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The brain is organized as a complex network of specialized neurons that 
communicate via a combination of electrical and chemical signals. Our brains function to 
generate movement, control organ function, or direct complex behaviors; all of which 
requires the ability to regulate the flow of communication between circuits and networks. 
Work in this thesis addresses two areas of neuron communication: first, how does the 
release of more than one neurotransmitter from a single neuron impact behavior, and 
second, are matricellular proteins (MCPs) key contributors to synaptic transmission and 
neuron function? The conserved CCN family of MCPs have a unique mosaic structure 
consisting of a secretory signal peptide followed by four conserved functional domains. 
This complex mosaic structure provides CCN proteins with key signaling and regulatory 
roles that are required for many vital biological functions, however, our understanding of 
the function of CCN proteins in the central nervous system (CNS) is quite limited. The 
goal of this study was to characterize dCCN expression, the sole Drosophila 
melanogaster CCN member, and determine how dCCN contributes to neuron function. 
We determined that dCCN expression in the CNS begins during embryogenesis and 
continues into mature adult neurons. In the adult, dCCN expression was found in a 
number of neuron types including sensory neurons, neurons innervating the crop and gut 
of the gastrointestinal system, and neurons innervating the ovaries and uterus indicating a 
multi-faceted role in neuron function in this invertebrate member. Furthermore, I describe 
co-expression between dCCN and neurons that express the monoamines octopamine 
(OA), dopamine (DA), and serotonin (5-HT), and in neurons that are sexually dimorphic, 
including fruitless (fru), and double-sex (dsx). Lastly, we demonstrate for the first time a 
requirement for dCCN in synaptic transmission at the larval neuromuscular junction 
(NMJ), and female fertility. Our results demonstrate dCCN is expressed in a diverse set 
of neurons that respond to a variety of external and internal signals, direct synaptic 
transmission at the neuromuscular junction, and are critical for the function of 
reproductive and behavioral circuits.  
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The monoamine neurotransmitters and extra-synaptic release  
          Monoamine neurotransmitters, also known as the biogenic amines, are a class of 

key neuromodulators important for numerous biological processes in a wide range of 

animals including humans. The biogenic amines each contain an amino group attached to 

an aromatic ring, making these biological compounds highly stable and susceptible to 

many enzymatic interactions (Dougherty, 2007; Grouleff et al., 2015). The monoamine 

neurotransmitters include dopamine (DA), serotonin (5-HT), norepinephrine (NE), and 

octopamine (OA), the invertebrate homologue to NE. Monoamine neurotransmitters, 

monoamine receptors, and aminergic-modulated neuronal circuits are highly conserved 

between vertebrates and invertebrates, and carry out a diverse set of physiological 

functions (Kravitz and Huber, 2003; Spielman et al., 2015; Swallow et al., 2016; Kamhi, 

2017).  

          Within the conserved anatomical structure and physiological function of 

monoamine-expressing neurons, there is diversity in the behaviors and organs modulated 

by monoamines. For example, monoamine neurotransmitters modulate complex mood 

states and govern behaviors including sleep, appetite, attention, arousal, locomotion, 

stress response, sexual drive and reproduction, learning and memory, addiction 

formation, and eusocial behaviors (Dishman 1997; Libersat and Pflueger 2004; Kamhi 

and Traniello 2013; Bubak et al., 2014; De Boer et al., 2015; Swallow et al., 2016). 

Second, dysregulation of monoamine signaling is a significant component of psychiatric 

and neurodegenerative disorders such as sleep dysfunction (Watson, 2010), major 

depression (Nutt, 2008; Hamon and Blier, 2013; Yukiori et al., 2016), bi-polar spectrum 

disorders (Walderhaug et al., 2011), attention deficit hyperactivity disorder (ADHD; 

Manor et al., 2002; Reddy, 2013), schizophrenia and schizoaffective spectrum psychoses 

(Issa et al., 1994; Sedvall, 1990; Yukiori et al., 2016; Leppik et al., 2018), Alzheimer’s 

Disease (Liu et al., 2016), and Parkinson’s Disease (Bruno et al., 2016). Third, 

monoamine neurotransmitters are critical in the regulation of heart rate and blood 

pressure (Watts et al., 2012), smooth muscle function (Gilloteaux, 1979), the 

gastrointestinal system (Meirieu et al., 1986; Eisenhofer et al., 1997; Mittal et al., 2017), 

female reproduction (Hansson et al., 2009), and thermoregulation (Cook et al., 2017; 

Sinakevitch, 2018). In summation, monoamine neurotransmitters are involved in many 
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physiological, neurological, and behavioral processes in both vertebrates and 

invertebrates.  

          In addition to release at the synapse, monoamine neurotransmitters are released 

extra-synaptically; from non-synaptic sites including the soma, somatic dendrites, and 

axons (De-Miguel et al., 2005; Fuxe et al., 2015; Grygoruk et al, 2014; Borroto-Escuela 

et al., 2014; De-Miguel and Nicholls, 2015; Del-Bel and De-Miguel, 2018; Svensson et 

al., 2018). Extra-synaptic release is a separate method of signaling that occurs by 

diffusion as monoamines and neuropeptides move from the releasing source to the target 

receptor in a process termed volume transmission (De-Miguel et al., 2005; Fuxe et al., 

2015; Grygoruk et al, 2014; Borroto-Escuela et al., 2014; De-Miguel and Nicholls, 2015; 

Del-Bel and De-Miguel, 2018; Svensson et al., 2018). Signaling through volume 

transmission impacts time and anatomical space considerations within the central nervous 

system (CNS; De-Miguel et al., 2005; Ludwig, 2006; Fuxe et al., 2015; Grygoruk et al., 

2014; Borroto-Escuela et al., 2014; De-Miguel and Nicholls, 2015; Del-Bel and De-

Miguel, 2018; Svensson et al., 2018). Extra-synaptic, and in particular, somatic 

exocytosis, is slower than synaptic terminal release and affects the CNS for several hours 

(Ludwig, 2006; Trueta and De-Miguel, 2012; De-Miguel et al., 2015; De-Miguel and 

Nicholls, 2015). Therefore, extra-synaptic release can prolong the effect of a signal with a 

slow-onset and long-lasting timing to the modulation of hardwired circuits (Ludwig, 

2006; Trueta and De-Miguel, 2012; De-Miguel et al., 2015; De-Miguel and Nicholls, 

2015).  

          Results from many animal systems indicate that specific neuron populations 

primarily signal extra-synaptically. Ridet et al. in 1993, and Van Bockstaele et al. in 

1993, examined 5-HT neurons in the dorsal horns of rat spinal cords (Ridet et al., 1993) 

and in the rat nucleus accumbens (Van Bockstaele and Pickel, 1993), and both research 

groups found over half of the 5-HT neurons they examined do not form any classical 

synapses. Both Ridet et al. and Van Bockstaele et al.’s findings show evidence that 

specific 5-HT neurons largely communicate extra-synaptically. Another example of 

extra-synaptic release is found with oxytocin, a powerful neuropeptide. Although there is 

little innervation of oxytocin containing projections observed in rodent brains, dendritic 

extra-synaptic release of oxytocin contributes profound long-lasting impacts on social 
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bonding behavior (Nicholson and Rice, 1991; Kawagoe et al., 1992; DeVries et al., 2006; 

Ludwig, 2006; Syková and Nicholson, 2008; Wang et al., 2011; Naskar and Stern, 2014; 

Dyakonova et al., 2019). In addition, although glutamate mediates point-to-point 

transmission at the synapse, recent studies indicate that glutamate spillover from the 

synaptic cleft may accumulate in the extra-synaptic space, and signal through volume 

transmission to regulate crucial brain functions (Okubo and Iino, 2011; Tabor and 

Hurley, 2014). Collectively, these findings demonstrate that extra-synaptic signaling is a 

widespread phenomenon, and importantly for this thesis, is that extra-synaptic signaling 

can be modified by the dynamic microenvironment that surrounds each neuron. Such 

dynamic processes include ECM turnover, ionic changes due to neural activity, changes 

in intercellular adhesion machinery, and changes in MCP function in response to 

variations in environmental cues (Wong and Rustgi, 2013; Barnes et al., 2017; Nicholson 

and Hrabětová; 2017).  

          Once monoamine neurotransmitters are released into the extracellular space, they 

bind to post-synaptic receptors to elicit a physiological response. In addition, monoamine 

activated receptors are also expressed on pre-synaptic neurons and called autoreceptors 

(Timmermans and Thoolen, 1987). Activation of autoreceptors has been shown to be 

important for conveying feedback regulation of neurotransmitter release (Göthert, 1985; 

Xie et al., 2008; Langer, 2008; García-Fuster, and García-Sevilla, 2015; Rutigliano et al., 

2018). Monoamine receptors are G-protein coupled receptors (GPCRs), with the 

exception of the serotonin 5-HT3 receptor, which is the sole ionotropic-gated receptor 

(Martin et al., 2010). In summation, the combination of synaptic and extra-synaptic 

release provides monoamine-expressing neurons the capability of communicating both at 

high speeds with spatial precision, as well as at slower speeds with an anatomically 

broader impact and longer-lasting effects on the CNS. Both communication modes are 

important for brain function in health, disease states, and behavior.     

 

The extracellular environment and neurotransmission  
          Monoamine neurotransmitters, neuropeptides, and neuromodulatory transmitters 

are released from neurons or glia, and travel within the synaptic cleft or diffuse extra-

synaptically into the extracellular fluid to reach their receptor molecule targets. The 
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microenvironment surrounding cells, or the space between individual cells, is known as 

the extracellular matrix (ECM). The ECM is a non-cellular medium composed of water 

and filled with many characterized proteins and macromolecules that form a three-

dimensional network (Bornstein, 1995; Bornstein and Sage, 2002; Frantz et al., 2010; 

Schultz et al., 2011; Kular et al., 2014; Murphy-Ullrich and Sage, 2014; Kusindarta and 

Wihadmadyatami, 2018; Adams, 2018). Matrix components bind each other as well as 

cell adhesion receptors to form a complex web-like network into which cells reside 

(Bornstein, 2009; Kular et al., 2014; Kusindarta and Wihadmadyatami, 2018; Adams, 

2018). Cell surface receptors transduce signals into cells from the ECM, which regulate 

diverse cellular functions, such as survival, growth and shape, adhesion and de-adhesion, 

migration, proliferation, and differentiation (Bornstein, 1995; Bornstein and Sage, 2002; 

Schultz et al., 2011; Murphy-Ullrich and Sage, 2014; Kusindarta and Wihadmadyatami, 

2018; Adams, 2018). Thus, similar to how a flourishing garden requires nutritious and 

enriched soil to give rise to healthy plants that yield high quality produce, so too, do cells 

or neurons and glia in their ECM environment.  

          One principle role of the ECM is to provide a space for ECM proteins and 

macromolecules to physically support cells. The ECM consists of numerous cell secreted 

molecules within a dynamically and reciprocally rapidly changing environment (Frantz et 

al., 2010; Schultz et al., 2011; Kusindarta and Wihadmadyatami, 2018; Adams, 2018). 

