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ABSTRACT:	The	notion	of	mathematical	knowledge	for	teaching	has	been	studied	by	many	
researchers,	especially	at	the	elementary	grades.	Our	understandings	of	this	notion	parallel	
much	of	what	we	have	read	in	the	literature,	but	are	based	on	our	particular	experiences	
over	the	past	20	years,	as	mathematicians	engaged	in	doing	mathematics	with	secondary	
teachers.	As	part	of	the	work	of	Focus	on	Mathematics,	Phase	II	MSP,	we	are	developing,	in	
collaboration	with	others	in	the	field,	a	research	program	with	the	ultimate	goal	of	
understanding	the	connections	between	secondary	teachers’	mathematical	knowledge	for	
teaching	and	secondary	students’	mathematical	understanding	and	achievement.	We	are	in	
the	early	stages	of	a	focused	research	study	investigating	the	research	question:	What	are	
the	mathematical	habits	of	mind	that	high	school	teachers	use	in	their	professional	lives	and	
how	can	we	measure	them?	The	main	focus	of	this	paper	is	the	discussion	of	the	habit	of	
using	mathematical	language,	and	particularly	how	this	habit	plays	out	in	a	classroom	
setting.	
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Our	Philosophy	and	Approach	

Building	on	two	decades	of	prior	work,	the	Focus	on	Mathematics	(FoM)	Math	and	Science	

Partnership	program	(MSP)	has,	over	the	last	decade,	developed	and	refined	a	distinctive	

framework	for	a	mathematics‐centered	approach	to	developing	teacher	leaders,	and	it	has	

built	a	mathematical	community	based	on	that	framework.	The	FoM	approach	involves	

teachers,	mathematicians,	and	educators	working	together	in	professional	development	

activities.	The	common	thread	running	through	this	tightly	connected	set	of	activities	is	an	

explicit	focus	on	mathematical	habits	of	mind.		

We	define	mathematical	habits	of	mind	(MHoM)	to	be	the	web	of	specialized	ways	of	

approaching	mathematical	problems	and	thinking	about	mathematical	concepts	that	

resemble	the	ways	employed	by	mathematicians	(Cuoco,	Goldenberg,	&	Mark,	1997,	2010;	

Goldenberg,	Mark,	&	Cuoco,	2010;	Mark,	Cuoco,	Goldenberg,	&	Sword,	2010).	These	habits	

are	not	about	particular	definitions,	theorems,	or	algorithms	that	one	might	find	in	a	

textbook;	instead,	they	are	about	the	thinking,	mental	habits,	and	research	techniques	that	

mathematicians	employ	to	develop	such	definitions,	theorems,	or	algorithms.	Some	

examples	of	MHoM	follow:	

 Discovering	the	structure	that	is	not	apparent	at	first	by	experimenting	and	seeking	

regularity	and/or	coherence.	

 Choosing	a	useful	representation—or	purposefully	toggling	among	various	

representations—of	a	mathematical	concept	or	object.	

 Purposefully	transforming	and/or	interpreting	algebraic	expressions	(e.g.,	rewriting	

x2 6x10	as	 (x 3)2 1	to	reveal	its	minimum	value).	
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 Using	mathematical	language	to	express	ideas,	assumptions,	observations,	

definitions,	or	conjectures.	

Our	work	over	the	past	decade	has	convinced	us	of	the	importance	of	MHoM	for	

students	and	for	teachers	of	mathematics,	particularly	at	the	secondary	level.	These	habits	

foster	the	development	and	use	of	general	purpose	tools	that	make	connections	among	

various	topics	and	techniques	of	secondary	school	mathematics	content;	they	can	bring	

parsimony,	focus,	and	coherence	to	teachers’	mathematical	thinking	and,	in	turn,	to	their	

work	with	students.	In	this	sense,	we	envision	MHoM	as	a	critical	component	of	

mathematical	knowledge	for	teaching	(Hill,	Rowan	&	Ball,	2005)	at	the	secondary	level	(i.e.,	

the	knowledge	necessary	to	carry	out	the	work	of	teaching	mathematics).	

We	begin	this	paper	by	describing	the	mathematical	community	that	we	have	built	

and	the	impact	that	it	has	had	on	our	teachers,	in	particular,	the	impact	on	teachers’	

mathematical	understanding	and	instructional	practices.	Then	we	discuss	the	research	that	

grew	out	of	our	desire	to	study	scientifically	how	MHoM	might	be	an	indicator	of	teacher	

effectiveness.	Lastly,	we	shed	light	on	one	habit	that	emerged	prominently	in	our	

research—using	mathematical	language.	We	examine	how	a	teacher	might	use	this	habit	in	

a	classroom,	possible	implications	for	student	learning,	and	how	use	of	the	habit	relates	to	

teachers’	use	of	other	mathematical	habits	in	the	classroom.	

We	end	this	section	with	a	few	remarks.	Although	we	describe	our	research	on	

MHoM,	the	emphasis	of	this	paper	is	not	on	our	study,	on	its	particular	outcomes,	or	on	the	

measurement	instruments	in	development.	Instead,	we	intend	to	illustrate,	using	examples,	

our	motivation	for	why	we	think	these	mathematical	habits	are	important.	Hence,	the	main	

focus	of	the	paper	is	the	discussion	of	the	habit	of	using	mathematical	language,	and	
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particularly	how	this	habit	plays	out	in	a	classroom	setting.	We	include	a	detailed	

discussion	of	the	FoM	MSP,	partly	to	situate	our	work	within	the	MSP	context	in	this	special	

issue	of	The	Mathematics	Enthusiast.	We	also	want	to	provide	background	for	the	research	

that	emerged	from	and	is	motivated	by	our	ongoing	MSP	work	with	secondary	teachers.	

Indeed,	our	study	of	teachers’	MHoM	and	corresponding	instrument	development	arose	

from	our	desire	to	measure	progress	in	and	continue	to	improve	our	work	with	our	own	

FoM	teachers.		

