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Catudio Garrett, Elizabeth, M.S., Spring 2020 Cellular, Molecular and Microbial Biology
Characterizing the requirements for the matricellular protein dCCN in nervous
system function

Chairperson: Dr. Sarah J. Certel

The brain is organized as a complex network of specialized neurons that
communicate via a combination of electrical and chemical signals. Our brains function to
generate movement, control organ function, or direct complex behaviors; all of which
requires the ability to regulate the flow of communication between circuits and networks.
Work in this thesis addresses two areas of neuron communication: first, zow does the
release of more than one neurotransmitter from a single neuron impact behavior, and
second, are matricellular proteins (MCPs) key contributors to synaptic transmission and
neuron function? The conserved CCN family of MCPs have a unique mosaic structure
consisting of a secretory signal peptide followed by four conserved functional domains.
This complex mosaic structure provides CCN proteins with key signaling and regulatory
roles that are required for many vital biological functions, however, our understanding of
the function of CCN proteins in the central nervous system (CNS) is quite limited. The
goal of this study was to characterize dCCN expression, the sole Drosophila
melanogaster CCN member, and determine how dCCN contributes to neuron function.
We determined that dCCN expression in the CNS begins during embryogenesis and
continues into mature adult neurons. In the adult, dCCN expression was found in a
number of neuron types including sensory neurons, neurons innervating the crop and gut
of the gastrointestinal system, and neurons innervating the ovaries and uterus indicating a
multi-faceted role in neuron function in this invertebrate member. Furthermore, I describe
co-expression between dCCN and neurons that express the monoamines octopamine
(OA), dopamine (DA), and serotonin (5-HT), and in neurons that are sexually dimorphic,
including fruitless (fru), and double-sex (dsx). Lastly, we demonstrate for the first time a
requirement for dCCN in synaptic transmission at the larval neuromuscular junction
(NMJ), and female fertility. Our results demonstrate dCCN is expressed in a diverse set
of neurons that respond to a variety of external and internal signals, direct synaptic
transmission at the neuromuscular junction, and are critical for the function of
reproductive and behavioral circuits.
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Chapter 1: Introduction



The monoamine neurotransmitters and extra-synaptic release

Monoamine neurotransmitters, also known as the biogenic amines, are a class of
key neuromodulators important for numerous biological processes in a wide range of
animals including humans. The biogenic amines each contain an amino group attached to
an aromatic ring, making these biological compounds highly stable and susceptible to
many enzymatic interactions (Dougherty, 2007; Grouleff et al., 2015). The monoamine
neurotransmitters include dopamine (DA), serotonin (5-HT), norepinephrine (NE), and
octopamine (OA), the invertebrate homologue to NE. Monoamine neurotransmitters,
monoamine receptors, and aminergic-modulated neuronal circuits are highly conserved
between vertebrates and invertebrates, and carry out a diverse set of physiological
functions (Kravitz and Huber, 2003; Spielman et al., 2015; Swallow et al., 2016; Kambhi,
2017).

Within the conserved anatomical structure and physiological function of
monoamine-expressing neurons, there is diversity in the behaviors and organs modulated
by monoamines. For example, monoamine neurotransmitters modulate complex mood
states and govern behaviors including sleep, appetite, attention, arousal, locomotion,
stress response, sexual drive and reproduction, learning and memory, addiction
formation, and eusocial behaviors (Dishman 1997; Libersat and Pflueger 2004; Kamhi
and Traniello 2013; Bubak et al., 2014; De Boer et al., 2015; Swallow et al., 2016).
Second, dysregulation of monoamine signaling is a significant component of psychiatric
and neurodegenerative disorders such as sleep dysfunction (Watson, 2010), major
depression (Nutt, 2008; Hamon and Blier, 2013; Yukiori et al., 2016), bi-polar spectrum
disorders (Walderhaug et al., 2011), attention deficit hyperactivity disorder (ADHD;
Manor et al., 2002; Reddy, 2013), schizophrenia and schizoaffective spectrum psychoses
(Issa et al., 1994; Sedvall, 1990; Yukiori et al., 2016; Leppik et al., 2018), Alzheimer’s
Disease (Liu et al., 2016), and Parkinson’s Disease (Bruno et al., 2016). Third,
monoamine neurotransmitters are critical in the regulation of heart rate and blood
pressure (Watts et al., 2012), smooth muscle function (Gilloteaux, 1979), the
gastrointestinal system (Meirieu et al., 1986; Eisenhofer et al., 1997; Mittal et al., 2017),
female reproduction (Hansson et al., 2009), and thermoregulation (Cook et al., 2017;

Sinakevitch, 2018). In summation, monoamine neurotransmitters are involved in many



physiological, neurological, and behavioral processes in both vertebrates and
invertebrates.

In addition to release at the synapse, monoamine neurotransmitters are released
extra-synaptically; from non-synaptic sites including the soma, somatic dendrites, and
axons (De-Miguel et al., 2005; Fuxe et al., 2015; Grygoruk et al, 2014; Borroto-Escuela
et al., 2014; De-Miguel and Nicholls, 2015; Del-Bel and De-Miguel, 2018; Svensson et
al., 2018). Extra-synaptic release is a separate method of signaling that occurs by
diffusion as monoamines and neuropeptides move from the releasing source to the target
receptor in a process termed volume transmission (De-Miguel et al., 2005; Fuxe et al.,
2015; Grygoruk et al, 2014; Borroto-Escuela et al., 2014; De-Miguel and Nicholls, 2015;
Del-Bel and De-Miguel, 2018; Svensson et al., 2018). Signaling through volume
transmission impacts time and anatomical space considerations within the central nervous
system (CNS; De-Miguel et al., 2005; Ludwig, 2006; Fuxe et al., 2015; Grygoruk et al.,
2014; Borroto-Escuela et al., 2014; De-Miguel and Nicholls, 2015; Del-Bel and De-
Miguel, 2018; Svensson et al., 2018). Extra-synaptic, and in particular, somatic
exocytosis, is slower than synaptic terminal release and affects the CNS for several hours
(Ludwig, 2006; Trueta and De-Miguel, 2012; De-Miguel et al., 2015; De-Miguel and
Nicholls, 2015). Therefore, extra-synaptic release can prolong the effect of a signal with a
slow-onset and long-lasting timing to the modulation of hardwired circuits (Ludwig,
2006; Trueta and De-Miguel, 2012; De-Miguel et al., 2015; De-Miguel and Nicholls,
2015).

Results from many animal systems indicate that specific neuron populations
primarily signal extra-synaptically. Ridet et al. in 1993, and Van Bockstaele et al. in
1993, examined 5-HT neurons in the dorsal horns of rat spinal cords (Ridet et al., 1993)
and in the rat nucleus accumbens (Van Bockstaele and Pickel, 1993), and both research
groups found over half of the 5-HT neurons they examined do not form any classical
synapses. Both Ridet et al. and Van Bockstaele et al.’s findings show evidence that
specific 5-HT neurons largely communicate extra-synaptically. Another example of
extra-synaptic release is found with oxytocin, a powerful neuropeptide. Although there is
little innervation of oxytocin containing projections observed in rodent brains, dendritic

extra-synaptic release of oxytocin contributes profound long-lasting impacts on social



bonding behavior (Nicholson and Rice, 1991; Kawagoe et al., 1992; DeVries et al., 2006;
Ludwig, 2006; Sykova and Nicholson, 2008; Wang et al., 2011; Naskar and Stern, 2014;
Dyakonova et al., 2019). In addition, although glutamate mediates point-to-point
transmission at the synapse, recent studies indicate that glutamate spillover from the
synaptic cleft may accumulate in the extra-synaptic space, and signal through volume
transmission to regulate crucial brain functions (Okubo and Iino, 2011; Tabor and
Hurley, 2014). Collectively, these findings demonstrate that extra-synaptic signaling is a
widespread phenomenon, and importantly for this thesis, is that extra-synaptic signaling
can be modified by the dynamic microenvironment that surrounds each neuron. Such
dynamic processes include ECM turnover, ionic changes due to neural activity, changes
in intercellular adhesion machinery, and changes in MCP function in response to
variations in environmental cues (Wong and Rustgi, 2013; Barnes et al., 2017; Nicholson
and Hrabétova; 2017).

Once monoamine neurotransmitters are released into the extracellular space, they
bind to post-synaptic receptors to elicit a physiological response. In addition, monoamine
activated receptors are also expressed on pre-synaptic neurons and called autoreceptors
(Timmermans and Thoolen, 1987). Activation of autoreceptors has been shown to be
important for conveying feedback regulation of neurotransmitter release (Gothert, 1985;
Xie et al., 2008; Langer, 2008; Garcia-Fuster, and Garcia-Sevilla, 2015; Rutigliano et al.,
2018). Monoamine receptors are G-protein coupled receptors (GPCRs), with the
exception of the serotonin 5-HT3 receptor, which is the sole ionotropic-gated receptor
(Martin et al., 2010). In summation, the combination of synaptic and extra-synaptic
release provides monoamine-expressing neurons the capability of communicating both at
high speeds with spatial precision, as well as at slower speeds with an anatomically
broader impact and longer-lasting effects on the CNS. Both communication modes are

important for brain function in health, disease states, and behavior.

The extracellular environment and neurotransmission
Monoamine neurotransmitters, neuropeptides, and neuromodulatory transmitters
are released from neurons or glia, and travel within the synaptic cleft or diffuse extra-

synaptically into the extracellular fluid to reach their receptor molecule targets. The



microenvironment surrounding cells, or the space between individual cells, is known as
the extracellular matrix (ECM). The ECM is a non-cellular medium composed of water
and filled with many characterized proteins and macromolecules that form a three-
dimensional network (Bornstein, 1995; Bornstein and Sage, 2002; Frantz et al., 2010;
Schultz et al., 2011; Kular et al., 2014; Murphy-Ullrich and Sage, 2014; Kusindarta and
Wihadmadyatami, 2018; Adams, 2018). Matrix components bind each other as well as
cell adhesion receptors to form a complex web-like network into which cells reside
(Bornstein, 2009; Kular et al., 2014; Kusindarta and Wihadmadyatami, 2018; Adam:s,
2018). Cell surface receptors transduce signals into cells from the ECM, which regulate
diverse cellular functions, such as survival, growth and shape, adhesion and de-adhesion,
migration, proliferation, and differentiation (Bornstein, 1995; Bornstein and Sage, 2002;
Schultz et al., 2011; Murphy-Ullrich and Sage, 2014; Kusindarta and Wihadmadyatami,
2018; Adams, 2018). Thus, similar to how a flourishing garden requires nutritious and
enriched soil to give rise to healthy plants that yield high quality produce, so too, do cells
or neurons and glia in their ECM environment.

One principle role of the ECM is to provide a space for ECM proteins and
macromolecules to physically support cells. The ECM consists of numerous cell secreted
molecules within a dynamically and reciprocally rapidly changing environment (Frantz et
al., 2010; Schultz et al., 2011; Kusindarta and Wihadmadyatami, 2018; Adams, 2018).
Cells modify the surrounding ECM, and can readily secrete and orient structurally
supportive molecules (Alberts et al., 2002; Adams, 2018). The primary job for many cell
secreted molecules of the ECM is to provide critical structural support for cells to assist
with cellular growth and shape, development, injury repair, and cell stabilization
(Bornstein, 1995; Bornstein and Sage, 2002; Frantz et al., 2010; Schultz et al., 2011;
Kular et al., 2014; Murphy-Ullrich and Sage, 2014; Kusindarta and Wihadmadyatami,
2018; Adams, 2018). Some examples of cell secreted ECM proteins include collagens,
proteoglycans, glycosaminoglycans, elastin, fibronectin, laminins, and several other
glycoproteins. These structural ECM proteins attach to the cytoskeleton of cells and give
tissues their structural integrity and durability, allowing tissues to be flexible or hard, and
withstand pulling, stretching, twisting, and various other mechanical movements (Frantz

et al., 2010; Kular et al., 2014; Kusindarta and Wihadmadyatami, 2018; Adams, 2018).



Thus, the ECM is essential for creating the dynamic, complex, three-dimensional
meshwork environment into which cells embed into. Additionally, the overall
composition of a tissue’s ECM is responsible for giving tissues their shape, flexibility,
and firmness.

The second fundamental role of the ECM is to provide a medium for intercellular
signaling to occur. Intercellular signaling is “the transfer of information from one cell to
another, which is accomplished by a cell releasing a substance that is taken up by another
cell” (National Cancer Institute, 2020). Matricellular proteins (MCPs) are non-structural
cell secreted proteins that are critical in modulating intercellular signaling and ECM:cell
communication within any tissue type in both vertebrates and invertebrates (Bornstein,
1995; Bornstein and Sage, 2002; Frantz et al., 2010; Schultz et al., 2011; Kular et al.,
2014; Murphy-Ullrich and Sage, 2014; Kusindarta and Wihadmadyatami, 2018; Adams,
2018). Secreted MCPs are sometimes found along the edges of cells, interacting with cell
surface receptors and structural ECM proteins (Bornstein, 2009; Schultz et al., 2011;
Kular et al., 2014; Malik et al., 2015; Adams, 2018). MCPs can also modulate regulatory
and growth factors, hormones, and other bioeffector molecules (Bornstein, 2009; Schultz
et al., 2011; Kular et al., 2014; Morris and Kyriakides, 2014; Malik et al., 2015; Adams,
2018). Intercellular communication or cell: ECM signaling is crucial for proper cell
migration, anchoring, differentiation, wound healing, apoptosis, growth, proliferation,
and many other important cellular processes within a variety of tissues (Bornstein, 2009;
Schultz et al., 2011; Kusindarta and Wihadmadyatami, 2018; Adams, 2018). This critical
and delicate balance of structural remodeling and stabilization requires cel:ECM
interactions to reciprocally signal, which allow for dynamic and rapid appropriate
structural changes in the development of many tissues throughout an organism’s lifespan.

There are several distinct MCP families which are highly conserved and found
across many different animal phyla (Bornstein and Sage, 2002; Bornstein, 2009; Adams,
2018). One family of MCPs are the thrombospondins, which have been shown to be
important for cell processes involved with angiogenesis, cancer progression,
inflammation regulation, immune system regulation, formation of myotendinous
junctions, maintenance of the myocardium integrity and function, and synaptogenesis

(Bornstein and Sage, 2002; Bornstein, 2009; Stenina-Adognravi, 2014; Adams, 2018).



Another class of MCPs is the SPARC family, which has eight members and has been
shown to be vital for ECM assembly, counter-adhesion, ECM protease regulation, and
regulation of growth factor and cytokine activation pathways (Bornstein and Sage, 2002;
Bornstein, 2009; Bradshaw, 2012; Adams, 2018). Finally, I will discuss below the CCN
family of MCPs which are critical for cellular development, differentiation, and
cell:ECM communication (Bornstein and Sage, 2002; Rachfal, 2005; Katsube et al.,
2009; Chen and Lau, 2009; Bornstein, 2009; Perbal, 2013; Adams, 2018; Perbal, 2018).

The CCN family of matricellular proteins

The CCN family of MCPs is currently known as the family of Cellular
Communication Network Factors (previous nomenclature: CYR61/CTGF/NOV; the term
was coined by Bork P. in 1993 and was named after the first three discovered proteins to
create the original CCN acronym; Bork, 1993; Brigstock et al., 2003; Perbal, 2018).
There are six CCN family members in vertebrates (H. sapiens, M. musculus, X.
tropicalis, and D. rerio) and a sole CCN family member in invertebrates (B. floridae, D.
melanogaster, E. multilocularis; Hu et al, 2019). CCN proteins are secreted as well as
found in the nucleus of cells (Holbourn et al., 2008; Jun and Lau, 2011; Malik et al.,
2015; Krupska et al., 2015; Perbal, 2018). CCN family members are unique as they
contain a signal peptide and four well conserved domains that can be found in ECM or
signaling protein families (Planque and Perbal, 2003; Rachfal, 2005; Leask and Abraham,
2006; Holbourn et al., 2008; Perbal, 2013; Malik et al., 2015; Krupska et al., 2015; Xia et
al., 2016; Takigawa, 2017; Perbal, 2018; Hu et al., 2019). Following the export signal
peptide (SP), the four highly conserved domains of CCN proteins include the insulin-like
growth factor binding protein (IGFBP), a von Willebrand factor type C repeat (VWC),
thrombospondin type-1 repeat (TSP-1), and a cysteine knot-containing domain (CK) (see
figure 1A; adapted from figure 1 of Malik et al., 2015; Hu et al., 2019). CCNS is the only
exception, in that this particular CCN family member is missing the CK domain (Planque
and Perbal, 2003; Holbourn et al., 2008; Malik et al., 2015; Krupska et al., 2015).
Examples of CCN domain interacting partners include integrins, Notch 1, Fibulin C1,

Collagen V, Fibronectin, Wnts, Bone morphogenetic protein 4 (BMP4), Transforming



growth factor f (TGFp), Lipoprotein receptor related protein 1 (LRP1), Insulin-like
growth factor (IGF), and heparin sulfate proteoglycans (HPSG) (see Figure 1C; adapted
from Malik et al., 2015). These canonical interacting partners and receptors of CCN
proteins allow for the regulation of many cellular processes important for the growth,
development, maintenance, and ECM:cell communication (Leask and Abraham, 2006;
Katsube et al., 2009; Chen and Lau, 2009; Jun and Lau, 2011; Malik et al., 2015;
Krupska et al., 2015; Takigawa, 2017; Perbal, 2018). One example of a CK domain-
mediated interaction is signaling between CCN3 and Notch 1, which is required for
neuronal differentiation in the chick retina (Laurent et al., 2012; Malik et al., 2015). In
summation, the CCN family of MCPs have the unique ability to interact with numerous

receptors and ligand partners due to their four highly conserved domains.

