth 

and maintain function; therefore, water transport efficiency is positively related to growth rate 

(Tyree et al., 1998; Santiago et al., 2004; Poorter et al., 2010; Smith & Sperry, 2014). Embolism 

resistance, or the ability to tolerate high tensions in the xylem without catastrophic embolism 

spread, relates to the ability to maintain water transport and survive during droughts (Brodribb & 

Cochard, 2009; Kursar et al., 2009). Mechanical safety provides protection against physical 

damage, such as that caused by wind, pests or pathogens, and cellular implosion under high 

xylem tension, thus it is also related to survival (Loehle, 1988; Chave et al., 2009). If these 

multiple xylem functions depend on the same xylem structural traits, tradeoffs can arise with 

important consequences for tree growth and survival. For example, a tradeoff between hydraulic 

efficiency and mechanical safety in the gymnosperm xylem is due to the fact that tracheid cells 

perform both functions (Pittermann et al., 2006b).  

 

While a myriad of factors likely contribute to the growth-longevity tradeoff in trees (Figure 1), 

here we hypothesized that conflicting functional effects of xylem structural traits contribute to 

the growth-longevity tradeoff. This hypothesis is based on the expected opposing selection on 
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these structural traits. We tested this hypothesis by examining the extent to which xylem 

morphological traits (i.e. wood density, tracheid diameters and pit structure) relate to growth 

rates and longevity in two natural populations of the conifer species ponderosa pine. We chose a 

conifer because the limited diversity of cell types in the gymnosperm xylem (compared to that of 

angiosperms) may lead to more readily-detectable tradeoffs. We focused on a single species to 

minimize variation in xylem structure in order to explore whether there is support for selection 

on each xylem trait. We examined xylem morphological traits and growth rates at the base of the 

trunk. As hydraulic constraints arise as trees grow larger, xylem anatomical traits are expected to 

adjust to compensate for these constraints (Ryan & Yoder, 1997; Domec et al., 2008). We 

therefore disentangled the effects of size through ontogeny and growth rates on xylem traits by 

sampling each individual tree at multiple trunk diameters.  We found that the oldest trees had 

slower lifetime growth rates compared to younger trees in the populations we studied, indicating 

a growth-longevity tradeoff. We further provide the first evidence that a single xylem trait, pit 

structure, with known conflicting effects on xylem function (hydraulic safety vs. efficiency) 

contributes to the growth-longevity tradeoff in a conifer species. 

Materials and Methods  

Site and tree selection 

Two sites were selected for sampling, originally for a study of the long-term effects of fire 

history on tree growth in 2006 and 2007 (Keeling et al., 2006). The sites were located on ridges 

above the Salmon River in Idaho; one site near Mackay Bar (MB) and the other site near Bullion 

Ridge (BR) about 40 km downriver (Figure S1). All sites had a mixture of old growth and 

younger trees. At each site, relatively open-grown ponderosa pine trees in a range of size classes 

were sampled from a specified area of similar topography. For smaller size classes, trees 
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experiencing obvious suppression from neighboring trees were avoided. At each tree, elevation, 

aspect, slope, GPS coordinates, and tree diameter at breast height (DBH) were recorded.  The 

fire study showed no long-term effects of frequent fire on tree growth in the paired burned and 

unburned sites at the two locations (Keeling et al., 2011), indicating that occurrence of fire has 

not had a strong effect on growth rates at these sites. Based on needle carbon isotope ratios and 

vegetation structure, Mackay Bar was determined to be drier than Bullion Ridge (Keeling et al., 

2011).  

Growth rates and age estimation  

Two cores were collected from each tree and tree diameter at coring height (DCH) at 

approximately 50 cm from the ground was recorded.  Tree heights were measured using a laser 

range-finder (Impulse 200) from two vantage points located approximately 90 degrees apart.  

Cores from each tree were visually cross-dated against each other and against a time-series of 

reconstructed Palmer Drought Severity Index (Cook & Krusic, 2008) for the region.   

Once cores were crossdated, the year of the innermost ring at coring height established a 

minimum estimate of tree age.  Lifetime annual BAI was calculated as the average of all the 

annual BAI values for each tree. Trees were first selected for the classes used in this study based 

on cambial age and lifetime average BAI growth rates: Old trees were above 350 years old 

cambial age at sampling and young trees were between 85 - 150 years old. We further selected a 

subset of young trees with fast growth (lifetime BAI > 30 cm2/year) and slow growth (lifetime 

BAI < 25 cm2/year) for comparison.  

Xylem morphological traits 

We determined wood density (g/cm3) as the dry mass per saturated volume (after overnight 

rehydration) and dry mass per air-dried volume (as cores were not freshly collected) following 
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methods outlined in Williamson & Wiemann, 2010. We found wood densities based on saturated 

and fresh volume to be strongly correlated when tested in a separate set of freshly-collected 

ponderosa pine core samples. Heartwood and sapwood were visually distinguished and separated 

using a razor blade. Wood volume was measured using the water displacement method.  