Focus	on	Mathematics	

	 Focus	on	Mathematics	(NSF	DUE	0314692)	is	a	targeted	MSP	funded	by	the	National	

Science	Foundation	since	2003.	Our	partnership	is	devoted	to	improving	student	

achievement	in	mathematics	through	programs	that	provide	teachers	with	solid	content‐

based	professional	development	sustained	by	mathematical	learning	communities	in	which	

mathematicians,	educators,	administrators,	and	teachers	work	together	to	put	mathematics	

at	the	core	of	secondary	mathematics	education.	

The	original	FoM	district	partners	include	the	Massachusetts	school	systems	of	

Arlington,	Chelsea,	Lawrence,	Waltham,	and	Watertown.	These	systems	range	from	

suburban	to	urban,	with	middle	and	high	school	student	populations	from	1,300	to	6,000.	

Over	the	years,	FoM	has	offered	a	variety	of	professional	opportunities	for	teachers,	

including:	(a)	a	public	colloquium	series	devoted	to	mathematics	and	education;	(b)	

partnership‐wide	mathematics	seminars;	(c)	week‐long	summer	institutes	for	teachers;	

(d)	online	problem‐solving	courses;	and	(e)	a	new	Mathematics	for	Teaching	Masters	

Program	at	Boston	University.	Two	activities	deserve	special	mention.		
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 PROMYS	for	Teachers	summer	institute,	a	six‐week	intensive	immersion	in	

mathematics,	engages	participants	in	experiencing	mathematics	as	mathematicians	

do,	solving	problems	and	pursuing	research	projects	appropriate	for	them.	Each	

summer,	the	institute	combines	teachers	from	multiple	districts,	Grades	5–12.	

 Academic‐year	study	groups	are	district‐based—often	building‐based—groups	that	

meet	biweekly	for	two	to	three	hours	over	the	course	of	a	year.	Though	focused	on	

doing	mathematics	(rather	than	being	taught	its	results	or	how	to	teach	it)—again,	

experiencing	mathematics	as	a	mathematician	would—these	trade	the	intensity	and	

immersion	of	the	summer	institute	for	long‐term,	ongoing	study.	

These	mathematical	learning	communities	with	core	involvement	of	

mathematicians	are	designed	to	help	teachers	develop	the	mathematical	habits	of	mind	

that	are	central	to	the	discipline	of	mathematics.	Our	teachers	have	responded	

enthusiastically,	with	comments	such	as:	

 “[The	study	group]	is	the	best	‘professional	development’	that	I	have	been	involved	

in	throughout	my	35‐year	teaching	career.	I	guess	the	best	testament	for	the	success	

of	Focus	on	Mathematics	comes	from	the	continued	attendance	of	so	many	teachers.	

We	continue	to	talk	about	the	topics	discussed	at	our	study	groups	long	after	the	

weekly	session	is	over”	(Cuoco,	Harvey,	Kerins,	Matsuura,	&	Stevens,	2011).	

 “The	[Masters]	program	has	expanded	my	knowledge	of	mathematics	and	deepened	

my	understanding	of	how	children	learn	mathematics,	but—more	importantly—I	

am	now	connected	to	people	who	are	as	passionate	about	children	learning	and	

doing	mathematics	as	I	am”	(Cuoco,	Harvey,	Kerins,	Matsuura,	&	Stevens,	2011).	
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To	study	the	impact	of	FoM’s	professional	development	programs	on	teachers’	

professional	lives,	the	Program	Evaluation	Research	Group	at	Lesley	University	(FoM’s	

evaluators)	collected	and	analyzed	teacher	and	student	data	over	five	years	(Lee,	

Baldassari,	Leblang,	&	Osche,	2009)	and	conducted	case	studies	of	teachers	(Baldassari,	

Lee,	&	Torres,	2009).	Below	are	those	findings	most	strongly	informing	our	current	work:		

 Teacher	beliefs	and	attitudes	about	the	nature	of	mathematics:	In	interviews,	

teachers	reported	understanding	the	structure	of	mathematics	in	greater	depth—

how	topics	and	ideas	are	connected	and	how	they	are	developed	through	the	grade	

levels.	Teachers	referred	to	developing	a	more	complete	picture	or	understanding	of	

mathematics	as	a	system	and	understanding	the	connections	between	different	

threads	within	it	(Lee,	Baldassari,	&	Leblang,	2006;	Lee,	Baldassari,	Leblang,	Osche,	

&	Hoyer‐Winfield,	2007).	

 Teacher	changes	in	instructional	practice:	Many	of	the	instructional	changes	teachers	

reported	stem	from	the	ways	in	which	they	experienced	learning	through	FoM	(Lee	

et	al.,	2006).	When	teachers	developed	a	deeper	understanding	of	mathematics,	

their	confidence	often	increased	and	they	developed	more	flexibility	in	their	

teaching	and	the	ability	to	adjust	lessons	based	on	student	responses.	

Through	our	work	in	FoM,	we	have	seen	that	MHoM	is	indeed	a	collection	of	habits	

teachers	can	acquire,	rather	than	some	static	you‐have‐it‐or‐you‐don’t	way	of	thinking.	And	

teachers	report	to	us	that	developing	these	habits	has	had	a	tremendous	effect	on	their	

teaching.	We	have	collected	ample	anecdotal	evidence,	but	recognize	the	need	for	

scientifically‐based	evidence	to	establish	that	these	teachers	have	indeed	learned	MHoM	
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and	that	these	habits	have	had	a	positive	impact	on	their	teaching	practices.	We	also	

recognize	the	need	to	study	student	outcomes	affected	by	teachers’	uses	of	MHoM.		

Mathematical	Habits	of	Mind	for	Teaching	Research	Study	

Focus	on	Mathematics,	Phase	II:	Learning	Cultures	for	High	Student	Achievement	(NSF	

DUE	0928735)	is	an	MSP	project	that	began	in	2009.	In	FoM‐II,	we	continued	to	refine	our	

mathematical	learning	communities	and	began	an	exploratory	research	study	focused	on	

teachers’	mathematical	habits	of	mind.		