Figure 1:
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Figure 1: The functional domains of the CCN family of matricellular proteins. (A) Functional domains of a
vertebrate CCN protein. (B) Functional domains of a dCCN protein. (C) Select examples of interacting partners aligned

with their associated interactive domain. Adapted from Malik et al., 2015.

The CCN family of MCPs is often thought of as “traffic coordinators” — recruiting

various molecular workers to the area at specific times, and modulating intercellular
signaling to regulate cell function, gene expression, development, angiogenesis,
apoptosis, differentiation, ECM structural remodeling, cell stabilization and anchoring,

injury repair, overall cell homeostasis, and ECM:cell communication (Leask and



Abraham, 2006; Katsube et al., 2009; Chen and Lau, 2009; Jun and Lau, 2011; Malik et
al., 2015; Krupska et al., 2015; Takigawa, 2017; Perbal, 2018).

CCN family members can initiate many diverse cellular responses when interacting
with the same receptor. For example, CCN1 can interact with the avB3 integrin of
fibroblasts to initiate DNA synthesis or proliferation, but activating the same receptor in
microvascular endothelial cells via CCN1 will inspire chemotaxis to occur (Jun and Lau,
2011). The CCN family of MCPs can also coordinate opposing actions as well. For
example, CCN1 promotes chemotaxis in smooth muscle cells whereas CCN3 prohibits
migration in the same cells (Jun and Lau, 2011). Lastly, CCN proteins can synergistically
change cellular responses when paired with other bioeffector molecules. For example,
a6pB1 activation via CCNI1 alone influences cell adhesion in fibroblasts, but when CCN1
is paired with TNF-a and activates the same receptor, apoptosis in fibroblasts occurs (Jun
and Lau, 2011). These pleiotropic behaviors are dependent on the cell type, the cell’s
receptor composition, the presence of additional bioeffector molecules, and the cell’s
current status in development (Jun and Lau, 2011; Malik et al., 2015). In summation, the
CCN family of MCPs has the extraordinary ability to function in a pleiotropic manner,
and can govern numerous different cellular responses among many different tissues.

Numerous studies demonstrate that alterations in CCN function, or disruptions in
cell:CCN family of MCPs communication results in a wide range of disorders. Examples
include developmental disorders such as cardiac diseases and heart vasculature
developmental defects (Frangogiannis, 2012; Xia et al., 2016; Klenotic et al., 2016; Diez
et al., 2016), bone development disorders (Kubota and Takigawa, 2011, Takigawa, 2013;
Chen et al., 2014; Kubota and Takigawa, 2015), fibrotic diseases (Kubota and Takigawa,
2015; Diez et al., 2016; Chen et al., 2017), kidney disease and glomerulosclerosis (Sawai
et al., 2007), and dysregulation of inflammation throughout development (Leask and
Abraham, 2006; Jun et al., 2011; Kular et al., 2011; Chen et al., 2014). In addition, CCN
dysfunction has been linked to numerous types of cancer including glioblastoma where
CNNI levels are used as a prognostic factor (Dhar and Ray, 2010; Li et al., 2015; Ishida
et al., 2015; Kim et al., 2018).

Within the CNS, CCN dysregulation has been reported in psychiatric disorders

such as schizophrenia (Ito et al., 2007), depression, bi-polar spectrums, and post-partum



psychosis (Malik et al., 2015; Dazzan et al., 2018; Davies, 2019). A role of CCN proteins
in neurodegenerative diseases such as dementia, Alzheimer’s Disease, or Parkinson’s
Disease has been reported. An increase in CCN2 expression levels leads to the promotion
of chronic inflammation and the formation of neuritic plaques and neurofibrillary tangles;
all of which are associated with neurodegenerative diseases (Ueberham et al., 2003; Zhao
et al., 2005; Jun and Lau, 2011; Malik et al., 2015; Jayakumar et al., 2017). Changes in
CCN transcript levels occur in response to traumatic brain injuries (TBIs) as well.
Increased levels of CCN2 transcripts and protein was induced in rodent neurons and glia
after TBI lesions were made (Schwab et al., 2000; Hertel et al., 2000; Schwab et al.,
2001; Jones and Bouvier, 2014; Malik et al., 2015; Abu Hamdeh et al., 2018). Lastly,
CCN proteins have also been associated with CNS viral infections such as the Zika virus,
in which CCN1 and astrocytes have reportedly played a role as an infection mechanism
through manipulations by the Zika virus (Sun et al., 2019). In summation, the CCN
family of MCPs has implications in many developmental disorders, mood states,
diseases, cancers, and many other pathologies.

As CCN family members are critical for development, ECM modeling, and
intercellular communication, it comes as no surprise that CCN proteins are highly
expressed within the developing and mature CNS. The Allen Mouse Brain Atlas and
Allen Human Brain Atlas has characterized CCN expression patterns in the rodent and
human CNS. High expression levels of CCN1-6 members are found in the hippocampus,
cortical regions, caudate nucleus, cerebellum, and spinal cord (Lein et al., 2007;
Hawrylycz, 2012; Malik et al., 2015; Jayakumar et al., 2017; Kusindarta and
Wihadmadyatami, 2018). Although the functional role for CCN proteins within the CNS
has been largely understudied, new results indicate a complex role in neuron
development and differentiation. For example, Malik et al. demonstrated that CCN1 is
required for dendritic branching in rat hippocampal neurons in vitro, and acts
downstream of the Ras, ERK, and PI3K signaling pathways (Malik et al., 2013). In other
examples, Khodosevich et al. in 2013, demonstrated that CCN2 regulated and promoted
apoptosis in rodent olfactory bulb newborn neurons in an activity-dependent manner
(Khodosevich et al., 2013; Malik et al., 2015), and CCN3 suppresses myogenesis through
Notch 1 signaling (Sakamoto et al., 2002). In addition, CCN3 plays a role in
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neuroinflammation by upregulating CCL2 and CXCL1 expression in astrocytes through
B1 and PS5 integrins; acting through the Rho/ROCK/INK/NF-kappaB and
Rho/qROCK/p38/NF-kappaB signaling pathways (Le Dréau et al., 2010). These few
examples demonstrate a portion of the ways that the CCN family of MCPs contribute to
CNS function. However, it is largely unknown how CCN family members contribute to

neuronal circuit formation or function.

dCCN

The model organism, Drosophila melanogaster, is an excellent animal model to
examine CCN function in the CNS for several reasons. The first reason being that only a
single CCN family member is encoded by the Drosophila genome, thus eliminating
concerns about redundancy or overlapping functional roles. Other advantages include a
well-established genetic toolbox, an easy to use genetically amenable system, and
Drosophila have a simplified CNS with approximately ~100,000 neurons. The sole
Drosophila CCN member, dCCN, has a signal peptide and three of the four domains
present, including the VWC, TSP-1, and CK domains (see figure 1B). The focus of this
thesis project was to determine and characterize dCCN expression throughout
development and into the adult stage, as well as identify neuron populations that co-
express dCCN. In addition, I determined dCCN is required for female fertility and

through collaboration, dCCN is a requirement in synaptic transmission.

Significance

The narrow microenvironment that surrounds every cell of the CNS provides a
reservoir for the dynamic intercellular structure and signaling communication that is
required for neuron development and function. Many signaling molecules including
classical neurotransmitters, neuropeptides, and monoamine neuromodulators are released
by neurons or glia and disperse by volume transmission to reach their receptor targets.
Our long-term goal is to understand how CCN proteins impact monoamine signaling via
volume transmission in wildtype and disease conditions. The experiments in this thesis
provide the frame to address this question by: (1) characterizing the expression pattern of
the single Drosophila family member, (2) determining a subset of monoaminergic

neurons express dCCN, (3) demonstrate dCCN is required for female fertility and thus
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exhibits a sex-specific function, and (4) by collaboration I report that dCCN is required
for synaptic transmission at the neuromuscular junction (NMJ). My findings support and
advance the previously published work in vertebrates while providing a strong
genetically manipulatable platform that will allow future studies addressing neuron-
specific requirements for JCCN during development as well as in the mature nervous
system. Together, results from this project are expected to significantly enhance the
potential to address MCP function in distinct cellular contexts that could lead to novel
ways of manipulating neurotransmitters of volume transmission, the efficacy of drug

delivery, and the remodeling of neuronal networks.
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Chapter 2: Identification and Characterization of dCCN

13



dCCN expression begins during embryogenesis

The CCN family has a common primary structure consisting of a secretory signal
peptide at the N-terminus followed by four conserved functional domains: insulin-like
growth factor binding protein domain (IGFBP), von Willebrand factor type-C domain
(VWC), thrombospondin type-1 repeat domain (TSP-1), and a cysteine-knot-containing
(CK) domain (Fig. 2A) (Perbal 2004; Yeger and Perbal 2007; Holbourn et al., 2008). A
recent comparative analysis of the CCN gene family (Hu et al., 2019) as well as our own
homology searches indicates the Drosophila genome encodes a single CCN family
member, dCCN (Drosophila CCN). While lacking the IGFBP domain, dCCN contains the
VWC, TSP-1, and CK domains as well as a signal peptide within the transmembrane
domain, and up to 7 glycosylation sites (Fig. 2A-B, SFig. 1) (Hu et al., 2019).

Specific CCN family members in zebrafish, xenopus, and mice are required for
embryonic viability (e.g., mammalian CCNI1, 2 and 5) (Latinkic et al., 2003; Jun and Lau
2011; Krupska et al., 2015), while other members are not essential for development (e.g.,
mammalian CCN3, 4 and 6) (Jun and Lau 2011; Ono et al., 2018), possibly due to
functional redundancy and/or specialization during evolution (Holbourn et al., 2008;
Krupska et al., 2015). dCCN transcripts were detected at embryonic stage 13 and
predominantly confined to the developing ventral nerve cord (VNC) (Fig. 2C). Within the
segmentally-repeated VNC neuromeres at stage 15, dCCN transcripts accumulate in
differentiating neurons including cells at the midline (arrow, Fig. 2D). To facilitate the
identification of dCCN-expressing cells, we generated a dCCN-Gal4 line through MiMIC
insertion-conversion at the endogenous dCCN chromosomal locus. MiMIC-converted
Gal4 drivers are under control of the complete regulatory region of each gene and thus
reliably reflect endogenous gene expression (Diao et al., 2015). Expression of a UAS-
driven membrane GFP reporter, UAS-CD8:GFP, by dCCN-Gal4 (hereafter dCCN>GFP)
confirmed predominant expression in the VNC (stage 17, Fig. 2E). Based on qRT-PCR
quantification, our dCCN-Gal4 line is also a severe hypomorphic allele (hereafter
dCCNYH) (SFig. 2). dCCN%“/ dCCN®“* embryos develop to larval stages, indicating that

dCCN is not required for embryonic viability. However, the number of homozygous
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Figure 2:
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Figure 2: Vertebrate CCNs and Drosophila CCN share domain homology. (A) dCCN contains the signal peptide
(SP) and three of the four conserved modules, von Willebrand factor type C (VWC), thrombospondin type 1 (TSP1)
repeat, and a C-terminal cysteine knot (CK). dCCN is lacking an insulin-like growth factor binding protein (IGFBP)
domain. (B) Sequence alignment of mouse CCN1 and dCCN. (C) dCCN transcripts accumulates in the developing CNS
(arrow) beginning at stage 14. (D) Midline cells accumulate dCCN transcripts in a stage 15 dissected CNS (arrow). (E)
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Figure S1: dCCN sequence and domains. The dCCN sequence contains a signal peptide (SP), a von Willebrand
Factor type C repeat domain (VWC), a thrombospondin type-1 repeat domain (TSP-1), and a cysteine knot-containing
domain (CK).
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Figure S2: dCCN transcript expression. Quantification of dCCN transcripts. A significant reduction of JCCN
transcripts is observed in homozygous dCCN“ flies (dark blue column) when compared with heterozygous dCCN#

(light blue column) flies and yw controls (black column). Error bars denote S.E.M.
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progeny is less than expected, suggesting that Drosophila development is compromised

with reduced dCCN function.

dCCN is required for synaptic transmission at the larval neuromuscular

junction

Within the central nervous system (CNS), CCN family members are expressed in
neurons and glia (Malik et al., 2015; Jayakumar et al., 2017). For example, CCN1 has been
found in rat hippocampal and cortical neurons, whereas CCN2 and CCN3 are expressed in
subtypes of glia as well as neurons (Kondo et al., 1999; Schwab et al., 2000, 2001). To
determine the neuronal vs. glial identity of dCCN-expressing cells, we double-labeled
dissected larval CNSs from dCCN9““>UAS-dsRed progeny with the neuronal marker,
Elav, and separately the Repo glial marker (SFig. 3) (Koushika et al., 1996; Kaplow et al.,
2008). Widespread but distinct dCCN expression was found in the central brain minus the
optic lobe regions, and also present in the VNC (Fig. 3B). Extensive co-localization
between dCCN>dsRed and Elav indicate the majority of dCCN+ cells are either inter- or
motor neurons (SFig. 3 A-B’’). Co-localization was not observed between dCCN>dsRed
and the Repo glial marker (SFig 3C-D’’). Additional methods of identifying possible glial
co-expression includes the use of the repo-flp line in combination with dCCN%“*, and two
separate split-Gal4 combinations with different JCCN split gal4 lines and the glia-
expressing excitatory amino acid transporter (EAAT1)-Gal4 lines did not identify dCCN-
expressing glia (see Materials and Methods). Thus, using in situ hybridization and
dCCNY%" we determined that dCCN is expressed during development, comparable to
vertebrate CCN gene expression levels during development. However, in contrast to the
vertebrate CCNs, the expression of dCCN appears limited to the CNS and neurons.

As in the embryo, the Drosophila larval VNC is composed of segmentally repeated
neuromeres with motor neurons extending outside of the VNC to innervate body wall
muscles (Fig. 3A) (Keshishian et al., 1996; Landgraf et al., 1997, 2003; Landgraf and Thor
2006). Using dCCN>GFP, we determined dCCN-expressing neurons include motor
neurons that innervate muscles 6 and 7 among others at the larval neuromuscular junction

(NMYJ) (Figure 3C). During larval stages, dCCN“* mutants have a morphologically
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Supplemental figure 3:

dCCN>dsRed

UAS-dsRed; dCCNea

Figure S3: dCCN®! expression is found within neurons and not glia. (A-A’’) Larval brain lobes stained with Anti-
Elav of a UAS-dsRed; dCCN®* CNS reveals co-expression of dCCN and Elav (see arrowheads). (B-B’?) Consistent
co-expression of Elav and dCCN of the larval VNC are either inter- or motor neurons. (C-D’”) No co-expression was

found among Repo and dCCN in the brain lobes and VNC of a UAS-dsRed; dCCN®*1arval CNS. Scale bars represent
50 um.
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Figure 3: dCCN is required for neurotransmission at the larval neuromuscular junction. (A) A schematic
displaying a filet of a larvae exposing the central nervous system (CNS). Motor neuron projections from the CNS
innervate the body wall muscles. The inset shows a zoomed in schematic representation of a motor neuron innervating
the body wall muscles at a neuromuscular junction (NMJ). (B) Pseudo colored green nuclei is seen in the larval CNS of
dCCN=+>UAS-dsRed. Blue represents DAPI staining. Scale bar represent 50 um. (C) An image displaying a dCCN
expressing motor neuron innervating the body wall muscles 6 and 7 at an NMJ of an dCCN=>UAS-CD8:GFP larvae
enhanced with anti-GFP. Red represents anti-actinin staining (invertebrate muscle marker). Scale bar represents 50 um.
(D-F) Electrophysiology kinetics detailing a significant decrease in the neurotransmission of homozygous dCCNe#
mutants when compared with wild type (WT) controls. (D) A measurement of excitatory post-synaptic potential
amplitude shows a significant decrease in neurotransmission at the NMJ of homozygous dCCN=+ mutants when
compared with WT controls. (E) A measurement of mini-amplitude reveals no significant difference between
homozygous dCCN=+ mutants and WT controls. (F) A measurement of mini-frequency reveals no significant difference
between homozygous dCCN=* mutants and WT controls. Error bars denote S.E.M. Statistical tests conducted were two-

tailed Mann-Whitney tests (*p<0.05, ¥¥p<0.01, *+p<0.001, ****p<0.0001).
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normal NMJ without readily apparent structural defects in boutons or bouton numbers
(SFig. 4A-B). However, the few adults that eclose exhibit locomotor defects. While it is
well-established that ECM molecules derived from both neurons and glial regulate

different aspects of synaptic differentiation and synaptic function (Rohrbough et al., 2007;
Eroglu 2009; Jayakumar et al., 2017), a role for CCN family members in synaptic function
has been limited to acting as immediate early genes in response to events that alter synaptic
activity. For instance, CCN protein expression is altered in response to neuroinflammation
by the cytokines TPh/TNFoa and to facilitate synaptic plasticity via the activity of
muscarinic acetylcholine receptors (Albrecht et al., 2000; Kular et al., 2011), and increased
expression of CCN1 via B1l-integrin induces dendritic growth (Malik et al., 2013). To ask
if dCCN itself is required for synaptic transmission, we used two-electrode voltage clamp
recordings to examine NMJ neurotransmission. We find from our recordings of evoked
excitatory junction currents (EJCs) and spontaneous miniature events (mEJCs) that EJC
amplitudes of dCCN mutants are reduced by 38.8% versus controls (P<0.001) (Fig. 3D-F).
A reduction in miniature event frequency of 33.4% compared to controls (P<0.001, data
not shown) was seen without a change in miniature event amplitude. Given these results,
quantal content is reduced by 40.3% (P<0.001) in dCCN mutants versus controls. Taken
together, these results indicate that dCCN%“* mutants have a significant presynaptic evoked

neurotransmission defect.