 

Once wood density was determined, we extracted multiple segments from each mounted core at 

selected sizes (trunk diameters) by exposing them to steam and cutting them out with a razor 

blade by hand. Core segments ranged from 3-5 growth rings, depending on how much tissue was 

needed for a section at least 5 mm in length. Segments were soaked in ethanol for at least an 

hour, then remounted and covered with a waterproof, gap-filling glue. Transverse sections of ~16 

µm were cut using a rotary microtome (Leica RM 2235). Sample surfaces were brushed with a 

mixture of cornstarch, glycerol and water, which act as a non-newtonian fluid that maintains the 

cell wall structure of softwoods when cut (Gartner & Schweingruber 2013).  Samples were 

stained using a solution of astrablue and safranin for 10 minutes, rinsed with distilled water, and 

then gradually dehydrated with 75%, 95% ethanol rinse and finally an anhydrous alcohol 

solution of 95% ethanol + 2.2 dimethoxypropane. After dehydration, samples were fixed with a 

drop of Eukitt® quick-hardening mounting medium and dried in an oven at 60°C for at least 12 

hours. We imaged samples using a light microscope (Amscope T700) connected to a digital 

camera. For each transversal section, mean tracheid diameters were calculated from at least 100 

tracheids throughout the earlywood (Figure S2).  

 

Core segments were then cut tangentially by hand with a razor blade for sampling pit structure. 

Samples were mounted on aluminum stubs and coated with gold in a vacuum using a sputter 



 

8 

 

machine (Denton Vacuum Desk V model).  Samples were observed and imaged with a scanning 

electron microscope (Hitachi S-4700 cold field emission, EMtrix electron microscope facility at 

the University of Montana). Pit aperture diameter (Da), pit membrane diameter (Dm) and torus 

diameter (Dt), were measured on 10-20 pits per earlywood segment (Figure 2). Pit measurements 

were analyzed using ImageJ freeware (http://rsbweb.nih.gov). Torus overlap (O) was calculated 

as in Hacke et al., 2004:  

O = (Dt - Da)/(Dm - Da) 

Hacke et al.’s formula was chosen over alternatives (i.e. Delzon et al., 2010) because it is 

relative to pit membrane diameter, making the calculation more relevant to water flow resistance, 

though the two calculations were strongly correlated.  

Data analyses 

Differences in average lifetime growth rates and wood density between classes were tested using 

a standard ANOVA. Relationships between xylem traits with tree size through ontogeny between 

classes of trees sampled at the Mackay Bar site only were tested using a mixed effects model 

with tree and position within core included as random effects. Linear regressions between xylem 

traits with lifetime growth rates were tested using a mixed effects model with tree as random 

effect. Comparison of the relationships between xylem traits and growth rates of trees at both 

Mackay Bar and Bullion Ridge sites were tested at fixed trunk diameter of 30 cm at coring 

height for each tree, using a mixed effects model with tree as random effect. All statistical 

analyses were tested for normality and conducted in R programming software (R Development 

Core Team, 2013). 
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Results 

Growth rates and ages 

The oldest trees at both sites had slower average lifetime growth rates than all younger trees 

pooled, even early in life (F1,17 = 5.807, p =0.03; Figure 3). Though not included in this study, 

differences in lifetime growth rates among age classes were also significant with larger sample 

sizes of trees from the same sites, even after correcting for climatic differences between the 

early-life growth periods of old and young trees (Keeling, 2009; see Figure S3 for growth rates 

by calendar year of selected trees in this study). Some young trees, however, had relatively slow 

average growth rates compared to other young trees, but no old trees grew as quickly as fast-

growing young trees (Figure 3 & 4).   

Xylem traits, growth rates and tree size through ontogeny 

Torus overlap (the width of pit border covered by the torus) was larger in both old and young 

slow-growing trees, relative to fast-growing young trees at the single site sampled (p = 0.03 for 

the effect of growth as class; Figure 5a). Torus overlap did not change with tree size through 

ontogeny (p > 0.4 for the effect of trunk size; Figure 5a), though all raw pit dimensions increased 

with tree size (p < 0.007 for the effect of trunk size for all pit dimensional traits; Figure S4). 

Tracheid diameters did not differ with growth rates (p > 0.45 for effect of growth as class) but 

increased with tree size through ontogeny (p < 0.001 for the effect of trunk size; Figure 5b). The 

slope of the relationship between tracheid diameter and trunk size was marginally steeper in the 

young, slow-growing trees (p = 0.06 for the interaction effect between size and class; Figure 5b). 

We found no differences in heartwood or sapwood density due to growth rates among trees (p > 

0.45 for each; Figure 6). 

Xylem traits and growth rates by site  
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Torus overlap was negatively related to average lifetime growth rates among trees at both sites 

when sampled at a given trunk diameter (p < 0.005 for the effect of growth as class; Figure 7a). 

While there was no significant interaction effect between growth rate and site, average torus 

overlap was larger in trees from the drier site (p = 0.006 for site effect; Figure 7a). Tracheid 

diameters at given trunk size did not differ by site (p > 0.45 for the effect of site; Figure 7b). 

