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Abstract 

Peroxisome proliferator-activated receptor gamma (PPARγ) has been a drug target to 

treat type 2 diabetes for the last 20 years when rosiglitazone and pioglitazone were approved 

by the FDA in 1999. While effective at increasing insulin sensitivity, these drugs cause serious 

adverse effects due to their full agonist characteristics. For that reason, drug discovery efforts 

have attempted to reduce or prevent the amount of agonist character of new PPARγ targeting 

ligands. Unfortunately, there have been no new FDA approved drugs for the receptor. There is 

a need for new ideas to produce better quality pharmaceuticals that lessen the impact of 

adverse effects. This work aims to propose and expand on new ideas: biased agonism and 

interactions that anchor a consistent binding mode.   
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Chapter 1 Introduction 

1.1 Peroxisome proliferator-activated receptor gamma 
Peroxisome proliferator-activated receptors (PPARs) are a class of ligand-activated 

transcription factors that regulate gene transcription and belong to the nuclear hormone 

receptor superfamily. The PPARs are essential in energy metabolism and consist of three, 

uniquely expressed subtypes: PPARα, PPARβ/δ, and PPARγ.1 PPARγ has three isoforms, and the 

second isoform is the primary target of this work. PPARγ2 is expressed mainly in adipose tissue 

and is the master regulator of adipogenesis.2 It is a drug target for the treatment of type 2 

diabetes mellitus because the receptor is linked to increasing insulin sensitivity. Initially, 

researchers were unaware of the target these drugs were affecting, and the mechanism of 

action was unknown. Eventually, PPARγ was identified as the drug target. For simplicity, PPARγ2 

will be referred to as PPARγ from this point forward and all residue counts will be in PPARγ2 

numbering. 

PPARγ is similar to other nuclear receptors in that it has a conserved domain structure 

consisting of domains A-F (Figure 1a).3 Domain A/B is the activation function 1 (AF-1) region, C 

is the DNA binding domain, and D is the hinge. Domain E/F is comprised of the ligand binding 

domain (LBD), which is made up of the ligand binding pocket, the activation function 2 (AF-2) 

region, and the dimer interface.4 The PPARγ LBD consists of 13 α-helices (H1-H12, H2’), an Ω-

loop, and a β-sheet region (Figure 1b). A large (1200 Å2) T-shaped ligand binding pocket is 

located at the center of the LBD and is divided into three branches, each with unique ligand 

binding characteristics that may contribute to different functional effects. Branch I and Branch 
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II are hydrophobic cavities consisting of H3, H5, H11, and H12 and H2’, H3, H6, H7 and the β-

sheet region, respectively.5 Branch III is both hydrophobic and hydrophilic in character, 

consisting of H2, H3, H5, and the β-sheet region.5 The AF-2 region is made up of H3, H4, H5, and 

H12 and provides a site for coactivator binding.5 PPARγ is an obligate heterodimer with retinoid 

X receptor α (RXRα), where the two make interactions at the LBD dimer interface.6,7 The ligand 

bound state of the PPARγ:RXRα heterodimer will then direct the formation of a complex with 

coregulator proteins (corepressors and coactivators) that bind at the AF-2 region.4 

In the absence of agonist binding, the PPARγ:RXRα heterodimer can recruit corepressor 

proteins to form a complex that represses PPAR activated transcription.8,9 A small number of 

corepressors have been observed to interact with PPARγ, and this work will be looking 

specifically at nuclear receptor corepressor 1 (NCoR) and silencing mediator of retinoic acid and 

thyroid hormone receptor (SMRT).10 In the presence of ligand binding, the PPARγ:RXRα 

Figure 1. Structure of nuclear receptor domains and the 
ligand binding domain of PPARγ. a. The general structure 
of nuclear receptors consisting of the AF-1 (A/B), DNA 
binding domain (C), hinge (D), and ligand binding domain 
(E/F). Figure provided for free use by Nuclear Receptor 
Resources. b. The PPARγ LBD (PDB: 4XLD) with 
rosiglitazone. 
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heterodimer will bind to DNA through a PPAR response element (PPRE) causing corepressors to 

dissociate and the heterodimer to recruit coactivators that induce transcriptional activity.11 

There have been a larger number of coactivators identified to interact with PPARγ, with 

examples including CREB-binding protein (CBP-1), mediator of RNA polymerase II transcription 

subunit 1 (MED1), and PPARγ coactivator 1 alpha (PGC1α).10 Endogenous ligands of PPARγ are 

fatty acids and fatty acid metabolites, eicosanoids, and even serotonin has been observed to 

bind to PPARγ.12–14 Independent of endogenous ligands, a diverse collection of synthetic ligands 

intended to increase insulin sensitivity in T2DM patients have been developed. 

1.2 Synthetic ligands that target PPARγ 
The diverse collection of synthetic ligands can be separated into four classes: full 

agonists, partial agonists, antagonists, and inverse agonists. Each class may produce unique 

conformational changes in PPARγ that lead to unique functional effects. 

Full agonists fully activate PPARγ transcription through a well described mechanism. 

One class of full agonists, the thiazolidinediones (TZDs), have progressed into two FDA 

approved antidiabetic agents: rosiglitazone (Avandia) and pioglitazone (Actos). Crystal 

structures of rosiglitazone-bound PPARγ  have shown putative hydrogen bond interactions 

between the thiazolidinedione functional group and Branch I residues His323 (H5), His449 

(H11), and Tyr473 (H12) that stabilize H12.15–17 H12 stabilization locks the AF-2 region into a 

favorable binding surface for coactivators, and this leads to full activation of PPARγ 

transcription.4 While effective at increasing insulin sensitivity in patients with T2DM, 

rosiglitazone and pioglitazone have been under scrutiny after post-marketing surveillance 

showed an association with serious adverse effects that stem from PPARγ’s role as the master 



4 
 

regulator of adipogenesis and full activation. These drugs upregulate adipogenesis leading to 

weight gain and increased risk of bone fractures due to increased adipocyte differentiation in 

bones.18,19 These adverse effects have been attributed to the interactions described above 

regarding H12 stabilization and full activation of PPARγ. Drug discovery efforts have been 

conducted to identify new ligands that continue to increase insulin sensitivity while partially 

activating transcription by stabilizing other regions of PPARγ through H12 independent 

mechanisms.20  

These ligands, called partial agonists, do not fully stabilize H12, preventing PPARγ from 

becoming locked in an activated conformation. This partial stabilization results in lower 

transcriptional activity compared to the TZDs. Currently, the maximum transcriptional output 

observed by H12 independent partial agonists is 80% that of rosiglitazone.5 These ligands 

occupy the regions around Branch II and III and interact with H3 and the β-sheet region through 

hydrogen bond interactions with residues such as Arg288 and Ser342 and various hydrophobic 

interactions. The exact mechanism that leads to partial, indirect stabilization of H12 has yet to 

be identified; however, it is believed that stabilization of H3 and the β-sheet is responsible.5 As 

antidiabetic agents, partial agonists improve insulin sensitivity while showing no indications of 

increasing fatty acid storage in vitro. Animal model experiments have shown similar, positive 

results.21 Despite these improvements, no partial agonists have reached FDA approval as PPARγ 

targeting antidiabetic agents. This lack of success contributed to the development of ligands 

that aim to inhibit S273 phosphorylation which may correlate with insulin sensitization. 

 Preventing the activation of PPARγ involves the recruitment of corepressors to the 

PPARγ:RXRα heterodimer. This can be accomplished through the binding of antagonists and/or 
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inverse agonists. The mechanism that leads to heterodimer recruitment of corepressors is not 

well understood, and the activity of antagonism and inverse agonism are often conflated in the 

literature. There is, however, a clear distinction between these two ligand types that have been 

observed through structural differences and intensity of corepressor affinity in defined 

biochemical assays. In general, the proposed mechanism that leads to corepressor recruitment 

involves moving H12 away from the activated conformation into either a disordered, extended 

conformation or some other unknown conformation that provides a favorable binding site for 

corepressors. Antagonist-bound PPARγ has fluidity in the conformations PPARγ can adopt 

leading to both corepressors and coactivators to be recruited and producing basal level activity. 