As	a	basis	for	beginning	the	research	study,	we	used	the	theoretical	frameworks	

developed	by	Clarke	and	Hollingsworth	(2002)	for	their	“Interconnected	Model	of	Teacher	

Professional	Growth,”	which	is	characterized	by	networks	of	“growth	pathways”	among	

four	“change	domains”	in	teachers’	professional	lives—the	external	domain	(E),	the	

personal	domain	(K)	(of	knowledge,	beliefs	and	attitudes),	and	the	domains	of	practice	(P)	

and	salient	outcomes	(S).	Significant,	from	our	point	of	view,	is	the	Clarke‐Hollingsworth	

theory	of	professional	growth	(as	distinct	from	simple	change),	which	they	represent	as	“an	

inevitable	and	continuing	process	of	learning”	(p.	947).	They	aptly	distinguish	their	

framework	from	others:	“The	key	shift	is	one	of	agency:	from	programs	that	change	

teachers	to	teachers	as	active	learners	shaping	their	professional	growth	through	reflective	

participation	in	professional	development	programs	and	in	practice”	(Clarke	&	

Hollingsworth,	2002,	p.	948).	The	agency	of	teachers	in	their	own	professional	growth	

characterizes	virtually	all	FoM	programs,	so	we	see	the	Clarke‐Hollingsworth	model	of	

professional	growth	as	well	suited	for	our	purposes.	

We	illustrate	our	use	of	the	Clarke‐Hollingsworth	framework	with	an	example.	

Shown	in	Figure	1	is	a	change	environment	diagram	for	“Ms.	Crew,”	a	middle	school	
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teacher	and	active	member	of	the	FoM	learning	community.	The	diagram	represents	the	

change	domains	as	four	boxes,	labeled	E,	K,	P,	and	S,	as	explained	above.	The	solid	arrows	

refer	to	growths	due	to	enactment,	while	the	dashed	arrows	depict	those	due	to	reflection.	

The	loop	on	the	box	E	refers	to	interaction	between	study	groups	and	the	immersion.	

	

Figure	1.	Schematic	diagram	of	Ms.	Crew’s	change	environment	

This	particular	diagram	depicts	activity	related	to	Ms.	Crew’s	research	on	

Pythagorean	Triples	and	shows	how	this	activity	led	to	her	growth,	both	mathematically	

and	as	a	teacher.	Each	arrow	represents	a	growth	in	Ms.	Crew	that	occurred	as	a	result	of	a	

change	in	her	professional	life.	For	example,	arrow	6	depicts	how	her	increased	belief	

about	herself	(a	change	in	box	K,	the	personal	domain)	leads	to	Ms.	Crew	encouraging	her	

students	to	perform	more	explorations	(a	change	in	box	P,	the	domains	of	practice).	

Moreover,	arrow	6	is	solid,	because	the	change	in	her	classroom	is	due	an	enactment,	i.e.,	a	

particular	course	of	action	that	she	took	as	a	teacher.	The	arrows	are	numbered	in	

chronological	order,	so	arrow	1	denotes	a	growth	in	Ms.	Crew	that	occurred	before	that	

depicted	by	arrow	2,	and	so	on.	The	dashed	arrow	from	box	E	to	K	has	multiple	numbers	
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(as	does	the	solid	arrow	from	K	to	E).	Here,	the	dashed	arrow	may	be	interpreted	as	three	

separate	arrows	(arrow	1,	arrow	3,	and	arrow	5)—we	simply	condensed	them	into	one	

arrow	to	save	space	in	the	diagram.	

Ms.	Crew	first	encountered	the	concept	of	Pythagorean	Triples	while	studying	

Gaussian	integers	during	her	summer	immersion	experience.	The	topic	left	such	an	

impression	on	her	(reflective	arrow	1)	that	she	pursued	it	(enactive	arrow	2)	as	a	research	

project	under	the	guidance	of	an	FoM	mathematician.	Through	months	of	hard	work—

familiarizing	herself	with	Pythagorean	Triples	through	dozens	of	examples,	making	careful	

data	recording	and	analysis,	discovering	beautiful	patterns,	coming	up	with	interesting	

conjectures	(some	were	true,	some	were	false),	and	finally	writing	down	clear	and	concise	

propositions	and	proving	them—she	came	to	understand	(reflective	arrow	3)	features	of	

Pythagorean	triples	that	would	have	been	beyond	her	conception	before	this	experience.	

Ms.	Crew	produced	an	independent	research	paper	and	a	one‐hour	mathematics	talk	for	

her	peers	(enactive	arrow	4).	

Neither	the	summer	immersion	experience	nor	the	independent	research	project	

was	easy	for	Ms.	Crew,	who	came	into	our	program	with	a	rather	weak	mathematics	

background.	But	completing	this	project	had	a	significant	effect	on	her	mathematical	self‐

confidence	(reflective	arrow	5).	The	loops	of	this	upward	spiral	between	domains	K	and	E	

repeated	many	times.	Amongst	her	peers,	Ms.	Crew	became	one	of	the	leaders	in	her	study	

group	(4).	In	her	curriculum	planning,	she	now	has	more	belief	in	her	decision‐making	

abilities	(5).	And	in	her	classroom,	she	engages	her	students	in	performing	mathematical	

exploration	(6).	This	new	classroom	atmosphere,	as	well	as	her	new	attitude	towards	

mathematics,	led	to	more	curiosity	and	questions	from	her	students	(7,	8).	And	while	she	
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may	not	be	able	to	answer	all	of	them	on	the	spot,	she	now	welcomes	mathematical	dialogs	

and	uncertainty	in	her	classroom	(9,	10).	All	of	this	represents	significant	professional	

growth	and	Ms.	Crew’s	change	diagram	enables	us	to	see	the	elements	of	that	growth	at	a	

glance.	