Discussion  

Major findings 

This study provides the first evidence that pit structure, a single trait with conflicting 

consequences on xylem function, contributes to the growth-longevity tradeoff in a conifer 

species. In the mixed-age ponderosa pine populations we studied, the oldest trees had slower 

lifetime growth rates compared to younger trees — a pattern found in several other studies 

(Black et al., 2008; Bigler & Veblen, 2009; Johnson & Abrams, 2009; Di Filippo et al., 2012, 

2015; Rötheli et al., 2012; Bigler, 2016) and consistent with a growth-longevity tradeoff. Slow-

growing trees from these stands have pits with larger torus overlap compared to fast-growing 

trees. Torus overlap has been shown to increase embolism resistance in conifers and there is 

compelling evidence that it also constrains transport efficiency (below). The tradeoff between 

hydraulic safety and efficiency based on pit structure is consistent with the growth longevity 

tradeoff: slow-growing trees may reach older ages, in part, because they possess a more drought-

tolerant but less efficient xylem. Although the basis of life history tradeoffs are inherently 

complex and depend on a myriad of traits (Figure 1), this study within a single species provides 

strong support that a tradeoff based on opposing selection on a single xylem trait, the hydraulic 

safety-efficiency tradeoff due to pit structure, contributes to growth-longevity tradeoff.  

Growth-safety tradeoff due to conflicting hydraulic demands on pit structure  
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The negative correlation we found between torus overlap and growth rates among trees at both 

sites (Figure 7a) is most likely due to a xylem safety-efficiency tradeoff based on pit structure. 

Though we cannot rule out the possibility that the basis of the correlation could be genetic or 

developmental, there is compelling evidence for conflicting consequences on conifer xylem 

function based on pit structure. First, it has been shown that larger torus overlap provides greater 

embolism resistance among conifer species, because a larger torus overlap creates a stronger seal 

when embolism occurs and prevents its spread to adjacent xylem cells (Delzon et al., 2010; 

Bouche et al., 2014). Many temperate conifers such as ponderosa pine live in environments that 

are seasonally dry (Richardson, 2000) and embolism resistance conferred by larger torus overlap 

likely contributes to their ability to survive droughts (Delzon et al., 2010) and live longer. 

Moreover, while the slope of the negative correlation between torus overlap and growth rate is 

consistent across sites, torus overlap was larger on average for a given diameter growth rate in 

trees from the drier site (Figure 7a). This result is consistent with selection for larger torus 

overlap and increased embolism resistance in dry environments.  

 

As trees require water to maintain stomatal conductance, carbon assimilation, and cellular turgor 

in order to promote tissue growth and maintain function, water transport efficiency is positively 

related to growth rate (Tyree et al., 1998; Santiago et al., 2004; Poorter et al., 2010; Smith & 

Sperry, 2014). But larger torus overlap may limit water transport efficiency in the xylem by 

increasing resistance to water flow through pit membranes and thereby constrain growth rates. 

Indeed, there is compelling support that torus-margo pit structure has strong consequences on 

hydraulic efficiency and safety. Modeling studies indicate that torus-margo pits can contribute as 

much as two-thirds of the total resistance in the conifer xylem (Pittermann et al., 2006a, 2010; 
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Schulte et al., 2015). Further, the larger torus-margo pit structure in conifers compensates for the 

resistance to flow imposed by the smaller size of tracheids while providing embolism resistance 

equal to or surpassing that of the angiosperm xylem (Pittermann et al., 2005).  Because many 

factors contribute to total flow (pathway length, conduit size, pit structure and density, etc.), the 

resistance to water flow contributed by pit structure alone is exceedingly difficult to quantify and 

is not well resolved at the xylem or whole-plant level (Gleason et al., 2016). However, all else 

equal, greater torus overlap would create a larger obstruction to water flow through the pit by 

reducing margo space, creating more resistance. The fact that we focused on a single species 

likely reduced variability in other xylem traits and contributed to the unmasking of the role of pit 

structure. Conflicting hydraulic demands based on pit structure are consistent with the negative 

correlation between torus overlap and growth rates among trees in our study. On the one hand, 

selection favoring fast growth and increased hydraulic efficiency over embolism resistance could 

explain why fast-growing trees have smaller torus overlap. On the other hand, selection favoring 

greater embolism resistance and larger torus overlap over hydraulic efficiency could explain why 

trees with larger torus overlap grow slowly.  