Cells modify the surrounding ECM, and can readily secrete and orient structurally 

supportive molecules (Alberts et al., 2002; Adams, 2018). The primary job for many cell 

secreted molecules of the ECM is to provide critical structural support for cells to assist 

with cellular growth and shape, development, injury repair, and cell stabilization 

(Bornstein, 1995; Bornstein and Sage, 2002; Frantz et al., 2010; Schultz et al., 2011; 

Kular et al., 2014; Murphy-Ullrich and Sage, 2014; Kusindarta and Wihadmadyatami, 

2018; Adams, 2018). Some examples of cell secreted ECM proteins include collagens, 

proteoglycans, glycosaminoglycans, elastin, fibronectin, laminins, and several other 

glycoproteins. These structural ECM proteins attach to the cytoskeleton of cells and give 

tissues their structural integrity and durability, allowing tissues to be flexible or hard, and 

withstand pulling, stretching, twisting, and various other mechanical movements (Frantz 

et al., 2010; Kular et al., 2014; Kusindarta and Wihadmadyatami, 2018; Adams, 2018). 
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Thus, the ECM is essential for creating the dynamic, complex, three-dimensional 

meshwork environment into which cells embed into. Additionally, the overall 

composition of a tissue’s ECM is responsible for giving tissues their shape, flexibility, 

and firmness.  

          The second fundamental role of the ECM is to provide a medium for intercellular 

signaling to occur. Intercellular signaling is “the transfer of information from one cell to 

another, which is accomplished by a cell releasing a substance that is taken up by another 

cell” (National Cancer Institute, 2020). Matricellular proteins (MCPs) are non-structural 

cell secreted proteins that are critical in modulating intercellular signaling and ECM:cell 

communication within any tissue type in both vertebrates and invertebrates (Bornstein, 

1995; Bornstein and Sage, 2002; Frantz et al., 2010; Schultz et al., 2011; Kular et al., 

2014; Murphy-Ullrich and Sage, 2014; Kusindarta and Wihadmadyatami, 2018; Adams, 

2018). Secreted MCPs are sometimes found along the edges of cells, interacting with cell 

surface receptors and structural ECM proteins (Bornstein, 2009; Schultz et al., 2011; 

Kular et al., 2014; Malik et al., 2015; Adams, 2018). MCPs can also modulate regulatory 

and growth factors, hormones, and other bioeffector molecules (Bornstein, 2009; Schultz 

et al., 2011; Kular et al., 2014; Morris and Kyriakides, 2014; Malik et al., 2015; Adams, 

2018). Intercellular communication or cell:ECM signaling is crucial for proper cell 

migration, anchoring, differentiation, wound healing, apoptosis, growth, proliferation, 

and many other important cellular processes within a variety of tissues (Bornstein, 2009; 

Schultz et al., 2011; Kusindarta and Wihadmadyatami, 2018; Adams, 2018). This critical 

and delicate balance of structural remodeling and stabilization requires cell:ECM 

interactions to reciprocally signal, which allow for dynamic and rapid appropriate 

structural changes in the development of many tissues throughout an organism’s lifespan.  

          There are several distinct MCP families which are highly conserved and found 

across many different animal phyla (Bornstein and Sage, 2002; Bornstein, 2009; Adams, 

2018). One family of MCPs are the thrombospondins, which have been shown to be 

important for cell processes involved with angiogenesis, cancer progression, 

inflammation regulation, immune system regulation, formation of myotendinous 

junctions, maintenance of the myocardium integrity and function, and synaptogenesis 

(Bornstein and Sage, 2002; Bornstein, 2009; Stenina-Adognravi, 2014; Adams, 2018). 
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Another class of MCPs is the SPARC family, which has eight members and has been 

shown to be vital for ECM assembly, counter-adhesion, ECM protease regulation, and 

regulation of growth factor and cytokine activation pathways (Bornstein and Sage, 2002; 

Bornstein, 2009; Bradshaw, 2012; Adams, 2018). Finally, I will discuss below the CCN 

family of MCPs which are critical for cellular development, differentiation, and 

cell:ECM communication (Bornstein and Sage, 2002; Rachfal, 2005; Katsube et al., 

2009; Chen and Lau, 2009; Bornstein, 2009; Perbal, 2013; Adams, 2018; Perbal, 2018). 

 

The CCN family of matricellular proteins  
          The CCN family of MCPs is currently known as the family of Cellular 

Communication Network Factors (previous nomenclature: CYR61/CTGF/NOV; the term 

was coined by Bork P. in 1993 and was named after the first three discovered proteins to 

create the original CCN acronym; Bork, 1993; Brigstock et al., 2003; Perbal, 2018). 

There are six CCN family members in vertebrates (H. sapiens, M. musculus, X. 

tropicalis, and D. rerio) and a sole CCN family member in invertebrates (B. floridae, D. 

melanogaster, E. multilocularis; Hu et al, 2019). CCN proteins are secreted as well as 

found in the nucleus of cells (Holbourn et al., 2008; Jun and Lau, 2011; Malik et al., 

2015; Krupska et al., 2015; Perbal, 2018). CCN family members are unique as they 

contain a signal peptide and four well conserved domains that can be found in ECM or 

signaling protein families (Planque and Perbal, 2003; Rachfal, 2005; Leask and Abraham, 

2006; Holbourn et al., 2008; Perbal, 2013; Malik et al., 2015; Krupska et al., 2015; Xia et 

al., 2016; Takigawa, 2017; Perbal, 2018; Hu et al., 2019). Following the export signal 

peptide (SP), the four highly conserved domains of CCN proteins include the insulin-like 

growth factor binding protein (IGFBP), a von Willebrand factor type C repeat (VWC), 

thrombospondin type-1 repeat (TSP-1), and a cysteine knot-containing domain (CK) (see 

figure 1A; adapted from figure 1 of Malik et al., 2015; Hu et al., 2019). CCN5 is the only 

exception, in that this particular CCN family member is missing the CK domain (Planque 

and Perbal, 2003; Holbourn et al., 2008; Malik et al., 2015; Krupska et al., 2015). 

Examples of CCN domain interacting partners include integrins, Notch 1, Fibulin C1, 

Collagen V, Fibronectin, Wnts, Bone morphogenetic protein 4 (BMP4), Transforming 
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growth factor β (TGFβ), Lipoprotein receptor related protein 1 (LRP1), Insulin-like 

growth factor (IGF), and heparin sulfate proteoglycans (HPSG) (see Figure 1C; adapted 

from Malik et al., 2015). These canonical interacting partners and receptors of CCN 

proteins allow for the regulation of many cellular processes important for the growth, 

development, maintenance, and ECM:cell communication (Leask and Abraham, 2006; 

Katsube et al., 2009; Chen and Lau, 2009; Jun and Lau, 2011; Malik et al., 2015; 

Krupska et al., 2015; Takigawa, 2017; Perbal, 2018). One example of a CK domain-

mediated interaction is signaling between CCN3 and Notch 1, which is required for 

neuronal differentiation in the chick retina (Laurent et al., 2012; Malik et al., 2015). In 

summation, the CCN family of MCPs have the unique ability to interact with numerous 

receptors and ligand partners due to their four highly conserved domains.  
 

Figure 1:  

 
Figure 1: The functional domains of the CCN family of matricellular proteins. (A) Functional domains of a 

vertebrate CCN protein. (B) Functional domains of a dCCN protein. (C) Select examples of interacting partners aligned 

with their associated interactive domain. Adapted from Malik et al., 2015.  

 

          The CCN family of MCPs is often thought of as “traffic coordinators” – recruiting 

various molecular workers to the area at specific times, and modulating intercellular 

signaling to regulate cell function, gene expression, development, angiogenesis, 

apoptosis, differentiation, ECM structural remodeling, cell stabilization and anchoring, 

injury repair, overall cell homeostasis, and ECM:cell communication (Leask and 
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Abraham, 2006; Katsube et al., 2009; Chen and Lau, 2009; Jun and Lau, 2011; Malik et 

al., 2015; Krupska et al., 2015; Takigawa, 2017; Perbal, 2018).  

          CCN family members can initiate many diverse cellular responses when interacting 

with the same receptor. For example, CCN1 can interact with the αvβ3 integrin of 

fibroblasts to initiate DNA synthesis or proliferation, but activating the same receptor in 

microvascular endothelial cells via CCN1 will inspire chemotaxis to occur (Jun and Lau, 

2011). The CCN family of MCPs can also coordinate opposing actions as well. For 

example, CCN1 promotes chemotaxis in smooth muscle cells whereas CCN3 prohibits 

migration in the same cells (Jun and Lau, 2011). Lastly, CCN proteins can synergistically 

change cellular responses when paired with other bioeffector molecules. For example, 

α6β1 activation via CCN1 alone influences cell adhesion in fibroblasts, but when CCN1 

is paired with TNF-α and activates the same receptor, apoptosis in fibroblasts occurs (Jun 

and Lau, 2011). These pleiotropic behaviors are dependent on the cell type, the cell’s 

receptor composition, the presence of additional bioeffector molecules, and the cell’s 

current status in development (Jun and Lau, 2011; Malik et al., 2015). In summation, the 

CCN family of MCPs has the extraordinary ability to function in a pleiotropic manner, 

and can govern numerous different cellular responses among many different tissues. 

          Numerous studies demonstrate that alterations in CCN function, or disruptions in 

cell:CCN family of MCPs communication results in a wide range of disorders. Examples 

include developmental disorders such as cardiac diseases and heart vasculature 

developmental defects (Frangogiannis, 2012; Xia et al., 2016; Klenotic et al., 2016; Díez 

et al., 2016), bone development disorders (Kubota and Takigawa, 2011, Takigawa, 2013; 

Chen et al., 2014; Kubota and Takigawa, 2015), fibrotic diseases (Kubota and Takigawa, 

2015; Díez et al., 2016; Chen et al., 2017), kidney disease and glomerulosclerosis (Sawai 

et al., 2007), and dysregulation of inflammation throughout development (Leask and 

Abraham, 2006; Jun et al., 2011; Kular et al., 2011; Chen et al., 2014). In addition, CCN 

dysfunction has been linked to numerous types of cancer including glioblastoma where 

CNN1 levels are used as a prognostic factor (Dhar and Ray, 2010; Li et al., 2015; Ishida 

et al., 2015; Kim et al., 2018).  

          Within the CNS, CCN dysregulation has been reported in psychiatric disorders 

such as schizophrenia (Ito et al., 2007), depression, bi-polar spectrums, and post-partum 
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psychosis (Malik et al., 2015; Dazzan et al., 2018; Davies, 2019). A role of CCN proteins 

in neurodegenerative diseases such as dementia, Alzheimer’s Disease, or Parkinson’s 

Disease has been reported. An increase in CCN2 expression levels leads to the promotion 

of chronic inflammation and the formation of neuritic plaques and neurofibrillary tangles; 

all of which are associated with neurodegenerative diseases (Ueberham et al., 2003; Zhao 

et al., 2005; Jun and Lau, 2011; Malik et al., 2015; Jayakumar et al., 2017). Changes in 

CCN transcript levels occur in response to traumatic brain injuries (TBIs) as well. 