Looking	at	Ms.	Crew’s	change	diagram,	one	cannot	fail	to	notice	the	intense	activity	

taking	place	around	the	node	K,	which	includes	growth	in	Ms.	Crew’s	knowledge	of	

mathematics.	But	it	seems	to	us	that	more	is	involved	than	simply	knowing	mathematics	as	

a	body	of	knowledge.	Ms.	Crew	is	learning	mathematics	in	a	certain	way.	Her	beliefs	about	

the	nature	of	mathematics	are	changing.	She	is	acquiring	certain	mathematical	habits	of	

mind	and	she	is	finding	these	habits	useful	for	her	work	in	the	classroom	and	also	for	

leadership	roles	in	the	school.	

	 	 Applying	this	framework	of	teacher	change,	we	began	to	build	for	ourselves	a	

theoretical	understanding	of	how	MHoM	plays	a	role	in	the	work	of	teaching.	Recognizing	

the	need	for	a	scientific	approach	to	test	the	theory,	and	indeed	investigate	the	ways	in	

which	MHoM	is	an	indicator	of	teacher	effectiveness,	we	conducted	an	exploratory	study	

titled	Mathematical	Habits	of	Mind	for	Teaching	that	centers	on	the	following	question:	

What	are	the	mathematical	habits	of	mind	that	secondary	teachers	use	in	their	

profession	and	how	can	we	measure	them?	

		 To	investigate	this	question,	we	developed	a	detailed	definition	of	MHoM	and	have	been	

building	the	following	two	instruments:	

 A	paper	and	pencil	(P&P)	assessment	that	measures	how	teachers	engage	MHoM	

when	doing	mathematics	for	themselves.	
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 An	observation	protocol	measuring	the	nature	and	degree	of	teachers’	uses	of	MHoM	

in	their	teaching	practice.	

We	emphasize	that	both	instruments	are	needed,	because	in	our	work	with	teachers,	we	

have	seen	those	who	have	very	strong	MHoM	for	themselves	but	do	not	necessarily	employ	

the	same	mathematical	habits	in	their	teaching	practices.		

Our	current	work	fits	into	a	larger	research	agenda	that	we	are	developing	in	

collaboration	with	leaders	in	the	field,	with	the	ultimate	goal	of	understanding	the	

connections	between	secondary	teachers’	mathematical	knowledge	for	teaching	and	

secondary	students’	mathematical	understanding	and	achievement.		

Operationalizing	MHoM		

To	operationalize	the	MHoM	concept,	we	relied	on	our	own	experiences	as	

mathematicians	doing	mathematics	with	secondary	teachers	(Stevens,	2001).	We	also	

studied	existing	literature—in	particular,	Dewey’s	(1916)	and	Dewey	and	Small’s	(1897)	

earlier	treatments	of	habits	and	habits	of	mind,	the	Study	of	Instructional	Improvement	

(SII)	and	the	Learning	Mathematics	for	Teaching	(LMT)	projects	to	develop	measures	of	

mathematical	knowledge	for	teaching	(MKT)	for	elementary	teachers	(Ball	&	Bass,	2000;	

Ball,	Hill,	&	Bass,	2005;	Hill,	Schilling,	&	Ball,	2004;	Hill,	Ball,	&	Schilling,	2008),	and	the	

description	by	Cuoco	et	al.	of	mathematical	habits	of	mind	(1997,	2010).	And	we	consulted	

the	national	standards,	i.e.,	the	NCTM	Principles	and	Standards	for	School	Mathematics	

(National	Council	of	Teachers	of	Mathematics	[NCTM],	2000)	and	the	Common	Core	

Standards	for	Mathematical	Practice	(National	Governors	Association	Center	for	Best	

Practices	and	the	Council	of	Chief	State	School	Officers	[NGA	Center	&	CCSSO],	2010).	But	

above	all,	we	went	into	the	classrooms	of	FoM	teachers,	where	we	observed	a	broad	
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sampling	of	MHoM	strengths.	Some	teachers	exhibited	precise	use	of	language	and	careful	

reasoning	skills;	others	had	strong	exploration	skills,	were	good	at	designing	mathematical	

experiments,	or	showed	special	strength	at	generalizing	from	concrete	examples.	

From	these	various	sources,	we	began	to	compile	a	list	of	habits	that	constitute	

MHoM.	As	the	list	grew,	we	identified	four	broad	and	overlapping	categories	into	which	our	

mathematical	habits	naturally	fell:	

● Seeking,	using,	and	describing	mathematical	structure	

● Using	mathematical	language	

● Performing	purposeful	experiments	

● Applying	mathematical	reasoning	

Indeed,	these	are	categories	of	mathematical	practices	that	are	ubiquitous	in	the	discipline.	

And	in	order	to	conduct	a	fine‐grained	study	of	these	categories,	we	teased	apart	multiple	

habits	within	each	category	that	we	wanted	to	measure,	some	of	which	were	identified	

earlier.	That	being	said,	we	primarily	envision	MHoM	as	being	comprised	of	the	four	

categories,	with	the	list	of	habits	within	each	category	providing	more	detail	and	texture	to	

these	four.	By	no	means	is	our	list	final.	In	fact,	we	consider	it	an	evolving	document	that	

we	will	continue	to	revise	as	we	obtain	more	data	using	our	instruments.	From	our	data,	

we	will	learn	which	habits	are	more	prominently	used	by	secondary	teachers,	both	when	

doing	and	teaching	mathematics.	