Variation in tracheid diameter and wood density is constrained by other factors 

Surprisingly, we did not detect a correlation between tracheid diameters and growth rates among 

trees in our study (Figure 5b & 7b). We expected that the strong influence of tracheid diameter 

on water transport efficiency (Hagen-Poiseuille equation; Tyree & Ewers, 1991) would lead to a 

positive correlation between tracheid diameters and growth rates. Instead, we found that tracheid 

diameters scaled strongly and positively with tree size (Figure 5b) but not growth rates. Though 

the slope of the correlation between tracheid diameters and trunk size was marginally steeper in 

the young slow-growing trees (p = 0.06; Figure 5b), which could be because these trees were not 
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sampled beyond the point at which height growth rate beings to decline (Keeling, 2009). Further, 

motivated by several studies that report a strong correlation between wood density and tree 

demographics (Poorter et al., 2008; Martinez-Vilalta et al., 2010; Wright et al., 2010), an 

emerging hypothesis from the wood economics spectrum posits that denser wood is related with 

slow growth and higher survival (Chave et al., 2009). However, tracheid size alters the cell wall 

thickness-to-span ratio and thus determines wood density in the conifer xylem (Pittermann et al., 

2006b). Indeed, we did not detect a correlation between wood density and growth rates, which is 

consistent with the lack of correlation between tracheid diameters and growth rates. We were 

also surprised to find that tracheid diameters did not vary with site moisture, though we did see 

an effect of site dryness on the relationship between tree height and diameter — trees at the drier 

site are shorter for a given trunk diameter (Figure S5). In cold climates, small conduit diameters 

provide a selective advantage because smaller cells reduce the occurrence of freeze-thaw 

embolism (Zanne et al., 2013; Hacke et al., 2017). This may be a factor constraining tracheid 

diameters at a given tree height in these populations that experience regular freeze-thaw events. 

Therefore, we speculate that both tree height and freezing temperatures impose selection 

pressures that constrain variation in tracheid diameters and wood density in these populations. 

These constraints (i.e. lower variability) would help explain the increasing role of pit structure in 

water flow and growth rates. We speculate that variation in pit structure with diameter growth 

may be favored due to opposing selection imposed by conflicting hydraulic demands depending 

on life history and site moisture in these populations.   

Xylem safety-efficiency tradeoff depends on which traits are under selection 

The tradeoff between hydraulic efficiency and safety in woody plant xylem is a leading 

hypothesis in the study of plant hydraulics with important implications. Weak evidence among 
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species (Gleason et al., 2016) demonstrates that the strength of this tradeoff will depend on the 

selection regimes imposed by the environment on the many traits involved. Some environments 

may not impose strong selection for traits conferring either greater water transport efficiency or 

enhanced hydraulic safety. This could produce a pattern exactly like the one found by Gleason et 

al, in which there is a clear upper constraint line (no species have high efficiency and safety 

above a certain point) but plenty of variation falls below the constraint line. However, when the 

environment does impose selection to enhance these functions, the ability to detect a tradeoff 

will depend on whether or not hydraulic efficiency is achieved through xylem traits that also 

reduce safety. If different xylem traits contribute to hydraulic efficiency and safety among 

species a tradeoff between them may not be apparent (Gleason et al., 2016). But this tradeoff 

may be more readily detected within species (as our results suggest) or in closely-related taxa 

that possess a similar xylem design, particularly when such a design is based on limited diversity 

of cell types as in the gymnosperm xylem. Simpler xylem designs enhance the likelihood that 

increases in hydraulic efficiency will depend on changes in xylem traits that also affect safety 

(e.g. pit structure). Our results in a single conifer species provide strong support that pit structure 

is under opposing selection as a result of conflicting consequences on xylem function (safety vs 

efficiency) providing a mechanistic basis for a growth-longevity tradeoff.  

Evolved differences in xylem structure determine which traits relate to life history  

Our findings do not support the hypothesis that wood density may be a unifying functional trait 

that relates to woody plant life history strategies as proposed by the wood economics spectrum 

(Chave et al., 2009). While we acknowledge that the lack of correlation may be due to small 

sample size, we offer another reason with important implications for theory development. The 

associations between wood density and life history patterns may differ between angiosperms and 
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gymnosperms because of evolved differences in xylem structure. The strong correlations found 

between wood density and tree demographics tend to be dominated by studies among 

angiosperm species (Poorter et al., 2008; Martinez-Vilalta et al., 2010; Wright et al., 2010). In 

studies that include a larger proportion of conifer species, the correlation tends to be weak or 

absent (Russo et al., 2010; Fan et al., 2012). At the clade level, conifers present an exception to 

the wood density paradigm, because they tend to grow more slowly and live longer than most 

angiosperms yet possess lighter wood. The wood of conifers is less dense than that of 

angiosperms due to the lack of fibers. However, it provides hydraulic and mechanical safety 

equal to or surpassing that of angiosperm wood due to the reduced size of tracheids (greater cell 

wall fraction) and the torus-margo pit structure (see above; Sperry et al., 2006). Further, the 

freeze-induced embolism resistance conferred by the smaller size of tracheids may in part 

explain the dominance of conifer species over angiosperms in colder climates (Pittermann & 

Sperry, 2003). Selection for smaller tracheids could constrain variation in wood density and in 

turn may explain the weak or absent correlation between wood density and growth rates found 

among conifers. The difficulty of detecting a correlation between wood density and 

demographics in conifers highlights that the need to account for fundamental evolved differences 

in xylem structure in order to develop stronger hypotheses for which xylem traits predict life 

history patterns among woody plant taxa. 