Adult peripheral and central nervous system neurons expression of
dCCN

To ask if dCCN expression is maintained in the adult nervous system and putatively
required for neuron function as well as neuron differentiation, we examined dCCN>GFP
expression in the mature adult Drosophila peripheral nervous system (PNS) and CNS (Fig.
4A). While widespread, dCCN>UAS-stingerGFP (hereafter dCCN>UAS-nlsGFP) is not
ubiquitous and is instead found in distinct brain and VNC regions (Fig. 4B-C). For
example, although absent in the larva optic lobe, extensive dCCN>UAS-nisGFP
expression is visible in the adult optic lobe, as well as the subesophageal zone (SEZ), the
superior protocerebrum, and the ventromedial and ventrolateral neuropils (Figure 4B).

Additionally, we dissected both heterozygous and homozygous dCCN®“ adult brains, and
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Supplemental figure 4:
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Figure S4: Significant morphological differences were not observed in heterozygous vs homozygous dCCN¢*
larval neuromuscular junctions. (A) dCCN>GFP expressing projections and boutons can be seen making synaptic
contact points on muscles 6 and 7 of a heterozygous 20XUAS-6XGFP; dCCN%* larval neuromuscular junction (NMJ).
(B) dCCN>GFP expressing projections and boutons can be seen making synaptic contact points on muscles 6 and 7 of
a homozygous 20XUAS-6XGFP,; dCCN%"/dCCN°** NMJ. No obvious or significant differences between

heterozygous vs homozygous dCCN% NMIJs are observed. Red represents actinin staining. Scale bars represent 50

pm.
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Figure 4: dCCN is expressed in a diverse set of neurons in the adult nervous system. (A) Schematic overview of
selected Drosophila adult organs. (B-C) Widespread nuclear GFP expression in the brain and VNC of a

dCCNYH: UAS-nlsGFP adult visualized with the neuropil marker BRP (blue) and anti-GFP by immunohistochemistry.
(D) Nuclear dCCN expression in the adult male foreleg. Blue represents DAPI staining. (E) dCCN% -driven GFP
expression in proboscis neurons (UAS-GFP.S65T:dCCN®). (F) Olfactory sensory neurons in the antennae express
dCCN?™ _driven GFP. (G) GFP-expression in maxillary palps neurons of UAS-6X-GFP;dCCN% adults. (H)
dCCN%* _driven GFP expression along the wing margin (UAS-GFP.S65T;dCCN®). () Projections from dCCN
expressing neurons located in the brain innervate the crop and proventriculus of the intestinal system (UAS-6X-

GFP;dCCN%). Blue represents DAPI staining. For all panels, scale bars represent 50 pum.
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Supplemental figure 5:
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Figure S5: No significant differences in neuron number are observed in heterozygous vs homozygous dCCN®*#
adult brains. (A) Widespread dsRed nuclei can be seen in a heterozygous UAS-dsRed; dCCN*/+ brain. (B)
Widespread dsRed nuclei can be seen in a homozygous UAS-dsRed; dCCN9/ dCCN% brain. No significant
differences are observed between heterozygous vs homozygous dCCNY adult brains. Blue represents anti-brp (nC82)

neuropil staining. Scale bars represent 50 um.
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found no obvious morphological differences in the number of dCCN expressing neurons
of dCCN>UAS-dsRed adults (SFig. 5A-B). The thoracic segments of the VNC house motor
neurons that coordinate limb actions and thus control complex behaviors such as walking
(Burrows et al., 1988; Laurent and Burrows 1988; Yellman et al., 1997), escape jumping,
courtship tapping, aggressive lunges, and grooming (Chen et al., 2018). Within the VNC,
dCCN-expressing neurons are located in the five major neuropils—prothoracic,
mesothoracic, and metathoracic neuropils (which correspond to the three thoracic
segments), the accessory mesothoracic neuropil (AMNp), and the abdominal neuropil
(ANp) (Figure 4C) (Venkatasubramanian and Mann 2019; Court et al., 2020).

dCCN expression is also prevalent within neurons located in the periphery that
mediate complex sensory processes such as olfaction, chemoreception, and
mechanosensation. dCCN>dsRed cell body expression is apparent in sensory neurons
located within the first to fifth tarsal segment of the foreleg (Fig. 4D). Different classes of
leg sensory neurons respond to sugar, water, and contact chemosensory information
including male and female pheromones (Inoshita and Tanimura 2006; Fan et al., 2013;
Ling et al., 2014). Additional experiments will be required to determine the identities of
dCCN-expressing leg neurons. Contact chemical perception in adult Drosophila is also
mediated by sensory neurons in the wings and the proboscis, the insect feeding organ used
for both taste cue detection and food ingestion (Raad et al., 2016; Jeong et al., 2016). Using
the UAS-GFP.S65T reporter, we identified dCCN-expressing neurons within the labellum
(Fig. 4E) as well as along the row of sensilla on the anterior wing margin (Fig. 4H) that
receives pheromonal input and impacts sexually-dimorphic behavior (He et al., 2019).

In mice, CCN2/CTGEF is found in the mitral cell and glomerular layers of the main
and accessory olfactory bulb where it controls the survival of newly generated neurons
(Khodosevich et al., 2013). To determine if dCCN is expressed in the insect olfactory
system, we examined the antenna and maxillary palp from dCCN>20XUAS-6XGFP adults.
dCCN-positive neurons are found in the funiculum and pedicel (including in Johnston’s
organ) of the antenna (Fig. 4F), and projections from dCCN-positive neurons in the
maxillary palp that terminate in the brain are visible (Fig. 4G). Finally, the crop and
proventriculus structures of the gastrointestinal system are innervated by projections from

dCCN-positive neurons located in the central brain (Fig. 4I). Collectively, these results
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demonstrate a significant number of neurons with different anatomical specialties and
functions express the invertebrate CCN family member suggesting dCCN may be required

for neuronal function in a diverse set of contexts.

Subsets of aminergic neurons express dCCN

To determine the neurotransmitter identities of dCCN neurons in the adult nervous
system, we began with neurons that express the neuromodulatory neurotransmitters:
dopamine (DA), serotonin (5-HT), and octopamine (OA; the invertebrate equivalent to
norepinephrine). While relatively few in number, monoaminergic systems have different
patterns of widespread innervation across brain areas (Niens et al., 2017; Kasture et al.,
2018; Pauls et al., 2018), heterogeneity in synaptic organization (Dori et al., 1998), as well
as distinct neuromodulatory actions (Okaty et al., 2019). The Drosophila DA system
consists of a relatively small number of neurons clustered throughout the brain and VNC
(Mao and Davis 2009; Hartenstein et al., 2017; Kasture et al., 2018) (Fig.5A-A’). Within
the anterior adult brain, DA neurons are found in the lateral anterior protocerebrum (PAL)
cluster, the medial anterior protocerebrum (PAM) cluster, and a pair of individual neuron
called tritocerebrum 1 (TC1) flanking the PENP (Fig. 5A) (Néssel and Elekes 1992).
Ventrally, three protocerebral posterior medial clusters (PPM1-3), two posterior
protocerebral lateral clusters (PPL1-2) and three neuron pairs located in the lateral (SP1-2)
and medial (SVP) parts of the SEZ (SEZ1-3) (Figure 5A”) are identifiable (Friggi-Grelin
et al., 2003; Niens et al., 2017). Lastly, there are two unpaired neurons in the medial SEZ:
one dorsal (VUMI1) and one ventral (VUM?2) (Néssel and Elekes 1992).

dCCN expression in DA neurons was determined by labeling GFP-expressing
dCCN neurons (dCCN>UASnlsGFP) with an antibody for tyrosine hydroxylase (TH), the
rate-limiting step in DA synthesis. In the dorsal region, we found dCCN co-expression in
the PAL (Figure 5B-D’’, G) and the SVP pair (Figure 5B, E, G) while in the ventral region,
dCCN/TH neurons were identified within the PPM3 (Figure 5C, F-F’’, H) and PPL1
(Figure 5C, G-G’’, H). Within the adult VNC, dCCN/TH co-expression was detected in all
thoracic segments except T3 (SFig 6A-C), with the highest number of dCCN-expressing
neurons being expressed in the abdominal ganglia (SFig 6C, D-D’’ and 6C, E-E’’). These
results demonstrate that dCCN is expressed in subsets of DA neurons within the adult CNS.
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Figure S: DA neurons express dCCN. (A-A’) Dorsal (A) and ventral (A”) schematic views of the major DA neuronal
clusters (magenta). (B) dCCN°** >nlsGFP expressing TH in dorsal sections of the adult brain (anti-TH, magenta).
Dotted boxes outline higher magnification images of clusters in D and E. (B*) dCCN°“* >nlsGFP expressing TH in
ventral optical sections. Dotted boxes outline higher magnification images of clusters in F and G. (D-G) Co-expression
of TH and dCCNY%" >nlsGFP in higher magnification confocal images from dotted boxes in B-B’. Arrowheads point to
dCCN/TH co-expressing neurons. Scale bars represent 50 um. (D-D’”) Neurons co-expressing TH and dCCN9#
>nlsGFP in the PAL cluster. Channels are separated in C-C’, and merged in C”’. (E-E”*) Co-expression of TH and
dCCNY" >n[sGFP in SEZ neurons. (F-F**) Neurons co-expressing TH and dCCN% >nlsGFP in the PPM3 cluster.
(G) Neurons co-expressing TH and dCCN%¥ >nlsGFP in the PPL1 cluster. (H) Quantification of dCCN+ dorsal DA
neurons per cluster. (H) Quantification of dCCN+ ventral DA neurons per cluster. Error bars denote S.E.M. PAL:
dorsolateral anterior protocerebral neurons, PAM: dorsalmedial anterior protocerebral neurons, PPL1: dorsolateral
posterior protocerebral neurons, PPL2: lateral posterior protocerebral neurons, PPM: dorsomedial posterior

protocerebral neurons, SEZ: subesophageal zone. Nomenclature from Friggi-Grelin et al., 2003.
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= TH onl
C 30- CJdCCN XL TH

Neuron Number

AL QR
Regions

Figure S6: Co-expression of DA and dCCN in adult ventral nerve cords. (A) A schematic representation of an adult
ventral nerve cord (VNC) with magenta dots representing prominent dopamine (DA) neurons. The VNC is divided into
regions T1, T2, T3, and AB. (B) GFP nuclei of a dCCN=+>UAS-nlsGFP VNC is seen. Anti-TH staining appears in
magenta. (C) Quantification of TH only and TH - dCCN co-expressing neurons per region. (D-D’”) A closer
examination at the T2 region of the VNC highlighting TH immunoreactive neurons co-expressing dCCN. Arrows point
to examples of co-expressing neurons. (E-E’”) A closer examination at the T3/AB region of the VNC highlighting TH
immunoreactive neurons co-expressing dCCN. Arrows point to examples of co-expressing neurons. Scale bars

represent 50 pum.

28



The serotonergic system in the adult consists of approximately 12 major clusters,
with 7 dorsal clusters and 4 anterior clusters (Giang et al., 2011). The dorsal region contains
a neuron pair in the dorsal protocerebrum (DP), a cluster in the anterior protocerebrum
(AP), three clusters in the lateral protocerebrum (LP1-3), and 2 clusters in the
subesophageal ganglion (SE1-2) (Figure 6A-A’) (Giang et al. 2011). There are also 2 single
deutocerebral neurons (CSDs) that project contralaterally and innervate the antennal lobes
(Figure 6A) (Dacks et al., 2009; Giang et al., 2011). The ventral region contains 2 clusters
in the superior protocerebrum (SP1-2), as well as the inferior medial protocerebrum (IP)
and the subesophageal ganglion (SE3) (Figure 6A’) (Giang et al., 2011). To examine dCCN
expression in 5-HT neurons, we labeled GFP-expressing dCCN neurons (dCCN>UAS-
nlsGFP) with an antibody for 5-HT. Dorsally, dCCN/5-HT co-expression was identified in
the DP pair (Figure 6B, C-C’’,G) and in the SE2 cluster (Figure 6B, F-F’’ H). Ventrally,
the LP1 (Figure 6B, D-D’’, H) and SP2 (Figure 6B, E-E’’, H) clusters contain dCCN/5-HT
neurons. We also determined dCCN/5-HT co-localization occurs in all thoracic segments
within the adult VNC (SFig 7A-D’’) as well as the abdominal ganglion (SFig 7A-C, E-
E”).

Finally, we asked if dCCN is expressed in the octopaminergic neuromodulatory
system by labeling the CNS of dCCN>UAS-nlsGFP progeny with an antibody to Tdc2, the
rate-limiting enzyme required for the synthesis of OA. Tdc2-positive neuronal clusters are
located in the periesophageal neuropil (PENP), the subesophageal zone (SEZ), and the
anterior superior medial protocerebrum (ASMP) in the dorsal part of the brain and in the
SEZ and the posterior medial protocerebrum (PSMP) in the ventral part (Figures 7A-A’).
dCCN co-expression in Tdc2 neurons occurs in each cluster (Figures 7B-B’). We
quantified dCCN/Tdc2 co-expression in the PENP (Fig. 7B, C-C”’, G), SEZ (Fig. 7B-B’,
D-D’’, H), ASMP (Fig. 7B, E-E”’, G), and PSMP (Fig. 7B’, F-F’’, H). In the adult VNC,
Tdc2-positive clusters in the thoracic segments innervate skeletal muscle and facilitate
motor activity in males and females, while Tdc2-positive neurons in the abdominal ganglia
innervate the ovaries and control oviposition in females (Pauls et al., 2018; Masuzzo et al.,
2019). Within the VNC, neurons located in the thoracic clusters T1, T2, and T3 co-
expressed Tdc2 and dCCN (SFig. 8A-D’’), as did Tdc2-positive neurons in the abdominal
ganglia (SFig. 8A, E-E’’). Together these results indicate dCCN is expressed in a
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Figure 6: 5-HT neurons express dCCN. (A-A’) Dorsal (A) and ventral (A”) schematic views of the major 5-HT
neuron clusters. SEZ2= black outlined circles, SEZ3=blue outlined circles. (B) Co-expression of 5-HT and dCCN9*
>nlsGFP in dorsal optical sections of an adult brain (anti-5-HT, magenta). Dotted boxes outline higher magnification
images of clusters in D and G. (C) dCCN®* >nlsGFP expressing 5-HT in ventral optical sections. Dotted boxes outline
higher magnification images of clusters in E and F. (C-F’*) Co-expression of 5-HT and dCCN% >nls GFP1in higher
magnification confocal images from dotted boxes in B-C. Arrowheads point to dCCN/5-HT co-expressing neurons.
Scale bars represent 50 um. (D-D’*) Co-expression of 5-HT and dCCN** >nlsGFP in the DP cluster. (E-E**) Co-
expression of 5-HT and dCCN%¥ >nlsGFP in the LP1 cluster. (F-F**) Co-expression of 5-HT and dCCN%" >nlsGFP
neurons in the SP2 cluster. (G-G’’) dCCN““ >nlsGFP neuons express 5-HT within the SEZ3 cluster. (H)
Quantification of dorsal dCCN/5-HT neurons per cluster (I) Quantification of ventral dCCN/5-HT neurons per cluster.
Error bars denote S.E.M. DP: dorsal protocerebrum; CSD: contra-laterally projecting deutocerebral neuron; SP1:
superior protocerebrum, anterior medial protocerebrum, frontal rind, SP2: superior protocerebrum, anterior medial
protocerebrum, posterior to SP1; IP: inferior medial protocerebrum; LP1: lateral protocerebrum; LP2: ventrolateral
protocerebrum; SEZ1: subesophageal zone; SEZ2: posterior lateral subsophageal zone; SEZ3: posterior subesophageal

zone. Nomenclature from Giang et al., 2011.
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Figure S7: Co-expression of 5-HT and dCCN in adult ventral nerve cords. (A) A schematic representation of an
adult ventral nerve cord (VNC) with magenta dots representing main serotonin (5-HT) neurons. The VNC is divided
into regions T1, T2, T3, and AB. (B) GFP nuclei of a dCCN«>UAS-nlsGFP VNC is seen. Anti-5-HT staining appears
in magenta. (C) Quantification of 5-HT only and 5-HT - dCCN co-expressing neurons per region. (D-D”’) A closer
examination at the T2 region of the VNC highlighting 5-HT immunoreactive neurons co-expressing dCCN. Arrows
point to examples of co-expressing neurons. (E-E’”) A closer examination at the T3/AB region of the VNC
highlighting 5-HT immunoreactive neurons co-expressing dCCN. Arrows point to examples of co-expressing neurons.