Paper	and	Pencil	(P&P)	Assessment	

We	developed	a	pilot	P&P	assessment	that	measures	how	secondary	teachers	use	

MHoM	while	doing	mathematics.	This	assessment	contains	seven	open‐ended	problems	

and	is	designed	to	be	completed	in	one	hour.	In	particular,	we	developed	problems	that	
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most	teachers	have	the	requisite	knowledge	to	solve,	or	at	least	begin	to	solve.	And	what	

we	are	assessing	is	how	they	go	about	solving	it.	It	is	the	choice	of	their	approach	that	we	

are	interested	in,	as	opposed	to	whether	or	not	they	have	the	necessary	knowledge/skills	

to	solve	it.	Each	item	is	designed	to	reveal	what	habits	and	tools	teachers	choose	to	use	in	

familiar	contexts.	To	date,	we	have	gone	through	several	rounds	of	design,	pilot‐test,	data	

analysis,	and	revision	of	this	instrument.	For	our	latest	pilot‐test	in	the	summer	of	2011,	we	

administered	the	P&P	assessment	to	43	secondary	mathematics	teachers	participating	in	

the	NSF‐funded	study	Changing	Curriculum,	Changing	Practice	(NSF	DRL	1019945).	We	will	

carry	out	another	field	test	with	approximately	50	teachers	in	the	summer	of	2012.		

To	gather	initial	data	on	the	role	that	teachers’	approach	to	solving	mathematics	

problems	plays	in	their	approach	to	mathematics	instruction,	we	asked	a	follow‐up	

question	to	some	of	our	P&P	assessment	problems:	What	strategies	would	you	want	your	

students	to	develop	for	a	problem	like	this?	Our	43	respondents	almost	unanimously	

reported	that	they	want	their	students	to	approach	the	problems	exactly	as	they	did	

themselves.	(Note:	A	few	teachers	wanted	their	students	to	appreciate	a	variety	of	

approaches.)	This	finding	provides	initial	evidence	that	teachers’	own	mathematical	work	

may	be	indicative	of	how	they	choose	to	explain/formulate	the	subject	matter	for	their	

students.	Recognizing	the	need	for	further	study	of	this	hypothesis,	we	began	to	create	an	

observation	protocol.		

Observation	Protocol	

We	are	in	the	process	of	designing	an	observation	protocol	and	coding	scheme	that	

measure	the	nature	and	degree	of	teachers’	uses	of	MHoM	in	their	classroom	instruction.	

To	develop	the	instrument,	we	conducted	live	and	videotaped	observations	of	two	to	three	
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consecutive	mathematics	lessons	collected	from	a	total	of	30	secondary	teachers	to	identify	

teacher	behaviors	that	reflect	the	uses	of	a	particular	mathematical	habit.	In	addition,	we	

developed	a	simple	protocol	for	pre‐	and	post‐	interviews	with	teachers	we	videotape.	We	

also	collected	classroom	artifacts	(lesson	plans,	in‐class	worksheets,	homework,	and	

assignments)	from	each	classroom	we	observed.		

	 	 An	important	feature	of	our	observation	protocol	is	that	it	measures	how	teachers	

use	MHoM	in	their	instruction.	Thus	teachers	are	coded	not	for	possessing	certain	

mathematical	habits	in	the	abstract,	but	for	choosing	to	bring	them	to	bear	in	a	classroom	

setting.	To	develop	such	an	instrument,	we	are	currently	studying	our	videos	and	slicing	

these	lessons	into	small	episodes—i.e.,	short	instructional	segments	lasting	30	seconds	to	4	

minutes.	In	each	episode,	we	determine	whether	there	were	behavioral	indicators	that	

reflected	teachers’	uses	of	MHoM,	and	we	create	codes	that	generalize	and	characterize	

these	teacher	classroom	behaviors.	We	emphasize	that	our	current	focus	is	on	teacher	

behaviors	and	uses	of	MHoM	in	the	classroom.	We	are	still	a	step	away	from	connecting	

teaching	practices	centered	on	MHoM	to	students’	development	of	MHoM	and	to	student	

achievement—partly	because	we	do	not	yet	have	the	instruments	to	assess	these	habits	in	

students—but	impacting	students,	of	course,	is	our	ultimate	goal.		

Later,	we	describe	three	teachers	from	whom	we	gathered	video	data	for	our	

observation	protocol	development.	Specifically,	we	will	discuss	how	they	apply	the	habit	of	

using	mathematical	language	in	their	classroom	instruction.	We	will	also	consider	how	

teacher	use	of	this	particular	habit	may	affect	student	understanding.		
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Relevant	Literature	and	Related	Work	

	 The	theory	of	mathematical	habits	of	mind	is	philosophically	grounded	in	Dewey’s	

(1916)	and	Dewey	and	Small’s	(1897)	earlier	treatments	of	habits	and	habits	of	mind.	

Their	seminal	work	has	since	encouraged	educators	(Duckworth,	1996;	Meier,	1995)	and	

education	researchers	(Kuhn,	2005;	Resnick,	1987;	Tishman,	Perkins,	&	Jay,	1995)	to	

further	operationalize	the	concept	of	habits	of	mind—that	is,	to	respond	to	the	general	

question:	What	do	habits	of	mind	look	like	in	the	context	of	learning?	Not	as	evident	in	the	

literature	are	the	habits	of	mind	that	promote	successful	learning	in	specific	disciplines.	In	

the	case	of	mathematics,	the	question	that	has	gained	research	attention	within	the	last	

decade	is:	What	do	habits	of	mind	look	like	in	the	context	of	learning	and	doing	mathematics?	

While	addressing	this	question	is	not	an	unfamiliar	task	(Hardy,	1940;	Polya,	1954a,	1954b,	

1962),	what	is	less	familiar	is	the	task	of	gathering	evidence	of	mathematical	habits	of	mind	

from	teachers	of	mathematics.	We	began	this	work	in	our	FoM‐II	study;	we	are	in	the	long‐

term	process	of	developing	valid	and	reliable	instruments	that	will	allow	us	to	more	

rigorously	investigate	the	relationship	between	teachers’	own	MHoM,	their	uses	of	MHoM	

in	their	teaching	practice,	and	student	achievement.	