The effects observed in both antagonists and inverse agonists likely arise from various 

mechanisms. One of these mechanisms may be that functional groups on the ligands prevent 

key intra-protein interactions between residues that stabilize H12 in Branch I (Figures 2c and 

2d).22 

 To summarize, each class of ligand causes PPARγ to adopt unique conformational 

ensembles, as evidenced by 19F NMR, that reflect the type of activity that is observed.23 Full 

agonists and inverse agonists cause PPARγ to adopt the activated and deactivated 

conformations, respectively, with minimal variability. Partial agonists and antagonists have 

more conformational fluidity causing the receptor to adopt both the activated and deactivated 

conformations. Fluorine NMR has been used to support the flexibility, or lack thereof, of PPARγ 

bound to each class of ligand. Full agonists and inverse agonists have thin peaks in NMR spectra 

indicating less variability, while partial agonists and antagonists have wider peaks indicating 

multiple conformations (Figure 2).23 
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The development of partial agonists, antagonists, and inverse agonists have yielded a 

diverse series of ligands aimed at increasing insulin sensitivity while reducing or preventing the 

adverse effects associated with full agonists. Despite the time and effort spent designing, 

synthesizing, and evaluating such ligands, none have been able to progress through clinical 

trials and FDA approval. The mechanisms of action for the different ligand types are still being 

elucidated, and this work will aid in the development of a comprehensive drug design strategy 

that can be used to discover compounds that treat T2DM by targeting PPARγ without adverse 

effects. Currently, there is a need for new ideas and approaches to identify this drug design 

Figure 2. Full agonist, partial agonist, antagonist, and inverse agonist aligned to rosiglitazone-bound 
PPARγ and their respective protein NMR data. a. Full agonist rosiglitazone bound to PPARγ (PDB: 4XLD). 
Rosiglitazone (green) occupies Branches I, II, and III. The thin NMR peak suggests PPARγ adopts a stable 
conformation. b. Partial agonist MRL24 aligned in PPARγ (PDB: 2Q5P, Chain A). MRL24 (pink) occupies 
Branches II and III. The wide NMR peak suggests PPARγ adopts multiple conformations. c. Antagonist 
SR1664 aligned in PPARγ (PDB: 4R2U, Chain A). SR1664 (purple) occupies Branches I and III. The wide NMR 
peak suggests PPARγ adopts multiple conformations. d. Inverse agonist T0070907 aligned in PPARγ (PDB: 
6C1I, Chain A). T0070907 (teal) occupies Branch I but can also occupy Branches II and III due to free 
rotation. The thin NMR peak suggests PPARγ adopts a stable conformation. 
NMR data was modified from Figure 2 of the Nat. Comm. publication by Chrisman et. al. doi: 
10.1038/s41467-018-04176-x 
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strategy. Biased agonism in PPARγ is a new idea, and the work covered in Chapter 2 will explore 

this concept.  

1.3 Biased agonism in PPARγ 
Biased agonism, also called functional selectivity, is the ligand-dependent selectivity for 

a specific signal transduction pathway over other pathways at the same receptor.24 Biased 

agonism is most extensively described in G-protein coupled receptors. Two papers describe 

observations of biased agonism exclusively in PPARγ. The first paper contributes the ability for 

the PPARγ ligand magnolol to induce the transcription of PPAR response element (PPRE) 

mediated by the RXRα:PPARγ heterodimer instead of RXR-response element (RXRE) mediated 

by the RXRα:RXRα homodimer to biased agonism.25 The second paper describes bisphenol A 

diglycidyl ether (BADGE) as a biased ligand due to agonist effects in one cell type or tissue and 

an antagonist effect in another cell type or tissue.26,27  

In this work, biased agonism involves the use of a ligand that biases the coregulator that 

is recruited to the PPARγ:RXRα heterodimer. Many nuclear receptor coregulators have been 

identified.10 It is believed in the literature that each coregulator is associated with the 

upregulation or downregulation of a specific set of genes; however, these associations have yet 

to be fully described in PPARγ and nuclear receptors in general.28 If a ligand can introduce a bias 

that causes the recruitment of a coregulator that does not upregulate genes involved in 

adipogenesis we could, in theory, prevent the adverse effects associated with current 

treatments even if the drug is a full agonist. For example, PGC1α has been associated with 

upregulating the transcription of genes that cause the browning of white adipose tissue, a 

process that ultimately reduces weight in mice.29 A drug could be developed that biases the 
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recruitment of PGC1α and could be used as a treatment for obesity. This definition of biased 

agonism in PPARγ has not been researched yet, and the following work in Chapter 2 looks at 

the selective recruitment of corepressors to the PPARγ:RXRα heterodimer, specifically, the bias 

recruitment of NCoR over SMRT. This may lead to specialized effects based on the genes 

regulated by NCoR. The aim of this research is to modulate the bias effect observed in nTZDpa, 

a partial agonist of PPARγ.  If biased agonism is a possibility in PPARγ, this may apply to other 

nuclear receptors due to their highly conserved structures, and strategies can be developed 

that exploit coregulator recruitment bias in all nuclear receptors. 

1.4 Objectives and Methodologies 
This thesis is a combination of two separate projects. The first project explores the 

structure-activity relationships between PPARγ and nTZDpa that cause selective recruitment of 

the corepressor NCoR. The second project is the characterization of a novel PPARγ partial 

agonist, NMP422, with a focus on the ligand’s structural configuration that allows a dual 

binding mode. Overall, each project suggests new ideas that can be used in drug discovery to 

reduce or prevent adverse effects in PPARγ targeting drugs through biased agonism and 

consistent protein-ligand interactions.  

In the first project, covered in Chapter 2, nTZDpa shows biased agonist characteristics 

and the cause of these characteristics are explored. In silico screening is used with the goal of 

providing support to the importance of the 5-chloro-2-indole carboxylic acid scaffold at 

directing a consistent binding mode across a series of 30 chemically diverse analogs. Modern 

synthetic routes are then used to create fragments of nTZDpa to be screened in vitro to 

pinpoint the functional groups responsible for biased agonism. 
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In the second project, covered in Chapter 3, the crystal structure of NMP422, a novel 

PPARγ partial agonist, is used to build and analyze molecular dynamics simulations meant to 

identify protein-ligand interactions that formed a testable hypothesis for a dual binding mode 

observed in the simulations. NMP422 adopts a conformation in accelerated molecular 

dynamics simulations that is reminiscent of PPARγ full agonists; however, it shows partial 

agonist characteristics. PPRE transactivation assays were used to determine the transcriptional 

activity compared to rosiglitazone. Finally, 19F NMR was used to support the dual binding mode 

observed in molecular dynamics simulations. 

Chapter 2: Identifying the region responsible for corepressor 

recruitment bias caused by the PPARγ partial agonist nTZDpa 

 

T. M. Patton, Ian M. Chrisman, Michelle D. Nemetchek, Philippe Diaz, and Travis S. Hughes 

2.1 Abstract 
Peroxisome proliferator-activated receptor gamma (PPARγ) is a drug target for the treatment 

of type 2 diabetes mellitus due to its role in regulating insulin sensitivity. The current FDA 

approved drugs Avandia (rosiglitazone) and Actos (pioglitazone) are effective at increasing 

insulin sensitivity but cause unwanted adverse effects attributed to their full agonist 

characteristics. Drug discovery efforts have attempted to reduce or prevent these adverse 

effects by creating ligands that decrease transcriptional activity to no avail. There is a need 

for new ideas to discover novel and effective PPARγ antidiabetic agents, and one such idea is 

using biased agonists. Herein, we explore this concept of biased agonism using fragments of 

the PPARγ partial agonist nTZDpa, a ligand that can selectively recruit the corepressor NCoR. 
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A structure-activity relationship was determined and the regions of nTZDpa responsible for 

the bias effect was identified.  

2.2 Introduction 
 PPARγ is a ligand-activated transcription factor targeted for the treatment of type 2 

diabetes mellitus (T2DM). Current FDA approved antidiabetic agents, Avandia (rosiglitazone) 

and Actos (pioglitazone), are full agonists of PPARγ that fully activate transcriptional activity. 

This full activation is associated with adverse effects such as weight gain and increased risk of 

bone fractures, sparking drug discovery efforts to prevent them. A variety of PPARγ ligands 

aiming to partially activate or deactivate the transcriptional output produced by the receptor 

have been developed and evaluated. Despite these efforts, there have been no new PPARγ 

targeting antidiabetic drugs to successfully reach FDA approval. A new approach is needed to 

revitalize PPARγ drug discovery, and one such approach is exploring the concept of biased 

agonism. 

Activation and deactivation of PPARγ involves the binding of coactivators and 

corepressors, respectively, to the PPARγ:RXRα heterodimer. There are several unique 

coactivators and corepressors that make up each class of coregulator proteins and each one 

upregulates or downregulates the transcription of a specific set of genes.30 One example of this 

has been observed in PPARγ coactivator 1 alpha (PGC1α), a coactivator that upregulates the 

transcription of genes that cause white adipose tissue to brown, a process that leads to weight 

loss in mice. Biased agonism, also called functional selectivity or selective nuclear receptor 

modulation in the context of nuclear receptors, is a bias effect where a ligand can preferentially 

activate one signaling pathway over other pathways. In the case of PPARγ, selective 
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recruitment of coregulators results in the upregulation or downregulation of specific gene sets. 

nTZDpa is a PPARγ partial agonist that showed promising activity in vitro but fell short of useful 

in vivo activity; however, a recently resolved crystal structure implies that nTZDpa may have 

inverse agonist character due to observed destabilization of H12. Further coregulator 

recruitment experiments supported the partial inverse agonist characteristics and identified 

nTZDpa as a biased agonist with selective recruitment of the corepressor NCoR over the 

corepressor SMRT.  

Herein, we look to identify the region of nTZDpa responsible for this bias effect through 

in silico screening and determination of structure-activity relationships between nTZDpa 

fragments and PPARγ. We wanted to conserve the 5-chloro-2-indole carboxylic acid scaffold to 

maintain a consistent binding mode, so a series of analogs were designed with a focus on 

modifying the thiophenyl (R1), benzyl chloride (R2), and thio group (R3) of nTZDpa. These 

analogs introduced bulkier functional groups, hydrogen bond donor and acceptor groups, and 

conversion of the thio group to a sulfoxide, sulfone, and sulfonamide (Table 1) at these regions. 

These modifications were chosen due to the region each group occupies in the nTZDpa crystal 

structure. Specifically, the thiophenyl group occupies a pocket that is made up of both 

hydrophobic and hydrophilic residues in the Ω-loop, lower H3, and β-sheet regions. The benzyl 

chloride group occupies a hydrophobic pocket in the upper H3 and H4/5 region.  

