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Bray, Kimberly, M.S, Fall 2020                              Systems Ecology 

 

Decoupled diel solutes: linking gross primary production and nitrate uptake in a montane stream 

 

Chairperson: H. Maurice Valett 

 

  Tight coupling of surface water diel dissolved oxygen (DO) and nitrate-N (NO3-N) signals 

reflects stoichiometric demand of carbon and nitrogen in stream ecosystems. However, DO and 

NO3-N can become decoupled due to alternative drivers of diel solutes, resulting in conflicting 

estimates of stoichiometric and modeled NO3-N uptake. In this study, I measured benthic 

biomass, hydrology, and dissolved solutes in a montane stream located in western MT over a 

growing season (June-October 2019). Daily stream metabolism and NO3-N uptake were modeled 

using a single-station open-channel approach. Timing and amplitude of key diel signals were 

characterized quantitatively to assess decoupling of DO and NO3-N and investigate diel variation 

in hydrology. I also analyzed the effect of DO and NO3-N benthic footprint lengths on diel 

signals. Miller Creek was heterotrophic, with ER ranging from -2.07 ± 0.37 to -5.53 ± 0.11 g O2 

m-2 d-1 and GPP from 0.03 ± 0.04 to 0.82 ± 0.10 g O2 m
-2 d-1. Statistical assessment with 

generalized additive models (GAMs) tied metabolism to localized channel conditions. 

Reductions in GPP, water temperature, and hydrology predicted declining ER (R2
adj = 0.72, n = 

124, 72.8% deviance explained). ER also decreased with benthic standing stocks, as measured 

with AFDM (r = -0.74, p = 0.034) and chl a (r = -0.92, p = 0.0013), and surface water dissolved 

organic carbon (DOC) concentration (r = -0.73, p = 0.038).  Modeled NO3-N uptake (3.20 ± 1.50 

to 12.14 ± 2.16 mg N m-2 d-1) agreed with stoichiometric estimates (0.42 ± 0.05 to 10.10 ± 3.5 

mg N m-2 d-1) in magnitude, despite clear decoupling of diel DO and NO3-N signals. GPP, water 

temperature, surface water flow, and light explained 92.1% of the deviance in modeled NO3-N 

uptake (R2
adj = 0.91, n = 110). Daily benthic footprint of NO3-N ranged from 2.5 to 19.5 km, 

exceeding that of DO on some sampling days, which varied from 1.2 to 4.1 km. This research 

provides a model for calculating daily NO3-N uptake comparable to estimates from 

stoichiometry using a single-station approach, which can be applied in streams and rivers with 

diel DO and NO3-N decoupling.  
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Introduction 

Metabolism in aquatic environments has been the focus of many studies because it links the 

two major fates of carbon: fixation of carbon dioxide during production and mineralization of 

organic matter via respiration (Jones and Stanley 2016). Calculating metabolic rates of 

respiration and production captures heterotrophic and autotrophic energy processing and demand 

within rivers (Bernhardt et al. 2017). At an ecosystem level, metabolism is measured as gross 

primary production (GPP), the rate of carbon fixation through chemoautotrophy and 

photoautotrophy, and ecosystem respiration (ER), the rate of carbon mineralization. Net 

ecosystem production (NEP) is the difference between GPP and ER. Locally, nitrogen (N) 

cycling is tightly coupled to carbon processing within streams and rivers due to stoichiometric 

relationships associated with biotic demand (Redfield 1958, Knops et al. 2002). In most aquatic 

environments, Nitrate-N (NO3-N) is the main form of dissolved inorganic N available for 

biological uptake. As such, exogenous and endogenous factors related to energy flow, including 

allochthonous resource subsidies and metabolism, influence in-stream NO3-N retention (Valett et 

al. 2008). With the advent of autonomous in-situ sensors and sondes, it is now possible to create 

long-term datasets of daily metabolism (Appling and Heffernan 2014) and nitrate-N (NO3-N) 

uptake (Heffernan and Cohen 2010) using fine-scale measurements of diel dissolved oxygen 

(DO) and NO3-N signals.  

However, modeled estimates of metabolism and uptake may lack anticipated associations due 

to decoupling of diel NO3-N and DO signals (Appling and Heffernan 2014, Hensley and Cohen 

2016). Here, I define decoupled signals as those that deviate from patterns indicative of 

autotrophic stoichiometric demand, based on a sinusoidal model. A priori, DO production and 

NO3-N depletion over a 24-h period should coincide during peak GPP and autotrophic NO3-N 
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uptake, assuming coupled signals represent quotidian processes. As such, diel coupling is 

characterized by 1) timing of diel NO3-N minimum and DO maximum (time since midnight at 

which localized diel minimum/maximum occurred, h) co-occurrence during diurnal hours 

(Heffernan and Cohen 2010), and 2) increases in diel NO3-N amplitude (difference between 

maximum and minimum values within a 24-h period) predicted by increases in DO amplitude 

(Hensley and Cohen 2016). 

Decoupled diel signals may result from in-stream environmental fluctuations, including 

variable discharge (Brick and Moore 1996, Sullivan et al. 1998) or temperature (Kunz et al. 

2017) over 24 h. Alternatively, decoupled DO and NO3-N can be explained by the respective 

gaseous and non-gaseous quality of each signal (Hensley and Cohen 2016). Constant re-

equilibration of in-stream DO with the atmosphere, and lack thereof for NO3-N, may very well 

produce upstream benthic footprints (i.e., spatial extent of stream bottom influencing a given 

signal) of different lengths and character. As a result, offset, or “smearing”, can exist between 

diel NO3-N
 minimum and DO maximum because of varied physical and chemical features 

reflecting dissimilar reaches of influence.  