Selective basis of tradeoffs predicts which traits relate to life history across taxonomic scales  

Recent studies demonstrate that the expected trait co-variation across taxa based on the plant 

economic spectrum (Reich, 2014; see above) does not necessarily occur within species 

(Ramírez-Valiente et al., 2017; Anderegg et al., 2018). These results highlight the need to 

determine which traits truly relate to resource use and life history across taxonomic scales and 
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environments. An important issue to consider when testing trait covariation across taxonomic 

scales or environments is how much variation exists in resource acquisition among individuals 

relative to resource allocation within an organism. Greater variation in resource acquisition can 

mask a tradeoff between traits by creating a positive correlation between two traits even when 

there is an inherent resource allocation conflict between them (van Noordwijk & de Jong, 1986). 

But this issue should not apply to single-trait tradeoffs based on opposing selection. Our study 

provides strong support that a single-trait tradeoff based on opposing selection, the safety-

efficiency tradeoff based on pit structure, may mediate acquisition of a critical resource (water) 

and thus relate to life history patterns in natural populations of a conifer species. Our findings 

suggest that determining the selective basis of tradeoffs (i.e. resource allocation or opposing 

selection) may offer a path forward for predicting which traits relate to life history across 

taxonomic scales and environments.   

Conclusions 

We provide the first evidence that a single morphological trait in a conifer species, the torus-

margo pit structure, contributes to the growth-longevity tradeoff. Our results support the 

profound consequences of pit structure for life history tradeoffs and conifer evolution 

(Pittermann et al., 2005). In light of the evolutionary and ecological relevance of a growth-safety 

tradeoff based on pit structure in conifers, future research should focus on determining how 

common it is in natural populations of conifer species. Further research is needed to quantify the 

contribution of pit structural variation to total xylem hydraulic resistance and efficiency through 

computational and physical models. Another research priority should be to determine the 

relevance of pit structural variation to drought survival by measuring pit structure in dead and 

live trees after drought events. To determine the adaptive potential of pit structure, genetic 
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differentiation and developmental plasticity should be studied among populations using common 

garden experiments. However, these research goals will necessitate advances in efficient and 

reliable methods of measuring pit structure because these measurements are currently 

prohibitively time consuming at the sample sizes necessary for genetic or ecological studies. 

Further, if the growth-safety tradeoff that we found in ponderosa pine populations is common 

broadly among conifers, it predicts declines in the temperate and boreal forest productivity as 

drought becomes more prevalent with climate change in many parts of the world (Allen et al., 

2015). Finally, the findings from this study highlight that determining the underlying nature of 

tradeoffs in natural populations (the extent to which they arise due to single and multiple trait 

tradeoffs) provides an important path forward for a unifying plant economic spectrum theory 

within and across taxa.   
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Figures 

 

Figure 1. Life history tradeoffs such as that between growth and longevity in trees are the result 

of tradeoffs among lower-level functional and morphological traits with different rates of 

resource use. Arrow sizes represent relative amount of resources required at different levels.  
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Figure 2. Schematic of an unaspirated pit (left) showing measurements of pit membrane (Dm), 

torus (Dt), and aperture diameters (Da) and an aspirated pit (center) from Delzon et al., 2010. 

Scanning electron microscope image (colorized with Adobe Photoshop®) of torus-margo pit 

surface (right) showing measured pit dimensions. 
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Figure 3. Average annual basal area increment growth rate over cambial age for each class of 

trees from both sites (n = 7 trees per class, 21 total). Shaded bands represent 95% confidence 

intervals.  
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Figure 4. Average lifetime basal area increment growth rate for each class of trees from both 

sites (n = 7 trees per class, 21 total). Cambial ages of old trees at sampling ranged from 375 - 454 

years old. Young trees were 88 - 147 years old at sampling. At both sites, old trees had slower 

average lifetime growth rates than young trees pooled (p = 0.02), though we selected some 

young trees that had slow growth rates (young slow) for comparison with young fast trees. 
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Figure 5. Torus overlap (a) and tracheid diameters (b) by individual trunk diameter through 

ontogeny for each class at the Mackay Bar site only (n = 12 trees total). Shaded bands represent 

95% confidence intervals, but too narrow to be visible in (b) due to large tracheid sample size. 

Points represent individual pit (n = 708) and tracheid measurements (n = 24,989). Torus overlap 

was larger in both old and young slow-growing trees, relative to fast-growing young trees (p = 

0.03). Tracheid diameters increased with tree size through ontogeny (p < 0.001) but did not differ 

by growth rate among trees.  