Each analog was screened in silico to support a consistent binding mode regardless of 

functional group present. From there, fragments of nTZDpa were synthesized and screened in 

vitro to identify the region responsible for the bias effect. Upon identifying this region, 
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additional analogs were synthesized to establish a structure-activity relationship for the biased 

agonism of nTZDpa. 

2.3 Results 
2.3.1 Identifying nTZDpa as a biased agonist 

 A series of inverse agonists, antagonists, apo state, and rosiglitazone as a negative 

control were screened in vitro for affinity of the corepressors NCoR and SMRT using 

fluorescence anisotropy experiments under four conditions: PPARγ ligand binding domain 

(LBD), full-length protein (FL), full-length with heterodimer partner retinoid X receptor 

(FL+RXR), and the heterodimer bound to DNA (Figure 3). In each condition, nTZDpa showed a 

higher affinity for NCoR than SMRT compared to apo PPARγ, identifying the ligand as biased 

toward NCoR recruitment. 

Figure 3. Fluorescence anisotropy experiments measuring the affinity for 
corepressors NCoR and SMRT. Full agonist rosiglitazone, antagonist 
SR1664, and inverse agonists T0070907, SR10221, SR2595, and nTZDpa 
bound to PPARγ.  
Abbreviations: ligand binding domain (LBD), full-length (FL), full-length with 
heterodimer RXR (FL+RXR), and full-length with RXR and DNA 
(FL+RXR+DNA). 
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2.3.2 First series analog development 

The first series of nTZDpa analogs aimed to preserve the binding mode observed in 

crystal structures using the 5-chloro-2-indole carboxylic acid as a scaffold for all analogs. 

Modifications focused on introducing bulkiness and hydrogen bond acceptors and/or donors to 

three regions of nTZDpa: the thiophenyl (R1), the benzyl chloride (R2), and the thio group (R3). 

The aim of these modifications was to probe the size of the binding pocket and to probe for 

new hydrogen bond interactions. Table 1 is a complete list of each analog. 

Abbreviations: Phenyl (Ph), Cl (chloro), alcohol (OH), thiol (SH), amine (NH), sulfoxide (S(O)), sulfone 
(S(O)2). 

 

Table 1. First series analogs 
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2.3.3 Docking 

In crystal structures, nTZDpa has significant interactions with R288 on H3 and the 

backbone of S342 in the β-sheet region. Each analog was built in silico and docked into the 

nTZDpa-bound crystal structure of PPARγ (PDB: 2Q5S) using nTZDpa as a template. The docked 

final structure was chosen based on the relative location of the carboxylic acid and the indole 

nitrogen compared to nTZDpa in its crystal structure (Figure 4).  

2.3.4 In silico screening 

 Each analog and nTZDpa were prepared for 

molecular dynamics simulations (MD) using 

the AMBER force field where 500 ns of 

conventional MD were used to calculate 

boost parameters and 1.5 μs of accelerated 

MD were completed. RMSD free energy maps 

for the accelerated MD were generated and 

used to select frames corresponding to the 

lowest energy well (Figures S1-S4). Each 

simulation was analyzed, and the frequency of Figure 4. Binding mode of nTZDpa. The 5-chloro-2-
indole carboxylic acid scaffold is believed to direct the 
binding mode to this region of PPARγ through 
interactions with R288 of H3 and the backbone of S342 
of the β-sheet. The R1 group of nTZDpa occupies the 
lower portion of helix 3 around the Ω-loop. The R2 group 
occupies the upper portion of H3 around H5. PDB: 2Q5S 
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hydrogen bond interactions are shown in Figure 5. Overall, each analog retained interactions 

with either R288, S342, or both residues simultaneously at high frequency providing support 

that the desired binding mode is maintained. Interactions between the analogs and R288 are 

more consistent than with S342 (Figure 5). 

2.3.5 Synthesis and in vitro screening of nTZDpa fragments and 1e analogs 

 The synthetic route for each fragment (1a-1e) is shown in Scheme 1 and analogs of 

fragment 1e (2a and 2b) are shown in Scheme 2. Commercially available ethyl 5-chloro-2-indole 

carboxylate was N-methylated, sulfenylated, coupled with 4-chlorobenzyl chloride, benzyl 

bromide, or (bromomethyl)cyclohexane, and deprotected to yield each compound. The 

compounds were then screened in vitro for PPARγ binding affinity and coregulator binding 

affinities using fluormone competitive binding assays and fluorescence anisotropy assays, 

respectively (Table 2 and Figure 6).  

Figure 5. Carboxylic acid interactions with R288 and S342 for 
each analog. The red data labels are the frequency of 
interactions between nTZDpa and R288 and S342. 
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 The fluormone competitive binding assays showed that fragments 1a and 1b, consisting 

mainly of the 5-chloro-2-indole carboxylic acid scaffold, resulted in micromolar affinities.23 

Fragments 1c and 1d, lacking the benzyl chloride group, had affinities in the hundreds of 

nanomolar. Finally, fragment 1e and compounds 2a and 2b, consisting of only benzyl chloride, 

benzyl, and cyclohexylmethyl groups, respectively, had the highest affinities for PPARγ 

compared to the other fragments. The results of these assays indicate several important 

features. Either R1 or R2 is required for binding, but a hydrophobic group at R2 has more impact 

on binding affinity than a hydrophobic group at R1. Despite the impact inclusion of a 

hydrophobic group at R2 has on binding, none of the fragments had the same affinity as 

nTZDpa, so both R1 and R2 make contributions to the strong binding affinity of nTZDpa. 

Scheme 1. Synthesis of nTZDpa fragments. a. Iodomethane, K2CO3, 
acetone, 2 hr at rt. b. Thiophenol, N-chlorosuccinimide, CH2Cl2, 
MeCN, -78°C to 0°C, 1hr at 0°C. c. 4-chlorobenzyl chloride, NaH, TBAI, 
DMF, 0°C to 16 hr at rt. d. NaOH, 1:1 THF:EtOH, overnight at rt. 
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 The fluorescence anisotropy coregulator recruitment assays produced a variety of 

results (Figure 6). Because fragments 1a and 1b had high micromolar affinities, we assumed the 

fragments had no appreciable effect on the binding affinities of SMRT, NCoR, or MED1. 

Interestingly, fragment 1c had a higher affinity for the coactivator MED1 indicating an increased 

agonist character than nTZDpa. Fragment 1d had similar affinities for each peptide, each being 

less than the vehicle. Fragment 1e had a slightly higher affinity for SMRT than nTZDpa, but both 

ligands caused SMRT and MED1 to dissociate from the PPARγ indicated by a lower affinity for 

both peptides. Most importantly, fragment 1e had a similar affinity for NCoR as nTZDpa. This 

indicates that the R2 region, consisting of a benzyl chloride moiety, is the region of nTZDpa 

responsible for increased NCoR affinity.  

 Both 2a and 2b had agonist character due to their increased affinity for MED1 and 

reduced affinity for NCoR. This gives us some insight into the structure-activity relationship. The 

Scheme 2. Synthesis of 1e analogs. c. Benzyl bromide or 
(Bromomethyl)cyclohexane, NaH, TBAI, DMF, 30 min. at 0°C to 16 hr at rt. 
d. NaOH, 1:1 THF:EtOH, overnight at rt. 
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agonist character suggests that compounds 2a and 2b may bind more similarly to fragment 1c 

than fragment 1e. Further experiments will need to be completed to validate the binding 

modes of fragments 1c and 1e and compounds 2a and 2b. Regardless, based on these data, we 

have support that the chloro group of the benzyl chloride is necessary for the binding mode 

that leads to the bias effect. 

2.4 Methods 
2.4.1 Protein purification 

A pET-46 plasmid carrying the genes for ampicillin resistance and N terminally 6xHis-

tagged PPARγ containing a tobacco etch virus (TEV) nuclear inclusion protease recognition site 

between the His tag and protein of interest was transformed into chemically competent E. coli 

BL21(DE3) Gold cells (Invitrogen). Cells were grown in either ZYP-5052 autoinduction media or 

terrific broth (TB). Cells grown in TB at 37 °C were induced at an OD600 of approximately 0.8 by 

the addition of 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and the temperature 

lowered to 22 °C. Induction proceeded for 16 h prior to harvesting. Harvested cells were 

Figure 6. Fluorescence anisotropy assay to 
screen for biased agonism in nTZDpa 
fragments and 1e analogs. SMRT peptide 
was unavailable at the time of publishing. 

Table 2. Ki
 values of nTZDpa 

fragments and 1e analogs 
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homogenized into 50 mM phosphate (pH 8.0), 300 mM KCl, 1 mM tris(2-

carboxyethyl)phosphine (TCEP), and lysed using a C-5 Emulsiflex high-pressure homogenizer 

(Avestin). Lysates were then clarified and passed through two Histrap FF 5 ml columns in series 

(GE Healthcare). Protein was eluted using a gradient from 15 to 500 µM imidazole. Fast protein 

liquid chromatography was performed on either an NGC Scout system (Bio-Rad) or an ÄKTA 

Start (GE Healthcare). Eight milligrams of recombinant 6xHis-tagged TEV was added to eluted 

protein followed by dialysis into 50 mM Tris (pH 8.0), 200 mM NaCl, 1 mM TCEP, and 4 mM 

EDTA. The protein was again passed through HisTrap FF columns in order to separate cleaved 

protein from TEV as well as the cleaved 6xHis tag. The cleavage step was only performed on 

protein which would be used for NMR or FP, but the protein used for Fluormone competitive 

binding assay did not have the 6xHis tag removed. The protein was then further purified by gel 

filtration using a HiLoad 16/600 Superdex 200 PG (GE Healthcare). Size exclusion was 

performed in 25 mM MOPS (pH 8.0), 300 mM KCl, 1 mM TCEP, and 1 mM EDTA buffer. Protein 

was then dialyzed into 25 mM 3-(N-morpholino)propanesulfonic acid (MOPS) (pH 7.4), 25 mM 

KCl, and 1 mM EDTA buffer. Protein purity in excess of 95% was determined by gradient 4–20% 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis (NuSep). Protein 

concentration was determined using ε280 = 12,045 M−1 cm−1. 