Increased levels of CCN2 transcripts and protein was induced in rodent neurons and glia 

after TBI lesions were made (Schwab et al., 2000; Hertel et al., 2000; Schwab et al., 

2001; Jones and Bouvier, 2014; Malik et al., 2015; Abu Hamdeh et al., 2018). Lastly, 

CCN proteins have also been associated with CNS viral infections such as the Zika virus, 

in which CCN1 and astrocytes have reportedly played a role as an infection mechanism 

through manipulations by the Zika virus (Sun et al., 2019). In summation, the CCN 

family of MCPs has implications in many developmental disorders, mood states, 

diseases, cancers, and many other pathologies.   

          As CCN family members are critical for development, ECM modeling, and 

intercellular communication, it comes as no surprise that CCN proteins are highly 

expressed within the developing and mature CNS. The Allen Mouse Brain Atlas and 

Allen Human Brain Atlas has characterized CCN expression patterns in the rodent and 

human CNS. High expression levels of CCN1-6 members are found in the hippocampus, 

cortical regions, caudate nucleus, cerebellum, and spinal cord (Lein et al., 2007; 

Hawrylycz, 2012; Malik et al., 2015; Jayakumar et al., 2017; Kusindarta and 

Wihadmadyatami, 2018). Although the functional role for CCN proteins within the CNS 

has been largely understudied, new results indicate a complex role in neuron 

development and differentiation. For example, Malik et al. demonstrated that CCN1 is 

required for dendritic branching in rat hippocampal neurons in vitro, and acts 

downstream of the Ras, ERK, and PI3K signaling pathways (Malik et al., 2013). In other 

examples, Khodosevich et al. in 2013, demonstrated that CCN2 regulated and promoted 

apoptosis in rodent olfactory bulb newborn neurons in an activity-dependent manner 

(Khodosevich et al., 2013; Malik et al., 2015), and CCN3 suppresses myogenesis through 

Notch 1 signaling (Sakamoto et al., 2002). In addition, CCN3 plays a role in 
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neuroinflammation by upregulating CCL2 and CXCL1 expression in astrocytes through 

β1 and β5 integrins; acting through the Rho/ROCK/JNK/NF-kappaB and 

Rho/qROCK/p38/NF-kappaB signaling pathways (Le Dréau et al., 2010). These few 

examples demonstrate a portion of the ways that the CCN family of MCPs contribute to 

CNS function. However, it is largely unknown how CCN family members contribute to 

neuronal circuit formation or function.  

dCCN 
          The model organism, Drosophila melanogaster, is an excellent animal model to 

examine CCN function in the CNS for several reasons. The first reason being that only a 

single CCN family member is encoded by the Drosophila genome, thus eliminating 

concerns about redundancy or overlapping functional roles. Other advantages include a 

well-established genetic toolbox, an easy to use genetically amenable system, and 

Drosophila have a simplified CNS with approximately ~100,000 neurons. The sole 

Drosophila CCN member, dCCN, has a signal peptide and three of the four domains 

present, including the VWC, TSP-1, and CK domains (see figure 1B). The focus of this 

thesis project was to determine and characterize dCCN expression throughout 

development and into the adult stage, as well as identify neuron populations that co-

express dCCN. In addition, I determined dCCN is required for female fertility and 

through collaboration, dCCN is a requirement in synaptic transmission.    

Significance  
          The narrow microenvironment that surrounds every cell of the CNS provides a 

reservoir for the dynamic intercellular structure and signaling communication that is 

required for neuron development and function. Many signaling molecules including 

classical neurotransmitters, neuropeptides, and monoamine neuromodulators are released 

by neurons or glia and disperse by volume transmission to reach their receptor targets. 

Our long-term goal is to understand how CCN proteins impact monoamine signaling via 

volume transmission in wildtype and disease conditions. The experiments in this thesis 

provide the frame to address this question by: (1) characterizing the expression pattern of 

the single Drosophila family member, (2) determining a subset of monoaminergic 

neurons express dCCN, (3) demonstrate dCCN is required for female fertility and thus 
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exhibits a sex-specific function, and (4) by collaboration I report that dCCN is required 

for synaptic transmission at the neuromuscular junction (NMJ). My findings support and 

advance the previously published work in vertebrates while providing a strong 

genetically manipulatable platform that will allow future studies addressing neuron-

specific requirements for dCCN during development as well as in the mature nervous 

system. Together, results from this project are expected to significantly enhance the 

potential to address MCP function in distinct cellular contexts that could lead to novel 

ways of manipulating neurotransmitters of volume transmission, the efficacy of drug 

delivery, and the remodeling of neuronal networks.  
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dCCN expression begins during embryogenesis 
The CCN family has a common primary structure consisting of a secretory signal 

peptide at the N-terminus followed by four conserved functional domains: insulin-like 

growth factor binding protein domain (IGFBP), von Willebrand factor type-C domain 

(VWC), thrombospondin type-1 repeat domain (TSP-1), and a cysteine-knot-containing 

(CK) domain (Fig. 2A) (Perbal 2004; Yeger and Perbal 2007; Holbourn et al., 2008). A 

recent comparative analysis of the CCN gene family (Hu et al., 2019) as well as our own 

homology searches indicates the Drosophila genome encodes a single CCN family 

member, dCCN (Drosophila CCN). While lacking the IGFBP domain, dCCN contains the 

VWC, TSP-1, and CK domains as well as a signal peptide within the transmembrane 

domain, and up to 7 glycosylation sites (Fig. 2A-B, SFig. 1) (Hu et al., 2019).  

Specific CCN family members in zebrafish, xenopus, and mice are required for 

embryonic viability (e.g., mammalian CCN1, 2 and 5) (Latinkic et al., 2003; Jun and Lau 

2011; Krupska et al., 2015), while other members are not essential for development (e.g., 

mammalian CCN3, 4 and 6) (Jun and Lau 2011; Ono et al., 2018), possibly due to 

functional redundancy and/or specialization during evolution (Holbourn et al., 2008; 

Krupska et al., 2015). dCCN transcripts were detected at embryonic stage 13 and 

predominantly confined to the developing ventral nerve cord (VNC) (Fig. 2C). Within the 

segmentally-repeated VNC neuromeres at stage 15, dCCN transcripts accumulate in 

differentiating neurons including cells at the midline (arrow, Fig. 2D). To facilitate the 

identification of dCCN-expressing cells, we generated a dCCN-Gal4 line through MiMIC 

insertion-conversion at the endogenous dCCN chromosomal locus. MiMIC-converted 

Gal4 drivers are under control of the complete regulatory region of each gene and thus 

reliably reflect endogenous gene expression (Diao et al., 2015).  Expression of a UAS-

driven membrane GFP reporter, UAS-CD8:GFP, by dCCN-Gal4 (hereafter dCCN>GFP) 

confirmed predominant expression in the VNC (stage 17, Fig. 2E). Based on qRT-PCR 

quantification, our dCCN-Gal4 line is also a severe hypomorphic allele (hereafter 

dCCNGal4) (SFig. 2). dCCNGal4/ dCCNGal4 embryos develop to larval stages, indicating that 

dCCN is not required for embryonic viability. However, the number of homozygous  
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Figure 2:  

 

 
 
Figure 2: Vertebrate CCNs and Drosophila CCN share domain homology. (A) dCCN contains the signal peptide 

(SP) and three of the four conserved modules, von Willebrand factor type C (VWC), thrombospondin type 1 (TSP1) 

repeat, and a C-terminal cysteine knot (CK). dCCN is lacking an insulin-like growth factor binding protein (IGFBP) 

domain. (B) Sequence alignment of mouse CCN1 and dCCN. (C) dCCN transcripts accumulates in the developing CNS 

(arrow) beginning at stage 14. (D) Midline cells accumulate dCCN transcripts in a stage 15 dissected CNS (arrow). (E) 

CNS expression (arrow) in a UAS-CD8:GFP; dCCNGal4 stage 17 embryo. Scale bar represents 50 µm. 
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Supplemental figure 1: 

 

 
 
Figure S1: dCCN sequence and domains. The dCCN sequence contains a signal peptide (SP), a von Willebrand 

Factor type C repeat domain (VWC), a thrombospondin type-1 repeat domain (TSP-1), and a cysteine knot-containing 

domain (CK). 
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Supplemental figure 2: 

 

 
 
Figure S2: dCCN transcript expression. Quantification of dCCN transcripts. A significant reduction of dCCN 

transcripts is observed in homozygous dCCNGal4 flies (dark blue column) when compared with heterozygous dCCNGal4 

(light blue column) flies and yw controls (black column). Error bars denote S.E.M.  
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progeny is less than expected, suggesting that Drosophila development is compromised 

with reduced dCCN function. 

 
 
dCCN is required for synaptic transmission at the larval neuromuscular 

junction  
Within the central nervous system (CNS), CCN family members are expressed in 

neurons and glia (Malik et al., 2015; Jayakumar et al., 2017). For example, CCN1 has been 

found in rat hippocampal and cortical neurons, whereas CCN2 and CCN3 are expressed in 

subtypes of glia as well as neurons (Kondo et al., 1999; Schwab et al., 2000, 2001). To 

determine the neuronal vs. glial identity of dCCN-expressing cells, we double-labeled 

dissected larval CNSs from dCCNGal4>UAS-dsRed progeny with the neuronal marker, 

Elav, and separately the Repo glial marker (SFig. 3) (Koushika et al., 1996; Kaplow et al., 

2008). Widespread but distinct dCCN expression was found in the central brain minus the 

optic lobe regions, and also present in the VNC (Fig. 3B). Extensive co-localization 

between dCCN>dsRed and Elav indicate the majority of dCCN+ cells are either inter- or 

motor neurons (SFig. 3 A-B’’). Co-localization was not observed between dCCN>dsRed 

and the Repo glial marker (SFig 3C-D’’). Additional methods of identifying possible glial 

co-expression includes the use of the repo-flp line in combination with dCCNGal4, and two 

separate split-Gal4 combinations with different dCCN split gal4 lines and the glia-

expressing excitatory amino acid transporter (EAAT1)-Gal4 lines did not identify dCCN-

expressing glia (see Materials and Methods). Thus, using in situ hybridization and 

dCCNGal4, we determined that dCCN is expressed during development, comparable to 

vertebrate CCN gene expression levels during development. However, in contrast to the 

vertebrate CCNs, the expression of dCCN appears limited to the CNS and neurons. 