Scale bars represent 50 um.
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Figure 7: dCCN is expressed in subsets of OA neurons. (A-A’) Schematic illustrating the dorsal (A) and ventral (A”)
view of major OA neuron clusters. (B) Identification of dCCN/OA neurons in the adult brain of dCCN®" >nlsGFP
progeny by immunohistochemistry (anti-Tdc2, magenta; anti-GFP, green; anti-Brp, blue) Dotted boxes in these dorsal
optical sections outline higher magnification images of clusters in C, D, and E. (B*) dCCN°“ >nls GFP neurons
expressing Tdc2 in ventral sections of the adult brain (anti-Tdc2, magenta; anti-Brp, blue). Dotted boxes outline higher
magnification images of clusters in F. (C-F*”) Co-expression of Tdc2 and dCCN* >nlsGFPin higher magnification
confocal images from dotted boxes in B-B’. Arrowheads point to dCCN/Tdc2 co-expressing neurons. Scale bars
represent 50 pm. (C-C?*) Co-expression of Tdc2 and dCCNH >nlsGFP in the PENP cluster. (D-D’”) dCCN*#
>nlsGFP express Tdc2 in the SEZ cluster. (E-E**) A few Tdc2+ neurons in the ASMP cluster co-expression dCCN%H
>nlsGFP. (F-F*) Co-expression of Tdc2 and dCCN%™ >nlsGFP neurons in the PSMP cluster. (G-H) Quantification
of dorsal and ventral dCCN/OA neurons per cluster. Error bars denote S.E.M. SEZ: subesophageal zone, PENP:
periesophageal neuropils, ASMP: anterior superior medial protocerebrum, and PSMP: posterior superior medial

protocerebrum. Nomenclature from Sherer et al., 2020.
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Figure S8: Co-expression of OA and dCCN in adult ventral nerve cords. (A) A schematic representation of an adult
ventral nerve cord (VNC) with magenta dots representing prominent octopamine (OA) neurons. The VNC is divided
into regions T1, T2, T3, and AB. (B) Green nuclei of a dCCN<«>UAS-nlsGFP VNC labeled with an anti-tdc2 antibody
is seen in magenta. (C) Quantification of OA only and OA - dCCN neurons per region. (D-D’’) A closer examination at
the T2 region highlighting OA VNC neurons co-expressing dCCN. (E-E’’) A closer examination at the T3/AB region
highlighting OA VNC neurons co-expressing dCCN. Arrows point to co-expressing OA — dCCN neurons. Scale bars
represent 50 um.
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significant number of neuromodulatory neurons and thus may be required for the
development or function of circuits that control sensory processing, mood-related
behaviors, and cognition (Monastirioti 1999; Fuxe et al., 2010; Sengupta et al., 2017; Deng
et al., 2019).

dCCN is required for female fertility

The location of abdominal ganglion dCCN-expressing neurons in the female VNC
led us to investigate whether these neurons innervate the female reproductive system. Each
insect ovary consists of 15-20 ovarioles surrounded by a contractile meshwork called the
peritoneal sheath (Middleton et al., 2006). The peritoneal sheath, lateral oviduct and uterus
are innervated by two sets of nerves, branching from the abdominal median ganglion
(Monastirioti, 2003; Middleton et al., 2006). Using the 20XUAS-6XGFP reporter, we found
the abdominal ganglion neurons that innervate the ovaries and uterus are indeed dCCN“¥
neurons (Fig. 8A-C).

To determine if dCCN function is required for female fertility, we quantified egg
laying and embryo viability. To reduce dCCN function, we assayed females in which a
UAS-driven inverted repeat transgene targeting dCCN (UAS-dCCN-RNAi) was expressed
under control of dCCN%" as well as females homozygous for the severe hypomorphic
dCCN% allele (Fig. 8D-E, SFig. 2). To ensure copulation success, five wildtype males
were placed with a single transgenic control, dCCNY9":UAS-dCCN-RNAi, or
dCCNYH/dCCNY%" female. After individually mating with wildtype males, the number of
embryos laid by single control and experimental females were counted. Embryo number
did not differ between transgenic control females or dCCN%“*; UAS-dCCN-RNAi females,
indicating that reduced dCCN function is sufficient for control levels of egg laying (Fig.
8D-E, SFig. 2). However, we found a significant decrease in the number of embryos laid
by dCCN%"/dCCN%" homozygous females at day 3 and day 5 post-mating (Fig. 8D-E).
Furthermore, embryos laid by dCCN%“*/ dCCNY* females did not hatch and were not
viable. One possible explanation for a decrease in egg laying is a reduction in successful
copulation. To determine copulation success, a sole wildtype male was placed with a single
transgenic control or dCCN“*/dCCN®“* female, and courtship was recorded for one hour.

Although the rate was reduced, successful copulation occurred in ~36% of pairings with
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Figure 8: dCCN is required for female fertility. (A) Schematic illustrating ovaries and uterus innervation by
dCCNY >UAS-6X-GFP neurons located in the VNC. (B) Projections of dCCN® >UAS-6X-GFP innervate the
ovaries and uterus of the female reproductive system. Scale bar = 100 pm. Blue represents DAPI staining. (C) Higher
magnification of dCCN >UAS-6X-GFP uterus and ovary innervation from the dotted box region in B. Scale bar
represents 50 pm. (D-E) dCCN® dCCN% females laid significantly less embryos than transgenic controls and
dCCNY%"_dCCN-RNAi females on day 3 (D), and day 5 (E). Error bars denote S.E.M. All statistical tests are Kruskal-
Wallis with Dunn’s multiple comparisons test, (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).
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Figure S9: dCCN-<+ females successfully copulate within 15 minutes. ~94% of heterozygous dCCN++ females and
~36% homozygous dCCN=* females successfully copulate within 15 minutes. n=16 for dCCN=+/+ and n=14 for
dCCNe+/dCCNe+. Error bars denote S.E.M.
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dCCN%“/dCCN%* females during the first 15 minutes of assay time (SFig. 9). While
further experiments are required to determine how dCCN is required for the function of
ovary and uterus-innervating neurons, CCN vertebrate family members are also required

in the female reproductive system for follicular development and ovulation (Winterhager

and Gellhaus 2014).

Sex-specific neurons in the adult CNS express dCCN

Our finding that dCCN is required for female reproduction led us to investigate
whether dCCN is expressed in other subsets of sex-specific neurons. fruitless (fru) and
double-sex (dsx) are key genes that specify sex-specific neuron development and circuitry
(Lee et al., 2000; Goodwin et al., 2000; Anand et al., 2001; Stockinger et al., 2005; Kimura
et al., 2005; Yamamoto, 2007; Rideout et al., 2007; Villella and Hall, 2008; Rideout et al.,
2010; Yamamoto, 2008; Sato et al., 2019; Ishii et al., 2020; Sato et al., 2020; Wohl et al.,
2020; Chowdhury et al., 2020). Studies have identified at least 12 distinct classes of fru+
neurons that are sexually dimorphic (Stockinger et al., 2005). These differences include a
few neuronal classes that are present in males but lacking in females, such as P1, pIP10,
and vPR6, and several others that differ in cell numbers, projections, or arborizations, such
as mAL/aDT2, aSP1, and aSP2 (Fig. 9A-B). To determine whether dCCN is expressed in
fru+ neurons, a three-part transgenic combination was used: the fiu? allele to drive FLP-
mediated recombination specifically in fiu neurons, the dCCNY* driver, and the
UAS>stop>mCDS8-GFP reporter which is only expressed in those cells that are labeled by
the Gal4 driver and also fru, due to FLP-mediated excision of the stop cassette
(Theodosiou, 1998). Using dCCN““ to identify sexually dimorphic cells, we identified
female-specific cells in the pL region per hemisphere (Fig. 9B’, C’, D’), and males have
more aSP1 neurons (Fig. 9A, B, D). We also found that dCCN% labeled 2 fiu+ neurons
in the antenna lobe of the male but not female brain (Fig. 9B, D). Differences in dCCN/fru
neuron number were also observed between males and females in segment T1, the
abdominal ganglion, and the midline of the VNC (SFig 10A-B’).

Although fru does not have an obvious mammalian homolog, dsx-related genes are
present in vertebrates where they regulate sex-specific differentiation in many tissues,

including the nervous system (Rideout et al., 2007; Villella and Hall, 2008; Rideout et al.,
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Figure 9: Fruitless - dCCN brain expression is sexually dimorphic. (A) A schematic representation showing
prominent dorsal male fruitless (fru) neuron clusters of the brain and their anatomical position. (A’) A schematic
representation showing prominent ventral fru neuron clusters. (B) The dorsal portion of a brain displaying dCCN - fru
expressing neurons in GFP of a male UAS->stop->CD8:GFP; dCCN=+/fru-flp fly. (B’) The ventral portion of the male
brain from B. (C) A schematic representation showing prominent dorsal female fru neuron clusters. (C’) A schematic
representation showing prominent ventral female fru neuron clusters. (D) The dorsal portion of a brain displaying
dCCN - fru expressing neurons in GFP of a female UAS->stop->CDS8:GFP; dCCN«/fru-flp fly. (D’) The ventral
portion of a female brain from D. Blue represents anti-nC82 staining. Scale bars represent 50 um. Arrows point to
neuronal cell body or axonal differences between male and female dCCN - fru expression. fru clusters, nomenclature,

and anatomical locations were adapted and modified from figure 2 and table 1 of Stockinger et al., 2005.
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Supplemental figure 10:
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Figure S10: Fruitless - dCCN ventral nerve cord expression is sexually dimorphic. (A) dCCN - fruitless (fru)
expressing neurons can be seen in GFP in a male UAS->stop->CD8:GFP; dCCN=+/fru-flp ventral nerve cord (VNC).
(A’) A closer examination of neuronal soma in the ventral portion of the male abdominal ganglion (AB). (B) dCCN -
fru expressing neurons can be seen in GFP in a female UAS->stop->CD8:GFP; dCCN=+/fru-flp VNC. (B’) A closer
examination of neuronal soma in the ventral portion of the female AB. For (A-B’), an anti-GFP antibody was used to

enhance GFP signal. Blue represents anti-brp (nC82) neuropil staining. Scale bars represent 50 um.
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2010; Wohl et al., 2020; Chowdhury et al., 2020). In the adult Drosophila brain, 10 major
clusters of dsx-expressing neurons are present, with males having more neurons per cluster
than females (Rideout et al, 2007; Rideout et al., 2010). These clusters consist of the
anterior dorsal neurons (aDN), posterior clusters pC1 and pC2, the posterior dorsal cluster
(pCd/pC3), and the subesophageal neurons (SN), as well as the posterior medial neurons
(PMNI1-2), the posterior lateral neurons (pLN), and the subesophageal lateral neurons
(SLG) (Fig. 10A, B). We examined dCCN expression in dsx-positive neurons using the

same intersectional genetic approach as above, now with the dsx/*

P transgene (Rezaval et
al., 2014) in combination with dCCN“*# and the Gal4/FLP-responsive membrane reporter,
UAS>stop>mCDS8::GFP. We observed large numbers of dCCN/dsx+ neurons in the adult
male brain, particularly in the pC1 pC2, and SLG clusters (Fig. 10C-D’), as well as sex-
specific differences between the pC1 and pC2 clusters in the female brain (Fig. 10C-D”).
In addition, dCCN/dsx-positive neurons are found in the thoracic segments of the male
VNC, but not the female (SFig. 11A-B’), and sex-specific differences in the abdominal
ganglion are also observed in which males have more neurons than females (SFig. 11A°,
B’).

In summation, our results indicate that dCCN is expressed in neurons that inform
the sexual identity of cells (Verhulst et al., 2010). Sex-specific alternative splicing of both
fru and dsx occurs throughout development and is required for the formation of sex-specific
somatic tissues and neuronal circuitry (Salvemini et al., 2010). Furthermore, the expression
of sexually-dimorphic fru transcript alters the axonal arborizations of pheromone-sensing
neurons, a circuit pathway with opposing outcomes in males and females (Cachero et al.,
2010; Ruta et al., 2010), and fru expression in the interneurons of the protocerebrum has
been proposed as a mechanism for altering this logic of male and female circuitry (Kohl et
al., 2013). Should dCCN be required for the formation of fru and dsx neurons at multiple
stages of development, there may be a profound developmental role for CCN family

proteins as key regulators of neuron and circuit identity.
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Figure 10:
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Figure 10: Double-sex - dCCN brain expression is sexually dimorphic. (A) A schematic representation displaying
the primary male double-sex (dsx) neuron clusters of the brain and their anatomical position. (B) The dorsal portion of a
male UAS->stop->CD8:GFP; dCCN«/dsx-flp brain displaying dCCN - dsx expression in GFP. (B’) The ventral
portion of the same brain in B displaying dCCN - dsx expression in GFP. (C) A schematic representation displaying the
major clusters of female dsx neurons and their anatomical position. (D) The dorsal portion of a female UAS->stop-
>CD8:GFP; dCCN=+/dsx-flp brain displaying dCCN - dsx expression in GFP. (D’) The ventral portion of the same
brain in D displaying dCCN - dsx expression in GFP. For B-B’, and D-D’, an anti-GFP antibody was used to enhance
GFP signal. Blue represents anti-brp (nC82) neuropil staining. Scale bars represent 50 pm. pC1: dorsal inferomedial
protocerebrum, pC2: inferolateral protocerebrum, pC3: superomedial protocerebrum, and SN: subesophageal neurons
(male specific). dsx clusters, nomenclature, and anatomical locations were adapted and modified from figure 2 of

Rideout et al., 2010.
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Supplemental figure 11:
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Figure S11: Double-sex - dCCN ventral nerve cord expression is sexually dimorphic. (A) dCCN - double-sex (dsx)
expressing neurons can be seen in GFP in a male UAS->stop->CD8:GFP; dCCN=+/dsx-flp ventral nerve cord (VNC).
(A’) A closer examination of neuronal soma in the ventral portion of the male abdominal ganglion (AB). (B) dCCN -
dsx expressing neurons can be seen in GFP in a female UAS->stop->CD8:GFP; dCCN=+/dsx-flp VNC. (B’) A closer
examination of neuronal soma in the ventral portion of the female AB. For (A-B’), an anti-GFP antibody was used to

enhance GFP signal. Blue represents anti-brp (nC82) neuropil staining. Scale bars represent 50 um.
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Materials and Methods

Drosophila Husbandry and Stocks: All flies were reared on standard cornmeal-based
fly food. Unless noted otherwise, during development and post-eclosion, flies were raised
and housed at 25 C, ~50% humidity, and a 12:12hr light-dark cycle (1400+200 1x white
fluorescent light) in humidity and temperature-controlled incubators. A list of stocks used

can be found in the Resource Table.

Generation of dCCNline: The dCCN-Gal4 line was created through MiMIC insertion-
conversion at the endogenous dCCN chromosomal locus. A protein-trap is generated by

converting a MiMIC insertion into the coding region of the endogenous dCCN gene.

qPCR: Total RNA from ~40 heads using Direct-zol RNA Miniprep Pluskit (Zymo
Research) was purified and treated with DNase I per the manufacturer’s protocol. RNA
concentrations were measured with a ND-1000 nanodrop spectrometer. Reverse
transcription was accomplished using iScript cDNA Synthesis kit (Bio-Rad
Laboratories). RT-PCR was performed using 300 ng cDNA added to iTaq Universal
SYBR Green Supermix (Bio-Rad Laboratories) and primers in a 20 L reaction volume.
All samples were run in triplicate using a Stratagene Mx3005P qPCR System (Agilent
Technologies). Expression of ribosomal protein 49 (Rp49) was used as the reference
control to normalize expression between genotypes. Expression levels were determined
using the AACT method and results from control (dCCN“*“/+) and experimental
(dCCNY| dCCN“) groups were normalized relative to flies in a yellow-white genetic
background (yw/+). The following primers were used: Rp49 Forward: 50-
CATCCGCCCAGCATACAG-3’ Rp49 Reverse: 5’-CCATTTGTGCGACAGCTTAG-3’
dCCN Forward: 5’-GATGTGGCTATGTGAGAATCCAA-3’ dCCN Reverse: 5’-
GCAAATTGCTCAGTTGATGGC-3".

In situ analysis and imaging: A modified version of the Ryoo lab protocol was

performed and can be found at: http://ryoo-lab.med.nyu.edu/protocols/embryo-situ. On

day 1, collected embryos were fixed with 4% paraformaldehyde (Mallinckrodt
Chemicals, Cat# 2621-59) in 1% PBS, and incubated overnight in hybridization buffer
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and probes specific for dCCN on rotation at 4 degrees C. On day 2, three ten-minute
washes of PBS were applied to embryos, then embryos are incubated overnight in a
rabbit anti-DIG-AP antibody and hybridization buffer at 4 degrees C. On day 3, three ten-
minute washes of PBS were applied to the embryos. After washes, a staining solution was
applied to the embryos for 4 hours in hybridization buffer. Three additional ten-minute
PBS washes were applied, then embryonic brain lobes and nerve cords were dissected,

then mounted in Vectashield. Slides are allowed to set for 1 hour before imaging.