Previously, Heffernan and Cohen (2010) succcessfully linked GPP and assimilatory 

autotrophic NO3-N uptake estimated from diel signals using a single-station open-channel 

method in a highly productive slow-moving Florida river. However, many of the influences 

known to decouple solute signals were absent in their study, notably variable benthic footprints 

of DO and NO3-N and groundwater-surface water interactions, due to the spring-fed nature of 

the river. Less is known about using a single-station approach to model assimilatory autotrophic 

NO3-N uptake in mid-order creeks that are hydrologically-connected to the aquifer and upstream 

headwater networks. The main objective of this study was to create a model capable of 
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accurately estimating daily assimilatory autotrophic NO3-N uptake from diel signals measured 

using a single-station approach in a montane creek, as assessed by linkages between modeled 

NO3-N uptake and GPP. To do so, I addressed five main goals, including 1) characterizing trends 

and identifying periods of change in hydrology, metabolism, and NO3-N uptake, 2) evaluating 

the relationship between modeled metabolism and assimilatory autotrophic NO3-N uptake; 3) 

assessing decoupling of diel NO3-N and DO signals; 4) analyzing the effect of diel variation in 

stream flow on solute signals; and 5) evaluate the potential for differences in DO and NO3-N 

benthic footprints to explain DO and NO3-N decoupling.  

Materials 

Site description 

I conducted the study on Miller Creek, a headwater tributary of the Bitterroot River in 

western Montana, USA. The creek is a snowmelt driven system with spring runoff (1456-2638 L 

s-1) occurring in April or May, followed by baseflow conditions from August-March (80-200 L s-

1). I established an 822-m long study reach approximately 10 km from the creek’s headwaters on 

the MPG Ranch, a 61-km2 privately-owned property used for a wide range of research purposes, 

but no active ranching or farming practices. The creek flows through a variety of land-use types, 

including the Lolo National Forest, and cattle and dry haying operations just upstream of the 

MPG Ranch. Riparian vegetation along the reach includes grasses and deciduous trees, with a 

prevalence of dense coniferous cover. Two surface sites (i.e. upstream and downstream) 

designated reach extent and ten groundwater wells were distributed along its length 

approximately 1 m from the channel within the riparian zone. 
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Hydrology & geomorphology 

Stream flow in Miller Creek was monitored from June 2017-2019 as part of water quality 

monitoring program (H.M. Valett, unpublished data) tied to potential restoration actions 

(Montana DEQ 2018). Discharge was estimated at a single location mid-reach using dilution 

gauging approaches (Gordon et al. 2004) monthly for the 24-month period.  

Beginning in June 2019, surface water discharge (Q, L s-1) and velocity (u, m s-1) were 

monitored at established upstream and downstream sites using rating curves tied to 

measurements derived via dilution gauging. At each site, a stilling well equipped with a pressure 

transducer (kPa; Onset HOBO U20L, Bourne, MA) measured stream stage via water pressure on 

a five-min interval. Stream stage was corrected for atmospheric pressure measured at each in-

stream site (kpa; Solinst Barologger model 3001, Georgetown, ON). Stream discharge was 

quantified at upstream (n =10) and downstream (n = 6) sites on separate dates from June 13 to 

October 22 to establish rating curves for each location (r2 = 0.98-0.99).  Herein, channel 

discharge (Q) is represented by discharge estimated at the downstream site and net groundwater 

exchange (Qgw, L s-1) calculated as the difference between downstream and upstream flow (L s-

1). Wetted width (m) was measured at 25 equally spaced transects within the reach during 

dilution gauging assessment. Depth (m) was estimated at five-min intervals by dividing Q by the 

product of width and u.  

Modeling ecosystem processes 

A Sea-Bird Scientific SUNA V2 sensor (Bellevue, WA) with a detection limit of 4 µg N L-1 

measured NO3-N concentration hourly at the downstream surface water site from June 24 to 
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October 13, 2019. I calculated daily median autotrophic NO3-N uptake areal flux (UANO3, mg N 

m-2 d-1) through inverse Bayesian modeling with the rstan program in RStudio 3.6.1: 

[N]i = [N]i−1 − (
 UANO3

zi
) (

(u1−u0)×PPFDi

∑ PPFDu n
𝑢=1

) + Knit ([N]b − [N]i−1) (∆t)                                          

(1) 

where: [N] is NO3-N
 concentration (mg N m-3), i and i-1 are any time step and the preceding 

timestep, z is stream depth (m), u0 and u1 are the beginning and end of any day (h), PPFDi is 

photosynthetic photon flux density (PPFD) at each timestep (µmol m-2
 h

-1), PPFDu is integrated 

PPFD (µmol m-2) over continuous time u in a day (d), Knit is any daily change in NO3-N 

concentration due to loss from autotrophic uptake and denitrification or gains from upstream or 

groundwater inputs expressed as a rate (d-1), [N]b is mean daily background concentration (mg N 

m-3), and ∆t is time between i and i-1 (d).  

Due to the potential for equifinality, UANO3 was partially pooled with PPFDu in a linear 

relationship: 

 UANO3~ 𝑁 (𝛽0 +  𝛽1 ∑ PPFDu n
𝑢=1 ,  𝜎𝑈 

)                                    (2) 

Prior of the intercept was β0~ N (0, 4.57) with prior standard deviation equal to standard 

deviation of unpooled UANO3 estimates. Prior of the slope of the linear relationship was β1~ ΤN 

(0, 1 ×10-6), based on a half-normal distribution; standard deviation was calculated by dividing 

the greatest unpooled UANO3 estimate by greatest daily sum of PPFDu. Day-to-day variance in 

UANO3 from the relationship with light had a prior of  𝜎𝑈~ ΤN (0, 4.57), with standard deviation 

also equal to standard deviation of unpooled UANO3. The model was run with four chains using 

Hamiltonian Monte Carlo (HMC) methods and 1000 burn-in iterations. Fitted concentration data 
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from model posterior distribution were qualitatively compared to observed data to assess model 

fit for each day.  

I estimated a prior probability of  K~log N (2.25, 1.5) from stream NO3
- uptake and 

concentration data compiled in Hall et al. (2013)  that were collected during more than 30 

studies. Using the linear relationship between log-transformed NO3
- uptake velocities and 

concentrations, NO3
- uptake velocity for Miller Creek (m d-1) was estimated from mean 

concentration measured by the SUNA over the study. Uptake velocity calculated from the linear 

regression was divided by z to estimate mean Knit prior probability. Standard deviation of Knit 

prior was equal to the standard deviation of the linear regression model residuals. Background 

NO3-N concentration prior probability was [NO3-N]b ~N (57.2,12.0), based on average and 

standard deviation of concentration measured by the SUNA.  