As in the embryo, the Drosophila larval VNC is composed of segmentally repeated 

neuromeres with motor neurons extending outside of the VNC to innervate body wall 

muscles (Fig. 3A) (Keshishian et al., 1996; Landgraf et al., 1997, 2003; Landgraf and Thor 

2006). Using dCCN>GFP, we determined dCCN-expressing neurons include motor 

neurons that innervate muscles 6 and 7 among others at the larval neuromuscular junction 

(NMJ) (Figure 3C). During larval stages, dCCNGal4 mutants have a morphologically  
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Supplemental figure 3:  

 

 
 
Figure S3: dCCNGal4 expression is found within neurons and not glia. (A-A’’) Larval brain lobes stained with Anti-

Elav of a UAS-dsRed; dCCNGal4 CNS reveals co-expression of dCCN and Elav (see arrowheads). (B-B’’) Consistent 

co-expression of Elav and dCCN of the larval VNC are either inter- or motor neurons. (C-D’’) No co-expression was 

found among Repo and dCCN in the brain lobes and VNC of a UAS-dsRed; dCCNGal4 larval CNS. Scale bars represent 

50 μm. 
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Figure 3: 

 
Figure 3: dCCN is required for neurotransmission at the larval neuromuscular junction. (A) A schematic 

displaying a filet of a larvae exposing the central nervous system (CNS). Motor neuron projections from the CNS 

innervate the body wall muscles. The inset shows a zoomed in schematic representation of a motor neuron innervating 

the body wall muscles at a neuromuscular junction (NMJ). (B) Pseudo colored green nuclei is seen in the larval CNS of 

dCCNGal4>UAS-dsRed. Blue represents DAPI staining. Scale bar represent 50 μm. (C) An image displaying a dCCN 

expressing motor neuron innervating the body wall muscles 6 and 7 at an NMJ of an dCCNGal4>UAS-CD8:GFP larvae 

enhanced with anti-GFP. Red represents anti-actinin staining (invertebrate muscle marker). Scale bar represents 50 μm. 

(D-F) Electrophysiology kinetics detailing a significant decrease in the neurotransmission of homozygous dCCNGal4 

mutants when compared with wild type (WT) controls. (D) A measurement of excitatory post-synaptic potential 

amplitude shows a significant decrease in neurotransmission at the NMJ of homozygous dCCNGal4 mutants when 

compared with WT controls. (E) A measurement of mini-amplitude reveals no significant difference between 

homozygous dCCNGal4 mutants and WT controls. (F) A measurement of mini-frequency reveals no significant difference 

between homozygous dCCNGal4 mutants and WT controls. Error bars denote S.E.M. Statistical tests conducted were two-

tailed Mann-Whitney tests (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).  
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normal NMJ without readily apparent structural defects in boutons or bouton numbers 

(SFig. 4A-B). However, the few adults that eclose exhibit locomotor defects. While it is 

well-established that ECM molecules derived from both neurons and glial regulate  

different aspects of synaptic differentiation and synaptic function (Rohrbough et al., 2007; 

Eroglu 2009; Jayakumar et al., 2017), a role for CCN family members in synaptic function 

has been limited to acting as immediate early genes in response to events that alter synaptic 

activity. For instance, CCN protein expression is altered in response to neuroinflammation 

by the cytokines Tβh/TNFa and to facilitate synaptic plasticity via the activity of 

muscarinic acetylcholine receptors (Albrecht et al., 2000; Kular et al., 2011), and increased 

expression of CCN1 via β1-integrin induces dendritic growth (Malik et al., 2013). To ask 

if dCCN itself is required for synaptic transmission, we used two-electrode voltage clamp 

recordings to examine NMJ neurotransmission. We find from our recordings of evoked 

excitatory junction currents (EJCs) and spontaneous miniature events (mEJCs) that EJC 

amplitudes of dCCN mutants are reduced by 38.8% versus controls (P<0.001) (Fig. 3D-F). 

A reduction in miniature event frequency of 33.4% compared to controls (P<0.001, data 

not shown) was seen without a change in miniature event amplitude. Given these results, 

quantal content is reduced by 40.3% (P<0.001) in dCCN mutants versus controls. Taken 

together, these results indicate that dCCNGal4 mutants have a significant presynaptic evoked 

neurotransmission defect. 

 

Adult peripheral and central nervous system neurons expression of 

dCCN 
To ask if dCCN expression is maintained in the adult nervous system and putatively 

required for neuron function as well as neuron differentiation, we examined dCCN>GFP 

expression in the mature adult Drosophila peripheral nervous system (PNS) and CNS (Fig. 

4A). While widespread, dCCN>UAS-stingerGFP (hereafter dCCN>UAS-nlsGFP) is not 

ubiquitous and is instead found in distinct brain and VNC regions (Fig. 4B-C). For 

example, although absent in the larva optic lobe, extensive dCCN>UAS-nlsGFP 

expression is visible in the adult optic lobe, as well as the subesophageal zone (SEZ), the  

superior protocerebrum, and the ventromedial and ventrolateral neuropils (Figure 4B). 

Additionally, we dissected both heterozygous and homozygous dCCNGal4 adult brains, and  
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Supplemental figure 4:  

 

 
 
Figure S4: Significant morphological differences were not observed in heterozygous vs homozygous dCCNGal4 

larval neuromuscular junctions. (A) dCCN>GFP expressing projections and boutons can be seen making synaptic 

contact points on muscles 6 and 7 of a heterozygous 20XUAS-6XGFP; dCCNGal4 larval neuromuscular junction (NMJ). 

(B) dCCN>GFP expressing projections and boutons can be seen making synaptic contact points on muscles 6 and 7 of 

a homozygous 20XUAS-6XGFP; dCCNGal4/dCCNGal4 NMJ. No obvious or significant differences between 

heterozygous vs homozygous dCCNGal4 NMJs are observed. Red represents actinin staining. Scale bars represent 50 

μm. 
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Figure 4: 

 

 
 
Figure 4: dCCN is expressed in a diverse set of neurons in the adult nervous system. (A) Schematic overview of 

selected Drosophila adult organs. (B-C) Widespread nuclear GFP expression in the brain and VNC of a 

dCCNGal4;UAS-nlsGFP adult visualized with the neuropil marker BRP (blue) and anti-GFP by immunohistochemistry. 

(D) Nuclear dCCN expression in the adult male foreleg. Blue represents DAPI staining. (E) dCCNGal4 -driven GFP 

expression in proboscis neurons (UAS-GFP.S65T;dCCNGal4). (F) Olfactory sensory neurons in the antennae express 

dCCNGal4 -driven GFP. (G) GFP-expression in maxillary palps neurons of UAS-6X-GFP;dCCNGal4 adults. (H) 

dCCNGal4 -driven GFP expression along the wing margin (UAS-GFP.S65T;dCCNGal4). (I) Projections from dCCN 

expressing neurons located in the brain innervate the crop and proventriculus of the intestinal system (UAS-6X-

GFP;dCCNGal4). Blue represents DAPI staining. For all panels, scale bars represent 50 µm.  
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Supplemental figure 5: 

 

 
 
Figure S5: No significant differences in neuron number are observed in heterozygous vs homozygous dCCNGal4 

adult brains. (A) Widespread dsRed nuclei can be seen in a heterozygous UAS-dsRed; dCCNGal4/+ brain. (B) 

Widespread dsRed nuclei can be seen in a homozygous UAS-dsRed; dCCNGal4/ dCCNGal4 brain. No significant 

differences are observed between heterozygous vs homozygous dCCNGal4 adult brains. Blue represents anti-brp (nC82) 

neuropil staining. Scale bars represent 50 μm. 
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found no obvious morphological differences in the number of dCCN expressing neurons 

of dCCN>UAS-dsRed adults (SFig. 5A-B). The thoracic segments of the VNC house motor 

neurons that coordinate limb actions and thus control complex behaviors such as walking 

(Burrows et al., 1988; Laurent and Burrows 1988; Yellman et al., 1997), escape jumping, 

courtship tapping, aggressive lunges, and grooming (Chen et al., 2018). Within the VNC, 

dCCN-expressing neurons are located in the five major neuropils—prothoracic, 

mesothoracic, and metathoracic neuropils (which correspond to the three thoracic 

segments), the accessory mesothoracic neuropil (AMNp), and the abdominal neuropil 

(ANp) (Figure 4C) (Venkatasubramanian and Mann 2019; Court et al., 2020).  

dCCN expression is also prevalent within neurons located in the periphery that 

mediate complex sensory processes such as olfaction, chemoreception, and 

mechanosensation. dCCN>dsRed cell body expression is apparent in sensory neurons 

located within the first to fifth tarsal segment of the foreleg (Fig. 4D). Different classes of 

leg sensory neurons respond to sugar, water, and contact chemosensory information 

including male and female pheromones (Inoshita and Tanimura 2006; Fan et al., 2013; 

Ling et al., 2014). Additional experiments will be required to determine the identities of 

dCCN-expressing leg neurons. Contact chemical perception in adult Drosophila is also 

mediated by sensory neurons in the wings and the proboscis, the insect feeding organ used 

for both taste cue detection and food ingestion (Raad et al., 2016; Jeong et al., 2016). Using 

the UAS-GFP.S65T reporter, we identified dCCN-expressing neurons within the labellum 

(Fig. 4E) as well as along the row of sensilla on the anterior wing margin (Fig. 4H) that 

receives pheromonal input and impacts sexually-dimorphic behavior (He et al., 2019). 

In mice, CCN2/CTGF is found in the mitral cell and glomerular layers of the main 

and accessory olfactory bulb where it controls the survival of newly generated neurons 

(Khodosevich et al., 2013). To determine if dCCN is expressed in the insect olfactory 

system, we examined the antenna and maxillary palp from dCCN>20XUAS-6XGFP adults. 

dCCN-positive neurons are found in the funiculum and pedicel (including in Johnston’s 

organ) of the antenna (Fig. 4F), and projections from dCCN-positive neurons in the 

maxillary palp that terminate in the brain are visible (Fig. 4G). Finally, the crop and 

proventriculus structures of the gastrointestinal system are innervated by projections from 

dCCN-positive neurons located in the central brain (Fig. 4I). Collectively, these results 
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demonstrate a significant number of neurons with different anatomical specialties and 

functions express the invertebrate CCN family member suggesting dCCN may be required 

for neuronal function in a diverse set of contexts. 

 

Subsets of aminergic neurons express dCCN  
To determine the neurotransmitter identities of dCCN neurons in the adult nervous 

system, we began with neurons that express the neuromodulatory neurotransmitters: 

dopamine (DA), serotonin (5-HT), and octopamine (OA; the invertebrate equivalent to 

norepinephrine). While relatively few in number, monoaminergic systems have different 

patterns of widespread innervation across brain areas (Niens et al., 2017; Kasture et al., 

2018; Pauls et al., 2018), heterogeneity in synaptic organization (Dori et al., 1998), as well 

as distinct neuromodulatory actions (Okaty et al., 2019). The Drosophila DA system 

consists of a relatively small number of neurons clustered throughout the brain and VNC 

(Mao and Davis 2009; Hartenstein et al., 2017; Kasture et al., 2018) (Fig.5A-A’). Within 

the anterior adult brain, DA neurons are found in  the lateral anterior protocerebrum (PAL) 

cluster, the medial anterior protocerebrum (PAM) cluster, and a pair of individual neuron 

called tritocerebrum 1 (TC1) flanking the PENP (Fig. 5A) (Nässel and Elekes 1992). 

