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ABSTRACT 

 

Abundance estimates can inform management policies and are used to address a variety of 

wildlife research questions, but reliable estimates of abundance can be difficult and expensive to 

obtain. For low-density, difficult to detect species, such as cougars (Puma concolor), the costs 

and intensive field effort required to estimate abundance can make working at broad spatial and 

temporal scales impractical. Remote cameras have proven effective in detecting these species, 

but the widely applied methods of estimating abundance from remote cameras rely on some 

portion of the population being marked or uniquely identifiable, limiting their utility to 

populations with naturally occurring marks and populations that have been collared or tagged. 

Methods to estimate the abundance of unmarked populations with remote cameras have been 

proposed, but none have been widely adopted due, in part, to difficulties meeting the model 

assumptions. I examined the robustness of one model for estimating abundance of unmarked 

populations, the time-to-event model, to violating assumptions using walk simulations. I also 

tested the robustness of the time-to-event model to the low sample sizes of species that live at 

low densities by applying it alongside genetic spatial capture recapture on two populations of 

cougars (Puma concolor) in Idaho, USA. The time-to-event model is robust to many potential 

violations of assumptions but biased by incorrectly estimating movement speed and non-random 

sampling. The time-to-event model can effectively estimate the density of species living at low 

density and was more precise than and as reliable as genetic spatial capture recapture. Camera 

based abundance estimates that do not require individual identification, such as the time-to-event 

model, solve many of the challenges of monitoring low-density, difficult to detect species and 

make broad scale, multi-species monitoring more feasible.  



iii 
 

TABLE OF CONTENTS 

 

Abstract ........................................................................................................................................... ii 

 

Acknowledgements ........................................................................................................................ iv 

 

Chapter 1 ..........................................................................................................................................1 

 

 Introduction ..........................................................................................................................1 

  

 Methods................................................................................................................................5 

  

 Results ................................................................................................................................11 

  

 Discussion ..........................................................................................................................13 

 

 Figure .................................................................................................................................16 

 

 Literature Cited ..................................................................................................................19 

 

Chapter 2 ........................................................................................................................................22 

  

 Introduction ........................................................................................................................22 

 

 Methods..............................................................................................................................24 

 

 Results ................................................................................................................................29 

 

 Discussion ..........................................................................................................................30 

 

 Figures................................................................................................................................34 

 

 Literature Cited ..................................................................................................................37



iv 
 

Acknowledgements 

 Idaho Department of Fish and Game funded and conducted the fieldwork for this project. 

A phenomenal group of people, including Paul Atwood, David Dressel, Eric Freeman, Cheryl 

Hone, Mark Hurley, Zach Lockyer, Shane Roberts, Nathan Stohosky, Jen Struthers, Jamie Utz, 

and three years of field crews, contributed time to this project. It would not have been possible 

without their help. 

 My committee provided invaluable guidance throughout this project. Thank you for 

giving me so many extra chances after I earned the nickname you had for me. Dr. Hugh 

Robinson, you pushed back against my cynicism and tempered my enthusiasm with your own 

cynicism to keep me grounded. Having you two floors away whenever I had questions, hit 

roadblocks, or just wanted to talk to a friend instead of work has been a privilege. I promise to 

have the notes from our first meeting on the wall when it is your turn to visit. Dr. Mike Mitchell, 

thank you for showing me it is okay to struggle. You helped me get my head back above water, 

and your kind words have inflated my head to make sure it stays there. Whenever you read this, 

you probably owe me a beer. Dr. Paul Lukacs, thank you for reminding me that my work was 

worthwhile; your enthusiasm was contagious. Dr. Dave Ausband, thank you for organizing the 

field work and data collection. Your patience as I stumbled through data sharing and 

organization has taught me a lot about collaborating.  

 Kathy Zeller reanalyzed a data set to provide the movement speed estimate in Chapter 2. 

Thank you for than information and for being so generous with your time. 

 Millions of pictures were scored for this project which would not have been possible 

without the hard work of Paige Childers, Dominic Noce, Markis Scheu-Reyes, and Morgan 

Wilson. 



v 
 

 The Wildlife Biology Program and Montana Cooperative Wildlife Research Unit 

supported me throughout this project. Thank you, Tina Anderson, Emmy Graybeal, and Debora 

Simmons, for patiently re-teaching me how to fill out paperwork each time. 

 I also want to thank the community I found in and around the Wildlife Biology Program. 

The Mitchell Lab: Kristin Barker, Sarah Bassing, Jesse Devoe, Kari Eneas, Shannon Forshee, 

James Goerz, Teagan Hayes, Ally Keever, Brandon Kittson, Collin Peterson, Sarah Sells, and 

Alex Welander; the Lukacs Lab: Colter Chitwood, Gus Geldersma, Jenny Helm, Charlie 

Henderson, Michelle Kissling, Jess Krohner, Molly McDevitt, Anna Moeller, Josh Nowak, 

Kaitlyn Strickfaden; and my extra-lab friends: Stephanie Berry, Shea Coons, Jessie Golding, 

Forrest Henderson, Mitch Johnson, Ellen Pero, and Kayla Ruth all deserve recognition. You 

taught me how to be a better scientist and human. I hope I can pass on your influences, both the 

good and the fun. 

 Finally, my community outside of wildlife helped me recover and maintain my emotional 

and mental health during this project. To my parents, Anna and Peter, does this count as “work”? 

To my brother, Stephen, I had to make sure we were at least tied. To Evelyn, you do more than 

you think. And to Sean, I appreciate you half as well as you deserve. 



1 
 

Chapter 1 

Introduction 

 Wildlife biology relies on estimates of animal abundance for addressing ecological 

questions and informing management decisions. Many methods exist to estimate abundance 

(Schwarz and Seber 1999), but all rely on observing individuals in the population. Cryptic 

species that live at low-densities are difficult to observe, limiting the tools available for 

estimating abundance. Trapping and genetic sampling have been used, but both methods have 

drawbacks. Physically capturing individuals is invasive and requires intensive effort that can 

become expensive. Non-invasive genetic sampling eliminates the need to capture individuals, but 

analyzing the samples has high lab costs and can take considerable time, creating a lag between 

data collection and application (Lukacs and Burnham 2005, Waits and Paetkau 2005).  

 Despite requiring a large initial investment in equipment and high image analysis effort, 

remote cameras can be a useful tool for observing cryptic species that live at low densities. The 

first abundance estimates with remote cameras used capture-recapture methods and required 

species with naturally occurring marks that make individuals uniquely identifiable (Karanth 

1995, Karanth and Nichols 1998). Mark-resight (Arnason et al. 1991) and spatial mark-resight 

(Sollmann et al. 2013b, 2013a) models relax the uniquely identifiable requirement by allowing 

estimation of partially marked populations and populations with marked but not identifiable 

individuals. However, mark-resight models still require that some portion of the population be 

distinguishable, which is not the case for many populations of interest. 