Embryo collection: Embryos of 4-22 hours old (stages 9-17) were collected from grape
juice agar plates (3% agar) with fresh yeast, dechlorinated for five minutes with 50%
chlorox in dH.O, and then washed in cold tap water until chlorox was thoroughly
removed. Dechlorinated embryos were fixed in a solution containing 50% freshly made
4% paraformaldehyde (Mallinckrodt Chemicals, Cat# 2621-59) in 1% PBS, and 50%
heptane for 20 mins. After fixation, heptane was manually pipetted out, and 100%
methanol of equal fixation volume was added to the fixation solution. Embryos were
vigorously shaken for 1 min to crack vitelline membranes. Three additional 5 min washes
of 100% methanol were added to the mixture of embryos while pipetting off previous
supernatants to remove residual PFA, heptane, and cracked vitelline membranes.

Embryos were stored in a -20 C freezer in 100% methanol for future use.

Immunohistochemistry and Imaging: Embryos were rehydrated through a series of
methanol washes at 70%, 50%, and 30% in 1% PBS for 5 mins at each wash. After
rehydration washes, embryos were washed in 1% PBS 2 times, for 10 min each.
Following PBS washes, embryos were incubated in blocking solution (2% Normal Goat
Serum, 2% Bovine Serum Albumin, 2% Triton-X in 1% PBS) for 2 hours before primary
antibodies were applied and incubated on rotation overnight at ~3 C. The primary
antibody used was rabbit anti-GFP (3:500; Thermo Fisher Scientific, Cat# G10362), and
the secondary antibody was goat anti-rabbit 488 (1:200; Thermo Fisher Scientific, Cat#
R37116). Labeled embryos were mounted in Vectashield (Vector Labs, Cat# H1000).
For larval imaging, third instar larvae were dissected on ice and fixed with 4%

paraformaldehyde (Electron Microscopy Sciences, Cat# 15710) for 30 mins, washed in
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PBT three times for 10 mins each, washed in 1% PBS for 5 minutes, then incubated in
blocking solution for 2 hours before primary antibodies were applied and incubated
overnight on rotation. Primary antibodies used were rabbit anti-CD4 (1:100; Novus
Biologicals, Cat# NBP1-86143), rabbit anti-GFP (3:500; Thermo Fisher Scientific, Cat#
G10362), and mouse anti-actinin (1:20; DSHB Cat#2G3-3D7). Secondary antibodies
included goat anti-rabbit Alexa 488 (1:200, Thermo Fisher Scientific, Cat# R37116), goat
anti-rabbit Alexa 594 (1:200, Thermo Fisher Scientific, Cat# A-11012), and goat anti-
mouse Alexa 594 (1:200; Thermo Fisher Scientific, Cat# A-21125). Labeled larval CNSs
or NMlJs were mounted with either Vectashield (Vector Labs, #H1000) or DAPI (Cell
Signaling Technology, #8961S), and slides set for one hour before imaging.

For adults, 3-7 day old adult male and female dissected brains, VNCs, maxillary palps,
antennas, or gut structures were fixed in 4% paraformaldehyde for 30 minutes. 3-7 day
old female reproductive organs were fixed for 60 minutes in 4% paraformaldehyde. 3-7
day old adult legs and proboscis were fixed overnight in 4% paraformaldehyde on
rotation at ~3 C. The following primary antibodies were used: rabbit anti-GFP (3:500;
Thermo Fisher Scientific, Cat# G10362), rabbit anti-TH (1:200), rabbit anti-5-HT
(1:1000; Sigma Aldrich, Cat# S5545), rabbit anti-Tdc2 (3:500; Covalab, Cat# pab0822-
P), and mouse anti-bruchpilot (nc82) (1:80; DSHB Cat# nc82). Secondary antibodies
conjugated to Alexa 488, Alexa 594, or Alexa 647 were used at a concentration of 1:200
(see resource table). Labeled organs or structures were mounted in either Vectashield
(Vector Labs, #H1000) or DAPI (Cell Signaling Technology, #8961S). Slides were

allowed to set one hour before imaging.

Imaging: Images were collected on an Olympus Fluoview FV1000 laser scanning
confocal mounted on an inverted IX81 microscope or a Zeiss Confocal Microscope.

Images were processed using ImageJ (NIH) and Adobe Photoshop (Adobe, CA).

Courtship Assays: A single virgin female of 3-4 days old was paired with an isolated
Canton S wild type male of similar age, and placed in chamber of a 12 well plate with
room temperature standard cornmeal fly food filled to ~80% of the height of the

chamber. A camera recorded behavioral engagements for 90 minutes after paired flies
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were placed into the chamber. iMovie (Apple Inc., 2009) was used to manually analyze

courting behaviors, and the times at which copulation did or did not occur was recorded.

Sterility Assays: A single female was paired with five Canton S wild type males on the
day of eclosion (day 1), and placed into a vial containing standard cornmeal fly food with
red food coloring. 24 hours before day 3 and day 5, the single female and five males were
transferred into a fresh food vial containing red food coloring. On days 3 and 5 (24 hours
after transfer into a fresh vial), the number of embryos was manually counted under a lab
bench microscope. Data was collected and entered into Microsoft Excel spreadsheets, and

GraphPad Prism for analyses.

Larval NMJ Electrophysiology: Through collaboration, two electrode voltage clamp
recording techniques were used to measure excitatory post-synaptic potentials at NMJs of
larvae following previously established electrophysiology recording protocols from the

McCabe lab (Choi et al., 2014).

Sequence Alignment and Amino Acid Sequences: Sequence alignments were created
using NCBI’s Protein BLAST’s online tool. (Madden T. The BLAST Sequence Analysis
Tool. 2002 Oct 9 [Updated 2003 Aug 13]. In: McEntyre J, Ostell J, editors. The NCBI
Handbook [Internet]. Bethesda (MD): National Center for Biotechnology Information
(US); 2002-. Chapter 16. Available from:
http://www.ncbi.nlm.nih.gov/books/NBK21097/). Amino acid sequences were obtained

from http://www.uniprot.org/.

Neuron quantification: Amine neuron and co-expression counts were conducted in
Image J (NIH) by manually scanning and counting fluorescently labeled neurons through
stacks of TIFFs. Counts were collected in Microsoft Excel spreadsheets and averaged in

GraphPad Prism.

Data Collection, Figure Making, and Data Analysis: Microsoft Excel and GraphPad

Prism (version 8.0) were used for data collection and analysis. Image J was used to
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process raw confocal images. Adobe Photoshop and Illustrator were used to further

process images, and generate figures for publication.
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Chapter 3: Dual Neurotransmission Manuscript
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Chapter note:

In addition to my thesis work on the dCCN project, I significantly contributed to
experiments identifying and examining the role of glutamate release from octopamine
neurons. As second author on the following publication, I performed key
immunohistochemistry experiments, image analysis and figure construction, as well as
aggression assays, scoring, and statistical analyses.
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Abstract

Neuromodulators such as monoamines are often expressed in neurons that also release at
least one fast-acting neurotransmitter. The release of a combination of transmitters provides
both “classical” and “modulatory” signals that could produce diverse and/or complementary
effects in associated circuits. Here, we establish that the majority of Drosophila octopamine
(OA) neurons are also glutamatergic and identify the individual contributions of each neuro-
transmitter on sex-specific behaviors. Males without OA display low levels of aggression
and high levels of inter-male courtship. Males deficient for dVGLUT solely in OA-glutamate
neurons (OGNSs) also exhibit a reduction in aggression, but without a concurrent increase

in inter-male courtship. Within OGN, a portion of VMAT and dVGLUT puncta differ in locali-
zation suggesting spatial differences in OA signaling. Our findings establish a previously
undetermined role for dVGLUT in OA neurons and suggests that glutamate uncouples
aggression from OA-dependent courtship-related behavior. These results indicate that dual
neurotransmission can increase the efficacy of individual neurotransmitters while maintain-
ing unique functions within a multi-functional social behavior neuronal network.

Author summary

Neurons communicate with each other via electrical events and the release of chemical
signals. An emerging challenge in understanding neuron communication is the realiza-
tion that many neurons release more than one type of chemical signal or neurotransmit-
ter. Here we ask how does the release of more than one neurotransmitter from a single
neuron impact circuits that control behavior? We determined the monoamine octopa-
mine and the classical transmitter glutamate are co-expressed in the Drosophila adult
CNS. By manipulating the release of glutamate in OA-glutamate neurons, we demon-
strated glutamate has both separable actions and complementary actions with OA on

PLOS Genetics | hitps:/doi.org/10.1371/journal.pgen.1008609  February 25, 2020
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aggression and reproductive behaviors respectively. Aggression is a behavior that is highly
conserved between organisms and present in many human disease states, including
depression and Alzheimer’s disease. Our results show that aggressive behavior requires
the release of both neurotransmitters in dual-transmitting neurons and suggests within
this set of neurons, glutamate may provide a new therapeutic target to modulate aggres-
sion in pathological conditions.

Introduction

The classical view of information transfer for many decades was that each neuron released a
single neurotransmitter, leading to the ‘one neuron, one transmitter’ hypothesis [1], formal-
ized by John Eccles as Dale’s Principle [2]. Dale himself, however, recognized the possibility
that neurons can release more than one molecule [3] and indeed, research from multiple sys-
tems and neuronal populations have established that many if not most, neurons release more
than one neurotransmitter [4-7]. Dual neurotransmission has the potential to transform the
way we consider the computation and transmission of information by neurons, circuits and
networks. Presynaptically, the release of two neurotransmitters could impact information
transfer by several mechanisms that are not mutually exclusive including; attenuating signals
by modulating presynaptic autoreceptors, transmitting spatially distinct signals by segregating
specific vesicle populations to different axon terminals, or conveying similar information
through the release of both neurotransmitters from the same synaptic vesicle [8-11]. In addi-
tion, one vesicular neurotransmitter transporter can increase the packaging of the other neuro-
transmitter into the same synaptic vesicle (SV), a process called vesicular synergy [4, 12, 13].
At post-synaptic targets, the release of two transmitters can enhance the strength of the same
signal and/or convey unique signals through spatially-restricted receptor expression and sec-
ond messenger cascades [7, 14]. While recent studies have provided insight into these phe-
nomena at the cellular level [11, 12, 15, 16], the behavioral relevance of co-transmission in
normal as well as pathological conditions is an area of considerable complexity and interest.

The genetic tools of Drosophila provide the ability to genetically dissect the signaling prop-
erties of dual transmission on behavioral networks in general and upon the circuits that con-
trol aggression in particular. Aggression is a hardwired behavior that has evolved in the
framework of defending or obtaining resources [17, 18]. Monoamines such as serotonin
(5-HT), dopamine (DA), norepinephrine (NE) and octopamine (OA), the invertebrate homo-
logue of NE, have powerful modulatory effects on aggression in systems ranging from insects
and crustaceans to humans [19-23]. In humans, aggressive behavior can be expressed at
extreme levels and out of context due to medical, neurologic and or psychiatric disorders
including depression and schizophrenia [24-26]. Pharmacological agents that selectively
manipulate monoamine signaling are used to treat anxiety and depression, yet these drugs are
often ineffective, and in the case of serotonin/norepinephrine reuptake inhibitors (SNRIs) can
induce side effects including increased aggression and impulsivity [25, 27-29].

At least two difficulties arise in targeting monoamines to achieve successful outcomes. First,
monoamines can be released from synaptic vesicles (SVs) into the presynaptic cleft and by
extrasynaptic release from large dense core vesicles (LDCVs) [30-33]. Thus, monoamines are
recognized both as neurotransmitters and as neuromodulators that signal via diffusion [34,
35]. The second difficulty is that their effects are likely exerted through interactions with neu-
ropeptides (neuropeptide Y and oxytocin are two examples) and with neurotransmitters
including GABA and glutamate [5, 14, 36, 37]. Due in part to recent studies suggesting the
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expression of vesicular glutamate transporters (VGLUTS) can be altered by psychiatric medi-
cations [38-41] and the importance of dopamine neuron glutamate co-transmission on the
schizophrenia resilience phenotype in mice [42], we generated new tools to identify and
manipulate glutamate function in monoamine-expressing neurons.

We found that the majority of OA neurons within the Drosophila nervous system also
express the vesicular neurotransmitter transporter for glutamate (dVGlut). Functionally, gluta-
mate (GLU) co-expression could convey the same information by promoting the synaptic vesi-
cle packing of OA or GLU may convey distinct information that is separate from the function
of OA. In Drosophila, OA synthesis and release are essential for conserved social behaviors;
males without OA display low levels of aggression and high levels of inter-male courtship [43-
47]. We demonstrate that males deficient for dVGLUT solely in OA-glutamate neurons
(OGN) also exhibit a reduction in aggression, but without a concurrent increase in inter-male
courtship. These results indicate both OA and dVGLUT are required in dual-transmitting
neurons to promote aggression. However, only OA is required for the suppression of inter-
male courtship and thus the function of dVGLUT in OGNS is not limited to vesicular synergy.

To ask if the separable effects of OA on courtship circuitry may be attributable to spatially
distinct OA signals, we conditionally expressed a new epitope-tagged version of the Drosophila
vesicular neurotransmitter transporter for monoamines (V5-tagged VMAT) in OGNs. While
the majority of V5-VMAT and dVGLUT expression colocalize, VMAT is detected in distinct
puncta without dVGLUT suggesting the possibility of separable signal transmission. Together,
these results demonstrate the complex behavior of aggression requires both dVGLUT and OA
in dual-transmitting neurons and suggests within monoamine neurons, GLU may provide a
therapeutic target to modulate aggression in pathological conditions.

Results
dVGLUT is co-expressed in OA neurons

The co-expression of vesicular neurotransmitter transporters has been primarily used to iden-
tify dual-transmitting neurons[48-52]. To examine glutamatergic transmitter expression, we
generated a monoclonal dVGLUT antibody and validated its specificity using a new dVGlut
allele, dVGlut*S'. In homozygous dVGlut*S' progeny, dVGLUT protein is not detectable (S1
Fig, Methods), thus demonstrating the specificity of the dVGLUT antibody. As dVGLUT
expression is widespread and mainly found in synaptic terminals (S1 Fig), we used the
Gal4-UAS system to identify monoamine neurons that express GLU. In this study, we focused
specifically on OA neurons that co-express dVGLUT (OA-glutamate neurons (OGNs)).

Cell bodies of OGN’ were visualized by a UAS-dsRed.NLS reporter under control of
dVGlut-gal4 (hereafter referred to as dVGlut>dsRed). OGNs were identified by antibodies to
tyrosine decarboxylase 2 (TDC2) and tyramine B-hydroxylase (TBH) as OA is synthesized
from the amino acid tyrosine via the action of Tdc and TBh in invertebrates [46]. OGNs from
10 dVGlut>dsRed Tdc2-labeled male brains were quantified by the multi-point Image] tool
followed by manual verification of each optical section. Within the brain, OA neurons that co-
express glutamate are found in the subesophageal zone (SEZ), the periesophageal neuropils
(PENP), the anterior (ASMP) and posterior superior medial protocerebrum (PSMP), and the
protocerebral bridge (Fig 1A-1E, S1 Table). Co-expression occurs in each region of interest
(Fig 1A-1E). TBh and dVGlut>dsRed co-localization (S2 Fig) provides further support that
glutamate is found in OA-expressing neurons.