Ventrally, three protocerebral posterior medial clusters (PPM1-3), two posterior 

protocerebral lateral clusters (PPL1-2) and three neuron pairs located in the lateral (SP1-2) 

and medial (SVP) parts of the SEZ (SEZ1-3) (Figure 5A’) are identifiable (Friggi-Grelin 

et al., 2003; Niens et al., 2017). Lastly, there are two unpaired neurons in the medial SEZ: 

one dorsal (VUM1) and one ventral (VUM2) (Nässel and Elekes 1992). 

dCCN expression in DA neurons was determined by labeling GFP-expressing 

dCCN neurons (dCCN>UASnlsGFP) with an antibody for tyrosine hydroxylase (TH), the 

rate-limiting step in DA synthesis. In the dorsal region, we found dCCN co-expression in 

the PAL (Figure 5B-D’’, G) and the SVP pair (Figure 5B, E, G) while in the ventral region, 

dCCN/TH neurons were identified within the PPM3 (Figure 5C, F-F’’, H) and PPL1 

(Figure 5C, G-G’’, H). Within the adult VNC, dCCN/TH co-expression was detected in all 

thoracic segments except T3 (SFig 6A-C), with the highest number of dCCN-expressing 

neurons being expressed in the abdominal ganglia (SFig 6C, D-D’’ and 6C, E-E’’). These 

results demonstrate that dCCN is expressed in subsets of DA neurons within the adult CNS. 
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Figure 5: 

 

 
 
Figure 5: DA neurons express dCCN. (A-A’) Dorsal (A) and ventral (A’) schematic views of the major DA neuronal 

clusters (magenta). (B) dCCNGal4 >nlsGFP expressing TH in dorsal sections of the adult brain (anti-TH, magenta). 

Dotted boxes outline higher magnification images of clusters in D and E. (B’) dCCNGal4 >nlsGFP expressing TH in 

ventral optical sections. Dotted boxes outline higher magnification images of clusters in F and G. (D-G) Co-expression 

of TH and dCCNGal4 >nlsGFP in higher magnification confocal images from dotted boxes in B-B’. Arrowheads point to 

dCCN/TH co-expressing neurons. Scale bars represent 50 µm. (D-D’’) Neurons co-expressing TH and dCCNGal4 

>nlsGFP in the PAL cluster. Channels are separated in C-C’, and merged in C’’. (E-E’’) Co-expression of TH and 

dCCNGal4 >nlsGFP in SEZ neurons. (F-F’’) Neurons co-expressing TH and dCCNGal4 >nlsGFP in the PPM3 cluster. 

(G) Neurons co-expressing TH and dCCNGal4 >nlsGFP in the PPL1 cluster. (H) Quantification of dCCN+ dorsal DA 

neurons per cluster. (H) Quantification of dCCN+ ventral DA neurons per cluster. Error bars denote S.E.M. PAL: 

dorsolateral anterior protocerebral neurons, PAM: dorsalmedial anterior protocerebral neurons, PPL1: dorsolateral 

posterior protocerebral neurons, PPL2: lateral posterior protocerebral neurons, PPM: dorsomedial posterior 

protocerebral neurons, SEZ: subesophageal zone. Nomenclature from Friggi-Grelin et al., 2003.  
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Supplemental figure 6: 

 

 
 
Figure S6: Co-expression of DA and dCCN in adult ventral nerve cords. (A) A schematic representation of an adult 

ventral nerve cord (VNC) with magenta dots representing prominent dopamine (DA) neurons. The VNC is divided into 

regions T1, T2, T3, and AB. (B) GFP nuclei of a dCCNGal4>UAS-nlsGFP VNC is seen. Anti-TH staining appears in 

magenta. (C) Quantification of TH only and TH - dCCN co-expressing neurons per region. (D-D’’) A closer 

examination at the T2 region of the VNC highlighting TH immunoreactive neurons co-expressing dCCN. Arrows point 

to examples of co-expressing neurons. (E-E’’) A closer examination at the T3/AB region of the VNC highlighting TH 

immunoreactive neurons co-expressing dCCN. Arrows point to examples of co-expressing neurons. Scale bars 

represent 50 μm. 
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The serotonergic system in the adult consists of approximately 12 major clusters, 

with 7 dorsal clusters and 4 anterior clusters (Giang et al., 2011). The dorsal region contains 

a neuron pair in the dorsal protocerebrum (DP), a cluster in the anterior protocerebrum 

(AP), three clusters in the lateral protocerebrum (LP1-3), and 2 clusters in the 

subesophageal ganglion (SE1-2) (Figure 6A-A’) (Giang et al. 2011). There are also 2 single 

deutocerebral neurons (CSDs) that project contralaterally and innervate the antennal lobes 

(Figure 6A) (Dacks et al., 2009; Giang et al., 2011). The ventral region contains 2 clusters 

in the superior protocerebrum (SP1-2), as well as the inferior medial protocerebrum (IP) 

and the subesophageal ganglion (SE3) (Figure 6A’) (Giang et al., 2011). To examine dCCN 

expression in 5-HT neurons, we labeled GFP-expressing dCCN neurons (dCCN>UAS-

nlsGFP) with an antibody for 5-HT. Dorsally, dCCN/5-HT co-expression was identified in 

the DP pair (Figure 6B, C-C’’,G) and in the SE2 cluster (Figure 6B, F-F’’,H). Ventrally, 

the LP1 (Figure 6B, D-D’’, H) and SP2 (Figure 6B, E-E’’, H) clusters contain dCCN/5-HT 

neurons. We also determined dCCN/5-HT co-localization occurs in all thoracic segments 

within the adult VNC (SFig 7A-D’’) as well as the abdominal ganglion (SFig 7A-C, E-

E’’). 

Finally, we asked if dCCN is expressed in the octopaminergic neuromodulatory 

system by labeling the CNS of dCCN>UAS-nlsGFP progeny with an antibody to Tdc2, the 

rate-limiting enzyme required for the synthesis of OA. Tdc2-positive neuronal clusters are 

located in the periesophageal neuropil (PENP), the subesophageal zone (SEZ), and the 

anterior superior medial protocerebrum (ASMP) in the dorsal part of the brain and in the 

SEZ and the posterior medial protocerebrum (PSMP) in the ventral part (Figures 7A-A’). 

dCCN co-expression in Tdc2 neurons occurs in each cluster (Figures 7B-B’). We 

quantified dCCN/Tdc2 co-expression in the PENP (Fig. 7B, C-C’’, G), SEZ (Fig. 7B-B’, 

D-D’’, H), ASMP (Fig. 7B, E-E’’, G), and PSMP (Fig. 7B’, F-F’’, H). In the adult VNC, 

Tdc2-positive clusters in the thoracic segments innervate skeletal muscle and facilitate 

motor activity in males and females, while Tdc2-positive neurons in the abdominal ganglia 

innervate the ovaries and control oviposition in females (Pauls et al., 2018; Masuzzo et al., 

2019). Within the VNC, neurons located in the thoracic clusters T1, T2, and T3 co-

expressed Tdc2 and dCCN (SFig. 8A-D’’), as did Tdc2-positive neurons in the abdominal 

ganglia (SFig. 8A, E-E’’). Together these results indicate dCCN is expressed in a  
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Figure 6: 

 
Figure 6: 5-HT neurons express dCCN. (A-A’) Dorsal (A) and ventral (A’) schematic views of the major 5-HT 

neuron clusters. SEZ2= black outlined circles, SEZ3=blue outlined circles. (B) Co-expression of 5-HT and dCCNGal4 

>nlsGFP in dorsal optical sections of an adult brain (anti-5-HT, magenta). Dotted boxes outline higher magnification 

images of clusters in D and G. (C) dCCNGal4 >nlsGFP expressing 5-HT in ventral optical sections. Dotted boxes outline 

higher magnification images of clusters in E and F. (C-F’’) Co-expression of 5-HT and dCCNGal4 >nlsGFP in higher 

magnification confocal images from dotted boxes in B-C. Arrowheads point to dCCN/5-HT co-expressing neurons. 

Scale bars represent 50 µm. (D-D’’) Co-expression of 5-HT and dCCNGal4 >nlsGFP in the DP cluster. (E-E’’) Co-

expression of 5-HT and dCCNGal4 >nlsGFP in the LP1 cluster. (F-F’’) Co-expression of 5-HT and dCCNGal4 >nlsGFP 

neurons in the SP2 cluster. (G-G’’) dCCNGal4 >nlsGFP neuons express 5-HT within the SEZ3 cluster. (H) 

Quantification of dorsal dCCN/5-HT neurons per cluster (I) Quantification of ventral dCCN/5-HT neurons per cluster. 

Error bars denote S.E.M. DP: dorsal protocerebrum; CSD: contra-laterally projecting deutocerebral neuron; SP1: 

superior protocerebrum, anterior medial protocerebrum, frontal rind, SP2: superior protocerebrum, anterior medial 

protocerebrum, posterior to SP1; IP: inferior medial protocerebrum; LP1: lateral protocerebrum; LP2: ventrolateral 

protocerebrum; SEZ1: subesophageal zone; SEZ2: posterior lateral subsophageal zone; SEZ3: posterior subesophageal 

zone. Nomenclature from Giang et al., 2011.  
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Supplemental figure 7: 

 

 
 
Figure S7: Co-expression of 5-HT and dCCN in adult ventral nerve cords. (A) A schematic representation of an 

adult ventral nerve cord (VNC) with magenta dots representing main serotonin (5-HT) neurons. The VNC is divided 

into regions T1, T2, T3, and AB. (B) GFP nuclei of a dCCNGal4>UAS-nlsGFP VNC is seen. Anti-5-HT staining appears 

in magenta. (C) Quantification of 5-HT only and 5-HT - dCCN co-expressing neurons per region. (D-D’’) A closer 

examination at the T2 region of the VNC highlighting 5-HT immunoreactive neurons co-expressing dCCN. Arrows 

point to examples of co-expressing neurons. (E-E’’) A closer examination at the T3/AB region of the VNC 

highlighting 5-HT immunoreactive neurons co-expressing dCCN. Arrows point to examples of co-expressing neurons. 

Scale bars represent 50 μm.  