 There are currently two broad approaches to estimate abundance of unmarked 

populations with remote cameras: one treats the photographic data as spatially and temporally 

replicated counts, and a second models the encounter process between animals and the camera 
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view sheds. Methods that treat camera data as repeated counts, including N-mixture models 

(Royle 2004), spatial count models (Chandler and Royle 2013), and instantaneous sampling 

(Moeller et al. 2018), are inefficient for populations at low densities. However, the N-mixture 

and spatial count models also have assumptions that can be difficult to meet and test in field 

settings without auxiliary data, such as movement data from the population (Chandler and Royle 

2013, Keever et al. 2017). The random encounter model (Rowcliffe et al. 2008) and space and 

time-to-event models (Moeller et al. 2018) estimate abundance from the encounter rate of 

animals moving with respect to randomly or systematically placed cameras. Estimating 

abundance by modelling the encounter process between animals and cameras has shown promise 

for low-density species (Cusack et al. 2015) but has not been widely adopted.  

 The time-to-event model (Moeller et al. 2018) estimates abundance by quantifying the 

relationship between density and encounter rate. Time-to-event analysis, also called survival 

analysis and failure time analysis, uses repeated measurements of the amount of time that elapses 

before an event of interest occurs to estimate the rate of that event. When we estimate density 

from camera traps, the event of interest is an animal appearing in the view shed, or a detection, 

and the rate of interest is density, or the number of animals per view shed. To estimate density 

from repeated measures of the time until an animal appears in a view shed, the model makes four 

assumptions.  

 First, the time-to-event models assumes that spatial counts of animals, or the number of 

animals in a given area, are Poisson-distributed at the scale of a camera view shed. Ecologists 

commonly use the Poisson distribution to model count data (Thomas 1949). The counts of 

animals in a given area will be Poisson-distributed if individuals are equally likely to be in any 

section of a landscape and the location of one individual does not affect the location of other 
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individuals. In field sampling, this assumption could be violated by animals grouping together, 

potentially due to clumped resources or social behavior, or by animals avoiding each other, 

potentially due to territoriality. Violating the Poisson-distributed assumption should bias the 

estimate low for aggregated populations and high for evenly dispersed populations, however, the 

model may be robust to some degree of aggregation or dispersion. Camera view sheds sample a 

small area relative to animal densities, so, even when animals aggregate around a resource, most 

counts of animals in the view shed will be 1 or 0 individuals, as expected under a Poisson 

distribution at low densities. 

 Second, the model assumes that animals move randomly with respect to the cameras. The 

model estimates the average density of the population from the rate that animals enter view 

sheds. Attempting to increase capture frequency by baiting cameras or by targeting roads, trails, 

or preferred habitat will bias the density estimate high if capture frequency is successfully 

increased. In practice, placing the cameras on the landscape randomly or systematically should 

meet the random movement assumption. 

 Next, the time-to-event model requires an accurate estimate of movement speed 

(including rest time) for the population. At constant density, encounter rate increases linearly 

with increasing animal movement speed, so any model that estimates density from encounter rate 

needs to account for movement speed (Carbone et al. 2001). In the time-to-event model, if 

movement speed increases, the observed time until an animal appears on camera will decrease, 

and the density estimate will be inflated. 

 Finally, the model assumes that the population is closed during sampling. Studies 

generally approximate closure by limiting sampling to a short period of time, but estimates of 

populations at low densities are more precise with the additional data from longer sampling 
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frames (Bischof et al. 2014, Dupont et al. 2019). In study designs that use an estimate of 

detection probability to estimate abundance, violating closure can bias the estimate of detection 

probability and subsequently abundance. The time-to-event model does not rely on an estimate 

of individual detection probability, so it handles lack of closure differently. The time-to-event 

model should estimate the mean density through time when density changes during a survey. 

 Most studies will fail to meet at least some of the assumptions of the model, therefore, 

before adopting these models more broadly, researchers need to understand the effects of 

violating assumptions on model performance. I used simulated walk models (Carbone et al. 

2001, Codling et al. 2008) to test the effect of violating assumptions on the bias and precision of 

density estimates from the time-to-event model under five scenarios. In each scenario, I modified 

a simple random walk model to test the effect of violating one of the model assumptions. In the 

first scenario, I looked at the effect of estimating the movement speed of the population 

inaccurately by changing how far individuals move in the simulation. When movement speed 

was under-estimated, I expected density to be over-estimated, and vice versa. In the second 

scenario, I tested the effect of violating the closure assumption by removing individuals during 

the simulation. When the population was open, I expected the time-to-event model to estimate 

mean density through time. In the third scenario, I tested the effect of animals being more evenly 

distributed than predicted by a Poisson distribution by restricting individual movement to 

partially-overlapping areas representing territories. I did not expect the “territories” to have any 

effect on the time-to-event model, because, even with completely random movement, most 

cameras only have one animal in the view shed at a given time. The final two scenarios tested the 

effect of violating the Poisson assumption and the random movement assumption by simulating 

movement with respect to a randomly generated habitat with two camera placement strategies: 
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random placement and cameras placed to target the preferred habitat. For both camera placement 

methods in the habitat scenario, I applied two versions of the time-to-event model: the basic 

model and a second version that adjusts the density estimate for spatial variation in density using 

habitat covariates. In the randomly placed camera scenario, I expected both the basic model and 

the version adjusting for spatial variation in density to accurately estimate density. In the 

scenario with targeted camera placement, I expected the basic model to over-estimate density 

and the version adjusting for spatial variation in density to counteract the bias caused by targeted 

camera placement. 

 

Methods 

Time-to-Event Model 

 If the number of animals in camera view sheds is Poisson-distributed, the number of 

animals (N) that pass through the camera view shed during a period of time is Poisson-

distributed around density (λ). 

 𝑁 ~ Pois(𝜆) (Equation 1) 

In time-to-event analysis, the time that passes until a Poisson-distributed event occurs (TTE) is 

exponentially distributed around the rate parameter (λ), in this case density. 

 𝑇𝑇𝐸 ~ Exp(𝜆) (Equation 2) 

Because the time until a Poisson distributed event occurs is exponentially distributed around 

density, we can estimate density with repeated measures of TTE. 

 Sampling for the time-to-event model requires definitions for two time intervals. First, 

the number of animals passing through the view shed during a time period (N) depends on the 

length of the period. If the length of the period is equal to the amount of time the average animal 
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takes to pass through a view shed, N will be distributed around the mean number of animals per 

view shed, or density (λ). Setting the length of the period requires an estimate of mean movement 

speed of the population (including rest time) and a measurement of the distance across the view 

shed. Second, sampling requires a defined occasion, or the amount of time spent observing the 

view shed waiting for an event to occur. If an event does not occur during the sampling occasion, 

it is recorded as a right censored event. Breaking the study into sampling occasions allows 

multiple measurements of TTE for each camera. Defining the length of occasions as some 

number of periods (e.g. five periods per occasion) allows TTE to be recorded as the number of 

periods until an event occurs (e.g. if an animal appears on camera during the first period, TTE is 

one for that occasion; if an animals appears during the fifth period, TTE is five). 