As	mentioned	earlier,	we	envision	MHoM	as	an	integral	component	of	MKT	at	the	

secondary	level.	The	notion	of	MKT	has	been	studied	by	many	researchers	(Ball,	1991;	Ball,	

Thames,	&	Phelps,	2008;	Heid,	2008;	Heid	&	Zembat,	2008;	Heid,	Lunt,	Portnoy,	&	Zembat,	

2006;	Hill	et	al.,	2008;	Kilpatrick,	Blume,	&	Allen,	2006;	Leinhardt	&	Smith,	1985;	Ma,	1999;	

Stylianides	&	Ball,	2008).	Our	understandings	of	this	notion	parallel	much	of	what	we	have	

read	in	the	literature,	but	are	based	on	our	particular	experiences	over	the	past	20	years,	as	

mathematicians	engaged	in	doing	mathematics	with	secondary	teachers.		
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As	mathematicians	working	in	schools	and	professional	development,	we	have	come	

to	understand	some	of	the	ways	in	which	teachers	know	and	understand	mathematics.	

These	fit	into	four	large	and	overlapping	categories:	

(1) Teachers	know	mathematics	as	a	scholar:	They	have	a	solid	grounding	in	classical	

mathematics,	including	its	major	results,	its	history	of	ideas,	and	its	connections	to	

precollege	mathematics.	

(2) Teachers	know	mathematics	as	an	educator:	They	understand	the	thinking	that	

underlies	major	branches	of	mathematics	and	how	this	thinking	develops	in	

learners.	

(3) Teachers	know	mathematics	as	a	mathematician:	They	have	experienced	a	sustained	

immersion	in	mathematics	that	includes	performing	experiments	and	grappling	

with	problems,	building	abstractions	from	the	experiments,	and	developing	theories	

that	bring	coherence	to	the	abstractions.	

(4) Teachers	know	mathematics	as	a	teacher:	They	are	expert	in	uses	of	mathematics	

that	are	specific	to	the	profession,	including	the	ability	to	“think	deeply	of	simple	

things”	(Jackson,	2001,	p.	696),	the	craft	of	task	design,	and	the	“mining”	of	student	

ideas.	

	The	first	two	of	these	ways	of	knowing	mathematics	are	common	to	most	pre‐service	and	

in‐service	professional	development	programs.	FoM	has	paid	particular	attention	to	the	

last	two,	which	typically	receive	less	emphasis.	We	have	become	convinced	that	(3)	greatly	

enriches	and	enhances	the	other	ways	of	knowing	mathematics	and	that	many	teachers	

who	go	through	such	an	experience	develop	the	habits	of	mind	used	by	many	

mathematicians.	Furthermore,	we	have	seen	that	participation	in	a	mathematical	learning	
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community	helps	such	teachers	“bring	it	home”	in	the	sense	that	they	create	strategies	for	

helping	their	students	develop	the	mathematical	habits	that	they	themselves	have	found	so	

transformative.		

		 	 Other	researchers	are	developing	instruments	to	assess	secondary	teachers’	content	

knowledge	and	use	of	mathematics	in	their	classrooms	(Bush	et	al.,	2005;	Ferrini‐Mundy,	

Senk,	McCrory,	&	Schmidt,	2005;	Horizon	Research,	Inc.,	2000;	Measures	of	Effective	

Teaching	Project,	2010;	Piburn	&	Sawada,	2000;	Reinholz	et	al.,	2011;	Shechtman,	

Roschelle,	Haertel,	Knudsen,	&	Vahey,	2006;	Thompson,	Carlson,	Teuscher,	&	Wilson,	n.d.).	

In	developing	our	own	instruments,	we	have	drawn	insight	from	all	of	these	projects.	But	

we	have	most	closely	followed	the	model	developed	by	Ball	and	Hill—specifically,	their	

MKT	assessment	and	Mathematical	Quality	of	Instruction	(MQI)	protocol	for	documenting	

MKT	in	elementary	teachers	(Hill	et	al.,	2005;	Learning	Mathematics	for	Teaching,	2006).	

Their	instruments	measure	“specialized”	mathematical	knowledge,	that	is,	knowledge	that	

teachers	use,	as	distinct	from	the	mathematical	knowledge	held	by	the	general	public	or	

used	in	other	professions,	whose	components	include	representation	of	mathematical	

ideas,	careful	use	of	reasoning	and	explanation,	and	understanding	unique	solution	

approaches.	These	skills	resemble	the	kinds	of	mathematical	habits	that	we	are	interested	

in	studying	at	the	secondary	level.	

The	collective	efforts	of	the	field	will	all	contribute	to	what	we	know	about	MKT,	but	

there	are	important	differences	between	our	instruments	and	those	of	others.	The	

differences	are	listed	below.	

 A	focus	on	MHoM—the	methods	and	ways	of	thinking	through	which	mathematics	

is	created—rather	than	on	specific	results	(Cuoco	et	al.,	1997).	It	is	impossible,	even	
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in	three	or	four	years	of	high	school	mathematics	aligned	with	the	Common	Core,	to	

equip	students	with	all	of	the	facts	they	will	need	for	college	and	career	readiness.	

But	learning	to	think	in	characteristically	mathematical	ways	is	a	ticket	to	success	in	

fields	ranging	from	business,	finance,	STEM‐related	disciplines,	and	even	building	

trades.	

 The	core	involvement,	at	every	level,	of	mathematicians	who	have	thought	deeply	

about	the	implications	of	their	own	habits	of	mind	for	precollege	mathematics	

curricula,	teaching,	and	learning	(Bass,	2011;	Schmidt,	Huang,	&	Cogan,	2002).		

	 	 Our	instruments	are,	therefore,	aimed	at	discerning	the	extent	to	which	secondary	

classrooms	are	centered	on	the	practice	of	doing	mathematics	rather	than	on	the	special‐

purpose	methods	that	often	plague	secondary	curricula	(Cuoco,	2008).	In	our	work	with	

teachers,	we	have	seen	how	expert	teachers	use	core	mathematical	habits	of	mind	in	their	

profession—in	class,	in	lesson	planning,	and	in	curricular	sequencing.	And,	as	the	Common	

Core	becomes	the	nationally	accepted	definition	of	school	mathematics,	teachers	will	be	

expected	to	make	the	development	of	mathematical	habits	an	explicit	part	of	their	teaching	

and	learning	agenda.	Our	work,	therefore,	makes	a	unique	contribution	to	the	field’s	

increasing	level	of	attention	to	secondary	mathematics	teaching.				