 

 

 

 

 

 



 32 

Figure 7: 

 

 
Figure 7:  dCCN is expressed in subsets of OA neurons. (A-A’) Schematic illustrating the dorsal (A) and ventral (A’) 

view of major OA neuron clusters. (B) Identification of dCCN/OA neurons in the adult brain of dCCNGal4 >nlsGFP 

progeny by immunohistochemistry (anti-Tdc2, magenta; anti-GFP, green; anti-Brp, blue) Dotted boxes in these dorsal 

optical sections outline higher magnification images of clusters in C, D, and E. (B’) dCCNGal4 >nlsGFP neurons 

expressing Tdc2 in ventral sections of the adult brain (anti-Tdc2, magenta; anti-Brp, blue). Dotted boxes outline higher 

magnification images of clusters in F. (C-F’’) Co-expression of Tdc2 and dCCNGal4 >nlsGFP in higher magnification 

confocal images from dotted boxes in B-B’. Arrowheads point to dCCN/Tdc2 co-expressing neurons. Scale bars 

represent 50 µm.  (C-C’’) Co-expression of Tdc2 and dCCNGal4 >nlsGFP in the PENP cluster. (D-D’’) dCCNGal4 

>nlsGFP express Tdc2 in the SEZ cluster. (E-E’’) A few Tdc2+ neurons in the ASMP cluster co-expression dCCNGal4 

>nlsGFP. (F-F’’) Co-expression of Tdc2 and dCCNGal4 >nlsGFP neurons in the PSMP cluster. (G-H) Quantification 

of dorsal and ventral dCCN/OA neurons per cluster. Error bars denote S.E.M. SEZ: subesophageal zone, PENP: 

periesophageal neuropils, ASMP: anterior superior medial protocerebrum, and PSMP: posterior superior medial 

protocerebrum. Nomenclature from Sherer et al., 2020. 
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Supplemental figure 8: 

 

 
 
Figure S8: Co-expression of OA and dCCN in adult ventral nerve cords. (A) A schematic representation of an adult 

ventral nerve cord (VNC) with magenta dots representing prominent octopamine (OA) neurons. The VNC is divided 

into regions T1, T2, T3, and AB. (B) Green nuclei of a dCCNGal4>UAS-nlsGFP VNC labeled with an anti-tdc2 antibody 

is seen in magenta. (C) Quantification of OA only and OA - dCCN neurons per region. (D-D’’) A closer examination at 

the T2 region highlighting OA VNC neurons co-expressing dCCN. (E-E’’) A closer examination at the T3/AB region 

highlighting OA VNC neurons co-expressing dCCN. Arrows point to co-expressing OA – dCCN neurons. Scale bars 

represent 50 μm.  
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significant number of neuromodulatory neurons and thus may be required for the 

development or function of circuits that control sensory processing, mood-related 

behaviors, and cognition (Monastirioti 1999; Fuxe et al., 2010; Sengupta et al., 2017; Deng 

et al., 2019).  

 

dCCN is required for female fertility 
The location of abdominal ganglion dCCN-expressing neurons in the female VNC 

led us to investigate whether these neurons innervate the female reproductive system. Each 

insect ovary consists of 15–20 ovarioles surrounded by a contractile meshwork called the 

peritoneal sheath (Middleton et al., 2006). The peritoneal sheath, lateral oviduct and uterus 

are innervated by two sets of nerves, branching from the abdominal median ganglion 

(Monastirioti, 2003; Middleton et al., 2006). Using the 20XUAS-6XGFP reporter, we found 

the abdominal ganglion neurons that innervate the ovaries and uterus are indeed dCCNGal4 

neurons (Fig. 8A-C).  

To determine if dCCN function is required for female fertility, we quantified egg 

laying and embryo viability. To reduce dCCN function, we assayed females in which a 

UAS-driven inverted repeat transgene targeting dCCN (UAS-dCCN-RNAi) was expressed 

under control of dCCNGal4 as well as females homozygous for the severe hypomorphic 

dCCNGal4 allele (Fig. 8D-E, SFig. 2). To ensure copulation success, five wildtype males 

were placed with a single transgenic control, dCCNGal4;UAS-dCCN-RNAi, or 

dCCNGal4/dCCNGal4 female. After individually mating with wildtype males, the number of 

embryos laid by single control and experimental females were counted. Embryo number 

did not differ between transgenic control females or dCCNGal4;UAS-dCCN-RNAi females, 

indicating that reduced dCCN function is sufficient for control levels of egg laying (Fig. 

8D-E, SFig. 2). However, we found a significant decrease in the number of embryos laid 

by dCCNGal4/dCCNGal4 homozygous females at day 3 and day 5 post-mating (Fig. 8D-E). 

Furthermore, embryos laid by dCCNGal4/ dCCNGal4 females did not hatch and were not 

viable. One possible explanation for a decrease in egg laying is a reduction in successful 

copulation. To determine copulation success, a sole wildtype male was placed with a single 

transgenic control or dCCNGal4/dCCNGal4 female, and courtship was recorded for one hour. 

Although the rate was reduced, successful copulation occurred in ~36% of pairings with  
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Figure 8: 

 

 
 
Figure 8: dCCN is required for female fertility. (A) Schematic illustrating ovaries and uterus innervation by 

dCCNGal4 >UAS-6X-GFP neurons located in the VNC. (B) Projections of dCCNGal4 >UAS-6X-GFP innervate the 

ovaries and uterus of the female reproductive system. Scale bar = 100 µm. Blue represents DAPI staining. (C) Higher 

magnification of dCCNGal4 >UAS-6X-GFP uterus and ovary innervation from the dotted box region in B. Scale bar 

represents 50 µm. (D-E) dCCNGal4/ dCCNGal4 females laid significantly less embryos than transgenic controls and 

dCCNGal4-dCCN-RNAi females on day 3 (D), and day 5 (E). Error bars denote S.E.M. All statistical tests are Kruskal-

Wallis with Dunn’s multiple comparisons test, (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). 
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Supplemental figure 9: 

 

 
 
Figure S9: dCCNGal4 females successfully copulate within 15 minutes. ~94% of heterozygous dCCNGal4 females and 

~36% homozygous dCCNGal4 females successfully copulate within 15 minutes. n=16 for dCCNGal4/+ and n=14 for 

dCCNGal4/dCCNGal4. Error bars denote S.E.M. 
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dCCNGal4/dCCNGal4 females during the first 15 minutes of assay time (SFig. 9). While 

further experiments are required to determine how dCCN is required for the function of 

ovary and uterus-innervating neurons, CCN vertebrate family members are also required 

in the female reproductive system for follicular development and ovulation (Winterhager 

and Gellhaus 2014). 

 

Sex-specific neurons in the adult CNS express dCCN  
Our finding that dCCN is required for female reproduction led us to investigate 

whether dCCN is expressed in other subsets of sex-specific neurons. fruitless (fru) and 

double-sex (dsx) are key genes that specify sex-specific neuron development and circuitry 

(Lee et al., 2000; Goodwin et al., 2000; Anand et al., 2001; Stockinger et al., 2005; Kimura 

et al., 2005; Yamamoto, 2007; Rideout et al., 2007; Villella and Hall, 2008; Rideout et al., 

2010; Yamamoto, 2008; Sato et al., 2019; Ishii et al., 2020; Sato et al., 2020; Wohl et al., 

2020; Chowdhury et al., 2020). Studies have identified at least 12 distinct classes of fru+ 

neurons that are sexually dimorphic (Stockinger et al., 2005). These differences include a 

few neuronal classes that are present in males but lacking in females, such as P1, pIP10, 

and vPR6, and several others that differ in cell numbers, projections, or arborizations, such 

as mAL/aDT2, aSP1, and aSP2 (Fig. 9A-B). To determine whether dCCN is expressed in 

fru+ neurons, a three-part transgenic combination was used: the fruFLP allele to drive FLP-

mediated recombination specifically in fru neurons, the dCCNGal4 driver, and the 

UAS>stop>mCD8-GFP reporter which is only expressed in those cells that are labeled by 

the Gal4 driver and also fru, due to FLP-mediated excision of the stop cassette 

(Theodosiou, 1998). Using dCCNGal4 to identify sexually dimorphic cells, we identified 

female-specific cells in the pL region per hemisphere (Fig. 9B’, C’, D’), and males have 

more aSP1 neurons (Fig. 9A, B, D). We also found that dCCNGal4 labeled 2 fru+ neurons 

in the antenna lobe of the male but not female brain (Fig. 9B, D). Differences in dCCN/fru 

neuron number were also observed between males and females in segment T1, the 

abdominal ganglion, and the midline of the VNC (SFig 10A-B’). 

Although fru does not have an obvious mammalian homolog, dsx-related genes are 

present in vertebrates where they regulate sex-specific differentiation in many tissues, 

including the nervous system (Rideout et al., 2007; Villella and Hall, 2008; Rideout et al.,  



 38 

Figure 9: 

 

 
 
Figure 9: Fruitless - dCCN brain expression is sexually dimorphic. (A) A schematic representation showing 

prominent dorsal male fruitless (fru) neuron clusters of the brain and their anatomical position. (A’) A schematic 

representation showing prominent ventral fru neuron clusters. (B) The dorsal portion of a brain displaying dCCN - fru 

expressing neurons in GFP of a male UAS->stop->CD8:GFP; dCCNGal4/fru-flp fly. (B’) The ventral portion of the male 

brain from B. (C) A schematic representation showing prominent dorsal female fru neuron clusters. (C’) A schematic 

representation showing prominent ventral female fru neuron clusters. (D) The dorsal portion of a brain displaying 

dCCN - fru expressing neurons in GFP of a female UAS->stop->CD8:GFP; dCCNGal4/fru-flp fly. (D’) The ventral 

portion of a female brain from D. Blue represents anti-nC82 staining. Scale bars represent 50 μm. Arrows point to 

neuronal cell body or axonal differences between male and female dCCN - fru expression. fru clusters, nomenclature, 

and anatomical locations were adapted and modified from figure 2 and table 1 of Stockinger et al., 2005.  
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Supplemental figure 10: 

 

 
 
Figure S10: Fruitless - dCCN ventral nerve cord expression is sexually dimorphic. (A) dCCN – fruitless (fru) 

expressing neurons can be seen in GFP in a male UAS->stop->CD8:GFP; dCCNGal4/fru-flp ventral nerve cord (VNC). 

(A’) A closer examination of neuronal soma in the ventral portion of the male abdominal ganglion (AB). (B) dCCN - 

fru expressing neurons can be seen in GFP in a female UAS->stop->CD8:GFP; dCCNGal4/fru-flp VNC. (B’) A closer 

examination of neuronal soma in the ventral portion of the female AB. For (A-B’), an anti-GFP antibody was used to 

enhance GFP signal. Blue represents anti-brp (nC82) neuropil staining. Scale bars represent 50 μm.  
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2010; Wohl et al., 2020; Chowdhury et al., 2020). In the adult Drosophila brain, 10 major 

clusters of dsx-expressing neurons are present, with males having more neurons per cluster  

than females (Rideout et al, 2007; Rideout et al., 2010). These clusters consist of the 

anterior dorsal neurons (aDN), posterior clusters pC1 and pC2, the posterior dorsal cluster 

(pCd/pC3), and the subesophageal neurons (SN), as well as the posterior medial neurons 

(pMN1-2), the posterior lateral neurons (pLN), and the subesophageal lateral neurons 

(SLG) (Fig. 10A, B). We examined dCCN expression in dsx-positive neurons using the 

same intersectional genetic approach as above, now with the dsxFLP transgene (Rezaval et 

al., 2014) in combination with dCCNGal4 and the Gal4/FLP-responsive membrane reporter, 

UAS>stop>mCD8::GFP. We observed large numbers of dCCN/dsx+ neurons in the adult 

male brain, particularly in the pC1 pC2, and SLG clusters (Fig. 10C-D’), as well as sex-

specific differences between the pC1 and pC2 clusters in the female brain (Fig. 10C-D’). 