 The time-to-event model accommodates spatial variation in density. The basic 

application of the model estimates a single mean density across the sampled landscape, however, 

repeated measures of TTE for each camera allow for a density estimate at each camera. The 

variation in density between cameras can be modelled as the result of spatial covariates with a 

generalized linear model, 

 log(𝜆𝑖) = 𝛽0 + [𝛽𝑋𝑖] (Equation 3) 

where λi is the estimated density at camera i and [βXi] represents spatial covariates of camera i 

and their coefficients. With estimates for the effects of spatial covariates, the density of animals 

across the study area, �̅�, can be estimated using 

 log(�̅�) = 𝛽0 + [𝛽�̅�] (Equation 4) 

where �̅� represents the mean value, across the entire study area, for the spatial covariates.  

 

Walk Models – Control  
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 To test the effect of violating assumptions in each scenario, I compared them to a control 

simulation. In the control simulation, 16 individuals moved randomly within a 100x100-unit 

square. Distance measurements do not have a defined unit in the simulation, so they can be 

thought of at any scale. I divided the square into 36 cells with one detector, representing a 

camera trap with perfect detection, placed randomly in each cell. Detectors recorded an 

individual if the individual passed within a radius of  𝜋 4⁄   units of a detector during a given step. 

I used a radius of 𝜋 4⁄  units for the detectors so that the average path across the circular detection 

zone was 1 unit long. Each individual took 1000, 1-unit steps during the simulation, with turns at 

random angles every 5 steps. When a movement path would leave the 100 by 100 square, I 

flipped the x or y-axis portion of that step and subsequent steps until the next turn to keep the 

individual in bounds. I defined periods as one step in the simulation, so recording the step at 

which a detection occurred also recorded TTE. I set occasion length equal to five periods. I ran 

each simulation for 500 iterations. 

 

Walk Models – Speed  

 For the simulation testing the effect of incorrectly estimating animal movement speed, I 

modified the step length while keeping the other variables constant. Modifying step length and 

keeping the other variables constant simulates incorrectly estimating movement speed. If step 

length equals 0.5, rather than 1, it will take individuals two steps to cross a detection zone. If step 

length equals 2, it will only take half a step to cross a detection zone. I used a range of 15 

different step lengths (0.5, 0.6, 0.7 … 1.4, 1.5) to capture the trend in incorrectly estimating 

movement speed.  
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Walk Models – Open Population 

 To test the effect of violating the closure assumption, I simulated the population 

decreasing during the survey. The time-to-event model should estimate the mean abundance 

through time, so I set the starting population and removal times to keep the mean abundance 

through time equal to the control population. I started with 20 individuals and censored 

individuals randomly throughout the survey until only 12 individuals remained. I censored 

individuals at random time steps, but, in each run, individuals were removed to ensure that the 

average population, weighted by time, was 16 individuals, the same as the control simulation. 

 

Walk Models – Territoriality  

 To test the effect of animals being more evenly distributed than expected under the 

Poisson assumption, I simulated individuals moving in territories. I simulated simple territories 

by specifying the start location of each individual and restricting their movements in a radius 

around the start location. I arranged the 16 start locations in a grid, with the first individual 

starting at (x = 12.5; y = 12.5) and the last individual starting at (x = 87.5; y =87.5). The nearest 

neighbors for each individual started 25 units away on the x or y-axis. Individuals moved 

randomly within a radius of 12.5 units around their start location. When individuals left that 

radius, subsequent turn angles tended towards the individual’s start location, with the strength of 

the effect increasing with distance. Those movement rules result in a circular area used by each 

individual with more time spent near the center of the “territory”. 

 

Walk Models – Habitat – Random Cameras 
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 For the two scenarios testing the effect of animals clustering more than expected under 

the Poisson assumption, I had individuals move preferentially toward high quality habitat on a 

simulated landscape. To generate the landscape, I drew random habitat quality scores from a 

normal distribution at two levels of hierarchy, 16 large cells each divided into 625 sub-cells. The 

first level of hierarchy divided the landscape into a 4 by 4 grid, with the mean habitat quality 

score for each of the 16 cells drawn from a standard normal distribution. The second level of 

hierarchy provided habitat values for each sub-cell drawn from a normal distribution centered on 

the mean value of the habitat quality score of the cell. The resulting landscape consists of 16 

cells, each 25 by 25 sub-cells, with habitat quality scores that tend to be more similar within cells 

than between cells (Fig. 1).   

 I used a simplistic model of animal movement relative to habitat to simulate preference 

for higher habitat quality scores. For each new angle an individual selected, I averaged the 

habitat scores along eight potential paths, the paths that go in a cardinal direction and the paths 

halfway between any two cardinal directions. I generated the actual turn angle from a circular 

distribution centered on the direction with the highest average habitat quality score. Randomly 

drawing the direction of travel results in individuals tending toward the best adjacent habitat with 

the variance allowing occasional movements away from the best habitat to prevent individuals 

from getting stuck in one part of the landscape (Fig. 1). I fit the basic time-to-event model in 

which mean density is estimated directly from the observed TTE (equation 2) and the model 

estimating density by adjusting for habitat with a generalized linear model (equations 3 and 4). 

 

Walk Models – Habitat – Targeted Cameras 
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 To test the effect of non-random movement with respect to the cameras, I placed cameras 

non-randomly with respect to the simulated landscape. The simulations of targeted camera 

placement use the same habitat generation and habitat preference rules as the habitat simulations 

with random camera placement. In all of the previous simulations, I placed one camera randomly 

in each of 36 sampling cells. In the targeted camera placement simulation, I assigned each 

camera to the sub-cell with the single highest habitat quality score in each sampling cell. This 

targeted sampling maximized detections, as might be the goal in capture-recapture or occupancy 

studies. However, for time-to-event studies, sampling to maximize detections will inflate the 

density estimate by lowering the observed TTE. Again, I estimated density twice for each run of 

the simulation, once without adjusting for habitat, and once adjusting for habitat with the 

generalized linear model (GLM). 