2.4.2 Delipidation of PPARγ 

To delipidate PPARγ LBD, purified protein was diluted to 0.8 mg ml−1 and batched with 

Lipidex 1000 (Perkin-Elmer) at an equal volume. This mixture was batched for 1 h at 37 °C and 

100 rpm. Immediately following this treatment, protein was pulled through a gravity column by 

syringe. To increase yield, it was found that the speed of elution was important; protein could 
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not remain on the resin at room temperature in excess of 3 min. Two more column volumes of 

pre-warmed 25 mM MOPS, 25 mM KCl, and 1 mM EDTA were also pulled through in the same 

manner. Quality of delipidation was then estimated by 19F NMR, and loss of lipid can be most 

easily detected by a reduction in the peak at −84.1 ppm. All protein in this work has been 

delipidated. 

2.4.3 Fluormone competitive binding assay 

PPARγ ligand inhibition constants (Ki) were measured using a protocol adapted from 

LanthaScreen TR-FRET PPARγ competitive binding assay (Invitrogen, catalog number PV4894). 

Assay was performed by plating a mixture of 8 nM 6xHis-PPARγ-LBD, 2.5 nM LanthaScreen Elite 

Tb-anti-His antibody, 5 nM LanthaScreen Fluormone Pan-PPAR Green (Invitrogen, catalog 

number PV4896), and 12-point serial dilutions of PPARγ ligands from 50 μM to 140 fM. This 

mixture was added to wells of low-volume 384-well black plates (Grenier Bio-one) to a final 

volume of 16 μL. All dilutions were made in 25 mM MOPS (pH 7.4), 25 mM KCl, 1 mM EDTA, 

0.01% fatty-acid free BSA (EMD Millipore), 0.01% Tween, and 5 mM TCEP. Assay titrations were 

performed in duplicate. Plates were incubated in the dark for 2 h at room temperature before 

being read on a Synergy H1 microplate reader (BioTek). TR-FRET was measured by excitation at 

330 nm/80 nm and emission at 495 nm/10 nm for terbium and 520 nm/25 nm for Fluormone. 

Change in TR-FRET was calculated by 520 nm/495 nm ratio. Nonlinear curve fitting was 

performed using Prism 7.0b (Graphpad Software Inc.) as described above for the TR-FRET data, 

including manual exclusion of highest three concentrations for nTZDpa due to instrinsic 

fluorescence of the ligand. 

Fluormone competitive binding assays were completed using two technical replicates 
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and the experiment was repeated independently once. The number chosen for technical 

replicates and independent experiment replicates were based on previous experience of 

limited variability inherent in these biochemical assays. 

2.4.4 Ki calculation 

 The inhibition constant for each PPARγ ligand was calculated by applying a corrected 

Cheng-Prusoff:31 

Ki = (Lb)(IC50)(Kd)(Lo)(Ro) + Lb(Ro − Lo + Lb − Kd) 

where IC50 is the concentration of the ligand that produces 50% displacement of the 

Fluormone tracer, Lo is the concentration of Fluormone in the assay (5 nM), and Kd is the 

binding constant of Fluormone to wt or the two BTFA-labeled mutants, Ro is the total receptor 

concentration, and Lb is the concentration of bound Fluormone in the assay with no addition of 

test ligand. The affinity of Fluormone for the two BTFA-labeled mutant proteins was 

determined via TR-FRET by titration of Fluormone into each mutant bound to Elite Tb-anti-His 

antibody. Dissociation constant of Fluormone for wt was measured as 7.9 ± 0.2 for PPARγ LBD. 

2.4.5 Fluorescence anisotropy peptide binding assays 

Fluorescence anisotropy peptide binding assays were performed by plating a mixture of 

50 nM peptide with an N-terminal FITC tag, 12-point serial dilutions of PPARγ-LBD wt, and 

PPARγ ligands from 50 μM to 24 nM. PPARγ-LBD and PPARγ ligands were added at a 1:1 ratio. 

This mixture was added to wells of low-volume 384-well black plates (Grenier Bio-one, catalog 

number 784076) to a final volume of 16 μL. Peptides were synthesized by Lifetein LLC 

(Somerset, NJ, USA) for the for MED1 peptide, sequence: NTKNHPMLMNLLKDNPAQD; and the 
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NCoR peptide, sequence: GHSFADPASNLGLEDIIRKALMG (2251–2273). Other peptides were 

purchased from ThermoFisher (Waltham, MA, USA) for MED1 peptide, sequence: 

NTKNHPMLMNLLKDNPAQD (catalog number PV4549) and SMRT, sequence: 

HASTNMGLEAIIRKALMGKYDQW (catalog number PV4424). All dilutions were made in 25 mM 

MOPS (pH 7.4), 25 mM KCl, 1 mM EDTA, 0.01% fatty-acid-free bovine serum albumin (BSA) 

(EMD Millipore, catalog number 126575), 0.01% Tween, and 5 mM TCEP. Assay titrations were 

performed in duplicate. Plates were incubated in the dark at room temperature for 2 h before 

being read on a Synergy H1 microplate reader (BioTek). Anisotropy was measured by excitation 

at 485 nm/20 nm and emission at 528 nm/20 nm for FITC. Data were fit using nonlinear 

regression: agonist vs. response – variable slope 4 parameters, in Prism 7.0b.  

Anisotropy assays were completed using two technical replicates and the experiment 

was repeated independently once. The number chosen for technical replicates and 

independent experiment replicates were based on previous experience of limited variability 

inherent in these biochemical assays. 

2.4.6 In silico screening of nTZDpa analogs 

Each analog was built computationally using Discovery Studio and saved as a mol2 file. 

The crystal structure of nTZDpa-bound PPARγ was retrieved from the protein databank (PDB: 

2Q5S). Unresolved residues from the crystal structure were modeled into the PDB file using the 

Modeller extension within UCSF Chimera.32,33 This refined structure was then used in the GOLD 

molecular docking software to dock each analog into the PDB file using nTZDpa as a template. 

The resulting docked analog files were compared to the nTZDpa crystal structure and the most 

nTZDpa-like binding mode, based on carboxylic acid and indole nitrogen positioning, was 
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chosen. The analog-docked structure file was formatted to use the Amber 16 molecular 

modeling package and AMBER ff14SB force field.34 

 Conventional molecular dynamics simulations were run at a 500 ns timescale to 

calculate boost parameters to be used by accelerated molecular dynamics simulations for each 

analog and nTZDpa. All ligands were subjected to the same preparation steps, simulation 

conditions, and data analysis unless stated otherwise. The formatted ligand-docked structure 

files were submitted to the H++ server to determine the protonation states of titratable 

residues at pH 7.4 (http://biophysics.cs.vt.edu/H++).35 The resulting pdb file was modified using 

pdb4amber in AmberTools14 for use with tleap.36 Each analog was extracted and submitted to 

RED Server for RESP charge derivation and geometry optimization.37,38 Structures were 

immersed in a TIP3P octahedron water box and water molecules were extended to 10 Å from 

protein atoms.39 Na+ atoms were added until the system was neutralized and K+ and Cl- ions 

were added to concentrate the system to 50 mM.40 The resulting system was equilibrated using 

nine-steps of minimization and restrained simulations protocol. In the first step, 2000 steps of a 

5 kcal mol-1 Å-2 force constant was applied on the protein heavy atoms. Then, an MD simulation 

was performed for 15 ps with shake under constant volume periodic boundary conditions 

(NVT). This was followed by two rounds of steepest descent minimization with a 2 and 0.1 kcal 

mol-1 Å-2 spring constant for 2000 steps each round. The system underwent another simulation, 

this time with no restraints followed by three rounds of simulations using 1, 0.5, and 0.5 kcal 

mol-1 Å-2 force constants on heavy atoms for 5 ps, 10 ps, and 10 ps, respectively. Finally, a 

simulation without restraints was performed for 200 ps under NPT conditions. Hydrogen mass 

repartitioning and SHAKE algorithm were used to allow an integration time step of 4 fs. 
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Production runs of constant pressure replicates were performed from randomized initial 

velocities. The pressure was controlled by a Monte Carlo barostat with a pressure relaxation 

time (taup) of 2 ps. A temperature of 310 K was kept constant using Langevin dynamics with a 

collision frequency (gamma_ln) of 3 ps-1. The Ewald41 particle mesh with an 8.0 Å cutoff was 

used to treat electrostatic interactions. Accelerated molecular dynamics simulations were 

completed at 1.5 μs timescales using the with a timestep of 3 fs. Production runs used a dual 

boosting approach in which two separate boost potentials are applied to the torsional and total 

potential terms. Boost parameters were calculated using the average dihedral and total 

potential energies obtained from 500 ns of conventional molecular dynamics runs. Accelerated 

molecular dynamics production runs continued from the final frame of the conventional 

molecular dynamics runs.  