In addition, dCCN/dsx-positive neurons are found in the thoracic segments of the male 

VNC, but not the female (SFig. 11A-B’), and sex-specific differences in the abdominal 

ganglion are also observed in which males have more neurons than females (SFig. 11A’, 

B’).  

In summation, our results indicate that dCCN is expressed in neurons that inform 

the sexual identity of cells (Verhulst et al., 2010). Sex-specific alternative splicing of both 

fru and dsx occurs throughout development and is required for the formation of sex-specific 

somatic tissues and neuronal circuitry (Salvemini et al., 2010). Furthermore, the expression 

of sexually-dimorphic fru transcript alters the axonal arborizations of pheromone-sensing 

neurons, a circuit pathway with opposing outcomes in males and females (Cachero et al., 

2010; Ruta et al., 2010), and fru expression in the interneurons of the protocerebrum has 

been proposed as a mechanism for altering this logic of male and female circuitry (Kohl et 

al., 2013). Should dCCN be required for the formation of fru and dsx neurons at multiple 

stages of development, there may be a profound developmental role for CCN family 

proteins as key regulators of neuron and circuit identity.  
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Figure 10: 

 

 
 
Figure 10: Double-sex - dCCN brain expression is sexually dimorphic. (A) A schematic representation displaying 

the primary male double-sex (dsx) neuron clusters of the brain and their anatomical position. (B) The dorsal portion of a 

male UAS->stop->CD8:GFP; dCCNGal4/dsx-flp brain displaying dCCN - dsx expression in GFP. (B’) The ventral 

portion of the same brain in B displaying dCCN - dsx expression in GFP. (C) A schematic representation displaying the 

major clusters of female dsx neurons and their anatomical position. (D) The dorsal portion of a female UAS->stop-

>CD8:GFP; dCCNGal4/dsx-flp brain displaying dCCN - dsx expression in GFP. (D’) The ventral portion of the same 

brain in D displaying dCCN - dsx expression in GFP. For B-B’, and D-D’, an anti-GFP antibody was used to enhance 

GFP signal. Blue represents anti-brp (nC82) neuropil staining. Scale bars represent 50 μm. pC1: dorsal inferomedial 

protocerebrum, pC2: inferolateral protocerebrum, pC3: superomedial protocerebrum, and SN: subesophageal neurons 

(male specific). dsx clusters, nomenclature, and anatomical locations were adapted and modified from figure 2 of 

Rideout et al., 2010.  
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Supplemental figure 11: 

 

 
 
Figure S11: Double-sex - dCCN ventral nerve cord expression is sexually dimorphic. (A) dCCN - double-sex (dsx) 

expressing neurons can be seen in GFP in a male UAS->stop->CD8:GFP; dCCNGal4/dsx-flp ventral nerve cord (VNC). 

(A’) A closer examination of neuronal soma in the ventral portion of the male abdominal ganglion (AB). (B) dCCN - 

dsx expressing neurons can be seen in GFP in a female UAS->stop->CD8:GFP; dCCNGal4/dsx-flp VNC. (B’) A closer 

examination of neuronal soma in the ventral portion of the female AB. For (A-B’), an anti-GFP antibody was used to 

enhance GFP signal. Blue represents anti-brp (nC82) neuropil staining. Scale bars represent 50 μm.  
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Materials and Methods  
Drosophila Husbandry and Stocks: All flies were reared on standard cornmeal-based 

fly food. Unless noted otherwise, during development and post-eclosion, flies were raised 

and housed at 25 C, ~50% humidity, and a 12:12hr light-dark cycle (1400+200 lx white 

fluorescent light) in humidity and temperature-controlled incubators. A list of stocks used 

can be found in the Resource Table. 

 

Generation of dCCN line: The dCCN-Gal4 line was created through MiMIC insertion-

conversion at the endogenous dCCN chromosomal locus. A protein-trap is generated by 

converting a MiMIC insertion into the coding region of the endogenous dCCN gene.  
 

qPCR: Total RNA from ~40 heads using Direct-zol RNA Miniprep Pluskit (Zymo 

Research) was purified and treated with DNase I per the manufacturer’s protocol. RNA 

concentrations were measured with a ND-1000 nanodrop spectrometer. Reverse 

transcription was accomplished using iScript cDNA Synthesis kit (Bio-Rad 

Laboratories). RT-PCR was performed using 300 ng cDNA added to iTaq Universal 

SYBR Green Supermix (Bio-Rad Laboratories) and primers in a 20 L reaction volume. 

All samples were run in triplicate using a Stratagene Mx3005P qPCR System (Agilent 

Technologies). Expression of ribosomal protein 49 (Rp49) was used as the reference 

control to normalize expression between genotypes. Expression levels were determined 

using the ΔΔCT method and results from control (dCCNGal4/+) and experimental 

(dCCNGal4/ dCCNGal4) groups were normalized relative to flies in a yellow-white genetic 

background (yw/+). The following primers were used: Rp49 Forward: 50-

CATCCGCCCAGCATACAG-3’ Rp49 Reverse: 5’-CCATTTGTGCGACAGCTTAG-3’ 

dCCN Forward: 5’-GATGTGGCTATGTGAGAATCCAA-3’ dCCN Reverse: 5’-

GCAAATTGCTCAGTTGATGGC-3’. 

 

In situ analysis and imaging: A modified version of the Ryoo lab protocol was 

performed and can be found at: http://ryoo-lab.med.nyu.edu/protocols/embryo-situ. On 

day 1, collected embryos were fixed with 4% paraformaldehyde (Mallinckrodt 

Chemicals, Cat# 2621-59) in 1% PBS, and incubated overnight in hybridization buffer 
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and probes specific for dCCN on rotation at 4 degrees C. On day 2, three ten-minute 

washes of PBS were applied to embryos, then embryos are incubated overnight in a 

rabbit anti-DIG-AP antibody and hybridization buffer at 4 degrees C. On day 3, three ten-

minute washes of PBS were applied to the embryos. After washes, a staining solution was 

applied to the embryos for 4 hours in hybridization buffer. Three additional ten-minute 

PBS washes were applied, then embryonic brain lobes and nerve cords were dissected, 

then mounted in Vectashield. Slides are allowed to set for 1 hour before imaging.  

 

Embryo collection: Embryos of 4-22 hours old (stages 9-17) were collected from grape 

juice agar plates (3% agar) with fresh yeast, dechlorinated for five minutes with 50% 

chlorox in dH2O, and then washed in cold tap water until chlorox was thoroughly 

removed. Dechlorinated embryos were fixed in a solution containing 50% freshly made 

4% paraformaldehyde (Mallinckrodt Chemicals, Cat# 2621-59) in 1% PBS, and 50% 

heptane for 20 mins. After fixation, heptane was manually pipetted out, and 100% 

methanol of equal fixation volume was added to the fixation solution. Embryos were 

vigorously shaken for 1 min to crack vitelline membranes. Three additional 5 min washes 

of 100% methanol were added to the mixture of embryos while pipetting off previous 

supernatants to remove residual PFA, heptane, and cracked vitelline membranes. 

Embryos were stored in a -20 C freezer in 100% methanol for future use.  

 

Immunohistochemistry and Imaging: Embryos were rehydrated through a series of 

methanol washes at 70%, 50%, and 30% in 1% PBS for 5 mins at each wash. After 

rehydration washes, embryos were washed in 1% PBS 2 times, for 10 min each. 

Following PBS washes, embryos were incubated in blocking solution (2% Normal Goat 

Serum, 2% Bovine Serum Albumin, 2% Triton-X in 1% PBS) for 2 hours before primary 

antibodies were applied and incubated on rotation overnight at ~3 C. The primary 

antibody used was rabbit anti-GFP (3:500; Thermo Fisher Scientific, Cat# G10362), and 

the secondary antibody was goat anti-rabbit 488 (1:200; Thermo Fisher Scientific, Cat# 

R37116). Labeled embryos were mounted in Vectashield (Vector Labs, Cat# H1000). 

For larval imaging, third instar larvae were dissected on ice and fixed with 4% 

paraformaldehyde (Electron Microscopy Sciences, Cat# 15710) for 30 mins, washed in 
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PBT three times for 10 mins each, washed in 1% PBS for 5 minutes, then incubated in 

blocking solution for 2 hours before primary antibodies were applied and incubated 

overnight on rotation. Primary antibodies used were rabbit anti-CD4 (1:100; Novus 

Biologicals, Cat# NBP1-86143), rabbit anti-GFP (3:500; Thermo Fisher Scientific, Cat# 

G10362), and mouse anti-actinin (1:20; DSHB Cat#2G3-3D7). Secondary antibodies 

included goat anti-rabbit Alexa 488 (1:200, Thermo Fisher Scientific, Cat# R37116), goat 

anti-rabbit Alexa 594 (1:200, Thermo Fisher Scientific, Cat# A-11012), and goat anti-

mouse Alexa 594 (1:200; Thermo Fisher Scientific, Cat# A-21125). Labeled larval CNSs 

or NMJs were mounted with either Vectashield (Vector Labs, #H1000) or DAPI (Cell 

Signaling Technology, #8961S), and slides set for one hour before imaging. 

For adults, 3-7 day old adult male and female dissected brains, VNCs, maxillary palps, 

antennas, or gut structures were fixed in 4% paraformaldehyde for 30 minutes. 3-7 day 

old female reproductive organs were fixed for 60 minutes in 4% paraformaldehyde. 3-7 

day old adult legs and proboscis were fixed overnight in 4% paraformaldehyde on 

rotation at ~3 C. The following primary antibodies were used: rabbit anti-GFP (3:500; 

Thermo Fisher Scientific, Cat# G10362), rabbit anti-TH (1:200), rabbit anti-5-HT 

(1:1000; Sigma Aldrich, Cat# S5545), rabbit anti-Tdc2 (3:500; Covalab, Cat# pab0822-

P), and mouse anti-bruchpilot (nc82) (1:80; DSHB Cat# nc82). Secondary antibodies 

conjugated to Alexa 488, Alexa 594, or Alexa 647 were used at a concentration of 1:200 

(see resource table). Labeled organs or structures were mounted in either Vectashield 

(Vector Labs, #H1000) or DAPI (Cell Signaling Technology, #8961S). Slides were 

allowed to set one hour before imaging.  

 

Imaging: Images were collected on an Olympus Fluoview FV1000 laser scanning 

confocal mounted on an inverted IX81 microscope or a Zeiss Confocal Microscope. 

Images were processed using ImageJ (NIH) and Adobe Photoshop (Adobe, CA). 

 

Courtship Assays: A single virgin female of 3-4 days old was paired with an isolated 

Canton S wild type male of similar age, and placed in chamber of a 12 well plate with 

room temperature standard cornmeal fly food filled to ~80% of the height of the 

chamber. A camera recorded behavioral engagements for 90 minutes after paired flies 
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were placed into the chamber. iMovie (Apple Inc., 2009) was used to manually analyze 

courting behaviors, and the times at which copulation did or did not occur was recorded.  