 

23 

 

 

Figure 6. Sapwood and heartwood density (whole core) for each class of trees from both sites (n 

= 21 trees total). No differences in heartwood or sapwood density were found due to growth rate 

(p > 0.45).  
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Figure 7. Torus overlap (a) and tracheid diameters (b) by average lifetime annual BAI (cm2) for 

each site: Mackay Bar (MB) and Buillon Ridge (BR). Xylem traits were sampled at a fixed trunk 

diameter of 30 cm for all trees (n = 21 total). Shaded bands represent 95% confidence intervals, 

but too narrow to be visible in (b) due to large tracheid sample size. Points represent individual 

pits (n = 322) and tracheid measurements (n = 10,470). Torus overlap was negatively related to 

average lifetime growth rates among trees at both sites (p < 0.005). Average torus overlap was 

larger in trees from Mackay Bar (MB) (p = 0.006). Tracheid diameters at given trunk size did not 

differ by site (p > 0.45).  



 

25 

 

Supplementary Figures 

 

Figure S1. Map of Mackay Bar and Bullion Ridge sites sampled in northern Idaho.  
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Figure S2. Light microscope image of dyed transverse xylem section used for measuring 

tracheid diameters with lignified tissues shown in pink and non-lignified in blue (black arrows 

indicate the torus in the center of pit borders).  

 

 

 

 



 

27 

 

 

Figure S3. Average annual basal area increment growth rate over calendar year for each class of 

trees from both sites (n = 7 trees per class, 21 total). Shaded bands represent 95% confidence 

intervals.  
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Figure S4. Pit membrane diameter (a), torus diameter (b), and aperture diameter (c) by trunk 

diameter for each class at Mackay Bar site only (n= 12 trees total). Points represent individual 

pits (n = 708). All raw pit dimensions (pit membrane, torus, and aperture diameters) increased 

with tree size (p < 0.007).   
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Figure S5. Tree heights by trunk diameters at sampling for each site. Tree heights were shorter 

for a given trunk diameter at MB, the drier site (F1,19 = 5.105, p =0.04). 

Acknowledgements 

I’d like to thank Eric Keeling for collecting the original samples for this project and sharing his 

impressive dataset with me. I’d also like to Jim Driver at the University of Montana for training 

and access to the electron microscope, Laura Thorton for assisting in image analyses, and Gerard 

Sapes for help beautifying figures and suggestions for the manuscript. I’d also like to thank my 

committee: Anna Sala, Lila Fishman, Uwe Hacke and Sharon Hood for their ideas and input on 

study design, analyses and the manuscript. I thank Sharon Hood for access to equipment and 

space at the United States Forest Service’s Missoula Fire Sciences laboratory. This work was 

supported by the National Science Foundation Graduate Research Fellowship under NSF grant 

no. DGE-1313190.  

 



 

30 

 

References 

Agrawal A, Conner J, Rasmann S. 2010. Trade-offs and negative correlations in evolutionary 

ecology. Evolution after Darwin: The First 150 Years. 243–268. 

Allen CD, Breshears DD, McDowell NG. 2015. On underestimation of global vulnerability to 

tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6: art129. 

Anderegg LDL, Berner LT, Badgley G, Sethi ML, Law BE, HilleRisLambers J. 2018. 

Within-species patterns challenge our understanding of the leaf economics spectrum (J Penuelas, 

Ed.). Ecology Letters 21: 734–744. 

Arendt JD. 1997. Adaptive Intrinsic Growth Rates : An Integration Across Taxa. The Quarterly 

Review of Biology 72: 149–177. 

Baas P, Ewers FW, Davis SD, Wheeler EA. 2004. Evolution of xylem physiology. The 

Evolution of Plant Physiology.273–295. 

Bigler C. 2016. Trade-Offs between Growth Rate, Tree Size and Lifespan of Mountain Pine 

(Pinus montana) in the Swiss National Park. PLoS ONE 11: 1–18. 

Bigler C, Veblen TT. 2009. Increased early growth rates decrease longevities of conifers in 

subalpine forests. Oikos 118: 1130–1138. 

Black BA, Colbert JJ, Pederson N. 2008. Relationships between radial growth rates and 

lifespan within North American tree species. Ecoscience 15: 349–357. 

Boag PT, Grant PR. 1981. Natural Selection in a Populatino of Darwin’s Finches (Geospizinae) 

in the Galapagos. Science 214: 82–85. 

Bouche PS, Larter M, Domec JC, Burlett R, Gasson P, Jansen S, Delzon S. 2014. A broad 

survey of hydraulic and mechanical safety in the xylem of conifers. Journal of Experimental 

Botany 65: 4419–4431. 



 

31 

 

Brodribb TJ, Cochard H. 2009. Hydraulic Failure Defines the Recovery and Point of Death in 

Water-Stressed Conifers. Plant Physiology 149: 575–584. 

Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. 2009. Towards a 

worldwide wood economics spectrum. Ecology Letters 12: 351–366. 

Delzon S, Douthe C, Sala A, Cochard H. 2010. Mechanism of water-stress induced cavitation 

in conifers: Bordered pit structure and function support the hypothesis of seal capillary-seeding. 

Plant, Cell and Environment 33: 2101–2111. 

Domec J-C, Lachenbruch B, Meinzer FC, Woodruff DR, Warren JM, McCulloh K a. 2008. 

Maximum height in a conifer is associated with conflicting requirements for xylem design. 