All production simulations were performed using pmemd.cuda or pmemd.cuda.MPI. Hydrogen 

bond analysis were completed using CPPTRAJ in the AmberTools14 Toolbox.41 A toolkit of 

Python scripts of “PyReweighting” was used to reweight the biased accelerated molecular 

dynamics frames and to calculate free-energy profiles (Figures S1, S2, S3, S4, S5).42 

2.4.7 Synthesis of nTZDpa fragments and 1e analogs 

 All starting materials and reagents were available commercially unless stated otherwise. 

Acetone was dried using nitrogen and magnesium sulfate (MgSO4) prior to use. Melting points 

were determined using a Stuart Scientific melting point apparatus SMP3. Proton and 13C 

spectrums were determined using either a Bruker 400 MHz or Bruker 700 MHz NMRs. High 

resolution liquid chromatography mass spectrometry was completed using using an Agilent 

6520 Accurate Mass Q-TOF LC/MS with Agilent 1200 binary LC. 
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General procedure a: N-methylation of indole.43 The ethyl ester indole (1eq) was dissolved in 

acetone (60 mM) and K2CO3 (4 eq) and iodomethane (2 eq) were added to the reaction vessel. 

Stir this mixture at room temperature overnight. The following day white solids were visible in 

the reaction vessel. The reaction was poured into water and extracted three times with ethyl 

acetate. The combined organic layers were washed with brine, dried over MgSO4, filtered, and 

concentrated in vacuo.  

General procedure b: sulfenylation of indole.43 Thiophenol (1.2 eq) was added to a solution of 

N-chlorosuccinimide (1.2 eq) in CH2Cl2 (0.2 M) at -78°C. The mixture was warmed to 0°C, where 

the reaction changed from clear to bright yellow. After 15 minutes at this temperature, the 

ethyl ester indole (1 eq) was dissolved in a 1:1 solution of CH2Cl2 and MeCN (0.2 M) and was 

added to the reaction vessel and stirred at 0°C for one hour. The reaction was quenched with 

water and extracted three times with CH2Cl2. The combined organic layers were washed with 

brine, dried over MgSO4, filtered, and concentrated in vacuo. 

General procedure c: alkylation of indole.43 The ethyl ester indole (1 eq) was dissolved in DMF 

(0.1 M) and was added to a suspension of sodium hydride (60 % in mineral oil, 1.2 eq) in DMF 

(0.1 M) at 0°C. The reaction was warmed to room temperature and stirred for 30 minutes. 4-

chlorobenzyl chloride or benzyl bromide or (bromomethyl)cyclohexane (1.5 eq) and TBAI (1 eq) 

were added, and the reaction was stirred at room temperature overnight. The reaction was 

quenched with water and extracted three times with ethyl acetate. The combined organic 

layers were washed with brine, dried over MgSO4, filtered, and concentrated in vacuo. 
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General procedure d: ethyl ester deprotection.43 The ethyl ester indole (1 eq) was dissolved in 

1:1 THF:EtOH (0.1 M), and 1M NaOH (5 eq) was added to the reaction vessel. The reaction was 

stirred at room temperature overnight. Upon completion, the mixture was transferred to a 

round bottom flask and concentrated in vacuo to remove the reaction solvent, acidified with 

1M HCl, and extracted three times with ethyl acetate. The combined organic layers were 

washed with brine, dried over MgSO4, filtered, and concentrated in vacuo. 

5-chloro-1H-indole-2 carboxylic acid (1a). Following general procedure d, the ethyl ester indole 

(80 mg, 0.358 mmol) was purified by Flash Chromatography (DCM:MeOH 0% to 15% gradient) 

yielding the title compound as a brown solid (64.1 mg, 91.6% yield). Decomp., 230°C. H NMR 

(400 MHz, MeOD) δ 7.62 (s, 1H), 7.41 (d, 1H), 7.21 (d, 1H), 7.09 (s, 1H); C NMR (700 MHz, 

DMSO) δ 163.05, 135.99, 130.78, 128.37, 124.89, 124.77, 121.43, 114.54, 107.13; HRMS ESI 

(m/z): [M-H]- calcd for C9H5ClNO2 194.001, found 193.978. 

5-chloro-1-methyl-indole-2 carboxylic acid (1b). Following general procedure a, the ethyl ester 

indole (180 mg, 0.814 mmol) was purified by Flash Chromatography (Heptane:Ethyl acetate 0% 

to 30% gradient) yielding the N-methylated intermediate compound as a white solid (157.3 mg, 

73% yield). H NMR (400 MHz, CDCl3) δ 7.63 (s, 1H), 7.30 (s, 2H), 7.22 (s, 1H), 4.38 (q, 2H), 4.06 

(s, 3H), 1.41 (t, 3H). 

The ethyl ester indole intermediate (51.6 mg, 0.217 mmol) underwent general procedure d, and 

was purified by Flash Chromatography (DCM:MeOH 0% to 15% gradient) yielding the title 

compound as a white solid (41.7mg, 92% yield). Decomp., 230°C. H NMR (400 MHz, MeOD) δ 

7.62 (s, 1H), 7.45 (d, 1H), 7.27 (d, 1H), 7.20 (s, 1H), 4.05 (s, 3H); C NMR (700 MHz, DMSO) δ 
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163.30, 137.99, 131.32, 126.78, 125.13, 124.74, 121.45, 113.06, 108.83, 32.17; HRMS ESI (m/z): 

[M-H]- calcd for C10H7ClNO2 208.017, found 207.972. 

5-chloro-1-methyl-3-(phenylthiol)-indole-2 carboxylic acid (1c). Following general procedure b, 

the ethyl ester indole (100 mg, 0.447 mmol) was purified by Flash Chromatography 

(Heptane:Ethyl acetate 0% to 30% gradient) yielding the sulfenylated intermediate compound 

as a white solid (77.4 mg, 52% yield). H NMR (400 MHz, CDCl3) δ 9.22 (s, 1H), 7.60 (s, 1H), 7.38 

(d, 1H), 7.31 (d, 1H), 7.22-7.08 (m, 5H), 4.38 (q, 2H), 1.30 (t, 3H). 

The sulfenylated intermediate (42 mg, 0.127 mmol) underwent general procedure a, and was 

purified by Flash Chromatography (Heptane:Ethyl acetate 0% to 20% gradient) yielding the N-

methylated intermediate compound as a white solid (38.5 mg, 87% yield). H NMR (400 MHz, 

CDCl3) δ 7.63 (s, 1H), 7.37-7.29 (br, 2H), 7.20-7.14 (br, 2H), 7.12-7.04 (br, 3H) 4.34 (q, 2H), 4.04 

(s, 3H), 1.25 (t, 3H).  

Finally, the N-methylated intermediate (35.2 mg, 0.102 mmol) underwent general procedure d, 

and was not purified further (29.1 mg, 90% yield). Melting point, 190°C. H NMR (400 MHz, 

MeOD) δ 7.42 (d, 1H), 7.30 (s, 1H), 7.20 (d, 1s), 7.10-7.03 (m, 2H), 6.98 (dd, 4H) 3.94 (s, 3H); C 

NMR (700 MHz, DMSO) δ 162.53, 137.96, 136.87, 135.43 129.50, 129.31, 126.84, 126.49, 

125.86, 125.57, 119.42, 114.05, 105.85, 40.36, 33.12, ; HRMS ESI (m/z): [M-H]- calcd for 

C16H11ClNO2S 316.020, found 315.965. 

5-chloro-3-(phenylthiol)-1H-indole-2 carboxylic acid (1d).  

The sulfenylated intermediate (36.2 mg, 0.109 mmol) underwent general procedure d, and was 

purified by Flash Chromatography (DCM:MeOH 0% to 15% gradient) yielding the title 
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compound as a white solid (17.1 mg, 51% yield). Decomp., 200°C. H NMR (400 MHz, MeOD) δ 

7.47 (d, 1H), 7.38 (s, 1H), 7.25 (d, 1H), 7.21-7.15 (m, 2H), 7.12-7.05 (m, 3H); C NMR (700 MHz, 

DMSO) δ 162.27, 138.12, 134.84, 130.75, 129.46, 126.82, 125.96, 125.73, 125.50, 119.36, 

115.41, 105.62, 40.71, 29.39; HRMS ESI (m/z): [M-H]- calcd for C15H9ClNO2S 302.005, found 

301.936. 

5-chloro-1-(4-chlorobenzyl)-indole-2 carboxylic acid (1e). Following general procedure c, the 

ethyl ester indole (100 mg, 0.447 mmol) was purified by Flash Chromatography (Heptane:Ethyl 

acetate 0% to 30% gradient) yielding the alkylated intermediate compound as a white solid 

(126.2 mg, 81% yield). H NMR (400 MHz, CDCl3) δ 7.70 (s, 1H), 7.34 (s, 1H), 7.31-7.22 (m, 4H), 

6.97 (d, 2H), 5.80 (s, 2H), 4.36 (q, 2H), 1.39 (t, 3H).  

The alkylated intermediate (40 mg, 0.115 mmol) underwent general procedure d, and was 

purified by Flash Chromatography (DCM:MeOH 0% to 15% gradient) yielding the title 

compound as a white solid (36.5mg, 99% yield). Decomp., 217°C. H NMR (400 MHz, CDCl3) δ 

7.61 (s, 1H), 7.34 (s, 1H), 7.19 (s, 1H), 7.13 (d, 3H), 6.86 (d, 2H), 5.68 (s, 2H); C NMR (700 MHz, 

DMSO) δ 163.09, 137.85, 137.63, 132.14, 130.32, 128.95, 128.57, 127.10, 125.70, 125.40, 

121.87, 113.39, 110.28, 46.97, 40.32; HRMS ESI (m/z): [M-H]- calcd for C16H10Cl2NO2 318.009, 

found 317.963. 