Daily metabolism was estimated from June 11 to October 13, 2019 using a single-station 

open channel method at the downstream site with modeled PPFD (RStudio 3.6.1 

streamMetabolizer package), z, and DO and water temperature measured on 5-min intervals 

(Precision Measurement Engineering MiniDOT, Vista, CA). Dissolved oxygen concentration at 

saturation was calculated from DO and atmospheric pressure to address direction and magnitude 

of gas exchange. Biological parameters of median daily GPP (g O2 m
-2d-1), ER (g O2 m

-2d-1), and 

oxygen gas exchange rate normalized to Schmidt number of 600 (K600, d-1) were estimated with 

the open source streamMetabolizer package in RStudio 3.6.1 (Appling et al. 2018). Metabolic 

prior probabilities were GPP~N(3.1, 6) and ER~N(-7.1,7.1), based on ranges measured in Hall et 

al. (2016).  

To overcome poor parameter estimation typical of streams with high oxygen reaeration and 

low metabolism areal fluxes (Appling et al. 2018), K600 variance was partially pooled in a log-
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linear relationship with daily Q. Discharge regulates much of the day-to-day variation in K600, 

with turbulence promoting gas exchange and increased depth reducing it. However, other factors, 

such as presence of macrophytes, ice, or leaf  cover, may also effect K600 (Roberts et al. 2007, 

Genzoli and Hall 2016). Accordingly, partial pooling of variance reflects the reality that 

conditions other than Q may change K600 over time. Thus, the prior for K600 was 

K600~N(f(discharge),0.05), where f(discharge) represents a linear relationship between daily 

K600 and Q. The variance of partial pooling was chosen based on which value produced the 

least co-linearity between gas exchange and ER. Equifinality was properly addressed, as 

demonstrated by small covariation between ER and K600 (supporting information Fig. A.1, R2
adj 

= 0.30, edf =3.64, n = 125, 32.2% deviance explained).   

Gross daily autotrophic uptake (UA; mg N m-2 d-1) was estimated from modeled GPP 

assuming net autotrophic production was equal to 0.5 of GPP (Webster and Meyer 1997) and 

autotrophic molar C:N was 20 (Hall and Tank 2003). Model-derived daily uptake fluxes (UANO3, 

Eq 1) were then compared to those estimated theoretically from GPP (UA). Following Chapra 

and Di Toro (1991), the benthic footprints of metabolism and UANO3 were estimated as 3u/K 

using daily average u and K600 or Knit, respectively.   
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Light and water chemistry 

Water chemistry was measured bi-weekly from June 10 to September 19. Triplicate water 

samples were collected with HDPE Nalgene containers from the water column at upstream and 

downstream sites as well as from the ten groundwater wells. Following collection, samples were 

transported on ice to the laboratory, and filtered (Whatman GF/F, 0.7 µm-pore size) into 15-mL 

polypropylene tubes for inorganic analytes, or glass containers for dissolved organic carbon 

(DOC). Samples for inorganic species were frozen (-20 ̊ C) and DOC samples were maintained 

at 4°C until analysis. 

Filtered water samples were analyzed for dissolved NO3-N (µg L-1), ammonium-N (NH4-N; 

µg L-1), and soluble reactive phosphorus (SRP; µg L-1) using an Astoria-Pacific Segmented Flow 

Analyzer AP2 (Clackamas, OR), and DOC (mg L-1) concentrations via chemical oxidation with a 

Xylem Aurora 1030W Total Organic C Analyzer (College Station, TX). Nitrate + nitrite was 

assessed using cadmium-reduction chemistry (U.S. EPA 1993a) with 0.001 N mg L-1 detection 

limit and is reported here as NO3-N. Soluble reactive phosphorus was assessed following the 

ascorbic acid colorimetry method with a 0.002 mg P L-1 detection limit (U.S. EPA 1993b). 

Ammonium-N was assessed according to the phenol-hypochlorite colorimetry method (U.S. 

EPA 1993c) with a 0.005 mg N L-1 detection limit.  Persulfate oxidation of organic C followed 

Menzel and Vaccaro (1964) with a detection limit of 0.002 mg C L-1.  

Hourly surface incident shortwave radiative flux (W m-2) from the NASA Land Data 

Assimilation System (NLDAS) data set was converted to PPFD (µmol m-2 s-1) using methods 

described in Yang et al. (2007).  
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Benthic standing stocks 

On a bi-weekly basis concurrent with water sampling, benthic standing stocks were evaluated 

by randomly collecting three cobbles from the upstream, downstream, and middle of the reach (n 

= 9/sampling). In the field, epilithic material was removed from the top and sides of each cobble 

using a wire brush. A homogeneous slurry of individual biomass samples was divided into 

subsamples, each of which were filtered through a Whatman GF/F glass filter (0.7 µm pore-size). 

After transport to the lab, filters were frozen (-20 ̊ C) until analysis. Benthic organic matter 

(BOM) and chlorophyll a standing crop (chl a, mg m-2) were quantified using filtered material 

following Steinman et al. (2017). Benthic organic matter was assessed using ash-free dry mass 

(AFDM, g m-2) while chl a was measured spectrophotometrically following acetone extraction 

and used to represent the abundance of benthic primary producers.   

Gas exchange-corrected dissolved oxygen 

To explore how much decoupling of DO and NO3-N signals could be explained by 

differences in their benthic footprint lengths, I generated a corrected DO signal in which 

concentration was derived without atmospheric gas exchange. Hourly DO fluxes from the water 

column associated with gas exchange were calculated and removed from observed DO fluxes 

leaving only metabolic influences, thereby creating a gas exchange-corrected DO signal (Moore 

et al. 2011, Hamme et al. 2012). By doing so, I calculated an effectively “nongaseous” DO signal 

that was produced only from biological consumption or production of DO. Lack of temporal 

coherence between NO3-N and gas exchange-corrected DO eliminated difference in NO3-N and 

DO benthic footprints as the primary cause of signal decoupling (Hensley and Cohen 2016) . 
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Statistical analysis 

Diel minimum/maximum timing and diel amplitude were quantified for surface water signals 

each day. I also calculated phase differences between the occurrence of diel DO minimum and 

NO3-N maximum (h) to address temporal displacement of signals. Phase differences exceeding 1 

h indicated DO and NO3-N asynchrony (Heffernan and Cohen 2010).  