 

Statistical Methods 

 I used Bayesian methods to estimate abundance from each run of the simulations using 

Markov chain Monte Carlo (MCMC) implemented in JAGS (Plummer 2017) through R (R Core  

Team 2019) and the R2jags package (Su and Yajima 2015). I could not assess model fit for each 

run of the simulations individually, so I ran each model for a burn-in of 10,000 steps then 

updated the model in batches of 100,000 steps of 3 chains until the Gelman-Rubin convergence 

diagnostic (�̂�) (Gelman and Rubin 1992) was less than 1.1. I discarded any simulations that 

failed to achieve an �̂� value less than 1.1 within 500,000 steps. The posterior distributions of the 

initial runs were symmetrical, so I recorded the mean of the posterior as the estimate of 

abundance and the standard deviation (SD) as a measure of precision to save computing memory 

during the simulation runs. 
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 I examined the bias and the precision of the estimator for each simulation scenario. I used 

mean error (ME) to measure unscaled bias 

 𝑀𝐸 =  1
𝑛⁄  ∑ (𝐸𝑗 − 𝐴)𝑛

𝑗=1  (Equation 5) 

where n is the total number of runs of the simulations, Ej is the estimated abundance on the jth 

run of the simulation, and A is the true abundance. ME is an unscaled measure of bias, so ME = 1 

indicates that the model over-estimated by one individual on average and ME = -1 indicates that 

it under-estimated by one individual. I used SD of the estimated abundances from each scenario 

to examine the observed precision 

 𝑆𝐷 =  √1
𝑛⁄  ∑ ((𝐸𝑗 − �̅�)

2
)𝑛

𝑗=1  (Equation 6) 

where n is the total number of runs of the simulations, Ej is the estimated abundance on the jth 

run of the simulation, and �̅� is the mean of the estimates of abundance. Precision and SD are 

inversely related, so a lower SD indicates more precision. I compared the observed SD of the 

estimates of abundance to the mean of the SDs from the model’s posterior distributions to check 

the accuracy of the precision estimates from the time-to-event model. 

 

Results 

Control 

 In the control simulation, the time-to-event model estimated a mean of 15.24 (Table 1) 

animals, slightly below truth (N = 16 individuals). The SD of the estimate was 1.95, and the 

average standard deviation of the posterior distributions was 1.48, meaning that the model over-

estimated precision. Precision was over-estimated in all of the simulations. 

Speed 
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 Incorrectly estimating speed had a linear effect on abundance estimates in the simulation 

(Fig. 2). At the low end of the tested speeds (step length = 0.5), �̅� abundance was 9.20 (SD = 

2.16). At the high end of the tested speeds (step length = 2) the mean abundance estimate was 

28.36 (SD = 2.29) (Table 1). 

Open Population 

 In the simulation that tested the effect of violating closure by removing part of the 

population during the simulation, the time-to-event model estimated the mean abundance as 

15.44 individuals (SD = 2.03) (Table 1). That resembles the control simulation (Fig. 3b) and the 

mean abundance of 15.44 individuals is close to the mean abundance through time in the open 

population simulation (16 individuals).  

Territoriality  

 The results from the simulations that violated the Poisson assumption by restricting 

animals to “territories” resembled the control simulation (Fig. 3a). The estimated abundance 

from the territorial simulation was 15.35 individuals (SD = 2.09) (Table 1). 

Habitat – Random Cameras 

 In the habitat simulations with randomly placed cameras, the estimates began to diverge 

from the control slightly but remained in the same general range (Fig. 3c). The model with no 

adjustment for spatial variation in density returned a mean estimate of 16.39 individuals (SD = 

2.63), while the model using the GLM to adjust for habitat returned a mean estimate of 12.62 

individuals (SD = 2.97) (Table 1). 

Habitat – Targeted Camera Placement 

 In the habitat simulations with targeted camera placement designed to maximize 

detections, both the basic model and the model using a GLM to adjust for habitat failed to 
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accurately estimate abundance (Fig. 3d). The basic model over estimated abundance (mean N = 

26.37; SD = 3.35) while the GLM adjusted model underestimated abundance (mean N = 10.18; 

SD = 5.02). 

 

Discussion: 

 These simulations showed that the time-to-event model is robust to many of the scenarios 

encountered in studies of wild populations that violate the model assumptions. Neither 

territoriality of a species, nor open populations bias the results of the model. When animals move 

non-randomly with respect to habitat, the model is unbiased as long as cameras are placed 

randomly. However, both targeting high quality habitat when placing cameras and incorrectly 

estimating movement speed bias the estimate of density.  

 In the control simulation using a simple random walk, the time-to-event model accurately 

estimated abundance. The mean of the estimates (15.24 individuals) was slightly below truth (16 

individuals), but was still within a single standard deviation. Moeller et al. (2018) also found a 

small negative bias in the time-to-event model using random walk simulations. This similarity in 

bias may be due to similarities in our walk simulations. The time-to-event model also over-

estimated precision, with the mean estimated standard deviation approximately half an individual 

smaller than the observed standard deviation of the estimates.  

 Incorrectly estimating speed caused a linear bias in the abundance estimate (Fig. 2) with 

over estimates of speed causing under estimation of abundance and vice versa, as expected. 

When speed is under estimated, detection periods are too long. Animals moving faster than the 

estimated speed encounter cameras during a greater portion of those detection periods, causing 

an over estimation of abundance. The potential bias caused by misestimating movement speed 
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means that the time-to-event model requires auxiliary data. Estimating movement speed with 

GPS (global positioning system) collar data from the population being sampled is the most 

reliable option, but, for well-studied species that do not show significant variation in movement 

speed between populations, data from previous studies could suffice. If movement data were 

unavailable or unreliable, the space-to-event model may be more applicable but will be less 

precise (Moeller et al. 2018). 

 Neither territoriality nor closure violations affected the time-to-event abundance 

estimates (Figs. 3a and 3b). The mean and standard deviations for the territoriality and open 

population simulations were similar to the control simulation (Table 1). The open population 

simulation shows that the time-to-event model handles closure differently than capture-recapture 

models. Capture-recapture methods rely on estimating the probability of detecting individuals to 

estimate abundance (N) with �̂� =  
𝐶

𝑝
 where C is the observed count of animals and �̂� is the 

estimated detection probability (Nichols 1992). When individuals are present and available to be 

detected during one portion of a survey, but not another, detection probability is under-estimated 

and abundance is over-estimated, approximating the total number of animals that were in the 

study area during some portion of the survey. In contrast, the time-to-event model estimates the 

mean density through time. This means that lack of closure does not bias the estimate in the same 

way it does in capture-recapture studies, potentially allowing sampling over a longer time frame. 

 When animals are moving non-randomly with respect to habitat, the time-to-event model 

requires cameras be placed to sample the habitat randomly. In the habitat simulations with 

randomly placed cameras, both the base model and the model adjusting for habitat with a GLM 

returned estimates comparable to the control simulation (Fig. 3c) with the estimate from the base 

model slightly greater than the control and the estimate from the GLM adjusted model slightly 
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below the control. In the habitat simulations, both versions of the model are less precise than in 

the simple random walk simulation, and, in the base model, the precision was more inflated than 

in the control. Accounting for the effect of habitat on density with a GLM helps estimate the 

precision of the time-to-event model more accurately when animals move non-randomly with 

respect to habitat. 