5-chloro-1-(benzyl)-indole-2 carboxylic acid (2a). Following general procedure c, the ethyl ester 

indole (111.83 mg, 0.5 mmol) was purified by Flash Chromatography (Heptane:Ethyl acetate 0% 

to 30% gradient) yielding the alkylated intermediate compound as a yellow solid (139.9 mg, 
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89.2% yield). H NMR (400 MHz, CDCl3) δ 7.64 (s, 1H), 7.29 (s, 1H), 7.25-7.14 (br, 5H), 6.99 (d, 

2H), 5.78 (s, 2H), 4.31 (q, 2H), 1.33 (t, 3H). 

The alkylated intermediate (139.9 mg, 0.446 mmol) underwent general procedure d, and was 

purified by Flash Chromatography (DCM:MeOH 0% to 10% gradient) yielding the title 

compound as a light brown solid (57.6mg, 45.3% yield). Decomp., 170°C. H NMR (400 MHz, 

CDCl3) δ 7.67 (s, 1H), 7.39 (s, 1H), 7.20 (dd, 5H), 6.90 (s, 2H), 5.49 (s, 2H); C NMR (400 MHz, 

MeOD) δ 163.38, 138.32, 137.73, 129.64, 128.12, 127.08, 126.77, 125.97, 124.83, 121.12, 

112.09, 109.81, 47.28; HRMS ESI (m/z): [M-H]- calcd for C16H11ClNO2 284.048, found 283.982. 

5-chloro-1-(cyclohexylmethyl)-indole-2 carboxylic acid (2b). Following general procedure c, the 

ethyl ester indole (111.83 mg, 0.5 mmol) was purified by Flash Chromatography (Heptane:Ethyl 

acetate 5% to 25% gradient) yielding the alkylated intermediate compound as a yellow solid 

(87.0 mg, 54.4% yield). H NMR (400 MHz, CDCl3) δ 7.62 (s, 1H), 7.42-7.27 (br, 2H), 7.23 (s, 1H), 

4.41-4.33 (m, 4H), 1.89-1.77 (br, 1H), 1.71-1.59 (br, 3H), 1.51 (d, 2H), 1.40 (t, 3H), 1.19-0.97 (br, 

5H). 

The alkylated intermediate (87.0 mg, 0.272 mmol) underwent general procedure d, and was 

purified by Flash Chromatography (DCM:MeOH 0% to 10% gradient) yielding the title 

compound as a light yellow solid (42.7 mg, 53.7% yield). Decomp., 177°C. H NMR (400 MHz, 

CDCl3) δ 7.67 (s, 1H), 7.39 (s, 1H), 7.37-7.27 (m, 2H), 4.41 (d, 2H), 1.91-1.79 (br, 1H), 1.73-1.62 

(br, 3H), 1.52 (d, 2H), 1.19-1.02 (br, 5H); C NMR (400 MHz, MeOD) δ 163.43, 137.96, 129.53, 

126.66, 125.56, 124.46, 120.95, 112.24, 109.50, 50.02, 39.41, 30.44, 29.38, 29.35, 26.06, 25.57; 

HRMS ESI (m/z): [M-H]- calcd for C16H17ClNO2 290.095, found 290.027. 
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2.5 Discussion 
 The data resulting from the fluorescence anisotropy coregulator affinity experiments 

indicate several important characteristics that can be applied to future work, specifically, the 

impact the R1 and R2 regions have on coregulator recruitment. Based on the crystal structure 

binding mode seen in Figure 4, the R1 region of nTZDpa occupies Branch II of the ligand binding 

pocket and the R2 region of nTZDpa occupies Branch III of the ligand binding pocket. The agonist 

character of fragment 1c is assumed to be the consequence of Branch II binding, and this 

suggests Branch II is involved in MED1 recruitment. In contrast, the biased character of 

fragment 1e suggests Branch III is involved in NCoR recruitment.  

Analogs of fragment 1e, compounds 2a and 2b, provided support to the necessity of the 

chloro group in the R2 region for the bias effect observed with nTZDpa. These compounds both 

lacked the chloro group and had a higher affinity for MED1 compared to NCoR. This suggests 

they bind more similarly to fragment 1c, occupying the Branch II region of the ligand binding 

pocket and giving them agonist characteristics.  

2.6 Conclusions 
 The first series of analogs screened in silico maintained interactions between the 

carboxylic acid of the scaffold and residues R288 and S342 suggesting that modifications to the 

thiophenyl, benzyl chloride, and thio group will retain a consistent binding mode. Fluormone 

binding affinity assays showed that the hydrophobic pocket occupied by the benzyl chloride 

group has a larger influence on binding affinity than the thiophenyl group; however, both 

groups are needed to reach picomolar binding affinity like nTZDpa. It is important to note that 

the focus of this research was not to modify the affinity of nTZDpa, but instead, to modify the 
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affinity for NCoR. In this case, the data suggests the Branch II region is involved in MED1 

recruitment and the Branch III region is involved in NCoR recruitment. Future work will focus on 

modifying the chloro group of fragment 1e to other hydrophobic functional groups to further 

probe the effects Branch III has on NCoR recruitment. 

2.7 Future directions 
 The future of this project should be quite linear. The work completed thus far has 

created a great starting point to further explore biased agonism in PPARγ. The specific area that 

needs to be addressed in the immediate future is validation of the binding mode of fragment 1e 

through crystallography and molecular dynamics simulations. While the crystal structure is 

being resolved, new 1e analogs that vary the position of the chloro group and replace the 

chloro group with other hydrophobic alkyl chains can be synthesized. The intent of these 

analogs is to probe the size of the hydrophobic pocket and determine whether this pocket is 

involved in the bias effect. Examples of chloro group replacements are methyl, isopropyl, and 

tert-butyl groups. Furthermore, the agonist character of fragment 1c and compounds 2a and 2b 

should be explored further to determine whether the Branch II region influences H12 

independent agonism. The first step in this work would be to validate the binding mode 

through crystallography and molecular dynamics simulations. From there, planning of analogs 

of fragment 1c can begin. 

Chapter 3: Helix 3 and β-sheet interactions anchor multiple-binding 

modes in novel PPARγ partial agonist NMP422 
T. M. Patton, Ian M. Chrisman, Mariah L. Rayl, Michelle D. Nemetchek, Tung-Chung Mou, 

Desiree E. Mendes, Philippe Diaz, and Travis S. Hughes 
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3.1 Abstract 
A class of FDA approved peroxisome proliferator-activated receptor gamma (PPARγ) targeting 

antidiabetic agents called the glitazones, Avandia (rosiglitazone) and Actos (pioglitazone), are 

associated with unwanted adverse effects due to their full agonist characteristics. To avoid 

these adverse effects, drug discovery efforts have focused on avoiding full agonist like 

binding modes to reduce transcriptional activity through helix 12 independent mechanisms, 

but there have not been any FDA approved drugs resulting from these efforts. NMP422 is a 

novel PPARγ partial agonist that adopts two unique binding modes anchored by helix 3 and β-

sheet interactions. In molecular dynamics simulations, these interactions allow the major 

ligand binding mode to be like the glitazones, but flipped, making the ligand independent of 

helix 12 interactions that would lead to full agonism. Identifying the interactions that lead to 

this flipped binding mode could lead to new strategies in developing chemically diverse 

PPARγ ligands with a steady binding mode. 

3.2 Introduction 
Drug discovery efforts to reduce the unwanted adverse effects of full agonist PPARγ 

drugs led to the development of partial agonists as described in Section 1.2. The TZDs, and 

other full agonists, generally consist of four components: an acidic head, an aromatic ring, a 

linker, and an aromatic or heterocyclic tail that binds to the receptor in a horseshoe shape 

around the backside of helix 3 (Figure 1b).44 The acidic head is situated near the junction of 

helix 4/5, helix 11, and helix 12 where it makes putative interactions described in Section 1.2. 

The aromatic ring is placed directly behind helix 3 forming hydrophobic interactions with 

Cys285 and Met364, while the linker and heterocyclic tail are placed into the β-sheet side of 

helix 3 where the groups interact with Val339, Leu330, and Ile341.16 
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NMP422, a novel partial agonist, is an intermediate for a promiscuous PPAR modulator 

that showed unexpected selectivity and modest potency for PPARγ (Figure 7).45 Using the 

resolved crystal structure described in molecular dynamics simulations, and with support from 

fluorine NMR, we found that NMP422 is able to adopt two ligand binding modes. One mode is 

TZD-like, forming a horseshoe conformation around helix 3, but the carboxylic acid forms bonds 

to residues in the helix 3-β-sheet region instead of the putative interactions that stabilize helix 

12.  The other binding mode maintains the interactions in the helix 3-β-sheet region, but the 

horseshoe conformation is not formed around helix 3. 

3.3 Results 
3.3.1 In vitro assays   

 The binding affinity assays were completed using all three isoforms of PPAR in 

fluormone competitive binding assays. Of those, NMP422 was selective for PPARγ with an 

affinity of 578 nM (Figure 7).  