Change over the growing season in and relationships between biweekly variables were 

analyzed by assessing the fit of linear regression models with Pearson’s correlation coefficient 

(Sokal and Rohlf 1994). Time series of daily observations were modeled using univariate 

generalized additive models (GAM) with restricted maximum likelihood smoothness selection 

(REML) and thin plate regression splines via the mgcv package in RStudio 3.6.1 (Simpson 2017). 

Outliers associated with storm events were removed from Q (n = 1) and Qgw (n = 1) prior to time 

series analysis. In cases of persistent residual autocorrelation, a continuous-time first- (CAR (1)) 

or second-order (CAR (2)) autoregressive process was added to the model (Simpson 2018). Best-

fit models of time series were chosen based on Akaike information criterion (AIC). Periods of 

change in modeled time series were identified by points at which the first derivative of the best-

fit model with 95% simultaneous confidence interval did not include zero. First derivatives were 

calculated using the gratia package (RStudio 3.6.1). Predictors of metabolism and NO3
- uptake 

were assessed using uni- and multi-variate GAMs. Since there were fewer observations for daily 

and diel NO3-N than other variables, using AIC to assess model fit with predictors was not 

appropriate; instead, I chose models with greatest deviance explained, adjusted R-squared (R2
adj), 

and sample size, n (Finlay et al. 2019).  In all models, the number of basis functions was selected 

to promote random distribution of residuals (Simpson 2017). 
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Results 

Daily trends 

Daily surface water Q (73.1-365.8 L s-1) rapidly declined from June 10 to July 16 as runoff 

subsided into baseflow conditions (Fig. 1a, R2
adj = 0.98, edf =11.58, n = 125). Excluding a late-

summer flood event that occurred on September 4 through 7 due to a rainstorm, Q remained stable 

for the rest of the study (Fig. 1b). During peak runoff, the Miller Creek study reach gained 

groundwater (supporting information Fig. A.2a, R2
adj = 0.96, edf =35.15, n = 125), but transitioned 

to a losing reach on June 20. Daily Qgw peaked at 54.1 ± 2.3 L s-1 on June 14, representing a 16.9% 

increase in flow over the 822 m of stream. According to the best-fit GAM (supporting information 

Fig. A.2b), Qgw declined from 48.2 ± 1.9 to -8.2 ± 1.5 L s-1 from June 15 to June 21 and greatest 

average daily loss to groundwater (-36.7 ± 1.9 L s-1, 23% of upstream Q) occurred on July 6. 

Elevated channel Q on September 11 associated with the summer freshet was accompanied by a 

positive daily Qgw (3.4 ± 1.9 L s-1); excluding this event, Miller Creek remained a losing reach 

from June 20 to the end of the study (October 13).   
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Fig 1. (a) Declining daily surface water discharge (open circles) with best fit GAM (black 
line) and 95% confidence intervals (gray band) from runoff to baseflow. (b) First derivative 
of GAM (black line) with 95% simultaneous confidence intervals (gray band). Points of 
change in the modeled time series are indicated by simultaneous confidence intervals that 
do not include 0.  
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Average daily DO (supporting information Fig. A.3a) and NO3-N (supporting information 

Fig. A.3b) exhibited periods of evident change, but changes did not always align temporally 

(supporting information Fig. A.4 a-b). Daily DO concentration (8.38-10.4 mg O2 L
-1) remained 

constant during most of the study, with two periods of increase in late September and early 

October (R2
adj = 0.93, edf =28.91, n = 126). In contrast, daily surface water NO3-N concentration 

(27.8-102.6 µg NO3-N L-1) fluctuated more frequently (R2
adj = 0.94, edf =29.8, n = 112); five 

periods of increase or decline occurred between August 5 and October 11.  Changes in DO and 

NO3-N only overlapped on October 10, during which both solutes became more concentrated.  

Generally, bi-weekly average concentrations of N, P, and DOC showed no distinct temporal 

trends over the course of the study (Table 1). Average DOC (0.9-1.8 mg DOC L-1), SRP (3.4 -8.4 

µg SRP L-1), and NH4-N (1.1-19.9 µg N L-1) in surface water did not display temporal trends (p 

> 0.05). Biweekly concentrations estimated from flow injection analysis agreed with SUNA 

measurements collected within the same hour (±7.6 µg N L-1, ± 8.1 % deviation) indicating high 

accuracy and precision of SUNA outputs. Additionally, bi-weekly surface water N:P ratios 

(15.5-51.9) remained above the Redfield ratio of 16. Groundwater N concentrations surpassed 

those measured in the channel by up to 69.0 µg NO3-N L-1 and 117.6 µg NH4-N L-1, while SRP 

and DOC were not as concentrated, with groundwater within 12.3 µg SRP L-1 and 6.2 mg DOC 

L-1 of average reach surface water. Groundwater N:P ratios (22.3-197.8) were greater than those 

for surface water.  
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Table 1. Bi-weekly reach-scale surface water and groundwater dissolved concentrations and molar N:P ratios. Reach-
scale benthic biomass. Data are means ± standard error. 