 Non-random sampling biases estimators (Fisher 1925). In the time-to-event model, 

targeting landscape features to maximize detections will be the most common form of non-

random sampling. In the patchy habitat simulations with targeted camera placement, the base 

time-to-event model greatly over estimated abundance (26 vs 16), and the time-to-event model 

with a GLM adjusting for habitat greatly underestimated abundance (10 vs 16). The under 

estimation of the GLM adjusted model may be caused by a non-linear effect of habitat. With the 

targeted camera placement, lower quality habitats were not sampled. If the relationship between 

density and habitat quality was different at the high and low ends of the habitat values, 

extrapolating to the un-sampled range of habitat values would fail. Further work should explore 

alternative sampling strategies that might provide unbiased estimates while still improving 

detection rates, such as targeting the best habitat with a portion of the cameras while placing the 

rest of the cameras randomly to sample the full range of habitat quality. However, monitoring a 

random sample of habitat by deploying cameras at randomly or systematically generated points, 

rather than sampling to maximize detections, remains the most reliable sampling technique for 

minimizing bias. Data from surveys with camera placement that was not designed to randomly 

sample the landscape are unlikely to provide unbiased estimates from the time-to-event model. 
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Figures: 

 
Figure 1: One animal path on a simulated landscape. Light colors represent preferred habitat. The 

animal tends toward preferred habitat and avoids less preferred habitat, resulting in clustered 

movement. 

 

 

Simulation Mean Estimate SD of Estimates Mean SD Mean Error 

Control 15.244 1.953 1.480 -0.756 

Speed = 0.5 9.198 2.156 1.225 -6.802 

Speed = 2 28.359 2.285 2.166 12.359 

Open Population 15.437 2.027 1.490 -0.563 

Territoriality 15.349 2.092 1.487 -0.651 

Habitat – Random – Base 16.391 2.629 1.530 0.391 

Habitat – Random – GLM 12.620 2.966 2.485 -3.380 

Habitat – Targeted – Base 26.370 3.349 1.953 10.370 

Habitat – Targeted – GLM 10.181 5.024 3.803 -5.819 

 

Table 1: Summarized results from the walk simulations. Mean estimate is the mean of the 

reported abundance estimates from each iteration of the simulation. SD of estimates is the 

standard deviation of those means. Mean SD is the mean of the standard deviation from the 

posterior distributions. Mean error is a measure of the distance from truth of the estimates. 
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Figure 2: Box plots of mean abundance estimate by step length from the speed simulations. Each 

step length was simulated 1000 times. 
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Figure 3: Trace plots of the histograms of mean abundance from (a) the territory simulation, (b) 

the open population simulation, (c) the habitat with randomly placed cameras simulations, and 

(d) the habitat with targeted cameras simulations. The results from the control simulation are 

plotted for comparison in all graphs. In c and d, the GLM line is the model using habitat values 

to adjust the abundance estimate and the Base line is the basic time-to-event model ignoring the 

habitat values. 
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Chapter 2 

Introduction 

 Camera trapping is a common method for monitoring elusive species and species that live 

at low densities (O’Connell et al. 2011). When individuals in a population can be uniquely 

identified from photographs, camera trap data can be used to estimate abundance through 

capture-recapture and spatial capture-recapture (SCR) (Karanth 1995, Karanth and Nichols 1998, 

Royle et al. 2009). However, most species do not have uniquely identifiable individuals, so 

estimating abundance requires methods for unmarked populations. Quantifying the relationship 

between photographic rate and density (Carbone et al. 2001, Rowcliffe et al. 2008, Moeller et al. 

2018) can be effective at estimating the abundance of elusive species that live at low densities 

and do not have unique marks (Cusack et al. 2015), but as yet none of these methods has been 

widely adopted.   

 The time-to-event and space-to-event models use time-to-event analysis to estimate 

density from the encounter rate between animals and cameras (Moeller et al. 2018). At higher 

densities, encounter rate is higher and the time between animals appearing on camera is shorter. 

The time-to-event model uses repeated measures of the time until an animal appears on camera 

and an estimate of animal movement speed to estimate density using 

 𝑇𝑇𝐸 ~ Exp(𝜆) (Equation 1) 

where λ is density in animals per view shed and TTE is the observed distribution of the number 

of periods until an animal appears on camera. A period is defined as the time an animal moving 

at the mean movement rate of the population (including rest time) would spend in a view shed. If 

an animal appears during the first period, TTE is 1; if an animal does not appear until the third 

period, TTE is 3. For λ, the number of animals per view shed, to reflect the density of animals in 



23 
 

the study area, cameras must be placed randomly with respect to animal movement. The space-

to-event model functions similarly but measures the amount of space sampled until an animal 

appears on camera at a point in time rather than measuring the amount of time until an animal 

appears at a given point in space. The space-to-event model estimates density using   

 𝑆𝑇𝐸 ~ Exp(𝜆) (Equation 2) 

where STE is the number of camera view sheds randomly sampled at a point in time before an 

animal is observed. The space-to-event model still requires cameras be placed randomly with 

respect to animal movement, but by sampling across cameras at a given time and allowing the 

animals to move between temporal samples, the space-to-event model eliminates the need for an 

estimate of animal movement speed. 

 Evaluating the efficacy of a new abundance estimator requires a point of comparison. 

Ideally, estimates are compared to truth by surveying a population of known size (Rowcliffe et 

al. 2008). However, populations of known size are not always available and often represent 

idealized conditions. When populations of known size are not available, estimates from the new 

method can be compared to reasonable expectations based on prior knowledge (Karanth 1995) or 

to estimates of the same population using accepted methods (Efford 2004). 

 Cougars (Puma concolor) are a challenging species to monitor because they are elusive, 

naturally unmarked, and live at low densities. Historically cougar populations were quantified 

using a census technique in which researchers attempted to collar or mark all resident animals in 

a study area (Hornocker 1969, Seidensticker et al. 1973). More recently cougar populations have 

been quantified using genetic SCR (Brochers and Efford 2008, Royle and Young 2008, Gardner 

et al. 2010) from surveys using unstructured spatial sampling to estimate cougar abundance 

(Russell et al. 2012, Proffitt et al. 2015) which requires high effort or auxiliary data (i.e. collar 
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data) (Paterson et al. 2019). The intensive effort required for both census attempts and genetic 

SCR techniques reduces their utility for broad scale monitoring. The time and space-to-event 

models can be applied to any sized study area and could be used to monitor multiple species 

from a single survey. However, estimating density from the time and space-to-event models 

requires deploying enough cameras for animals to encounter randomly placed cameras, 

potentially limiting its utility for species that live at low densities. I compared estimates of 

cougar abundance obtained using the time and space-to-event models to concurrent estimates 

based on genetic SCR at two field sites across multiple years. 

 

Methods 

Field sites 

 I sampled two study areas in Idaho, USA (Fig. 1) over 3 winters.  Both study areas were 

classified as ungulate winter range by Idaho Fish and Game (IDFG). The first study area was 

located in Boise National Forest in central Idaho along the Middle and South forks of the Payette 

River. Elevation ranges from 850 meters to 2460 meters. The area receives 65.6 cm of annual 

precipitation, concentrated in the winter. Average winter snow cover (November to March) is 

30.5 cm at 1200 meters. Average winter temperature is -1.7 °C, and average summer temperature 

(April to October) is 12.6 °C. The predominant vegetation type is mixed conifer forest. The 

dominant prey species are elk and mule deer (Odocoileus hemionus), and other large carnivores 

present are wolves (Canis lupus), black bears (Ursus americanus), and coyotes (C. latrans).  