Proceedings of the National Academy of Sciences of the United States of America 105: 12069–

12074. 

Eller C, de V. Barros F, R.L. Bittencourt P, Rowland L, Mencuccini M, S. Oliveira R. 2018. 

Xylem hydraulic safety and construction costs determine tropical tree growth. Plant Cell and 

Environment 41: 548–562. 

Fan Z-X, Zhang S-B, Hao G-Y, Ferry Slik JW, Cao K-F. 2012. Hydraulic conductivity traits 

predict growth rates and adult stature of 40 Asian tropical tree species better than wood density. 

Journal of Ecology 100: 732–741. 

Di Filippo A, Biondi F, Maugeri M, Schirone B, Piovesan G. 2012. Bioclimate and growth 

history affect beech lifespan in the Italian Alps and Apennines. Global Change Biology 18: 960–

972. 

Di Filippo A, Pederson N, Baliva M, Brunetti M, Dinella A, Kitamura K, Knapp HD, 

Schirone B, Piovesan G. 2015. The longevity of broadleaf deciduous trees in Northern 

Hemisphere temperate forests: insights from tree-ring series. Frontiers in Ecology and Evolution 



 

32 

 

3: 1–15. 

Futuyma DJ, Moreno G. 1988. The Evolution of Ecological Specialization. Annual Review of 

Ecology and Systematics 19: 207–233. 

Gleason SM, Westoby M, Jansen S, Choat B, Hacke UG, Pratt RB, Bhaskar R, Brodribb 

TJ, Bucci SJ, Cao K-F, et al. 2016. Weak tradeoff between xylem safety and xylem-specific 

hydraulic efficiency across the world’s woody plant species. New Phytologist 209: 123–136. 

Graham RT, Jain TB. 2005. Ponderosa pine ecosystems. General Technical Report - Pacific 

Southwest Research Station, USDA Forest Service: 1–32. 

Hacke UG, Sperry JS, Pittermann J. 2004. Analysis of Circular Bordered Pit Function II. 

Gymnosperm tracheids with Torus-Margo Pit Membranes. American Journal of Botany 91: 386–

400. 

Hacke UG, Spicer R, Schreiber SG, Plavcová L. 2017. An ecophysiological and 

developmental perspective on variation in vessel diameter. Plant Cell and Environment 40: 831–

845. 

Herms DA, Mattson WJ. 1992. The Dilemma of Plants : To Grow or Defend. The Quarterly 

Review of Biology 67: 283–335. 

Herrel A, Podos J, Vanhooydonck B, Hendry AP. 2009. Force-velocity trade-off in Darwin’s 

finch jaw function: A biomechanical basis for ecological speciation? Functional Ecology 23: 

119–125. 

Johnson SE, Abrams MD. 2009. Age class, longevity and growth rate relationships: Protracted 

growth increases in old trees in the eastern United States. Tree Physiology 29: 1317–1328. 

Keeling EG, Sala A, Deluca TH. 2011. Lack of fire has limited physiological impact on old-

growth ponderosa pine in dry montane forests of north-central Idaho. Ecological Applications 



 

33 

 

21: 3227–3237. 

Keeling EG. 2009. Wildfire responses and tree longevity in old-growth ponderosa pine/Douglas-

fir forests. Doctoral dissertation. University of Montana, Missoula, MT.  

Keeling EG, Sala A, DeLuca TH. 2006. Effects of fire exclusion on forest structure and 

composition in unlogged ponderosa pine/Douglas-fir forests. Forest Ecology and Management 

237: 418–428. 

Kursar TA, Engelbrecht BMJ, Burke A, Tyree MT, El Omari B, Giraldo JP. 2009. 

Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and 

distribution. Functional Ecology 23: 93–102. 

de la Mata R, Hood S, Sala A. 2017. Insect outbreak shifts the direction of selection from fast 

to slow growth rates in the long-lived conifer Pinus ponderosa. Proceedings of the National 

Academy of Sciences 114: 7391–7396. 

Lanner RM. 2002. Why do trees live so long? Ageing Research Reviews 1: 653–671. 

Loehle C. 1988. Tree life history strategies: the role of defenses. Canadian Journal of Forest 

Research 53: 1689–1699. 

Martinez-Vilalta J, Mencuccini M, Vayreda J, Retana J. 2010. Interspecific variation in 

functional traits, not climatic differences among species ranges, determines demographic rates 

across 44 temperate and Mediterranean tree species. Journal of Ecology 98: 1462–1475. 

van Noordwijk AJ, de Jong G. 1986. Acquisition and Allocation of Resources: Their influence 

on Variation in Life History Tactics. The American Naturalist 128: 137–142. 

Pittermann J, Choat B, Jansen S, Stuart S a, Lynn L, Dawson TE. 2010. The Relationships 

between Xylem Safety and Hydraulic Efficiency in the Cupressaceae: The Evolution of Pit 

Membrane Form and Function. Plant Physiology 153: 1919–1931. 



 

34 

 

Pittermann J, Sperry J. 2003. Tracheid diameter is the key trait determining the extent of 

freezing-induced embolism in conifers. Tree physiology 23: 907–914. 