In the adult ventral nervous system (VNS), the thoracic Tdc2+ neurons that innervate skel-
etal muscles express glutamate (S3 Fig). In the abdominal ganglia, all but 2-3 Tdc2+ neurons
express dVGlut (S3 Fig) consistent with the previous finding of OA-glutamate co-expression
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Fig1. OA co-express gl (A) OA-gl co-expression in a dVGlut>dsRed male brain labeled with anti-Tdc2 (green).
Anti-brp (nc82, blue) labels the neuropil. Scale bar = 10 um. (B-B’) Dorsal (B) and ventral (B’) confocal sections of c i

]

and dVGlut in the SEZ. Non-dVGlut positive neurons are indicated (B inset, arrowhead). (B”) Quantification of OGN SEZ co-expression.
(C-C’) OGNS in the PENP and quantification. (D-D’) dVGlut>dsRed neurons expressing Tdc2 in the ASMP and quantification. (E-E’) Neurons
co-expressing OA and glutamate in the PSMP and quantification. Scale bar = 20 um for panels B-E.

https://doi.org/10.1371/journal.pgen.1008609.9001

in abdominal neurons [53]. After detecting no reporter expression from a Tph-gal4 driver,
dVGLUT cell body expression in OGNs was detected in brains from tdc2-gal4; UAS-dsRed
adults (S4 Fig). In total, this analysis reveals that of the ~100 OA neurons in the Drosophila
adult nervous system, about 70% express dVGLUT.

dVGLUT is not required for OA neuron identity

To reduce glutamate function solely in OGNs, a UAS-driven inverted repeat transgene
targeting dVGlut (UAS-dVGlut-RNAi) was expressed under control of the tdc2-gal4 driver
(hereafter tdc2>dVGlut-RNAi) (Fig 2A and 2B). The effectiveness of this UAS-dVGlut-RNAi
line has been verified at the transcript level through RT-qPCR ([12] and S5 Fig) and function-
ally as the frequency of miniature excitatory postsynaptic potentials (nEPSP) were reduced by
this dVGlut RNAI in presynaptic glutamatergic larval motor neurons [12]. As the loss of
VGLUT?2 in vertebrate dopamine-glutamate dual transmitting neurons impairs survival and
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Fig 2. Male aggression requires dVGLUT function in OGNs. (A) dVGLUT reduction in OGNs through RNAi. (B) Behaviors for control and experimental male pairs
were scored for thirty minutes beginning with the first lunge. (C) Schematic illustrating the brain and VNS OGNs. (D) Latency to lunge increased in tdc2>dVGlut-
RNAi males (all statistical tests are Kruskal-Wallis with Dunn’s multiple comparisons test, (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). (E) tdc2>dVGlut-RNAi
males displayed a decrease in the average number of lunges. (F) Wing threats were reduced in tdc2-dVGlut-RNAi males. (G) tdc2-dVGlut-RNAi males did not exhibit
inte le courtship (unil | wing ions = UWE). (H) Sch icill ing the addition of tsh>>Gal80 limits dVGLUT reduction to brain OGNSs. (I) Latency
to lunge by tdc2-gal4/tsh>Gal80;UAS-dVGlut-RNAi males is significantly longer than controls. (J) Lunge number by tdc2-gal4/tsh>Gal80;UAS-dVGlut-RNAi males
decreases as compared to controls. (K) Wing threat number was rescued to UAS-dVGlut-RNAi control levels. (L) Male-male UWE was rescued to control levels. N
values for each genotype, panels D, I. Error bars denote s.e.m.

https://doi.org/10.1371/journal.pgen.1008609.9002
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differentiation in vitro [49, 54], we examined OGNS in tdc2>dsRed>dVGlut-RNAi adults and
did not observe obvious changes in OGN survival nor distribution (S5 Fig). In addition, OGN
neurotransmitter differentiation was retained as tdc2>dVGlut-RNAi>dsRed neurons express
Tdc2 (S5 Fig). Neurons labeled by this tdc2-gal4 whether in the brain or VNS are all Tdc2+
(S6A and S6B Fig).

Reducing glutamate in OGNs decreases male aggression and inter-male
courtship

We and others previously demonstrated OA is required for two distinct social male behaviors;
the promotion of aggression, and the inhibition of intermale courtship [43, 46, 55, 56]. To
address whether dVGLUT performs a related or separable role in these OA-dependent behav-
iors, we quantified changes in aggression and intermale courtship. Fights between pairs of
tdc2>dVGlut-RNAi males, and transgenic controls were recorded and multiple agonistic
parameters quantified including: latency to the first lunge, number of lunges, and number of
agonistic wing threats (Fig 2A, [57, 58]). As behavioral patterns are scored for 30 minutes after
the first lunge, each male pair has the same amount of time to exhibit aggressive events or
inter-male courtship (Fig 2B).

Males with decreased dVGLUT in OGNs neurons exhibited a significant reduction in
aggression as measured by lower numbers of lunges and wing threats, and an increase in the
latency to initiate aggression (Fig 2D-2F). These aggression deficits are the same as in males
that lack OA [43, 46, 47]. Importantly, the locomotor activity of tdc2>dVGlut-RNAi adults
during the aggression assay did not differ from dVGlut-RNAi controls (S7A Fig).

Interactions between control male pairings within a fight can include low levels of intermale
courtship as measured by unilateral wing extensions (UWE, the courtship song motor pat-
tern). Males without OA exhibit high levels of inter-male courtship[43, 55, 56] and previously,
we determined the function of three OA-FruM+ neurons is required to suppress intermale
courtship [55]. If dVGLUT is only needed to enhance monoamine vesicular packaging and
thus modulate OA function, we would expect males with reduced dVGlut levels to display the
same behavioral deficits, i.e. high levels of inter-male courtship. However, tdc2>dVGlut-RNAi
males did not exhibit inter-male courtship (Fig 2G). These results suggest; 1) dVGLUT is
required in OGNS to promote aggression, and 2) dVGLUT is not required to suppress inter-
male courtship.

Aggression requires dVGLUT function in OA-GLU brain neurons

In the adult, motor neurons innervating leg and wing muscles express glutamate [59]. There-
fore, the observed behavioral deficits in tdc2>dVGlut-RNAi males may reflect impairments at
the neuromuscular junction. To address this possibility, we spatially restricted expression of
the dVGlut-RNAi transgene to the brain using the teashirt-lexA 8xlexAop2-IVS-Gal80 (hereaf-
ter tsh>Gal80) transgenic combination (Fig 2H). The tsh>Gal80 transgenic combination was
effective at blocking Gal4-mediated transcription in the entire VNS including in OGNs that
innervate muscles required for courtship and wing threat behaviors (S8 Fig).

With dVGlut function maintained in motor neurons, it was possible all aggressive behav-
iors would return to control levels. However, latency to initiate aggression remained longer in
males with reduced dVGLUT in brain OGNS (tdc2>tsh>Gal80>dVGlut-RNAi) and lunge
number remained lower when compared to controls (Fig 2I and 2]). Wing threat numbers
were at levels lower than one control (Fig 2K) which likely reflects the incompleteness of
dVGlut RNAI interference. In contrast, providing dVGLUT function in OGN VNS neurons
restored intermale courtship to control levels (Fig 2L). Although total behavioral events by
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https:/doi.org/10.1371/journal.pgen.1008609.9003

experimental males (lunges, wing threats, intermale courtship) per minute decreased, overall
activity did not (S7 Fig) nor did male-female courtship (Fig 3). These results indicating GLU
transport in brain OGNS is required to initiate aggression and for the lunge pattern itself may
reflect deficits in the detection of male pheromones as we previously described for OA [43].
Specifically, the suppression of intermale courtship requires the function of three OA-FruM
+ neurons located in the brain [55] and, aggression requires pheromonal information from
Gr32a-expressing chemosensory neurons located in the mouth to OA SEZ neurons [43].

PLOS Genetics | https:/doi.org/10.1371/journal.pgen.1008609  February 25, 2020 7/26

57



@PLOS ‘ GENETICS

Male aggression requires signals from dual-transmitting neurons

Finally, males with reduced dVGLUT in brain OGN (tdc2>tsh>Gal80>dVGlut-RNAi)
performed all measured male-female courtship parameters including latency to court, court-
ship index, latency to copulation and copulation success at levels indistinguishable from con-
trols (Fig 3). Together, these results indicate dVGlut in OGNs is required in males both for
aggression and courtship toward a female and at the behavioral level, the functional require-
ment for dVGLUT in OGN motor neurons vs. central brain neurons is spatially separable.

Removal of glutamate in OGNs using the B3RT-vGlut conditional allele

The experiments above used two different approaches to reduce neurotransmitter levels, but
not eliminate dVGLUT. To completely remove glutamate transporter function in OGNs, a
conditional allele of dVGlut, B3RT-dVGlut-LexA (hereafter B3RT-dVGlut), was developed via
genome editing. Genome edits to the dVGlut locus included flanking the dVGlut coding exons
with B3 recombination target sites (B3RTs) [60] in the same orientation and inserting the cod-
ing sequences of the LexA transcription factor immediately downstream of the 3’ B3RT (Fig
4A). With B3RT-dVGlut, glutamate function can be temporally and spatially controlled using
Gal4 drivers of interest to express the B3 recombinase that in turn catalyzes the in vivo excision
of DNA between the B3RTs (Fig 4B). Two outcomes result after B3 recombinase-mediated
excision; 1) a dVGlut null allele is generated solely in the neurons of interest, and 2) a dVGlut-
LexA driver is created that allows visualization of glutamatergic neurons when a LexAop
reporter is present.

To assess the functionality of dVGlut within the B3RT-dVGlut chromosome pre- and post-
excision, the B3RT-dVGlut chromosome was crossed with the null allele, dVGIut*S' (S1 Fig).
In the absence of a Gald driver, vGlut™'/B3RT-vGlut progeny are fully viable and no LexAop-
driven reporter gene expression is detected (Fig 4C). In contrast, when B3 recombinase
(UAS-B3) is expressed in the nervous system by the pan-neuronal driver, n-syb-Gal4, dVGLUT
expression is eliminated and vGlut*>'/B3RT-dVGlut; UAS-B3/n-syb-Gald progeny are inviable
(data not shown). These results establish that the B3RT-dVGlut genome edits preserve
dVGLUT function prior to excision, but after excision, as expected with removal of the entire
dVGLUT protein-coding sequence, a dVGlut null allele is generated.

To verify the functionality of the B3RT-dVGlut chromosome in Tdc2+ neurons, we crossed
tdc2-gal4 with B3RT-dVGlut;UAS-B3. Following B3-mediated excision in Tdc2+ neurons, the
resulting dVGlut-lexA driver is active in OGNs demonstrating the dVGlut coding region was
removed. The excision of dVGlut and substitution with LexA in the adult nervous system was
confirmed by co-localization of nuclear markers (Fig 4D and 4D’). This result provides addi-
tional confirmation the majority of Tdc2+ neurons are glutamatergic. In addition, nuclear
reporters were used to confirm the loss of dVGLUT does not obviously alter OGN differentia-
tion (S9 Fig).

To completely remove dVGLUT function, we used the dVGIut**" null allele in combination
with the B3RT-dVGlut conditional null allele. Due to the requirements for GLU in OA-GLU
motor neurons, we crossed the tsh>Gal80 transgenes onto the B3RT-dVGlut chromosome.
Males with homozygous null dVGlut mutations in brain OGNs were generated by driving B3
recombinase with tdc2-gal4 (dVGlut*>'/B3RT-dVGlut tsh>Gal80;UAS-B3/tdc2-gald). As
expected, the complete loss of GLU in brain OGNs reduced male aggression. Specifically, the
latency to initiate aggression increased, and lunge numbers decreased (Fig 4E and 4F). Not
unexpectedly, the complete elimination of dVGLUT function resulted in aggression deficits
significantly worse when compared to the RNAi approach (Fig 4I) including now a reduction
in wing threat number (Fig 4G) which demonstrates an advantage in using the conditional
null B3RT-dVGlut allele. Finally, and significantly, the number of inter-male wing extensions
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did not differ from controls (Fig 4H) nor from males with a reduction of dVGlut in brain
OGN:s (Fig 2K). In summation, the dVGIut*'/B3RT-dVGlut null combination elegantly and
independently validates the aggression phenotypes based on dVGlut RNAi-based reduction,
demonstrates the applicability of a powerful new conditional genetic tool, and confirms that
dVGLUT function in OGNS is not required to regulate intermale courtship.

Reducing GLU by EAAT1 overexpression recapitulates the decrease in
aggression

At this point, GLU function within OGNS has been altered by reducing glutamate transport
into synaptic vesicles. Whether the aggression phenotypes of OGN dVGLUT mutant males are
due to deficits in the concentration of GLU into synaptic vesicles, the packaging of OA, or a
reduction of released GLU is not clear. After release, glutamate is rapidly removed from synap-
ses by excitatory amino acid transporters (EAATS) [61, 62]. Therefore, to reduce GLU signal-
ing after release, we increased expression of the only high-affinity glutamate transporter in
Drosophila, EAAT1 (Fig 5A) [63, 64].

EAATI1 is expressed in glia throughout the nervous system [64]. By examining 2-10 indi-
vidual EAAT1-GFP clones in ~40 brains, we determined OGN neuronal cell bodies and arbor-
izations are consistently enmeshed by EAAT1-expressing glia (Fig 5B and 5C). To reduce
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bodies (arrowhead) and endings (arrow). Higher magnification of dashed box in C. Scale bar = 30 um. (D) The latency to lunge by EAATI1>Eaat1 males
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glutamate signaling after release, EAAT1 expression was increased via a transgene (EAATI--
gal4;UAS-EAATTI). While a loss of EAAT1 impairs larval movement [65], overexpression of
EAAT]1 has been used in adult long-term memory formation assays which requires locomo-
tion [66]. Similar to the dVGLUT loss-of-function results above, the aggressive behavior of
males with reduced GLU signaling by EAAT1 overexpression (EAATI-gal4;UAS-EAATI) was
altered in two parameters: the latency to initiate lunging increased and lunge number
decreased (Fig 5D and 5E). Locomotor activity during the aggression assay did not differ (Fig
5F). Although future experiments will be needed to determine if the promotion of aggression
requires dVGLUT packaging of OA in synaptic vesicles and OGN glutamate signaling to
downstream targets, results from this section support the hypothesis that OGN-mediated
aggression requires GLU.

OA and Glu signal to a shared aggression-promoting circuit

If Glu and OA convey signals to separable aggression-promoting circuits, a loss of both neuro-
transmitters would reduce aggression greater than the loss of either alone (Fig 6A). If, however,
Glu and OA signal to a shared circuit or circuits that converge, a loss of both transmitters
would reduce aggression to the same levels as the loss of one alone. To address this question,
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Fig 6. OA and Glu signal to a shared aggression-promoting circuit. (A) OGNs could signal to separate aggression-promoting
circuits (resulting in aggression deficits %eater than the single mutant) or to a shared or converged circuit. (B-E) dVGlut was
reduced in OGNS of Th™!® males (Th"'%;tdc2>dVGlut-RNAi). (B) Latency to lunge increased in TPHM8,tdc2>dVGlut-RNAi
males compared to the transgenic control but not TBh™"® males. (C) Lunge number by males with reduced dVGLUT and lacking
OA was not significantly different than TBh™'® males. (D) TBh™'%tdc2>dVGlut-RNAi males displayed lower wing threat numbers
compared to the transgenic control but not TﬂhM '8 males. (E) Males with reduced dVGLUT and lacking OA (blue column)
displayed an increase in inter-male courtship at levels higher than the control but not significantly different from Tgh*'® mutants
(green column). All statistical tests are Kruskal-Wallis with Dunn’s multiple comparisons test, (*p<0.05, **p<0.01, ***p<0.001,
****p<0.0001. Error bars denote s.e.m.

https:/doi.org/10.1371/journal.pgen.1008609.g006
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we incorporated the previously described null allele Th™*® [67] and generated TSh"™';
tdc2>dVGlut-RNAi males. Additive deficits did not occur when males without OA and
dVGLUT in OGNs were compared to males lacking only OA (Fig 6B-6D) indicating that both
signals, at least partially, converge onto a shared aggression-promoting pathway.

TBHh"™8;tdc2>vGlut-RNAi males displayed levels of male-male courtship that are not sig-
nificantly different from TBh"*'® males (blue column, Fig 6E). This result further supports
previously published data that OA is required to suppress intermale courtship [43, 55, 56].
Here, increased levels of inter-male courtship due to the absence of OA supersedes or relieves
the lack of UWE due to a reduction in dVGlut function (Fig 2). At this point, it is possible the
UWE phenotype occurs via OA-modulated circuitry that involves other neurotransmitters
[56] or the actions of OA occur at spatially distinct locations.

Spatial segregation of VMAT and dVGLUT within OGN

To compare localization of the two transporters within OGN, we generated a conditionally
expressible epitope-tagged version of VMAT, RSRT>STOP>RSRT-6XV5-VMAT, via genome
editing. RSRT>STOP>RSRT-6XV5-VMAT has two insertions: 1) a STOP cassette between
VMAT coding exons 5 and 6 and, 2) six in-frame tandem copies of a V5 epitope tag within
exon 8 which is common to both VMAT-A and VMAT-B isoforms (Fig 7A). The effectiveness
of the STOP cassette is confirmed by the lack of V5 expression prior to STOP cassette excision
by Gal4-driven R recombinase (S11 Fig) and the effectiveness of the epitope multimerization
strategy has also been determined [68]. The conditionality of the RSRT>STOP>RSRT-
6XV5-VMAT allele permits visualization of VMAT in subsets of neurons at expression levels
driven by the endogenous promoter.

To focus on transporter distribution within OGNs, we expressed RSRT>STOP>RSRT-
6XV5-VMAT under control of the split Gal4 combination of tdc2-Gal4-AD and dVGlut-
Gal4-DBD (tdc2-dVGlut-gal4) which drives expression in OGNs (Fig 7B, S6C-S6F Fig).
V5-VMAT was visualized in tdc2-dVGlut-gal4; V5-VMAT UAS-R by an antibody to V5 and
dVGLUT using mAb dVGLUT (S10 Fig). Fig 7C illustrates that as expected, a large fraction of
the V5-VMAT puncta in the AL or SEZ (S11 Fig) either co-localize with dVGLUT or are in
close proximity (arrowheads). High resolution images in Fig 7D and 7H, however, reveal
V5-VMAT puncta without dVGLUT (arrows). As OA can be found in SVs as well as LDCV's
[69, 70], we incorporated a synaptic marker (UAS-Synaptotagmin (Syt):HA) and re-examined
V5-VMAT and dVGLUT expression in the AL and SEZ (Fig 7F, S11D Fig). We found
V5-VMAT puncta that either co-localize or are in close proximity to Syt:HA and dVGLUT
(Fig 7F-7], S11D-S11H Fig). While the behavioral significance of potential OA synaptic
release on aggression circuitry remains to be determined, previous work has demonstrated
amine-dependent behaviors can be altered by shifting the balance of OA release from SVs to
LDCVs [70]. In addition, as mentioned above, we have previously shown that three
OA-FruM" neurons are required to suppress intermale courtship and recent work has identi-
fied a small subset of OA receptor OAMB-expressing neurons that when silenced, decrease
aggression and increase intermale courtship [56]. The SEZ areas of V5-VMAT and dVGLUT
puncta highlighted in Figs 7 and 8 are consistent with projections made by OA-FruM " neu-
rons which are also OGNs (S12 Fig) raising the possibility of distinct OA and GLU inputs to
key downstream targets.