Using	Mathematical	Language	

	 In	this	section,	we	will	focus	on	a	specific	mathematical	habit—using	mathematical	

language—and	examine	how	teachers	use	this	core	habit	in	their	instructional	practice.	We	

will	also	consider	its	potential	implications	for	student	learning,	and	how	this	habit	may	

work	in	conjunction	with	other	mathematical	habits	in	the	classroom.		
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In	particular,	we	will	discuss	examples	of	three	teachers	whose	Algebra	1	

classrooms	we	observed	in	our	research	study.	We	will	begin	with	Mr.	Hart,	who	uses	

mathematical	language	to	encapsulate	the	experiences,	observations,	and	discoveries	of	his	

students.	Second,	we	will	look	at	Ms.	Graham,	who	uses	precise	and	operationalizable	

language	as	a	way	of	promoting	conceptual	understanding	and	ease	of	problem‐solving.	

And	third,	we	will	describe	an	example	of	a	teacher,	Mr.	Braun,	whose	choice	of	language	

can	interfere	with	students’	engagement	in	activities	designed	to	promote	other	MHoM.	

All	three	of	these	teachers	have	shown	evidence	of	strong	MHoM	in	their	own	doing	

of	mathematics.	Mr.	Hart	has	held	formal	and	informal	leadership	roles	in	a	number	of	

FoM’s	mathematical	learning	communities;	and	in	those	roles,	he	has	exhibited	strong	

MHoM.	The	other	two	teachers	performed	well	on	our	P&P	assessment.	The	names	of	these	

teachers	have	been	altered	to	protect	their	identities.		

Mr.	Hart	

	 We	consider	Mr.	Hart,	an	Algebra	1	teacher	who	uses	mathematical	language	to	

encapsulate	the	underlying	structure	that	students	discovered	through	experimentation.	

The	mathematical	topic	of	the	day	is	recursive	rules.	The	class	begins	with	students	

working	on	the	following	warm‐up	problem.	

A	function	follows	[this	rule]	for	integer	valued	inputs:	The	output	for	a	given	input	is	 3
2
	

greater	than	the	previous	output.	Make	a	table	that	matches	the	description.	Can	you	

make	more	than	one	table?				

Note	that	the	rule	is	incomplete,	because	it	is	missing	the	base	case.	Students	experiment	

with	this	rule,	creating	input/output	tables	and	trying	to	derive	closed‐form	equations.	
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Because	of	their	different	choices	of	base	cases,	they	come	up	with	different	functions	

defined	by	expressions	of	the	form	 f (x)  3

2
xb .	Students	conclude	that	the	graphs	of	

these	functions	are	parallel	lines	with	different	y‐intercepts.	Mr.	Hart	also	asks,	“So	what’s	

the	part	where	you	get	to	be	creative	in	making	these	tables?”	He	then	explains,	“So	you	get	

to	pick	one	number,	and	then	everything	else	is	decided	by	the	part	that	I	gave	you	[in	the	

warm‐up].	But	there’s	still	an	awful	lot	of	different	numbers.”	Here,	he	is	foreshadowing	the	

need	to	fix	the	base	case.		

Then	Mr.	Hart	formally	introduces	the	notions	of	recursive	rule	and	base	case	to	

summarize	students’	experiences	and	to	capture	the	underlying	structure	they	observed	

when	working	on	the	warm‐up	problem.	He	says,	

A	recursive	rule,	that’s	just	the	description	that	tells	us	how	to	get	from	an	output—

to	an	output	from	the	previous	ones.	So	basically,	what	we	were	doing.	Now	as	you	

saw,	there’s	another	piece	that’s	not	really	enough	information.	It’s	just	me	telling	

you	how	to	get	from	one,	to	the	next,	to	the	next.	To	have	a	complete	rule,	we	also	

need	to	know	where	to	start.	Because	otherwise,	we	won’t	know	if	we	have	the	rule	

that—the	first	rule,	the	second	rule,	the	third	rule,	or	some	other	rule	completely.	

(Video	transcript,	February	14,	2011.)			

Next,	the	class	studies	the	function	described	by	the	following	table:	

n	 f (n)

0	 3	

1	 8	

2	 13	

3	 18	
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4	 23	

5	 28	

6	 33	

	
In	this	table	of	data,	students	recognize	the	+5	pattern,	i.e.,	“You	add	5	to	the	output.”	

Through	discussion,	Mr.	Hart	guides	them	to	articulate	the	relationship	more	precisely:	

f (5)  f (4)5. 	Using	this	concrete	example,	students	are	able	to	derive	a	general	equation:	

f (n)  f (n1)5.	

To	make	sense	of	this	recursive	rule,	Mr.	Hart	points	out	that	the	equation	

f (n)  f (n1)5	“lets	us	relate	any	output	to	a	previous	one.”	In	essence,	it	is	the	symbolic	

representation	of	what	he	told	students	in	the	warm‐up	problem.	Then	he	describes	the	

need	for	the	base	case,	saying,	“But	that	wasn’t	quite	enough	because	lots	of	you	wrote	

down	different	rules.	And	[Student	1]	had	one,	[Student	2]	had	a	different	one,	[Student	3]	

had	a	different	one	probably,	and	so	on.	So	we	need	something	else	to	sort	of	fix	it	in	place.”			