 The second study area was in southeast Idaho along the western front of the Bear River 

Range. Elevation ranges from 400 meters to 2700 meters. The area receives 32.0 cm of annual 

precipitation with a spike in the spring and lull in the summer. The average winter temperature is 
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-1.2 °C and average summer temperature is 14.5 °C. At higher elevations, mixed coniferous 

forest is dominant, at lower elevations, sage brush steppe and juniper is dominant. The western 

edge of the study area extends into the cache valley which is dominated by agricultural fields. 

The dominant prey species is mule deer, and black bears and coyotes make up the rest of the 

large carnivore community, wolves are absent. 

 At both field sites, a grid of 10 km2 cells was overlaid on ungulate winter range (Fig.2). 

In the Central Idaho site, the grid was defined using elk winter range. In the SE Idaho site, it was 

defined using a combination of elk and mule deer winter range. We used the same grid for the 

camera and genetic sampling. The Central Idaho site was surveyed during the winters of 2016-

2017, 2017-2018, and 2018-2019. The SE Idaho site was surveyed in 2017-2018 and 2018-2019. 

Camera Sampling 

 Camera trapping grids were established, set-up and maintained by IDFG staff. Two to 

three potential camera sites were identified for each cell based on riparian areas and predicted 

cougar travel corridors within the ungulate winter range (Blake and Gese 2016). Field crews 

selected one camera site to deploy a camera at in each cell based on ease of access. At the site, 

cameras were placed approximately 3 meters high in trees and pointed down on roads or game 

trails whenever possible. The width of each view shed was measured as the distance along the 

trail through which the camera triggered during walk tests. Due to the elevated camera 

placement, the width and height of the view shed appeared approximately equal, so I calculated 

the view shed area as: 𝑎𝑟𝑒𝑎 =  𝑤𝑖𝑑𝑡ℎ2. Cameras were deployed in September and October of 

each year and retrieved in April and May of the following year. Only pictures from November 1 

through March 31 were used to limit inference to density on winter range. 

Genetic Sampling 
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 Genetic samples were collected from backtracking, harvest, and biopsy darting using 

hounds to tree cougars between December and March of each winter (Russell et al. 2012, 

Beausoleil et al. 2016). The backtracking and biopsy darting crews used unstructured spatial 

sampling to search for cougar tracks (Russell et al. 2012, Proffitt et al. 2015).  Once a track was 

found, crews either backtracked it to search for hair and scat or followed it using hounds to tree 

the cougar. Rather than assign a certain amount of effort to each cell, search could adapt to 

access, snow availability, and presence of cougar tracks.  Distance searched was recorded for 

each cell using GPS (global positioning system) track logs and used to account for variable effort 

between cells. Biopsy darting was conducted during the first year of sampling in Central Idaho 

(2016 – 2017) but then restricted to SE Idaho in 2017-18 and 2018-19. 

Space/Time-to-Event 

I used a movement speed estimate of 8.9 km travelled per day (Zeller unpublished data) 

and the mean of the view shed widths (7 meters) to define the sampling period as approximately 

1 minute. I defined an occasion for the time-to-event model as 500 periods. For each occasion, 

the number of periods that passed before a cougar appeared, TTE, was recorded at each camera. 

After 500 periods, the measured TTE was recorded as right censored and a new occasion started. 

Density was estimated with 

 𝑇𝑇𝐸𝑗𝑘 ~ Exp(𝜆) (Equation 1) 

where TTEjk is the time until an event occurs at camera k on occasion j, and λ is density measured 

in cougars per view shed. For the final reported density, λ was converted to cougars per 100 km2 

using an estimate of 50 m2 for view shed area. For the space to event model, density was estimated 

using 

 𝑆𝑇𝐸𝑖 ~ Exp(𝜆) (Equation 2) 
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where λ is still density in cougars per view shed, and STEi is the number of cameras sampled 

randomly at each time step, i, until a cougar is observed. Samples for the space-to-event model 

were taken every 5 minutes and cougars were included as detected if they appeared on camera 

within 30 seconds of each 5-minute time step. Data were recorded as right censored if a cougar 

did not appear on camera at time step i. For both models, λ was estimated using log-likelihood, 

and 95% confidence intervals were calculated as �̂�  ± (SE × 1.96). 

Spatial Capture-Recapture 

 For the spatial capture recapture (SCR) density estimate, I assigned each observation to a 

hypothetical trap at the center of the cell the observation occurred in. I modelled the probability 

of observing individual i at trap j, pij, as  

 𝑝𝑖𝑗 = 𝑝0𝑗 × 𝑔𝑖𝑗 (Equation 3) 

where p0j is the probability of observing a cougar with a center of activity at the location of 

hypothetical trap j, and gij is the effect of distance between the activity center and trap location 

(Proffitt et al. 2015). gij is modeled as a half normal decay function with 

 𝑔𝑖𝑗 = exp (
−𝑑𝑖𝑗

2𝜎2⁄ ) (Equation 4) 

 where dij is the distance between the activity center of animal i and trap j, and σ controls the 

magnitude of the effect (Gardner et al. 2010, Russell et al. 2012). I used two different models for 

p0j, one where it is held constant, and one where it varies based on the amount of search effort in 

cell j according to the generalized linear model 

 𝑙𝑜𝑔𝑖𝑡(𝑝0𝑗) = 𝐵0 + 𝐵1 × 𝐸𝑓𝑓𝑜𝑟𝑡𝑗 (Equation 3) 

where Effortj is the centered and scaled distance searched in cell j (Russell et al. 2012, Proffitt et 

al. 2015). 
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 I fit the SCR model in a Bayesian framework using JAGS (Plummer 2017) implemented 

through R (R Core Team 2019) with the rjags (Plummer et al. 2019) package. I augmented the 

observed encounter histories with 1000 all-0 encounter histories. Each encounter history is 

assigned as belonging to a real or imaginary animal, and abundance is estimated as the number 

of real animals. I buffered the trapping grid by 10 km in every direction and used a random 

uniform distribution within that buffered zone as the prior for activity centers. I used a diffuse 

normal distribution for the priors on B0 and B1 and a diffuse half normal distribution from 0 to 

infinity as the prior for σ. I ran each model for 5,000 iterations in the adaptation phase, discarded 

the next 20,000 iterations as burn-in, and kept 75,000 iterations, thinned by 10, as the posterior 

distribution. 

 I evaluated goodness of fit for the SCR models using two Bayesian P-values (Gelman and 

Rubin 1992), one for the encounter process and one for the spatial point process (Russell et al. 