Due to the large number of tdc2-dVGlut-gal4 neurons, we repeated the experiment using
the OA-specific MB113C-split-gal4 to drive V5-VMAT in ~2 OGN (Fig 8A and 8B) [71]. Fig
8C illustrates that as expected, many V5-VMAT puncta in the SEZ either co-localize with
dVGLUT or are in close proximity (arrowheads). High resolution images in Fig 8D and 8H,
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Fig 7. Spatial segregation of VMAT and dVGLUT within OGNs. (A) Schematic of the RSRT>STOP>RSRT-6XV5-VMAT conditional allele. RSRTs flank a STOP
cassette inserted between VMAT coding exon 5 and 6. Upon Gal4-driven expression of the R recombinase enzyme, the STOP cassette is excised and V5-tagged VMAT
expression under control of the endogenous promoter is expressed. (B) Representative brain showing V5-VMAT expression in OGNss after excision by tdc2-dVGlut-gal4
driven R recombinase. The brain is labeled with anti-V5 (magenta) and mAb dVGLUT (green in panels C,D). Scale bar is 30 um. (C) Higher magnification of the antennal
lobe region showing dVGLUT expression (green) with V5-VMAT (magenta). Scale bar is 10 um. (D) The region in the dashed box in C showing puncta with dVGLUT
and V5-VMAT colocalization (arrowheads) and puncta with only V5-VMAT (arrows). (E) Schematic showing the regions of the brain that are depicted in C and F. (F)
Antennal lobe region of a representative brain with a synaptic marker incorporated (UAS-synaptotagmin;HA, tdc2-dVGlut split gal4/UAS-R RSRT-STOP-RSRT-6XV5-
vMAT). The brain is labeled with anti-HA (blue), anti-V5 (magenta), and mAb dVGLUT (green). Scale bar is 20 pm. (G-J””) Higher magnification of the SEZ region of the
AL in F showing dVGLUT expression (green), V5-VMAT (red), and Syt:HA (blue). Arrowheads indicate puncta with dVGLUT, V5-VMAT and Syt:HA and arrows
indicate puncta with only V5-VMAT and Syt:HA. The stack for panels C and D contains two optical sections at 0.45 um. Stacks for panels G-J contain 7 optical sections at
0.5 um.

https://doi.org/10.1371/journal.pgen.1008609.g007

however, indicate small, but distinct regions that contain V5-VMAT puncta without dVGLUT
(arrows). Within the areas of dVGLUT and V5-VMAT possible colocalization, this level of
analysis does not indicate whether the two transporters segregate into adjacent but distinct
puncta, nor are questions of transporter colocalization on the same vesicles addressed. Never-
theless, our results demonstrate that within OGNs, V5-VMAT and dVGLUT puncta can differ
in localization suggesting the aggression vs. intermale courtship phenotype differences may be
due to spatial differences in signaling by glutamate and octopamine.

Discussion

Addressing the functional complexities of “one neuron, multiple transmitters” is critical to
understanding how neuron communication, circuit computation, and behavior can be
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Fig 8. Spatial segregation of VMAT and dVGLUT within two OGNs. (A-A’) Representative brain showing V5-VMAT expression in
two OGN after excision by MB113C-split-gal4 driven R recombi The brain is labeled with anti-V5 (magenta) and mAb dVGLUT
(green). Scale bar is 50 um. The inlet in A which is from a separate brain demonstrates this OA neuron driver also expresses dVGLUT
(green). (B-E) Higher magnification of the SEZ boxed region in A’. Arrowheads point to puncta with V5-VMAT and dVGLUT, arrows
indicate V5-VMAT only puncta. Scale bar is 10 um. (C-E) The regions in the dashed boxes in B showing puncta with dVGLUT and
V5-VMAT colocalization (arrowheads) and puncta with only V5-VMAT (arrows). Panels B-E contain stacks of four optical sections at
0.45 pm. Scale bar for panels C-E is 5 um.

https://doi.org/10.1371/journal.pgen.1008609.9008

regulated by a single neuron. Over many decades, significant progress has been made elucidat-
ing the functional properties of neurons co-expressing neuropeptides and small molecule neu-
rotransmitters, where the neuropeptide acts as a co-transmitter and modulates the action of
the neurotransmitter [5, 6, 72]. Only recently have studies begun to examine the functional sig-
nificance of co-transmission by a fast-acting neurotransmitter and a slow-acting monoamine.
In this study, we demonstrated that OA neurons express dVGLUT and utilized a new
genetic tool to remove dVGLUT in OA-glutamate neurons. Quantifying changes in the com-
plex social behaviors of aggression and courtship revealed that dVGLUT in brain OGN is
required to promote aggressive behavior and a specific behavioral pattern, the lunge. In con-
trast, males deficient for dVGLUT function do not exhibit an increase in inter-male courtship.
These results establish a previously undetermined role for dVGLUT in OA neurons located in
the adult brain and reveal glutamate uncouples aggression from inter-male courtship. It has
been suggested that classical neurotransmitters and monoamines present in the same neuron
modulate each other’s packaging into synaptic vesicles or after release via autoreceptors [9, 49,
73-75]. For example, a reduction of dVGLUT in DA-glutamate neurons resulted in decreased
AMPH-stimulated hyperlocomotion in Drosophila and mice suggesting a key function of
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dVGLUT is the mediation of vesicular DA content [12, 49, 76]. In this study, the independent
behavioral changes suggests enhancing the packaging of OA into vesicles is not the sole func-
tion of dVGLUT co-expression and suggests differences in signaling by OA from OGNs on
courtship-related circuitry.

Co-transmission can generate distinct circuit-level effects via multiple mechanisms. One
mechanism includes spatial segregation; the release of two neurotransmitters or a neurotrans-
mitter and monoamine from a single neuron occurring at different axon terminals or presyn-
aptic zones. Recent studies examining this possible mechanism have described; (i) the release
of GLU and DA from different synaptic vesicles in midbrain dopamine neurons[15, 77] and
(ii) the presence of VMAT and VGLUT microdomains in a subset of rodent mesoaccumbens
DA neurons([78]. In this study, we expressed a new conditionally expressed epitope-tagged ver-
sion of VMAT in OGNs and visualized endogenous dVGLUT via antibody labeling. Within
OGNS, the colocalization of VMAT and dVGLUT puncta was not complete suggesting the
observed behavioral phenotype differences may be due to spatial differences in OA signaling.

A second mechanism by which co-transmission may generate unique functional properties
relies on activating distinct postsynaptic receptors. In Drosophila, recent work has identified a
small population of male-specific neurons that express the alpha-like adrenergic receptor,
OAMB, as aggression-promoting circuit-level neuronal targets of OA modulation indepen-
dent of any effect on arousal[56] and separately knockdown of the Rdl GABAa receptor in a
specific doublesex+ population stimulated male aggression [79]. Future experiments identify-
ing downstream targets that express both glutamate and octopamine receptors would be infor-
mative, as well as using additional split-Gal4 lines to determine if segregation of transporters is
a hallmark of the majority of OGNSs. Finally, a third possible mechanism is Glu may be co-
released from OGNs and act on autoreceptors to regulate presynaptic OA release (reviewed in
[75]).

Deciphering the signaling complexity that allows neural networks to integrate external sti-
muli with internal states to generate context-appropriate social behavior is a challenging
endeavor. Neuromodulators including monoamines are released to signal changes in an ani-
mal’s environment and positively or negatively reinforce network output. In invertebrates, a
role for OA in responding to external chemosensory cues as well as promoting aggression has
been well-established [43, 47, 56, 80-83]. In terms of identifying specific aggression circuit-
components that utilize OA, previous results determined OA neurons directly receive male-
specific pheromone information [43] and the aSP2 neurons serve as a hub through which OA
can bias output from a multi-functional social behavior network towards aggression[56]. The
ability of OA to bias behavioral decisions based on positive and negative reinforcement was
also recently described for food odors [84]. In vertebrates, it has been proposed that DA-GLU
cotransmission in the NAc medial shell might facilitate behavioral switching [85]. Our finding
that the majority of OA neurons are glutamatergic, suggests that the complex social behavior
of aggression may rely on small subsets of neurons that both signal the rapid temporal coding
of critical external stimuli as well as the frequency coding of such stimuli resulting in the
enhancement of this behavioral network. One implication of our finding regarding the separa-
ble OA-dependent inhibition of inter-male courtship is the possibility of identifying specific
synapses or axon terminals that when activated gate two different behavioral outcomes. A sec-
ond implication is that aggressive behavior in other systems may be modified by targeting
GLU function in monoamine neurons.

Finally, monoamine-expressing neurons play key roles in human behavior including
aggression and illnesses that have an aggressive component such as depression, addiction, anx-
iety, and Alzheimer’s [86, 87]. While progress is being made in addressing the functional com-
plexities of dual transmission, the possible pathological implications of glutamate co-release by
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monoamine neurons remains virtually unknown. Analyzing the synaptic vesicle and release
properties of monoamine-glutamate neurons could offer new possibilities for therapeutic
interventions aimed at controlling out-of-context aggression.

Methods
Drosophila husbandry and stocks

All flies were reared on standard cornmeal-based fly food. Unless noted otherwise, during
developmental and post-eclosion, flies were raised at 25°C, ~50% humidity and a 12:12hr
light-dark cycle (14004200 Ix white fluorescent light) in humidity and temperature-controlled
incubators. A list of stocks can be found in S1 Data.

Aggression assays

Male pupae were isolated and aged individually in 16 x 100mm borosilicate glass tubes con-
taining 1.5ml of standard food medium as previously described [88]. A dab of white or blue
acrylic paint was applied to the thorax of two-day old males under CO, anesthesia for identifi-
cation purposes. Flies were returned to their respective isolation tubes for a period of at least
24 hours to allow recovery. For aggression testing, pairs of 3-5 day old, socially naive adult
males were placed in 12-well polystyrene plates (VWR #82050-930) as described previously
[43]. All assays were run at 25°C and ~45-50% humidity levels.

Scoring and statistics

All aggression was assayed within first two hours of lights ON time (Zeitgeber hours 0-2) and
scored manually using iMovie version 8.0.6. Total number of lunges, wing threats, and unilat-
eral wing extensions were scored for a period of 30 minutes after the first lunge according to
the criteria established previously [43, 88]. The time between the aspiration of the flies into the
chamber and the first lunge was used for calculating the latency to lunge. Male-male courtship
was the number of unilateral wing extensions (singing) followed by abdomen bends or
repeated wing extensions. All graphs were generated with Graphpad Prism and Adobe Illustra-
tor CS6. For data that did not meet parametric assumptions, Kruskal-Wallis Test with Dunn’s
multiple comparison was used unless otherwise specified. A standard unpaired t-test was per-
formed in the case of only two comparisons and a modified chi-square test to compare copula-
tion success.

Activity levels

Activity levels were measured by tracking the flies in each assay using the OpenCV module in
the Python programming language to analyze the video and then output XY-coordinate and
distance data. The distance traveled was calculated for each fly by determining the starting
location followed by the second location after a 250-ms time interval and then taking the sum
of the distance traveled in each interval. To calculate pixels moved per second, the distance
data was divided by the total time spent tracking.

Immunohistochemistry

Adult male dissected brains were fixed in 4% paraformaldehyde (Electron Microscopy Sci-
ences) for 25 minutes and labeled using a modification of protocols previously described [55].
The following primary antibodies were used: anti-bruchpilot (mAb nc82, 1:30, Developmental
Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by the
Department of Biology, University of Iowa (Iowa City, IA).), monoclonal rabbit anti-GFP
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(1:200, Molecular Probes), rat anti-HA 3F10 (1:100, Roche), mAb dVGLUT (1:15), anti-TpH
(1:400, [89]), rat anti-V’5 (1:200, Biorbyt), and rabbit anti-TDC2 (1:100, Covalab). Secondary
antibodies conjugated to Alexa 488, Alexa 594, or Alexa 647 (Molecular Probes) were used at a
concentration of 1:200. Labeled brains were mounted in Vectashield (Vector Labs, #H1000).
Images were collected on an Olympus Fluoview FV1000 laser scanning confocal mounted on
an inverted IX81 microscope and processed using ImageJ (NIH) and Adobe Photoshop
(Adobe, CA).

qPCR

Total RNA from ~40 heads using Direct-zol RNA Miniprep Pluskit (Zymo Research)and
treated with DNase I per the manufacturer’s protocol. RNA concentrations were measured
with a ND-1000 nanodrop spectrometer. Reverse transcription was accomplished using iScript
cDNA Synthesis kit (Bio-Rad Laboratories). RT-PCR was performed using 300 ng cDNA
added to iTaq Universal SYBR Green Supermix (Bio-Rad Laboratories) and primers in a 20 uL
reaction volume. All samples were run in triplicate using a Stratagene Mx3005P qPCR System
(Agilent Technologies). Expression of ribosomal protein 49 (Rp49) was used as the reference
control to normalize expression between genotypes. Expression levels were determined using
the AACT method and results from control (UAS-dVGlut-RNAi/+) and experimental (nsyb-
Gal4/UAS-dVGlut-RNAi) groups were normalized relative to a transgenic control (nsyb-
Gal4/+). The following primers were used: Rp49 Forward: 50-CATCCGCCCAGCATACAG-
3’ Rp49 Reverse: 5-CCATTTGTGCGACAGCTTAG-3’ dVGlut Forward: 5-GCACGGTCAT
GTGGTGATTTG-3 dVGlut Reverse: 5-CCAGAAACGCCAGATACCATGG-3'. Primer
designs for all Rp49 and dVGlut primers used have been described previously [12].

Construction of 20XUAS-His2A-GFP, 13XLexAop2-His2B-mCherry and
20XUAS-R

The 20XUAS-His2A-GFP, 13XLexAop2-His2B-mCherry, and 20XUAS-R expression clones
were assembled using Gateway MultiSite LR reactions as previously described[90] and as indi-
cated in S2 Table. The L1-20XUAS-DSCP-L4 and L1-13XLexAop2-DSCP-L4 entry clones con-
tain 20 copies of UAS and 13 copies of LexAop2 upstream of the Drosophila synthetic core
promoter (DSCP) [91], respectively. The R4-His2A-R3 and R4-His2B-R3 entry clones were
generated as previously described [90] using genomic DNA as templates. The L3-GFP-L2
entry clone was generated from template pJFRC165[60] except the PEST sequence is omitted.
The L3-GFP-L2 and L3-mCherry-HA-L2 entry clones were previously described [92]. The L1-
20XUAS-DSCP-R5 entry clone was previously described [90]. The pDESTp10aw destination
vector was previously described[93]. Injections were performed by Bestgene, Inc.

Construction of UAS-B3

B3 recombinase derived from pJFRC157 [60] was PCR amplified using primers designed to
add the syn21 translational enhancer sequence [94] and remove the PEST domain. The veri-
fied PCR product was cloned into pENTR (Invtrogen) and subsequently transferred to
pBID20xUAS, a derivative of the pBID vector [95] with 20 copies of the UAS binding
sequence. Injection of UAS-B3 was performed by Genetivision into landing site VK31.

Generation of B3RT-vGlut

The B3RT-dVGlut-LexA chromosome was generated via CRISPR/Cas9 genome editing. Both
guide RNAs were incorporated into pCFD4 using previously described methods [96] to
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produce the double guide RNA plasmid pCFD4-vGlut1. The donor plasmid B3RT-dVGlut-
LexA used the pHSG298 backbone (Takara Bio) and was generated using NEBuilder HiFi
(New England Biolabs). The complete annotated sequence of B3RT-dVGlut-LexA is shown in
Supplementary Information. pCFD4-vGlut1/B3RT-dVGlut-LexA injections were performed by
Bestgene, Inc.

To assess the functionality of dVGlut on the B3RT-dVGlut chromosome pre- and post-exci-
sion, the B3RT-dVGlut chromosome was crossed with the homozygous lethal dVGlut null
allele, dVGlut>! in the presence and absence of the pan-neuronal driver n-syb-Gal4. In the
absence of a Gal4 driver, dVGlut>S'/B3RT-dVGlut progeny are fully viable and no LexAop-
driven reporter gene expression is detected (Fig 2). When B3 recombinase (UAS-B3) is
expressed in the nervous system by n-syb-Gald, dVGlut™'/B3RT-dVGlut; UAS-B3/n-syb-Gal4
progeny are inviable, therefore after excision, as expected with removal of the entire dVGlut
protein-coding sequence, a dVGlut null allele results.

Generation of dVGlut™S’

The dVGlut**" allele was generated by CRISPR/Cas9 genome editing with the same guide
RNAs used to generate B3RT-dVGlut LexA. dVGlut™! was identified based on failed comple-
mentation with the existing dVGlut’ allele[97]. Sequencing of PCR products from this allele
indicated a deletion of 2442bp that includes dVGlut amino acids 53-523. Genomic DNA
sequence at the breakpoints of the dVGlut*>' allele are indicated with the deleted region in

bold: GGACCAGGCGGCGGCCACGC...... AACCTCCGGCCGAGGAGCAA.