NMP422 was evaluated for the in vitro binding of hPPARγ protein in HEK293T cells to 

Figure 7. Structure of NMP422 and selectivity 
for PPARγ. The selectivity of NMP422 was 
determined by fluormone competitive binding 
affinity assays. 
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determine its level of transactivation compared to the transactivation of rosiglitazone. NMP422 

transactivation was found to be 53.6% of rosiglitazone transactivation and was found to be 

significantly different from rosiglitazone and pioglitazone by one-way ANOVA (Figure 8). 

3.3.2 Overall crystal structure 

The crystal structure of NMP422-bound PPARγ is a homodimer complex consisting of a 

chain A and chain B. Chain A did not show large variations when compared to the crystal 

structure of rosiglitazone-bound PPARγ (Figure 9) indicating the protein is in an active 

conformation where helix 12 is stabilized. Similar to many of the ~200 other PPARγ crystal 

structures, chain B showed PPARγ in a conformation where helix 12 was in a position parallel to 

Figure 8. PPRE assays. a. Peptide affinity binding 
assay is a placeholder b. HEK293T cells were 
saturated to a ligand concentration of 2.5 μM 
and incubated for 18 hr.  
n.s. not significant. (***) p < 0.0001. 
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helix 3 indicating an inactive conformation that coactivators will not be able to bind to. Both 

Table 6. Crystallography data collection and refinement 

statistics. † Rsym=∑hkl ∑i |Ii(hkl)-I(hkl)|/ ∑hkl ∑i Ii(hkl), where 
Ii(hkl) is the ith observation of the intensity of the reflection 
hkl. . § Rwork=∑hkl || Fobs|-|Fcalc||/ ∑hkl |Fobs|, where Fobs and Fcalc 
are the observed and calculated structure-factor amplitudes 
for each reflection hkl. Rfree was calculated with 5% of the 
diffraction data that were selected randomly and excluded 
from refinement. * Data for highest resolution shell are given 
in brackets. †† 

Figure 9. Active conformation of agonist-bound 
PPARγ. Crystal structure of Chain A of NMP422-
bound (cyan) and rosiglitazone-bound (green) 
PPARγ (PDB: 4XLD). 
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conformations of helix 12 involve unit cell crystal contacts, indicating that the structures may 

not accurately represent the lowest energy structures in solution.23 Molecular dynamics (MD) 

simulations showed the same active conformation with no large variations in conformation. 

This supports that NMP422 favors the chain A “active” helix 12 conformation in solution. 

3.3.3 Ligand binding mode 

The ligand binding mode of NMP422 showed consistent hydrogen bond interactions 

between the carboxylic acid of NMP422 and Arg288 and Ser342 in the helix 3-β-sheet region of 

the crystal structure, conventional molecular dynamics (cMD) simulations, and accelerated 

molecular dynamics (aMD) simulations. The rest of the ligand showed variability in ligand 

binding mode and interactions in all three instances.  

The crystal structure showed NMP422 occupying the helix 3-β-sheet region and formed 

putative interactions with residues Ile281, Gly284, Cys285, Arg288, Ser389, and Ala292 of helix 

3, residues Ile326, Tyr327, Met329, Leu330, and Leu333 of helix 5, residues Val339, Ile341, 

Ser342, Glu343, and Met348 of the β-sheet, residue Leu353 of helix 6, and residues Phe363, 

Met364, and Lys367 of helix 7 (Figure 10a). NMP422 was in a compact binding mode with the 

pentyl group participating in interactions with the residues of the upper part of helix 3 and with 

helix 5. The isatin was positioned to interact with the residues of helix 3 and helix 7, and the 

thioether linker interacted with the residues of the β-sheet region.  

cMD simulations consistently showed NMP422 adopt a pi-stacking conformation that 

occupied the helix 3 and β-sheet region in representative structures generated by k means 
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clustering (Figure S18). Overall, the ligand occupied similar regions as the crystal structure. The 

aMD simulations had more variability in occupied regions indicating two ligand binding modes.  

The first ligand binding mode is TZD-like, adopting the horseshoe conformation around 

helix 3 and interacting with residues on helix 3, helix 4/5, helix 11, and helix 12 (Figure 10b). An 

important difference between the binding of NMP422 and the TZDs was observed, mainly that 

the horseshoe of NMP422 is flipped. The TZD’s thiazolidinedione group occupies the area 

around helix 4/5, helix 11, and helix 12 allowing for the putative interactions that stabilize helix 

12. NMP422, however, occupies this same region with its pentyl group, and the direct hydrogen 

bond interactions that stabilize helix 12 do not form. Instead, the carboxylic acid of NMP422 

forms hydrogen bond interactions with residues of helix 3 and the β-sheet, stabilizing the 

region that indirectly stabilizes helix 12. In five aMD simulations, 55% of clustered frames 

(285,000 of 516,000 total frames) adopted the TZD-like conformation. The second ligand 

binding mode is completely independent of the helix 12 region, exclusively occupying the helix 

3-β-sheet region (Figure 10c). 

3.3.4 Fluorine NMR 

At the time of publishing this thesis, analysis and replicates of 19F NMR are still being 

completed and analyzed by members of the Hughes lab. The standalone publication of this 

project will contain these data. Initial 19F NMR shows NMP422 aligning with PPARγ full agonists 

rosiglitazone and pioglitazone indicating a similar binding mode, but NMP422 also has an 

additional minor peak downstream of the major peak (Figure 11). The minor peak indicates a 

potential second binding mode, consistent with aMD simulations.  
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3.4 Methods 
3.4.1 Protein purification 

 The methods used in protein purification were the same as those described in section 

2.4.1. 

3.4.2 Delipidation of PPARγ 

 The methods used for delipidation of PPARγ were the same as those described in 

section 2.4.2.  

3.4.3 Fluormone competitive binding assay 

The methods used in fluormone competitive binding assays were the same as those 

described in section 2.4.3. 

3.4.4 Ki calculation 

 The methods used in Ki calculations were the same as those described in section 2.4.4. 

3.4.5 PPRE transactivation assay 

Figure 10. Comparison of NMP422 and rosiglitazone ligand binding modes for crystal structure and aMD 
simulation clusters. Rosiglitazone (green; PDB: 4XLD) in ligand binding pocket of NMP422-bound PPARγ (white) 
crystal structure compared to: a. crystal structure (pink), b. TZD-like clusters (cyan), and c. non-TZD-like clusters. 
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PPARγ expression plasmid and a luciferase reporter plasmid containing PPARγ response 

element sequences were obtained from the Kojetin lab and used based on protocols from 

previous studies.22,46–48 HEK293 cells were thawed and seeded in T75 flasks. The cells 

underwent two passages at greater than 90% confluency post-thaw and then were plated at 

3.82 million cells per well in a T75 flask. The cells were then transfected with a pCMV6 full-

length PPARγ expression plasmid and the luciferase reporter plasmid using X-tremegene 9 

(Roche) in accordance with manufacturer’s protocols. 18 hours after beginning transfection, the 

medium was harvested, and the cells were removed from the T75 flask by gentle pipetting. The 

cells were resuspended in the harvested medium and plated into white 384-well plates 

(Thermo Fisher Scientific) at 10,000 cells per well in 20 μL harvested medium per well. The cells 

were placed in the incubator for 4 hours and then 20 μL of fresh medium with ligand (5 μM) or 

vehicle control was added to the cells to achieve a final concentration of 2.5 μM of ligand in 

total medium volume of 40 μL per well. 18 hours after addition of the ligand, the luciferase 

Figure 11. NMR of NMP422, rosiglitazone, and pioglitazone. The green arrow indicates the secondary binding 
mode in the helix 3-β-sheet region adopted by NMP422. All ligands are at 1.25x the concentration of PPARγ (150 
μM). Mutant PPARγ (Q322C, C313A) was used with BFTA tag located at residue 322. 
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activity was measured using 20 μL of BriteLite Plus (Perkin Elmer) and read on Synergy H1 

Hybrid Multi-Mode Reader (BioTek). Statistical analysis was completed using a One-Way 

ANOVA. 

3.4.6 Preparation of NMR samples 

BTFA labeling was done during lysis before the purification of protein by adding 10mM 

BTFA to the protein lysate and purifying as stated previously. NMR samples were prepared to a 

final concentration of 150 µM protein in 470 µL volume containing 10% D2O. Addition of ligand 

was done in two separate injections of compound to reduce precipitation. Injections were 

spaced 30–60 min apart to allow time for binding. All ligands were dissolved in D6-

dimethylsulfoxide (DMSO). Deuterated solvents were obtained from Cambridge Isotope 

Laboratories Inc. and were at least 99% isotopically pure. Final concentrations of ligand were 

1.25x ligand to protein (187.5 µM). Following this, buffered D2O was added. 

3.4.7 NMR spectroscopy 

Acquisition of spectra was performed using a Bruker 700 MHz NMR system equipped 

with a QCI-F cryoprobe. Chemical shifts were calibrated using an internal separated KF 

reference in 20 mM KPO4 (pH 7.4) and 50 mM KCl contained in a coaxial tube inserted into the 

NMR sample tube. KF was set to be −119.522 ppm, which is the shift of the KF signal with 

respect to the 19F basic transmitter frequency for the instrument (658.8462650 MHz) at 

298.2 K, the temperature at which samples were run. Routine 1D fluorine spectra were 

acquired utilizing the zgfhigqn.2 pulse program (Bruker Topspin 3.5), which consists of a 90° 

pulse followed by acquisition with proton decoupling (acquisition = 0.7 s). Settings were 

D1 = 1.2 s, AQ = 0.82 s. Approximately 500 to 4000 transients were collected. The fitting 
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algorithm32 assumes Lorentzian lineshapes of similar phase. Intermediate exchange effects and 

field inhomogeneity are likely present in some of these spectra, which will result in inaccuracies 

in the fitted models; however, notwithstanding these limitations, the deconvolution method 

provides an objective view of the possible underlying spectral structure and populations. Select 

NMR spectra were replicated in two different ways: (1) Some NMR samples were measured via 

NMR initially and then days to weeks later to determine if certain parts of the spectrum 

changed. Any changes would indicate that non-reversible processes contribute to that part of 

the signal, such as unfolding or degradation of the protein. (2) Some spectra were run twice 

utilizing protein from the same batch as utilized for the first spectra or from an entirely 

different protein preparation. 