2012, Proffitt et al. 2015). For the encounter process, I compared the discrepancy measures of 

the observed encounter rate and an encounter rate simulated from the posterior distribution using 

 𝐷 =  ∑ (√𝑛𝑖 −  √𝑒𝑖)
2𝑁

𝑖=1  (Equation 4) 

where D is the discrepancy measure, N is the total number of individuals, ni is encounter 

frequency (observed or simulated) of individual i, and ei is the expected encounter frequency of 

individual i under the model. The Bayesian P-value for the encounter process is the proportion of 

steps in the MCMC where D(observed) is greater than D(simulated). For the goodness of fit test 

for the spatial point process, I used 

 𝐼 = (𝐺 − 1) × 𝑠2

�̅�⁄  (Equation 5) 

where G is the number of grid cells, �̅� is the average number of activity centers per grid cell, and 

s is the variance of activity centers in each grid cell. To calculate the Bayesian P-value, I 
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compared I calculated from the posterior distribution and I calculated from simulations of spatial 

randomness. The P-value is the proportion of times that I(posterior) is greater than I(simulated). 

For both Bayesian P-values, values near 0.5 indicate good fit, and values near 0 or 1 indicate 

poor fit. 

 

Results 

Cameras 

 Due to variable effort and camera failures, the number of cameras functional for some 

portion of each survey varied between sites and years (Table 1) from a high of 77 cameras 

functional for a portion of the Southeast ID 2018 survey, to a low of 64 cameras for the Central 

ID 2019 survey. The number of occasions during which a cougar was observed for the space-to-

event and time-to-event analyses also varied between surveys (Table 1).  

 Estimates of density from the two camera based models varied between years in the 

Central ID site and between models for the 2019 survey of the Central ID site (Fig. 3). In 2017, 

density in the Central ID site was estimated at 5.64 (3.98-7.29) cougars per 100 km2 by the time-

to-event model and 5.80 (1.52-10.08) cougars per 100 km2 by the space-to-event model (Table 

2). In 2019 both estimates were notably higher and diverged from each other, with the time-to-

event model estimating 10.82 (8.36-13.29) cougars per 100 km2 and the space-event-model 

estimating 21.40 (13.18-29.62) cougars per 100 km2. Estimates of density in the Southeast ID 

site were more consistent. In 2018, the time-to-event and space-to-event models estimated 6.19 

(4.53-7.49) and 6.51 (2.64-10.37) cougars per 100 km2 respectively. The estimates of density 

remained similar in 2019 with the time-to-event and space to event models estimating 5.55 (3.87-

7.23) and 7.32 (2.52-12.13) cougars per 100 km2 respectively. 
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DNA based SCR 

 The number of individuals detected in the genetic sampling and the recapture rate (the 

average number of detections per individual) varied across surveys and were generally lower in 

the Central ID site where biopsy darting was restricted to 2017. At the Central ID site we 

detected 21, 16, and 6 individuals with recapture rates of 1.19, 1, and 1 in 2017, 2018, and 2019 

respectively. A recapture rate of 1 indicates that no individuals were detected multiple times. At 

the Southeast ID site, we detected 32 and 18 individuals with recapture rates of 1.38 and 1.22 in 

2018 and 2019 respectively. 

 The low recapture rates at the Central ID site were insufficient to perform SCR, so 

density estimates from the genetic sampling are restricted to the Southeast ID site. Including 

effort per grid cell as affecting cell specific detection probabilities did not change the estimates 

of density within years, but there was some variation in the estimates between years (Fig. 3). The 

SCR model estimated 6.47 (3.35-12.15) cougars per 100 km2 in the Southeast ID site in 2018, 

and 3.17 (1.55-7.31) cougars per 100 km2 in 2019 (Table 2). The null model fit the data well for 

both the encounter process and point process in both years, but including effort as affecting 

detection probability reduces the model fit for the encounter process, despite the effort covariate 

appearing significant (Table 3). 

 

Discussion 

 The results show that the time-to-event and space-to-event models are promising tools for 

estimating the abundance of species that live at low densities, but non-random camera 

placements may have biased the estimates of density in this study. In the SE Idaho site, the 

estimates of density from the two models were consistent with each other, the SCR estimates, 
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and within the range of cougar density estimates found in the literature (Russell et al. 2012, 

Proffitt et al. 2015). The estimates of density from the Central Idaho site were less consistent, 

with variation between years and between models within the same year. Much of this variation 

was likely due to sampling design. Cameras were placed non-randomly to target winter habitat. 

If the use of winter habitat by cougars varied between years based on snowfall or other winter 

conditions, the encounter rate, and thus the estimates of density, should also vary. Non-random 

camera placement might explain the variable estimates between years, but it cannot explain the 

divergence of the time-to-event and space-to-event estimates in Central Idaho in 2019 (figure 

3a). The divergence of the time-to-event and space-to-event models might be caused by random 

chance and low sample size. The space-to-event model only uses the subset of detections that 

happen at a point in time for each occasion. In this study, the space-to-event time sample lasted 1 

minute, and was taken every 5 minutes. Effectively, each cougar detection had a 1 in 5 chance of 

being used in the space-to-event model. At low sample sizes, that random chance could have an 

outsized impact on the density estimate. This effect is reflected in the large confidence intervals 

of the space-to-event estimates and should be minimized as the number of cameras and animal 

density increase. 

 Sampling in this study was not ideal for the time and space-to-event models, which may 

have biased the density estimates. Unlike other camera arrays designed for occupancy or SCR 

analyses where cameras are placed to maximize detection probability, the time and space-to-

event models assume that animal movements are random in relation to camera placement (i.e. 

cameras are randomly located, (see chapter 1). In this study, cameras were placed non-randomly 

at three scales. First, the study area was defined by winter range. Defining the study area as a 

portion of the landscape means that the density estimates are only applicable to that portion of 
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the landscape. Here, density on winter range was estimated, which is comparable to the SCR 

estimates and to literature estimates of cougar density (Hornocker 1969, Seidensticker et al. 

1973, Russell et al. 2012, Proffitt et al. 2015). Sampling to estimate density on cougar winter 

range matches the goals of this study but could contribute to variation in density estimates. 

Within winter range, camera locations were selected based on predicted cougar movement 

corridors. Finally, at the selected locations, cameras were placed on roads and trails whenever 

available. Placing cameras along predicted movement paths should increase detection rates and 

bias density estimates high. The exact area sampled by each camera was also measured 

imprecisely, with only the view shed width measured in the field. Estimating the area sampled 

incorrectly will also bias the density estimates.  

 Despite the potential bias from non-random camera placement within the winter ranges, 

the estimates of density show that the time-to-event model can be effective for species that live at 

low densities. The time and space-to-event models estimate the density of animals in camera 

view sheds, meaning that the view sheds must represent a random sample of the landscape to 

provide unbiased estimates. Species that live at low densities can be challenging to monitor with 

random sampling due to low encounter rates. In this study, sampling to maximize detection rates 

may have biased the estimates higher than true cougar density. However, the results do show that 

the model functions at densities as low as those found here (i.e. approximately 6 individuals 

/100km2) and the associated low detection rates. At densities lower than those found here, as 

might be expected with a completely random sample of these study areas, increasing the number 

of cameras might be necessary to ensure detections, but the time-to-event model is effective with 

low detection rates. 
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 Both estimators performed comparably to SCR. For the surveys in which SCR estimated 

density, the time-to-event estimate was more precise, and the space-to-event estimate, which 

does not require any movement data, showed comparable precision to the SCR estimate. Both 

SCR and the camera-based estimators showed variation in the estimates for the same site 

between years and both performed poorly with sparse data. In some situations, the failure of the 

SCR model to estimate density might be preferable to the highly variable estimate returned by 

the space-to-event model when data are sparse, but in general, the space and time-to-event 

models appear to more reliably return an estimate of density than SCR when species are difficult 

to detect. SCR and capture-recapture methods more broadly rely on capturing the same 

individual multiple times, which can be difficult when capture probability is low. The individuals 

never detected do not contribute to the model. In contrast, the occasions with no animal detected 

are almost as informative to the time and space-to-event models as the occasions with an animal 

detected. Occasions without detections are expected when surveying a population at low density. 