 
 
Date 

 
[NO3-N] 

(µg N L-1) 

 
[NH4-N] 

(µg N L-1) 

 
[SRP] 

(µg P L-1) 

 
[DOC] 
(mg L-1) 

 
 
Molar N:P 

BOM 
(g AFDM m-2) 

Chl a 
(mg m-2) 

Surface water        

11 June - 2.2  0.5 5.0  0.9 1.5  0.1 23.0  3.1 16.6  6.9 31.5  12.6 

24 June 54.0  0.8 12.0  1.6 5.7  0.6 1.8  0.2 19.4  3.7 13.4  2.2 52.7  17.4 

8 July 54.4  1.0 19.9  0.3  5.0  0.4 1.0  0.1 20.9  1.4 9.7  3.4 32.7  14.7 

25 July 49.9  1.5 5.3  0.6 5.6  0.8 1.1  0.1 21.7  2.4 12.2  3.9 26.7  12.0 

8 August 65.3  1.8 9.5  0.9 8.1  1.2 1.5  0.1 15.5  2.1 7.1  2.3 17.6  4.8 

19 August 63.1  1.8 9.5  1.0 8.4  0.4 0.9  0.1 18.0  1.3 5.1  1.5 20.3  9.0 

3 September 77.0  1.6 12.5  1.0 3.4  0.5 1.3  0.1 51.9  3.0 3.1  0.5 7.9  3.9 

17 September 63.4  1.2 1.1  0.7 3.5  0.5 1.5  0.1 40.8  4.0 5.9  0.9 22.0  9.1 

Groundwater        

11 June 83.6  23.9 34.9  13.6 17.2  6.4 7.1  2.8 32.0  16.8 - - 

24 June 96.0  24.3 101.2  32.1 10.0  1.4 3.4  0.5 22.3  3.3 - - 

8 July 106.3  28.6 137.5  37.5 5.8  0.5 7.2  3.8 186.9  41.5 - - 

-25 July 119.5  25.7 68.7  14.2 5.4  0.6 2.0  0.2 197.8  49.0 - - 

8 August 101.8  18.5 80.9  17.8 10.1  1.3 1.7  0.2 43.6  5.0 - - 

19 August 122.9  19.7 65.8  11.1 10.2  1.4 1.2  0.1 48.2  6.7 - - 

3 September 116.2  17.2 48.5  10.3 6.0  1.2 1.6  0.1 101.8  34.4 - - 

17 September 106.0  16.4 63.6  20.4 6.7  1.5 1.7  0.1 98.9  24.4 - - 
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Benthic standing stocks and stream metabolic behavior 

Miller Creek was strongly heterotrophic, with median daily GPP (Fig. 2a) ranging from 0.03 

± 0.04 to 0.82 ± 0.102 g O2 m
-2 d-1 and ER (Fig. 2a) from -2.07 ± 0.37 to -5.53 ± 0.11 g O2 m

-2 d-

1. On any given day during the study, ER was at least six times greater than GPP, resulting in 

negative daily NEP (-1.87 ± 0.01 g O2 m
-2 d-1) and P:R ratios far less than 1 (0.01-0.16). GPP did 

not change from June through October (Fig. 2b, R2
adj = 0.55, edf =5.11, n = 125).  ER decreased 

from June 19 to July 26 (Fig. 2c, R2
adj = 0.57, edf =3.06, n = 125) beginning during the noted 

period of reduction in surface water flow. Average BOM ranged from 3.1-16.6 g AFDM m-2 and 

chl a standing crop was 7.9-52.7 mg m-2 (Table 1). Both BOM (r = -0.91, p = 0.0019) and chl a 

(r = -0.75, p = 0.032) declined from June to October and metrics of standing stocks were 

positively related (r = 0.75, p = 0.032).  

Despite lacking coinciding points of change in metabolic time series, ER and was tied to 

standing stocks and local conditions in the channel, indicating modeled metabolism reflected 

endogenous controls. ER magnitude increased with chl a (supporting information Fig. A.5a, r = -

0.92, p = 0.0013), AFDM (supporting information Fig. A.5b, r = -0.74, p = 0.034), and 

downstream DOC concentration (supporting information Fig. A.5c, r = -0.73, p = 0.038). In 

contrast, GPP was not related to the abundance of epilithic autotrophs (p = 0.084) or BOM 

standing stocks (p = 0.19). Additionally, GPP could not be tied to biweekly measurements of 

SRP (p = 0.64), NH4-N (p = 0.67), or DOC (p = 0.26). In the best-fit multi-variate GAM, 

decreases in GPP, water temperature, and Q predicted reduced ER (R2
adj = 0.72, n = 124, 72.8% 

deviance explained). 
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Fig 2. (a) Daily GPP (gray circles) and ER (open circles) with best fit models (black line) and 
95% confidence interval (gray band) over the study. First derivatives (black line) with 95% 
simultaneous confidence intervals (gray band) show (b) no periods of change in GAM of GPP 
and (c) early summer decreases in negative ER. 
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Nitrate uptake 

Pooling UANO3 with daily light (Fig. 3a) reduced day-to-day variation in UANO3 compared to 

the unpooled model (Fig. 3b) and resulted in negligible covariance between UANO3 and Knit (Fig. 

3c), a key requirement for parameter estimation. Daily median pooled uptake (UANO3) ranged 

from 3.20 ± 1.50 to 12.14 ± 2.16 mg N m-2 d-1.  Mean daily Knit ranged from 2.73 to 18.98 d-1, 

exceeding the prior on 30 of 111 days indicating parameter estimates of Knit were not solely 

dependent on prior probability (Fig. 3d). Pooled UANO3 agreed with those estimated from GPP 

(UA). Stoichiometric uptake ranged from 0.42 ± 0.05 to 10.10 ± 3.5 mg N m-2 d-1 (Fig. 4a), 

comparable in magnitude to UANO3. Furthermore, the best-fit multi-variate GAM indicated that 

GPP, water temperature, surface water Q, and light explained 92.1% of the deviance in UANO3 

(R2
adj = 0.91, n = 110), with decreases in the magnitude of all predictors resulting in declines in 

UANO3. GPP alone explained 21.0% of the deviance in UANO3 (Fig. 4b, univariate model, R2
adj = 

0.20, n = 111).   
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Fig 3. (a) Pooled UANO3 and total daily light over the study. Line indicates linear relationship 
used to model UANO3 from light. (b) Pooled UANO3 with light (open circles) reduced day-to-day 
variability compared to unpooled (gray circles) estimates. (c) Lack of covariance between 
pooled UANO3 and Knit over the study period. (d) Distribution of estimated Knit parameters (blue) 
varied from log-linear prior probability distribution (gray).  
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Fig 4. (a) Modeled (UANO3) and stoichiometric (UA) estimates of NO3-N uptake were similar in 
magnitude, as compared with a 1:1 line (dashed line). (b) Best-fit GAM (black line) with 95% 
confidence intervals (gray bands) describing relationship between UANO3 and GPP (open circles).  
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Diel signals 

As stream flow declined from runoff to baseflow, 24-h change in Q followed suit. Diel 

amplitude of Q decreased from 240 L s-1 on June 11 to 13.3 L s-1 on October 13 (R2
adj = 0.52, edf 

=1.16, n = 123). Timing of Q diel minimum and maximum lacked coherent patterns over the 

entire study. Diel Q maxima were typically noted during daylit hours in the morning or early 

afternoon (7:09-17:54, n = 101) and minima during late afternoon or night (16:44-23:54, n = 89). 