3.4.8 Crystallography data collection and structure determination 

The PPARγ LDB was co-crystallized with a 1.05x molar excess of NMP422. Diffracting 

crystals grew overnight by hanging drop at 20°C (small rock crystals). Condition yielding the 

best crystals were 1.0 M NaCit at pH 7.0 with 13 mg mL-1 PPARγ LBD. Crystals were harvested 

and put in a cryoprotectant containing 15 % v/v glycerol. The structure was solved to a 

resolution of 2.6 Å. Crystal structure data was calculated using MolProbity.49  

3.4.9 Molecular dynamics simulations 

 All molecular dynamics simulations were completed using the same methods described 

in Section 2.4.6. Any variations to these methods are recorded below. 

 Three independent cMD simulations, production runs a, b, and c, were completed at 

timescales of 15.26 μs, 15.37 μs, 15.23 μs, respectively, using Chain A of the crystal structure. 

Five independent aMD simulations, production runs a, b, c, d, and e, were completed using the 
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dual boosting approach described in Section 2.4.2. Boost parameters for aMDs were calculated 

from each respective cMD run (e.g. boost parameters for aMD production run a were 

calculated from cMD production run a, aMD production run b calculated from cMD production 

b, etc). aMD runs a-c were continued from the end of their respective cMD runs (e.g. aMD run a 

was continued from cMD run a, etc.). Boost parameters for aMD production runs d and e were 

calculated from the collective average dihedral and total potential energies from cMD 

production runs a, b, and c. The production runs for d and e started from the final step of the 

nine-step minimization, described in Section 2.4.2.  

Hydrogen bond analysis and K means clustering were completed using CPPTRAJ and 

hydrophobic contact analysis was completed using CPPTRAJ in the AmberTools18 Toolbox.50 

3.5 Discussion 
The PPRE transactivation assay determines that NMP422 acts as a partial agonist of 

PPARγ with lower transcriptional activity compared to the full agonists, rosiglitazone and 

pioglitazone. The crystal structure and each simulation showed high frequencies of interactions 

between the carboxylic acid of the ligand and Arg288 and Ser342, anchoring the functional 

group to the helix 3-β-sheet region. This, in combination with the flexibility of NMP422 and 

large ligand binding pocket, allows for the dual binding mode observed as well as the partial 

agonist characteristic of the ligand. 

In simulations, we observed flexibility from NMP422 in the ligand binding pocket 

indicating multiple binding modes, with aMD simulations identifying occupation of regions like 

the TZDs and unlike the TZDs as major binding modes.  Analysis of the cMD simulations showed 

NMP422 consistently adopting a pi-stacking conformation and occupying the same relative 
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region around the helix 3-β-sheet region (Figure S18). This binding mode seemed to be further 

supported by aMD simulations as 45% of frames showed the ligand occupied the same region. 

Most frames; however, indicate that NMP422 adopts the flipped TZD-like binding mode. The 

dual binding modes are further supported in fluorine NMR where we observed NMP422 

produce a peak that overlaps with rosiglitazone and pioglitazone, but also an additional peak 

that indicates a second binding mode (Figure 11). 

The TZDs and other PPARγ full agonists generally consist of four components: an acidic 

head, an aromatic ring, a linker, and an aromatic or heterocyclic tail that wrap around helix 3.44 

The acidic head is situated near the junction of helix 4/5, helix 11, and helix 12 where it 

participates in the interactions that stabilize helix 12 and makes hydrophobic contacts with 

Phe363, Gln286, Phe282, and Leu469.15–17 The aromatic ring is placed directly behind helix 3 

forming hydrophobic interactions with Cys285 and Met364. The linker and heterocyclic tail are 

located in the helix 3-β-sheet region where the groups interact with Val339 and Leu330 and 

Ile341 and Arg288, respectively.15 NMP422 has a similar functional group configuration as the 

TZDs and the same interactions were observed at high frequencies in aMD simulations; 

however, the acidic head of NMP422 is located in the same region as the pyridyl group of 

rosiglitazone and the pentyl group is in the same region as the thiazolidinedione group, giving 

NMP422 the flipped binding mode (Figure 10b). The cause of the flip is unknown, and further 

work will need to be done to determine the cause. One reason may have to do with the 

location of the carboxylic acid. 

There are many PPARγ partial agonists in the Protein Data Bank that contain a carboxylic 

acid in the helix 3-β-sheet region that forms hydrogen bonds with Arg288 and Ser342.51 Two 
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specific examples can be seen with the PPARγ antagonist SR1664 (PDB: 4R2U) and the PPARγ 

partial agonist nTZDpa (PDB: 2Q5S). The carboxylic acids that form these interactions are 

bonded directly to an aromatic ring, acting as hydrogen bond acceptors and electron-

withdrawing groups. In contrast, many PPARγ full agonists have at least one carbon separating 

acceptor groups from aromatic rings or have acceptor groups that are part of alicyclic systems. 

Based on these observations, we believe that functional groups that act as hydrogen bond 

acceptors and electron-withdrawing groups bound directly to aromatic rings cause preferential 

binding in the helix 3-β-sheet region instead of the helix 12 region.  

3.6 Conclusions 
The search for compounds that improve insulin sensitivity comparable to rosiglitazone 

and pioglitazone with lower transactivation is still ongoing. NMP422 is configured similarly to 

the TZDs but with a partial agonist profile that showed unique dual binding mode 

characteristics.  One mode resembled the TZDs, but with a flipped conformation that causes the 

acidic head of the ligand to form interactions with residues Arg288 and Ser342 in the helix 3-β-

sheet region. The direct cause of this flip needs to be investigated further; however, we believe 

aromatic rings bonded directly to hydrogen bond accepting groups that also withdraw electron-

density from the ring system play a pivotal role. By identifying the exact cause of the flipped 

conformation, drug discovery efforts can be focused on creating more chemical diversity in 

PPARγ ligand libraries while maintaining a consistent binding mode independent of helix 12. 

3.7 Future directions 
 As previously stated, the preferential binding in the helix 3-β-sheet region directed by 

benzoic acid like moieties needs to be tested further. There are two strategies that can be used 
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to aid in supporting this hypothesis. The first strategy is to make modifications only to the 

NMP422 structure. By adding one or two carbons between the aromatic ring and carboxylic 

acid in NMP422, we can identify whether the direct connection between the two functional 

groups is essential for the NMP422 binding mode. Ultimately, the intensity of electron-

withdrawing should be reduced or eliminated while retaining the hydrogen bond acceptor 

capacity of the carboxylic acid resulting in binding in the helix 12 region.  

 The binding mode of each ligand can be validated using a combination of methods. 

Because helix 12 stabilization is caused by interactions with residues on helix 4/5, helix 11, and 

helix 12, we can use transactivation assays to determine agonist properties. Analogs that 

output transcriptional activity on par with full agonists would allow us to assume that the 

acceptor groups are binding in the helix 12 region. For more definitive clarification, we can use 

x-ray crystallography, NMR, and molecular dynamics simulations to identify the binding mode 

of the analogs. 
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Figure S1. Free-energy topology maps of nTZDpa and R2 hydrogen bond donor and acceptor groups changes. 
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Figure S2. Free-energy topology maps of R2 bulkiness changes. 
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Figure S3. Free-energy topology maps of R1 bulkiness changes. 
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Figure S4. Free-energy topology maps of R1 hydrogen bond donor and acceptor groups changes. 
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Figure S5. Free-energy topology maps of nTZDpa and R3 thio-group changes. 



58 
 

 

 

 

 

 

 

Figure S6. H and C NMR for compound 1a. 
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Figure S7. H NMR for intermediate of 1b. 
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Figure S8. H and C NMR for compound 1b. 
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Figure S9. H NMR for intermediates of 1c. 
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Figure S10. H and C NMR of compound 1c. 
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Figure S11. H and C NMR of compound 1d. 
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Figure S12. H NMR for intermediate of 1e. 
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Figure S13. H and C NMR for compound 1e. 
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Figure S14. H NMR for intermediate of 2a. 
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Figure S15. H and C NMR for compound 2a. 
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Figure S16. H NMR for intermediate of 2b. 
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Figure S17. H and C NMR for compound 2b. 
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Chapter 3 Supplemental Information 
 

 

 

 

 

 

 

 

Figure S18. Root-mean square deviation versus time for NMP422 conventional molecular dynamics simulations. 
a. Production run a, 15.26 μs. b. Production run b, 15.37 μs. c. Production run c, 15.23 μs. 
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Figure S19. NMP422-bound PPARγ (white) in alignment with major k means clusters resulting from three 
conventional molecular dynamics simulations. NMP422 adopts a pi-stacking binding mode in run a (green), 
run b (pink), and run c (purple) while the binding mode in the crystal structure (cyan) does not. 
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Figure S20. Free-energy topology maps of NMP422 accelerated molecular dynamics simulations. 
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