The estimate of density from the space and time-to-event models depends as much on the ratio of 

occasions with detections to occasions without detections as it does on the observations (non-

right censored occasions) of the time or space until an event occurs.  

 The time and space-to-event models also scale well compared to capture-recapture 

methods. Because SCR relies on capturing the same individual in multiple locations, it performs 

best when effort is concentrated in a small area. To survey a larger area, total effort has to 

increase to keep the effort per unit area, and thus the probability of recaptures, consistent. The 

time and space-to-event models do not rely on recapturing the same individual; they only use the 

encounter frequency of the study species across the entire study area. That means a survey using 
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100 cameras would be as effective at estimating density in a large study area as it would in a 

small study area.  

 Camera based estimators that scale to any size study area and effectively estimate the 

density of unmarked species could help address many of the issues with monitoring species such 

as cougars and make multi-species monitoring more feasible. Rare species and species that live 

at low densities typically require targeted effort to observe during surveys, perhaps limiting the 

utility of a survey for sympatric species. The space and time-to-event models rely on a random 

sample of the study area but can still effectively estimate the density of species living at low 

densities. A random sample of the study area will be random for every species, not just the target 

species, so monitoring multiple species would only be reliant on all target species being able to 

be detected by the same camera setup.  

 These models are an effective tool for monitoring the abundance of unmarked 

populations. Combining the efficiency of observing animals through remote cameras with the 

time-to-event approach allows the estimation of low-density populations without the need for 

individual identification. The methods are general enough to apply to many different species, 

with the low-density species tested here representing a difficult case. In this difficult case, biased 

camera sampling resulted in performance comparable to existing, intensive efforts. With 

randomly placed cameras and sufficient effort, these methods should provide reliable estimates 

of low-density populations, making them a viable option for monitoring a diverse array of 

species. 

Management Implications 

 The time-to-event and space-to-event models are effective tools for estimating the 

abundance of unmarked populations. Even for species at low densities, and thus low encounter 
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rates, when cameras are placed randomly, the models perform well given enough cameras, in this 

case approximately 10,500 trap days. Estimating the abundance of low-density, difficult to detect 

species using camera surveys, rather than intensive ground surveys or capture-recapture efforts, 

could make abundance estimates for those species more feasible and cheaper to obtain. With 

relatively efficient methods, point estimates of abundance could be used to inform management 

decisions more often or be obtained more frequently to inform existing integrated population 

models (IPMs) or management plans such as that currently employed by Montana Fish Wildlife 

and Parks (Montana Fish Wildlife and Parks 2019). 
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Figures: 

 
Figure 1: Shaded relief map of Idaho, USA with the Central and Southeastern sites in black. (Esri 

World Hillshade Base Map) 

 

 
Figure 2: Map of the Central Idaho site showing local relief. Each grid cell is 10 km2. The extent 

of the study area was defined by predicted ungulate winter range. (Esri World Hillshade Base 

Map) 

Central ID site 

SE ID site 
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Site Year Cameras TTE STE 

Central ID 2017 70 45 7 

Central ID 2018 67 81 17 

Central ID 2019 64 74 26 

Southeast ID 2018 77 53 11 

Southeast ID 2019 71 40 9 

 

Table 1: The variation in camera effort between surveys. Cameras represents the number of 

cameras that were functional for at least a portion of the survey. TTE and STE are the number of 

occassions that were not right censored (a cougar appeared on camera) for the time-to-event and 

space-to-event analyses respectively. 

 

 
Figure 3: (a) Estimates of density and 95% CIs from the space-to-event and time-to-event models 

from the three surveys of the Central ID site. Insufficient recaptures prevented SCR estimates 

from the Central ID site. (b) Density estimates from the space-to-event, time-to-event, and two 

SCR models from the two surveys in the Southeast ID site. Intervals shown are 95% confidence 

intervals for the space and time-to-event models and 95% credible intervals for the SCR models. 
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Location Year Model Mean LCI UCI 

Central 2017 TTE 5.64 3.98 7.29 

Central 2017 STE 5.80 1.52 10.08 

Central 2018 TTE 10.84 8.48 13.20 

Central 2018 STE 13.97 7.33 20.62 

Central 2019 TTE 10.82 8.36 13.29 

Central 2019 STE 21.40 13.18 29.62 

Southeast 2018 TTE 6.19 4.53 7.49 

Southeast 2018 STE 6.51 2.64 10.37 

Southeast 2018 SCR 6.47 3.35 12.15 

Southeast 2018 SCR - effort 6.19 3.26 11.50 

Southeast 2019 TTE 5.55 3.87 7.23 

Southeast 2019 STE 7.32 2.52 12.13 

Southeast 2019 SCR 3.17 1.55 7.31 

Southeast 2019 SCR - effort 3.81 1.63 9.59 

 

Table 2: Estimates of density from each site, survey, and model. Mean is the estimate of density 

in cougars per 100 km2 for each survey from each model. LCI and UCI are bounds of 95% 

confidence intervals for time-to-event and space-to-event. For the SCR models, LCI and UCI are 

the limits of the 95% credible interval. 

 

 

Year Model Density BEffort Sigma Encounter Point Process 

2018 B0 6.47  

(3.35 – 12.15) 

NA 3.49  

(2.36 – 5.63) 

0.36 0.52 

2018 B0 + B1Effort 6.19  

(3.26 – 11.50) 

0.50  

(0.16 – 0.91) 

3.50  

(2.32 – 5.61) 

1.00 0.55 

2019 B0 3.17  

(1.55 – 7.31) 

NA 1.67  

(1.14 – 2.97) 

0.53 0.28 

2019 B0 + B1Effort 3.81  

(1.63 – 9.59) 

2.20  

(-0.63 – 9.01) 

1.73  

(1.13 – 3.33) 

1.00 0.29 

 

Table 3: Summarizes the results from the SCR models for the two surveys of the Southeast ID 

field site. Model indicates whether search effort within cells was included as affecting cell 

specific detection probability. Density is the estimated number of cougars per 100 km2. BEffort is 

the estimate of the effect of centered and scaled search effort on detection probability. Sigma 

estimates the effect of distance between individual activity centers and cells on detection 

probability. Encounter and point process are Bayesian p-values representing how well the data fit 

the model.  
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