However, there were also days during which maxima occurred in the early morning or night (n = 

24) and minima in the early morning (0:05-8:55, n = 38). Although diel Qgw amplitude declined 

slightly from June to October (R2
adj = 0.59, edf =6.14, n = 121), there were no notable periods of 

change in the modeled time series. Timing of diel Qgw minimum (0:00-23:41) and maximum 

(0:01-23:59) did not follow distinct diel patterns.  

Like trends noted in daily averages, growing season patterns in the amplitude and timing of 

diel DO and NO3-N concentrations did not align as anticipated. According to the best-fit GAM, 

diel DO amplitude ranged from 0.32-1.59 mg L-1 (supporting information Fig. A.6a-b, R2
adj = 

0.22, edf =5.91, n = 125) but did not vary from June to October. Amplitude of diel change in 

NO3-N concentrations ranged from 8.5-36.8 µg NO3-N L-1, increasing from 20.8 to 25.9 µg NO3-

N L-1 over 12 days from July 13 to 24 (supporting information Fig. A.7a-b, R2
adj = 0.33, edf = 

4.113, n = 111). DO concentration was lowest in the late-afternoon or evening (14:21-23:17), not 

during pre-dawn hours as expected from metabolic patterns alone. Maximum DO concentration 

was recorded in the morning or mid-afternoon (8:11-14:17) and occurred later in the day as 

summer advanced (supporting information Fig. A.8a-b, R2
adj = 0.40, edf = 1.14, n = 125). NO3-N 

minima were far more broadly distributed, ranging from predawn hours to evening (1:00-21:00), 

and did not shift directionally with time (supporting information Fig. A.9a-b, R2
adj = 0.12, edf = 
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4.13, n = 111). In contrast to the timing of DO and NO3-N minima, maximal diel NO3-N was 

more tightly constrained, measured between 23:00-0:00.  

Decoupled nitrate and dissolved oxygen 

Diel patterns expected for NO3-N and DO due to mechanistic coupling of in-stream 

biological processing were not observed (Fig. 5a-b). Diel DO amplitude did not predict diel NO3-

N amplitude (R2
adj = 0.016, deviance explained =3.55 %, n = 111) nor did the diel timing of 

maximum DO relate to minimum NO3-N (R2
adj = -0.0015, deviance explained =1.22 %, n = 111). 

Phase differences reflecting discordance between diel DO maxima and NO3-N minima ranged 

from 1 min to as much as 11 h 3 min, with an average of 2 h 53 min.   
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Fig 5. Lack of predictability between (a) Diel DO and NO3-N amplitudes and (b) diel DO 
maximum and NO3-N minimum timing indicated decoupling between the solute signals.  
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Variation in flow over 24-h could not account for the diel character of solute signals nor the 

asynchrony between those for NO3-N and DO. Diel Q amplitude did not predict diel NO3-N 

amplitude (R2
adj = -0.0083, deviance explained =0.12 %, n = 109). If diel variation in Qgw were 

assumed to drive 24-h changes in NO3-N, then inflow of water void of N would need to have 

ranged from 19.9 to 115.8 L s-1, which occurred on only 15 of 113 d during SUNA deployment. 

At the same time, local hydrometrics indicated that over most of the study the designated reach 

lost water to the alluvial aquifer, making dilution or enrichment due to groundwater discharge 

locally inapplicable. Additionally, timing of diel NO3-N minima was not tied to the occurrence 

of Q maxima (R2
adj = -0.0078, deviance explained =0.15 %, n = 110), further pointing towards an 

absence of connection between diel hydrology and NO3-N concentration. 

Overall, removing the effects of gas exchange decreased daily DO concentration as expected 

given the consistently undersaturated (88.7-92.2% saturation) status of surface water. The 

magnitude of decline in daily average, however, was relatively small (0.06-1.14 mg O2 L
-1), and 

average diel amplitude decreased by only 0.03 mg L-1. Correcting DO for gas exchange did not 

remove phase difference between diel NO3-N minima and DO maxima (Fig. 6a-c). Reductions in 

lag times of up to 5 h 10 min were noted as a result of correcting for gas exchange, but this 

adjustment also amplified the phase difference on some days by as much as 10 min. Average 

phase difference post correction was 2 h 35 min, only 18 min shorter than the average phase 

difference prior to gas exchange removal, and still in exceedance of differences indicative of 

coupled signals. Furthermore, gas exchange-corrected DO diel maxima did not predict NO3-N 

minima (R2
adj = 0.014, deviance explained = 2.91 %, n = 111), nor did diel amplitude of DO 

post-correction predict NO3-N diel amplitude (R2
adj = -0.00543, deviance explained = 0.36 %, n 

= 111).  
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Fig 6. Concentrations over three days of sampling (August 17 00:00 to August 20 00:00) 
illustrating diel patterns of (a) NO3-N, (b) observed DO, and (c) gas-exchange-corrected DO 
concentrations.   
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Benthic footprints 

According to estimates of benthic footprint lengths, the potential integration distance of diel 

NO3-N signal was slightly longer than that of DO on all sampling days. Benthic footprint of NO3-

N ranged from 2.5 to 19.5 km, in some cases exceeding the distance to Miller Creek’s headwaters 

from the MPG study reach. Benthic footprint of DO varied less than that of NO3-N, ranging from 

1.2 to 4.1 km. Difference in length between benthic footprints of solutes explain only 1.89 % of 

deviance in differences between modeled and stoichiometric daily uptake (R2
adj = 0.01, n = 111) 

and 22.2 % of deviance in the phase difference between timing of NO3-N minimum and DO 

maximum (R2
adj = 0.19, n = 111). 