Pittermann J, Sperry JS, Hacke UG, Wheeler JK, Sikkema EH. 2005. Torus-margo pits help 

conifers compete with angiosperms. Science 310: 1924. 

Pittermann J, Sperry JS, Hacke UG, Wheeler JK, Sikkema EH. 2006a. Inter-tracheid pitting 

and the hydraulic efficiency of conifer wood: The role of tracheid allometry and cavitation 

protection. American Journal of Botany 93: 1265–1273. 

Pittermann J, Sperry J, Wheeler J, Hacke U, Sikkema E. 2006b. Mechanical reinforcement 

of tracheids compromises the hydraulic efficiency of conifer xylem. Plant, Cell and Environment 

29: 1618–1628. 

Poorter L, Fichtler E, Licona J, Mcdonald I, Alarco A, Sterck F, Villegas Z, Sass-klaassen 

U. 2010. The importance of wood traits and hydraulic conductance for the performance and life 

history strategies of 42 rainforest tree species. New Phytologist 185: 481–492. 

Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra-Manriquez G, Harms KE, 

Licona JC, Martinez-Ramos M, Mazer SJ, et al. 2008. Are functional traits good predictors of 

demographic rates? Evidence from five neotropical forests. Ecology 89: 1908–1920. 

R Development Core Team. 2013. R: A Language and Environment for Statistical Computing. 

Vienna, Austria.  

Ramírez-Valiente JA, Cavender-Bares J, Tissue D. 2017. Evolutionary trade-offs between 

drought resistance mechanisms across a precipitation gradient in a seasonally dry tropical oak 

(Quercus oleoides). Tree Physiology 37: 889–901. 

Reich PB. 2014. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. 

Journal of Ecology 102: 275–301. 



 

35 

 

Richardson DM. 2000. Ecology and biogeography of Pinus. Cambridge Unversity Press.  

Rötheli E, Heiri C, Bigler C. 2012. Effects of growth rates, tree morphology and site conditions 

on longevity of Norway spruce in the northern Swiss Alps. European Journal of Forest Research 

131: 1117–1125. 

Russo SE, Jenkins KL, Wiser SK, Uriarte M, Duncan RP, Coomes D a. 2010. Interspecific 

relationships among growth, mortality and xylem traits of woody species from New Zealand. 

Functional Ecology 24: 253–262. 

Ryan MG, Yoder BJ. 1997. Hydraulic limits to tree height and tree growth. BioScience 47: 

235–242. 

Santiago L, Goldstein G, Meinzer F, Fisher J, Machado K, Woodruff D, Jones T. 2004. 

Leaf Photosynthetic Traits Scale with Hydraulic Conductivity and Wood Density in Panamanian 

Forest Canopy Trees. Oecologia 140: 543–550. 

Schulte PJ, Hacke UG, Schoonmaker AL. 2015. Pit membrane structure is highly variable and 

accounts for a major resistance to water flow through tracheid pits in stems and roots of two 

boreal conifer species. New Phytologist 208: 102–113. 

Smith D, Sperry J. 2014. Coordination between water transport capacity, biomass growth, 

metabolic scaling and species stature in co-occurring shrub and tree species. Plant, Cell & 

Environment 37: 2679–2690. 

Sperry JS, Hacke UG, Pittermann J. 2006. Size and function in conifer tracheids and 

angiosperm vessels. American Journal of Botany 93: 1490–1500. 

Tyree MT, Ewers FW. 1991. Tansley Review No. 34. The Hydraulic Architecture of Trees and 

Other Woody Plants. New Phytologist 119: 345–360. 

Tyree MT, Velez V, Dalling JW. 1998. Growth conductance dynamics of root and shoot 



 

36 

 

hydraulic in seedlings of five neotropical tree species : to differing light regimes scaling to show 

possible adaptation. Oecologia 114: 293–298. 

Williamson GB, Wiemann MC. 2010. Measuring wood specific gravity...correctly. American 

Journal of Botany 97: 519–524. 

Worley AC, Barrett SCH. 2000. Evolution of Floral Display in Eichhornia paniculata 

(Pontederiaceae): Direct and Correlated Responses to Selection on Flower Size and Number. 

Evolution 54: 1533–1545. 

Wright SJ, Kitajima K, Kraft NJB, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling 

JW, Davies SJ, DíAz S, et al. 2010. Functional traits and the growth-mortality trade-off in 

tropical trees. Ecology 91: 3664–3674. 

Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, 

Chapin T, Cornelissen JHC, Diemer M, et al. 2004. The worldwide leaf economics spectrum. 

Nature 428: 821–827. 

Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, 

O’Meara BC, Moles AT, Reich PB, et al. 2013. Three keys to the radiation of angiosperms into 

freezing environments. Nature 506: 89–92. 

 


	Conflicting Hydraulic Effects of Xylem Pit Structure Relate to the Growth-Longevity Tradeoff in a Conifer Species
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1535405020.pdf.vKVRM