Generation of the RSRT-STOP-RSRT-6XV5-vMAT chromosome

RSRT-STOP-RSRT-6XV5-vMAT was generated via CRISPR/Cas9 genome editing. Both
upstream guide RNAs were incorporated into pCFD4-vMAT1 and both downstream guide
RNAs were incorporated into pPCFD4-vMAT2 as previously described [96]. The RSRT-
STOP-RSRT-6XV5-vMAT donor plasmid used the pHSG298 backbone (Takara Bio) and was
generated using NEBuilder HiFi (New England Biolabs). The complete annotated sequence of
RSRT-STOP-RSRT-6XV5-vMAT is shown in Supplementary Information. pCFD4-vMAT1/
pCFD4-vMAT2/RSRT-STOP-RSRT-6XV5-vMAT injections into the nos-Cas9 strain TH_attP2
[98] were performed by Bestgene, Inc.

The R and B3 recombinases from yeast recognize sequence-specific recombination target
sites, RSRT's and B3RTs, respectively [60]. These recombinases are highly efficient and highly
specific as they exhibit virtually no cross-reactivity with each other’s recombinase target sites.
When pairs of recombinase target sites are in the same orientation, as is the case for both
B3RT-vGlut-LexA and RSRT-STOP-RSRT-6XV5-vMAT, the recombinases catalyze excision of
the intervening DNA and leave behind a single recombinase target site.

dVGlut antibody

Drosophila anti-dVGLUT mouse monoclonal antibodies (10D6G) were generated (Life Tech-
nologies Europe) using the C-terminal peptide sequence TQGQMPSYDPQGYQQQ of
dVGLUT coupled to KLH.

Supporting information

S1 Fig. Verification of mAb dVGLUT specificity using the null dVGIut**’ allele. (A)
dVGLUT expression detected by mAb dVGLUT in a heterozygous yw, dVGlut™'/+ late stage
embryo. (B) dVGLUT expression is not detectable by mAb dVGLUT in a homozygous yw,
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dVGlut™'/ dVGlut™' late stage embryo.
(TIF)

S2 Fig. Multiple optical sections from dVGlut>dsRed male brains labeled with anti-Tgh.
(A-B) Although the TBh shows weaker immunoreactivity than the anti-Tdc2 antibody, TBh is
mainly detected in dVGlut>dsRed neurons at dorsal and ventral positions (A’, A”, B’ and B”).
Scale bar = 20 ym.

(TIF)

S3 Fig. (A-A’) Schematic showing the regions (boxes) of the VNS imaged in panels B and C.
(B-C) A male dVGlut>dsRed adult VNS labeled with anti-Tdc2. The majority of dVGLUT

+ neurons within the thoracic VNS (B) and abdominal VNS (C) express Tdc2 with a few
exceptions (arrows). Scale bar = 10 um.

(TIF)

S4 Fig. (A) Schematic showing the regions imaged in panels B and C (colored boxes). (B-C)
The majority of OA neurons within the PENP (B) and SEZ (C) regions co-express dVGLUT
as visualized in a male tdc2>dsRed adult brain labeled with anti-dVGLUT. Scale bar = 10 um.
(TIF)

S5 Fig. (A) dVGlut transcript levels were decreased in n-syb-gal4>dVGLUT-RNAi males as
compared to the n-syb-gal4 control (n = 3; p<0.01). (B-C) Representative images of ventral
sections of the SEZ from a tdc2-gal4>dVGLUT-RNAi;UAS-dsRed male brain labeled with anti-
Tdc2. OGN differentiation as measured by Tdc2 expression is not altered by a reduction of
dVGLUT. Scale bar = 10 pm. (D-E) Dorsal sections of the SEZ, PENP and protocerebral
bridge region from the same brain as in B. There are no obvious changes in ventral OGN sur-
vival and differentiation as measured by Tdc2 expression. Scale bar = 20 um.

(TIF)

S6 Fig. (A) Verification that each tdc2>GFP neuron in the brain and VNS is Tdc2+. The
stack for panel A contains 30 optical sections at 1.0 pm. Scale bar = 20 um. (B) The stack for
panel B contains 34 optical sections at 1.0 um. Scale bar = 20 um. (C-E) Verification that each
tdc2-dVGlut-split>GFP neuron is Tdc2+. The stack for panels C-E contains 56 optical sections
at 0.5 um. Scale bar = 20 um. (F) Schematic showing the locations of Tdc+ clusters in C-E.
(TIF)

S7 Fig. (A) The activity levels of controls and tdc2>dVGlut-RNAi males did not differ during
the aggression assay as measured by pixels moved/second. (B) Total behavioral events (lunges,
wing threats, inter-male courtship) per minute was calculated. The average number of behav-
ioral events per minute exhibited by experimental males (tdc2>tsh>Gal80>dVGlut-RNAi)
was slightly higher than controls (**p<0.01)

(TIF)

S8 Fig. (A) The VNS of a tdc2>mtd:HA male, note the Tdc2+ cell bodies. (B) The addition of
tsh>Gal80 blocked the Gal4-mediated expression of mtd:HA in the majority of Tdc2+ VNS
neurons (tdc2/tsh>Gal80;dsRed). Axonal projections from brain Tdc2+ neurons are visualized
in the VNS. (C) Significantly less Tdc2+ VNS neurons are detected in tdc2/tsh>Gal80;dsRed
vs. tdc2>dsRed males. (Mann Whitney, P = 0.001). (D) The addition of tsh>Gal80 does not
alter brain tdc2-gal4 reporter driven expression.

(TIF)

S9 Fig. Neuron survival or distribution is not altered by the complete loss of dVGLUT in
OGNs (A-D) Representative images of dorsal (A-B) and ventral (C-D) optical sections of the
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SEZ region from tdc2-gal4;B3RT-dVGlut/dVGLUT**;UAS-B3 lexAop-His2B-mCherry
UAS-His2A-GFP males. OGN are visualized by the mCherry reporter and white co-colocali-
zation in the merged channel. Scale bar = 20 um.

(TIF)

$10 Fig. RSRT>stop>6xV5-VMAT is not expressed without Gal4-mediated excision of
the stop cassette. (A-A’) In the presence of a Gal4 driver (tdc2-Gal4-AD dVGlut-Gal4-DBD)
to drive R recombinase (UAS-R) expression, the stop cassette of RSRT>stop>6XV5-VMAT is
excised and V5-VMAT (magenta) is expressed and visualized by anti-V5. dVGLUT (green) is
visualized by mAb dVGLUT. (B-B’) Without the presence of a Gal4 driver, dVGLUT expres-
sion is apparent while expression from RSRT>stop>6XV5-VMAT is not detected by anti-V5.
Scale bar = 30 um.

(TIF)

S11 Fig. (A) Higher magnification of the SEZ region showing V5-VMAT expression in OGNs
after excision by tdc2-dVGlut-gal4 driven R recombinase. The brain is labeled with anti-V5
(magenta) and mAb dVGLUT (green). Scale bar = 15 ym. (B-B”) Higher magnification of the
SEZ region of the region in the dashed box in panel B. Arrowheads indicate puncta with
dVGLUT and V5-VMAT colocalization. Arrows indicate puncta with only V5-VMAT
(arrows). (C) Schematic indicating the location of the SEZ region. (D) SEZ region of a repre-
sentative brain with a synaptic marker incorporated (UAS-synaptotagmin;HA, tdc2-dVGlut-
gal4/UAS-R RSRT-STOP-RSRT-6XV5-vMAT). The brain is labeled with anti-HA (blue), anti-
V5 (magenta), and mAb dVGLUT (green). Scale bar = 20 um. (E) Higher magnification of the
SEZ region in D. Scale bar = 10 um. (F-H) Regions of interest from E showing puncta with
dVGLUT, V5-VMAT and Syt:HA. The stack for panel B contains two optical sections at

0.45 um. Six optical sections at 0.45 um were stacked in panels E-H.

(TIF)

$12 Fig. OGNs include the three OA-FruM " neurons. (A-C) Brains from tdc2-dVGlut-split-
gal4/UAS>stop>CD8:GFP;fru-flp males demonstrate OA-FruM* neurons are also dVGlut+.
(D) No OGN in the VNS are FruM " although as expected the OGN-FruM " neurons project
into the VNS. Scale bar = 20 um. (E-G) OGN-FruM+ neurons (arrow) were also identified in
dVGlut-gal4/UAS>stop>CD8:GFP;fru-flp male brains labeled with anti-Tdc2 (magenta). Scale
bar =20 um.

(TIF)

S1 Table. Identified OGNs based on OA neuron nomenclature.
(TIF)

$2 Table. Cloning components used for the construction of the 20XUAS-His2A-GFP and
13XLexAop2-His2B-mCherry lines.
(TIF)

S1 Data.
(TIF)
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Neuron Communication

The over-arching theme of my master’s research has been to understand the
mechanisms that underlie neuron communication in the developing and adult brain.
Neuronal communication is made possible by the neuron's specialized structures and the
combination of electrical events called 'action potentials' and chemical neurotransmitters.
At the synaptic junction between two neurons, an action potential causes the pre-synaptic
neuron to release a chemical neurotransmitter. An ever-growing challenge in
understanding neuron communication is the realization that many neurons release more
than one type of chemical signal or neurotransmitter. In the collaborative dual
transmission publication, we asked: how does the release of more than one
neurotransmitter from a single neuron impact circuits that control behavior? We
determined the monoamine octopamine (OA) and the classical transmitter glutamate are
co-expressed in the Drosophila adult central nervous system (CNS). By manipulating the
release of glutamate in OA-glutamate neurons, we demonstrated glutamate has both
separable actions and complementary actions with OA on aggression and reproductive
behaviors respectively. Aggression is a behavior that is highly conserved between
organisms and present in many human disease states, including traumatic brain injuries
(TBIs), depression, and Alzheimer’s disease (Takahashi and Miczek, 2014; Thomas et
al., 2015; Wrangham, 2018; Svensson et al., 2018). Our results show that aggressive
behavior requires the release of both neurotransmitters in dual-transmitting neurons and
suggests within this set of neurons, glutamate may provide a new therapeutic target to
modulate aggression in pathological conditions.

A second emerging area of neuron communication that is also complex and still
largely unknown, is the impact of the extracellular space surrounding neurons and glia on
brain function. With the emergence of new technologies in combination with decades of
research, a picture is developing that shows the narrow intercellular space to be a
complex microenvironment essential to neuronal function, a signaling pathway in its own
right, and an important conduit for drug delivery. The requirement for components of this
extracellular space has been the core of my thesis project with the study of the
matricellular protein (MCP) family member, dCCN. The connection that binds both

projects together is our ultimate goal: determine how the complex signaling capabilities
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of monoamine neurotransmitters modulate circuits that control behavior, namely

aggression.

dCCN Discussion
The CCN family of MCPs are a group of highly conserved, non-structural ECM

proteins that are critical for modulating intercellular signaling and trafficking (Bornstein
and Sage, 2002; Rachfal, 2005; Katsube et al., 2009; Chen and Lau, 2009; Bornstein,
2009; Perbal, 2013; Adams, 2018; Perbal, 2018). The four well conserved functional
domains of CCN proteins enable a single family member the ability to interact with a
multitude of signaling partners that initiate many biological processes (Holbourn et al.,
2008; Malik et al., 2015; Hu et al., 2019). A variety of tissues express the CCN family of
MCPs, and numerous pathologies, developmental deficiencies, diseases, psychiatric
conditions, cancers, and many other disorders result from disruptions in CCN:ECM or
CCN:cell communication (Jun et al., 2011; Malik et al., 2015; Perbal, 2018; Hu et al.,
2019). However, the requirements for CCN function in the nervous system, aside from a
few studies, remains poorly understood.

In this study, I examined the sole CCN family member encoded by the
Drosophila melanogaster genome, which we refer to as dCCN. We have shown that
dCCN is expressed in the CNS at each developmental stage. Widespread, but not
ubiquitous dCCN expression begins in the CNS of the embryo, is present in the CNS and
motor neurons of larvae, and dCCN CNS widespread expression is maintained to
adulthood. We predict that dCCN is important for development and critical for the
remodeling and growth of the CNS within the Drosophila organism as the CNS
undergoes immense morphological changes from an embryo, to a larvae, and finally, to
an adult fly. We identified dCCN expressing sensory neurons of the peripheral nervous
system (PNS) including the proboscis, maxillary palps, antennae, legs, and wings. We
also discovered dCCN expressing projections innervating the crop and proventriculus
structures of the gastrointestinal system. These sensory neurons are important for
collecting internal and external stimuli, and are responsible for conveying this
information back to the central brain. Additionally, we found dCCN expressing

projections innervating the ovaries and uterus. We identified monoamine neuronal
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populations that co-express dCCN, of which include the monoamines serotonin (5-HT),
dopamine (DA), and OA. In addition, we found that dCCN is expressed in sexually
dimorphic populations of neurons critical for sex-specific behaviors, of which include
fruitless (fru) and double-sex (dsx). Lastly, we have demonstrated for the first time, that
dCCN is required for neurotransmission at the larval neuromuscular junction (NMJ) and
for female sterility. To conclude, dCCN is an incredibly important MCP of the CNS and
contributes to synaptic neurotransmission and nervous system function.

We found that dCCN is expressed in the monoamine neurons DA, 5-HT, and OA.
Monoamine neurons are important for regulating an immense variety of physiological
processes, moods, and is known to govern behaviors (Dishman 1997; Libersat and
Pflueger 2004; Kamhi and Traniello 2013; Bubak et al., 2014; De Boer et al., 2015;
Swallow et al., 2016). A previous study by Hori et al. also demonstrated monoamine and
CCN protein interactions in which CCN2 production is upregulated when 5-HT receptors
are stimulated in chondrocytes (Hori et al, 2017). As MCPs do not have a structural role
in the extracellular space (ECS), MCPs, and in particular dCCN, may indirectly impact
the signaling of monoamine neurotransmitters released from synaptic sites and extra-
synaptic sites by interacting with integrins as one example to stabilize neuronal junctions,
bouton architecture, and potentially vesicle release.

We found sexually dimorphic dCCN expression in fru and dsx neurons. Fru and
dsx are have different sets of neurons, cells, and expression patterns between males and
females. Previous work demonstrated that fru neurons are important for male specific
behaviors such as courtship and aggression (Lee et al., 2000; Goodwin et al., 2000;
Anand et al., 2001; Stockinger et al., 2005; Kimura et al., 2005; Yamamoto, 2007;
Rideout et al., 2007; Yamamoto, 2008; Villella and Hall, 2008; Sato et al., 2019; Ishii et
al., 2020; Sato et al., 2020; Wohl et al., 2020). Dsx is important for male courting,
specifically for performing sine song and copulatory behaviors, and initiating aggression
towards males (Rideout et al., 2007; Rideout et al., 2010; Ishii et al., 2020). Additionally,
both fru and dsx is essential for receptivity in females during courting events (Rideout et
al., 2007; Villella and Hall, 2008; Rideout et al., 2010; Chowdhury et al, 2020). We
predict that dCCN expression within fru and dsx may be to contribute to the development

of sex specific neurons and cells, to give cells and neurons a sexual identity, and to
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contribute to the health and maintenance of reproductive organs and the formation of
offspring. dCCN may possibly impact behavior, but additional experiments are needed to

separate out a developmental role.

Future Directions

There are two questions that can now be addressed after this work. First, it is
necessary to examine the developmental vs. mature nervous system function of dCCN.
While it has been demonstrated that the delicate balance of structural remodeling and
stabilization of neuronal networks requires cell:ECM interactions changes over the life-
span of an organism, to date, separating the role of CCN proteins during development vs.
the mature cell/tissue has yet to be addressed in any system. This information is key to
identifying temporally-regulated ECM or signaling factors that interact with CCN
proteins as well as determining how CCN proteins contribute to neurotransmission
changes in disease states. The second question is location: separating the nuclear vs.
secreted function of CCN proteins. This question can be addressed by generating

genome-edited fly strains to tag the dCCN endogenous protein and prevent secretion.

Significance

During development and in the adult, the ECS provides multiple cues that
promote synaptic plasticity on the one hand, and maintenance of the homeostasis of
neural circuitries on the other. The importance of the ECM for both of these processes
indicate that it could have a pivotal role in the pathogenesis of neurological and
neuropsychiatric disorders. Indeed, recent studies support the view that ECM aberrations
are likely to contribute to imbalanced synaptic function in epilepsy, Alzheimer’s disease,
and other neurodegenerative disorders, TBI, and depression (Jun et al., 2011; Malik et al.,
2015; Perbal, 2018; Dazzan et al., 2018; Davies, 2019). Results from this thesis project
has provided new information on the sexually dimorphic expression and function of CCN
family members and demonstrated a requirement for CCN proteins in synaptic
transmission. There is still much to unravel in the quest to understand the specific
functional contributions of the CCN family of MCPs within the CNS and PNS, and soon

these roles will be elucidated. The findings of this work and future aims of this study will
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lead to data that could be applied in potential therapeutic applications that may aid in
CNS injury repair, microenvironment re-assembly, tissue regeneration and organ
growing, electrophysiology treatments, TBI treatments, and numerous other clinical

applications.
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