Discussion 

By using diel signals measured with a single-station open-channel method, I successfully 

modeled UANO3 estimates that agreed with UA in magnitude despite the apparent presence of 

decoupled DO and NO3-N signals. Pooling diel changes in NO3-N due to assimilatory 

autotrophic uptake with light reduced variation in UANO3   and produced estimates closer to those 

calculated stoichiometrically from GPP. There was no evidence that variation in flow, nor 

differences in benthic footprints, caused solute decoupling. This work supports findings showing 

links between in-stream primary production and N uptake (Hall and Tank 2003, Heffernan and 

Cohen 2010), while providing methodology for assessing biological N use in streams with 

Bayesian modeling techniques.  

Linking modeled and stoichiometric nitrate uptake 

The assumption that amplitude of diel signals in channel water reflects in-stream processing 

allows for the calculation of endogenous benthic uptake (Mulholland et al. 2006, Heffernan and 
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Cohen 2010). Fluxes of GPP in Miller Creek are in the range of those expected for forested 

streams (Webster and Meyer 1997) and those seen in natural reference streams studied in the 

LINX II project (Bernot et al. 2010). UA derived from these fluxes are comparable to modeled N 

uptake measures from other systems (Bernhardt et al. 2002). Absolute magnitudes for N uptake 

derived from metabolic measures are notoriously sensitive to efficiency factors employed to 

couple C and N dynamics (Hall and Tank 2003, Valett et al. 2008). Despite the propensity for 

large margins of error to be associated with stoichiometric estimates of N uptake due to gross 

approximation of efficiency errors, assimilatory autotrophic NO3-N uptake fluxes calculated 

stoichiometrically from GPP (UA) and modeled using the Bayesian approach (UANO3) differed 

only by 0.08 to 6.65 mg N m-2 d-1 (a factor of 0.68 to 14.3) in Miller Creek. Furthermore, despite 

no variation in GPP over the study, GPP still partially explained UANO3. Based on these findings, 

I conclude that I devised a model capable of estimating N uptake than can be linked to GPP in 

Miller Creek and similar streams. However, application of the model may be limited to a specific 

range of NO3-N concentration. Issues may arise if the model is applied in streams with high 

NO3-N concentrations, as diel signal smearing is likely to occur (Hensley and Cohen 2020). In 

addition, if NO3-N concentrations are limiting, the diel signal may fail to reflect declines in 

concentration during the day due to UANO3 (Chamberlin et al. 2019).   

Hydrology and diel variation in NO3-N 

While diel patterns in solutes often results from variation in flow over 24-h (Brick and Moore 

1996, Sullivan et al. 1998), this does not appear to be the case for diel amplitudes in NO3-N 

concentrations in Miller Creek. Diurnal NO3-N reductions could hypothetically result from 

dilution via surface water mixing with N-poor sources during the day. However, it is unlikely 

that diel reductions in NO3-N were the result of daytime groundwater inflow. Calculated Qgw 
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indicated that water was leaving the channel within the reach during most of SUNA deployment; 

additionally, groundwater was N-rich compared to surface water. While it is possible that the 

upstream benthic footprint of in-stream processes influencing diel amplitude (i.e., UANO3) 

encompassed gaining reaches above the study reach, diel increases in surface water Q necessary 

to dilute NO3-N by the measured diel concentration were rarely achieved. Alternatively, variable 

exogenous N sources could drive changes in channel N concentrations. For instance, upstream 

inputs fluctuations associated with irrigation altering NO3-N concentration over 24 h as has been 

suggested for other systems (Harrison et al. 2005) . However, as argued by Parker et al. (2010), 

consistent diel changes are unlikely to be linked to irrigation practices that are typically far less 

temporally coherent and timing of diel Q minima and maxima would likely not be as uniform as 

observed for Miller Creek. Therefore, I conclude that diel NO3-N patterns were largely 

independent from changes in groundwater or surface water hydrology over 24-h.  

Alternatively, NO3-N removal from the channel via hyporheic exchange with the stream could 

feasibly produce slight differences in UA and UANO3 measures. Recent publications have 

suggested that physical retention may play a greater role in reach N retention than previously 

thought (Emanuel et al. 2014, Woelber et al. 2018). If sufficient surface water-hyporheic 

exchange with spatially appropriate scales integrates water with distinctly different N 

concentrations, then surface water could change in concentration upon reentering the channel 

due to mixing with alternative flow paths. Although this may explain why UANO3 was typically 

slightly greater than UA, it is difficult to see how this manner of retention would produce phase 

differences between NO3-N and DO signals such as those seen in Miller Creek.  
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Are diel NO3-N signals reflective of localized instream processes? 

Continuing to operate under the assumption of in-stream control, three mechanisms may 

explain decoupling between DO and NO3-N signals from patterns expected due to biological 

demand of solutes. First, GPP and assimilatory autotrophic N uptake may not cooccur. This is 

highly unlikely, however, given the well documented temporal association between assimilatory 

autotrophic N uptake and GPP in streams (Roberts and Mulholland 2007, Valett et al. 2008), 

lakes (Murphy 1980, Dodds et al. 1989) and oceanic environments (Smith and Hollibaugh 1993, 

Falkowski et al. 1998) due to stoichiometric demand. Alternatively, differences in upstream 

integration distances (i.e., footprints) between solutes can cause mismatch between DO and NO3-