 

Sterility Assays: A single female was paired with five Canton S wild type males on the 

day of eclosion (day 1), and placed into a vial containing standard cornmeal fly food with 

red food coloring. 24 hours before day 3 and day 5, the single female and five males were 

transferred into a fresh food vial containing red food coloring. On days 3 and 5 (24 hours 

after transfer into a fresh vial), the number of embryos was manually counted under a lab 

bench microscope. Data was collected and entered into Microsoft Excel spreadsheets, and 

GraphPad Prism for analyses.  

 

Larval NMJ Electrophysiology: Through collaboration, two electrode voltage clamp 

recording techniques were used to measure excitatory post-synaptic potentials at NMJs of 

larvae following previously established electrophysiology recording protocols from the 

McCabe lab (Choi et al., 2014).  

 

Sequence Alignment and Amino Acid Sequences: Sequence alignments were created 

using NCBI’s Protein BLAST’s online tool. (Madden T. The BLAST Sequence Analysis 

Tool. 2002 Oct 9 [Updated 2003 Aug 13]. In: McEntyre J, Ostell J, editors. The NCBI 

Handbook [Internet]. Bethesda (MD): National Center for Biotechnology Information 

(US); 2002-. Chapter 16. Available from: 

http://www.ncbi.nlm.nih.gov/books/NBK21097/). Amino acid sequences were obtained 

from http://www.uniprot.org/.  

 

Neuron quantification: Amine neuron and co-expression counts were conducted in 

Image J (NIH) by manually scanning and counting fluorescently labeled neurons through 

stacks of TIFFs. Counts were collected in Microsoft Excel spreadsheets and averaged in 

GraphPad Prism.  

 

Data Collection, Figure Making, and Data Analysis: Microsoft Excel and GraphPad 

Prism (version 8.0) were used for data collection and analysis. Image J was used to 
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process raw confocal images. Adobe Photoshop and Illustrator were used to further 

process images, and generate figures for publication.  
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Resource Table  
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Chapter note:  
 
In addition to my thesis work on the dCCN project, I significantly contributed to 
experiments identifying and examining the role of glutamate release from octopamine 
neurons. As second author on the following publication, I performed key 
immunohistochemistry experiments, image analysis and figure construction, as well as 
aggression assays, scoring, and statistical analyses. 
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Chapter 4: Discussion 
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Neuron Communication 
The over-arching theme of my master’s research has been to understand the 

mechanisms that underlie neuron communication in the developing and adult brain. 

Neuronal communication is made possible by the neuron's specialized structures and the 

combination of electrical events called 'action potentials' and chemical neurotransmitters. 

At the synaptic junction between two neurons, an action potential causes the pre-synaptic 

neuron to release a chemical neurotransmitter. An ever-growing challenge in 

understanding neuron communication is the realization that many neurons release more 

than one type of chemical signal or neurotransmitter. In the collaborative dual 

transmission publication, we asked: how does the release of more than one 

neurotransmitter from a single neuron impact circuits that control behavior? We 

determined the monoamine octopamine (OA) and the classical transmitter glutamate are 

co-expressed in the Drosophila adult central nervous system (CNS). By manipulating the 

release of glutamate in OA-glutamate neurons, we demonstrated glutamate has both 

separable actions and complementary actions with OA on aggression and reproductive 

behaviors respectively. Aggression is a behavior that is highly conserved between 

organisms and present in many human disease states, including traumatic brain injuries 

(TBIs), depression, and Alzheimer’s disease (Takahashi and Miczek, 2014; Thomas et 

al., 2015; Wrangham, 2018; Svensson et al., 2018). Our results show that aggressive 

behavior requires the release of both neurotransmitters in dual-transmitting neurons and 

suggests within this set of neurons, glutamate may provide a new therapeutic target to 

modulate aggression in pathological conditions.  

A second emerging area of neuron communication that is also complex and still 

largely unknown, is the impact of the extracellular space surrounding neurons and glia on 

brain function. With the emergence of new technologies in combination with decades of 

research, a picture is developing that shows the narrow intercellular space to be a 

complex microenvironment essential to neuronal function, a signaling pathway in its own 

right, and an important conduit for drug delivery. The requirement for components of this 

extracellular space has been the core of my thesis project with the study of the 

matricellular protein (MCP) family member, dCCN. The connection that binds both 

projects together is our ultimate goal: determine how the complex signaling capabilities 
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of monoamine neurotransmitters modulate circuits that control behavior, namely 

aggression.  

 

dCCN Discussion  
The CCN family of MCPs are a group of highly conserved, non-structural ECM 

proteins that are critical for modulating intercellular signaling and trafficking (Bornstein 

and Sage, 2002; Rachfal, 2005; Katsube et al., 2009; Chen and Lau, 2009; Bornstein, 

2009; Perbal, 2013; Adams, 2018; Perbal, 2018). The four well conserved functional 

domains of CCN proteins enable a single family member the ability to interact with a 

multitude of signaling partners that initiate many biological processes (Holbourn et al., 

2008; Malik et al., 2015; Hu et al., 2019). A variety of tissues express the CCN family of 

MCPs, and numerous pathologies, developmental deficiencies, diseases, psychiatric 

conditions, cancers, and many other disorders result from disruptions in CCN:ECM or 

CCN:cell communication (Jun et al., 2011; Malik et al., 2015; Perbal, 2018; Hu et al., 

2019). However, the requirements for CCN function in the nervous system, aside from a 

few studies, remains poorly understood.   

In this study, I examined the sole CCN family member encoded by the 

Drosophila melanogaster genome, which we refer to as dCCN. We have shown that 

dCCN is expressed in the CNS at each developmental stage. Widespread, but not 

ubiquitous dCCN expression begins in the CNS of the embryo, is present in the CNS and 

motor neurons of larvae, and dCCN CNS widespread expression is maintained to 

adulthood. We predict that dCCN is important for development and critical for the 

remodeling and growth of the CNS within the Drosophila organism as the CNS 

undergoes immense morphological changes from an embryo, to a larvae, and finally, to 

an adult fly. We identified dCCN expressing sensory neurons of the peripheral nervous 

system (PNS) including the proboscis, maxillary palps, antennae, legs, and wings. We 

also discovered dCCN expressing projections innervating the crop and proventriculus 

structures of the gastrointestinal system. These sensory neurons are important for 

collecting internal and external stimuli, and are responsible for conveying this 

information back to the central brain. Additionally, we found dCCN expressing 

projections innervating the ovaries and uterus. We identified monoamine neuronal 
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populations that co-express dCCN, of which include the monoamines serotonin (5-HT), 

dopamine (DA), and OA. In addition, we found that dCCN is expressed in sexually 

dimorphic populations of neurons critical for sex-specific behaviors, of which include 

fruitless (fru) and double-sex (dsx). Lastly, we have demonstrated for the first time, that 

dCCN is required for neurotransmission at the larval neuromuscular junction (NMJ) and 

for female sterility. To conclude, dCCN is an incredibly important MCP of the CNS and 

contributes to synaptic neurotransmission and nervous system function. 

We found that dCCN is expressed in the monoamine neurons DA, 5-HT, and OA. 

Monoamine neurons are important for regulating an immense variety of physiological 

processes, moods, and is known to govern behaviors (Dishman 1997; Libersat and 

Pflueger 2004; Kamhi and Traniello 2013; Bubak et al., 2014; De Boer et al., 2015; 

Swallow et al., 2016). A previous study by Hori et al. also demonstrated monoamine and 

CCN protein interactions in which CCN2 production is upregulated when 5-HT receptors 

are stimulated in chondrocytes (Hori et al, 2017). As MCPs do not have a structural role 

in the extracellular space (ECS), MCPs, and in particular dCCN, may indirectly impact 

the signaling of monoamine neurotransmitters released from synaptic sites and extra-

synaptic sites by interacting with integrins as one example to stabilize neuronal junctions, 

bouton architecture, and potentially vesicle release.     

We found sexually dimorphic dCCN expression in fru and dsx neurons. Fru and 

dsx are have different sets of neurons, cells, and expression patterns between males and 

females. Previous work demonstrated that fru neurons are important for male specific 

behaviors such as courtship and aggression (Lee et al., 2000; Goodwin et al., 2000; 

Anand et al., 2001; Stockinger et al., 2005; Kimura et al., 2005; Yamamoto, 2007; 

Rideout et al., 2007; Yamamoto, 2008; Villella and Hall, 2008; Sato et al., 2019; Ishii et 

al., 2020; Sato et al., 2020; Wohl et al., 2020). Dsx is important for male courting, 

specifically for performing sine song and copulatory behaviors, and initiating aggression 

towards males (Rideout et al., 2007; Rideout et al., 2010; Ishii et al., 2020). Additionally, 

both fru and dsx is essential for receptivity in females during courting events (Rideout et 

al., 2007; Villella and Hall, 2008; Rideout et al., 2010; Chowdhury et al, 2020). We 

predict that dCCN expression within fru and dsx may be to contribute to the development 

of sex specific neurons and cells, to give cells and neurons a sexual identity, and to 
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contribute to the health and maintenance of reproductive organs and the formation of 

offspring. dCCN may possibly impact behavior, but additional experiments are needed to 

separate out a developmental role.  

 

Future Directions 
There are two questions that can now be addressed after this work. First, it is 

necessary to examine the developmental vs. mature nervous system function of dCCN. 

While it has been demonstrated that the delicate balance of structural remodeling and 

stabilization of neuronal networks requires cell:ECM interactions changes over the life-

span of an organism, to date, separating the role of CCN proteins during development vs. 

the mature cell/tissue has yet to be addressed in any system. This information is key to 

identifying temporally-regulated ECM or signaling factors that interact with CCN 

proteins as well as determining how CCN proteins contribute to neurotransmission 

changes in disease states.  The second question is location: separating the nuclear vs. 

secreted function of CCN proteins. This question can be addressed by generating 

genome-edited fly strains to tag the dCCN endogenous protein and prevent secretion.  

 

Significance 
During development and in the adult, the ECS provides multiple cues that 

promote synaptic plasticity on the one hand, and maintenance of the homeostasis of 

neural circuitries on the other. The importance of the ECM for both of these processes 

indicate that it could have a pivotal role in the pathogenesis of neurological and 

neuropsychiatric disorders. Indeed, recent studies support the view that ECM aberrations 

are likely to contribute to imbalanced synaptic function in epilepsy, Alzheimer’s disease, 

and other neurodegenerative disorders, TBI, and depression (Jun et al., 2011; Malik et al., 

2015; Perbal, 2018; Dazzan et al., 2018; Davies, 2019).  Results from this thesis project 

has provided new information on the sexually dimorphic expression and function of CCN 

family members and demonstrated a requirement for CCN proteins in synaptic 

transmission. There is still much to unravel in the quest to understand the specific 

functional contributions of the CCN family of MCPs within the CNS and PNS, and soon 

these roles will be elucidated. The findings of this work and future aims of this study will 
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lead to data that could be applied in potential therapeutic applications that may aid in 

CNS injury repair, microenvironment re-assembly, tissue regeneration and organ 

growing, electrophysiology treatments, TBI treatments, and numerous other clinical 

applications.  
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