N signals (Hensley and Cohen 2016). Assuming that changing NO3-N concentrations reflected 

quotidian shifts occurring further upstream than those for DO, diel signal propagation 

downstream (Wondzell et al. 2007)  could explain the lag time between diel minimum NO3-N
 

and maximum DO concentration in Miller Creek. However, the benthic footprint for NO3-N was 

longer than DO by an average factor 4.6, a relatively small difference in length. Moreover, 

differences in benthic footprints of UA and UANO3 did not explain variation between empirical 

and stoichiometric uptake estimates. Removing the influence of gas exchange on DO signals did 

not eliminate lag between diel DO maxima and NO3-N minima. Signal mismatch after isolating 

metabolic DO production and consumption from gas exchange further suggests that signal 

divergence was not caused by the molecular properties of DO and NO3-N. These results agree 

with findings from Greiwe et al. (2020), who concluded that diel NO3-N signals are reflective of 

localized instream processes despite the potential for large streambed integration distances due to 

the nongaseous nature of NO3-N.  
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Finally, diel variation in biological NO3-N consumption via alternative pathways to 

assimilatory autotrophic uptake could decouple NO3-N and DO diel signals. A key assumption 

made in modeling UANO3 stipulated that changes in the diel NO3-N signal during daylit hours 

resulted from assimilatory biological use by autotrophs. However, previous publications have 

shown that denitrification can vary drastically over 24-h (Harrison et al. 2005, Hensley and 

Cohen 2020). Furthermore, increased nitrification during the day in stream sediments due to 

warm temperatures may promote denitrification (Lorenzen et al. 1998), resulting in the co-

occurrence of diurnal assimilatory autotrophic uptake and denitrification amplification. If 

denitrification was strongly dependent on nitrification in Miller Creek, diurnal changes in NO3-N 

would reflect not only assimilatory autotrophic uptake, but a convolution of signals from 24-h 

variation in autotrophic and heterotrophic processes that influence NO3-N abundance. However, 

timing of diel NO3-N maximum was not characteristic of signals resulting from high assimilatory 

autotrophic uptake and denitrification during the day, in which maxima occur midday or evening 

(Greiwe et al. 2020). 

Implications for modeling NO3
- uptake from diel signals 

This study provides methodology that allows for estimation of N uptake and metabolism at 

similar spatial scales using a single-station approach. The application of a Bayesian modeling 

method produced estimates of NO3
- uptake that agreed in magnitude to those calculated from 

GPP despite the presence of decoupled NO3-N and DO solutes. Consequently, these results 

provide insights into modeling techniques for N uptake in creeks that are highly interconnected 

with their watershed through hydrologic linkages for much of the year.   
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Supporting information 

Nitrate uptake model 

I derived the model for daily NO3-N uptake areal flux (UANO3, mg N m-2 d-1) from changes in 

NO3-N concentration over time attributed to assimilatory autotrophic uptake (
∆N

∆t
, mg N m-3 d-1). 

Deviation from ambient background NO3-N concentration ([N]dev, mg N m-3) due to 

denitrification and upstream inputs was represented by a temporal NO3-N rate, K (d-1). Changes 

in stream flow were included by multiplying by stream depth, z (m):   

UANO3 = (
∆N

∆t
+ K [N]dev) z                (1)    

Divide daily uptake areal flux by z to convert into a volumetric flux: 

UANO3

z
=

∆N

∆t
+ K [N]dev                           (2) 

Rearrange terms to solve for 
∆N

∆t
: 

∆N

∆t
=  

UANO3

z
− K [N]dev                                      (3) 

Take 
∆N

∆t
 between each timestep i and the preceding timestep i-1: 

([N]i−[N]i−1)

(∆t)
=  (

UANO3

zi
− K [N]dev)                                                                                               (4) 

Rearrange the equation to solved for [N]t1
 : 

[N]i = [N]i−1 + (
UANO3

zi
− K [N]dev) (∆t)                                                         (5) 
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I partitioned  
UANO3

zi
  with modeled light at each timestep (PPFDi, µmol m-2 h-1) from the 

beginning (u0) and end (u1) of each day (h), and integrated sunlight (PPFDu, µmol m-2) over 

continuous time u within each day (d): 

[N]i = [N]i−1 − (
 UANO3

zi
) (

(u1−u0)×PPFDi

∑ PPFDu n
𝑢=1

) + K [N]dev (∆t)                                            (8) 

Deviation in concentration due to denitrification and upstream input, [N]dev, was equal to the 

difference between background concentration, [N]b (mg N m-3), and [N]i−1: 

[N]i = [N]i−1 − (
 UANO3

zi
) (

(u1−u0)×PPFDt

∑ PPFDu n
𝑢=1

) + K ([N]b − [N]i−1) (∆t)                                (9)
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Supporting figures 

 

 

  

Fig. A.1. Median daily gas exchange rate (K600) and ER.  
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Fig.A.2.  (a) Best-fit GAM (black line) of daily groundwater discharge (open circles) with 95% 
confidence intervals (gray bands) and (b) first derivative of the model (black line) with 95% 
simultaneous confidence intervals (gray bands) from June to October. Periods of change in Qgw 

are indicated by derivative confidence intervals that do not include zero.  
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Fig.A.3.  Comparison of modeled trends (black lines) in (a) observed (open circles) daily DO 
and (b) NO3-N concentrations with 95% confidence intervals (gray bands). 
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Fig.A.4.  First derivatives (black lines) of (a) daily DO and (b) NO3-N concentrations with 95% 
simultaneous confidence intervals (gray bands).  
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Fig. A.5.  Relationships between ER and reach-average benthic standing stock metrics of (a) 
chlorophyll a content and (b) organic matter measured with AFDM, and (c) surface water DOC 
concentration. Lines denote best-fit linear regression.   
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Fig. A.6. (a) Diel DO amplitude (open circles) and 95 % confidence intervals (gray bands) over 
the growing season. (b) Derivative (black line) with 95% simultaneous confidence intervals (gray 
bands) indicated that there were no points of change in DO amplitude. 
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Fig. A.7. Growing season patterns in (a) diel NO3-N amplitude (open circles) and 95 % 
confidence intervals (gray bands). (b) Derivative (black line) with 95% simultaneous confidence 
intervals (gray bands).  
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Fig. A.8.  Diel timing of (a) DO maximum (open circles) with GAM (black line) and 95 % 
confidence intervals (gray bands) occurred later in the day as the study progressed, as 
indicated by positive (b) derivative with 95% simultaneous confidence intervals (gray bands).  
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Fig. A.9.  Diel timing of (a) NO3-N minimum (open circles) with GAM (black line) and 95 % 
confidence intervals (gray bands) and (b) derivative with 95% simultaneous confidence intervals 
(gray bands) during the study. 
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