Here,	a	student	interrupts	and	proposes	a	closed‐form	rule:	 f (n)  5n3.	There	are	

now	two	ways	to	describe	the	function	at	hand,	namely	the	(still	incomplete)	recursive	rule	

f (n)  f (n1)5	and	the	closed	form	rule	 f (n)  5n3.	He	says,	“[The	recursive	rule]	tells	

us	how	to	work	our	way	down	the	table.	If	I	know	one	value,	I	know	23,	I	can	find	the	next	

one	really	easily.	Now	this	one’s	[points	to	the	closed‐form	rule]	nice	too	because	it	lets	me	

work	across	the	table.	If	I	know	the	input,	I	can	say	the	output	really	quickly.”	In	this	short	

episode,	Mr.	Hart	uses	the	symbolic	representation	of	each	rule	to	discuss	its	underlying	

structure.		

Mr.	Hart	returns	to	the	equation	written	on	the	board	(i.e.,	 f (n)  f (n1)5)	and	

says,	“But	still,	this—this	rule	almost	tells	me	the	whole	table,	but	it	doesn’t	quite	because	
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I’m	missing	one	critical	piece	of	information.”	A	student	chimes	in,	“Well,	you	don’t	know	

what	you	started	with.”	Mr.	Hart	responds	with,	“That’s	a	good	point.	Yeah,	so	like	

[Student]’s	saying	this	3	in	the	table,	that’s	where	we’re	starting.		So	we	kind	of	need	to	

know	that.	So	the	way	(pause)	a	good	way	that	we	can	sort	of	keep	track	of	this	and	write	

our	rule...”	Almost	20	minutes	into	the	lesson,	Mr.	Hart	finally	introduces	the	complete	

notation	

f (n) 
3 if n  0,

f (n1)5 if n  0.






	

He	explains	this	new	equation	by	saying,	“So	this	formula	captures	exactly	what	we	did.	The	

key	part	is	the	recursive	part	that	we	had	written	down	already.	And	this	just	adds	that	last	

bit,	the	base	case,	so	we	can	summarize	it	into	one	compact	rule.”	

Instead	of	being	a	starting	point,	this	notation	is	the	culmination	of	the	structures	

that	students	discovered	through	their	experimentation	and	the	follow‐up	discussion.	

Students	readily	make	sense	of	the	new	notation	and	the	accompanying	ideas	that	it	

encapsulates,	because	the	experience	gained	through	their	“struggles”	allows	them	to	

connect	the	new	language	to	already‐established	ideas.	

Mr.	Hart	uses	the	structure	that	students	found	through	their	experiments	to	motivate	

the	language	needed	to	describe	their	observed	results.	For	instance,	students’	experiments	

with	the	warm‐up	problem,	in	which	they	propose	different	functions	that	all	satisfy	the	

given	rule,	make	the	need	for	the	base	case	come	alive	for	them.	Indeed,	his	mathematical	

habits	of	mind	allow	Mr.	Hart	to	create	a	learning	environment	where	students	build	new	

knowledge	from	their	experiences	(NCTM,	2000).	
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Ms.	Graham	

	 Through	Ms.	Graham,	we	look	at	how	an	Algebra	1	teacher	uses	precise	and	

operationalizable	language	as	a	way	of	promoting	ease	of	problem‐solving.	More	

specifically,	she	helps	students	make	sense	of	the	objective	of	the	given	problem	and,	

subsequently,	provides	insight	into	how	to	proceed.	

		 	 In	this	episode,	a	student	asks	about	the	following	question:	

Determine	if	 r  2 	is	a	solution	to	6r  2 12 r. 	

	Ms.	Graham	asks,	“Did	we	not	understand	what	they	were	asking?”	The	student	confirms,	

“Yeah,	obviously	there’s	an	easier	way	to	do	it,	but	I	just	didn’t	know	how.”	Then	the	

following	dialogue	occurs,	in	which	Ms.	Graham	presses	for	the	meaning	of	the	word	

“solution”:	

Teacher	(T):	 All	right.	When	we	use	the	word	“solution,”	all	right,	we’ve	talked	a	lot	about	

what	a	solution	is.	What	does	“solution”	mean?	

Student	(S):	 Like,	does—it—when	it	works.	

T:	 When	you	said	“it	works,”	what	do	you	mean?	Because	I	think	you’re	on	the	right	

track.	

S:	 Like,	does	it	make	sense?	

T:	 Be	a	little	more	specific.	

S:	 I	don’t	know	how,	like…	

T:	 What	does	“solution”	mean,	anyone	know?	All	right.	

New	student	(SN):	 The	answer?	

T:	 “The	answer.”	We	talked	about	this	a	lot.	What’s	a	solution	to	an	equation?	

SN:	 Something	that	can	go	into	make	an	equation	work.	
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T:	 Something	that	makes	the	equation	true,	OK?		

As	we	will	see	later	in	Mr.	Braun’s	example,	“works”	is	often	used	by	students	and	

teachers	to	describe	what	it	means	for	a	number	to	be	a	solution	to	an	equation.	Ms.	

Graham	does	not	settle	for	this	nor	other	oft‐used	phrases	such	as	“it	makes	sense”	and	

“the	answer.”	The	language	used	by	students	does	not	help	them	unravel	the	problem	to	

understand	what	they	are	being	asked	to	do.	Only	after	the	operational	definition	of	

“solution”	has	been	given	can	Ms.	Graham	continue	with	an	explanation	of	how	to	proceed.	

T:	 We’re	stating	that	6r  2 	will	be	equal	to	12 r.	And	they’re	asking,	“Is	 r  2 	a	

solution?”	So	you	got	to	test	it	out,	just	as	I	asked	you	to	test	out	that	one	that	we	

just	did.	So	6r  2 12 r. 	Substitute	in	 r  2.	So	6	times	2 	plus	2—does	that	have	

the	same	value	as	12	plus	2?		And	we	have	to	test.	All	right?	We’re	asking	ourselves	

the	question	of,	does	this	equal	that?	[Points	to	each	side	of	the	equation.]	OK?		

Then	Ms.	Graham	leads	the	class	through	the	process	of	substituting	 r  2 	into	the	

equation	and	concluding	that	it	is	not	a	solution,	since	 r  2 	yields	unequal	values	of	10 	

and	10	for	the	two	sides	of	the	equation.	The	student	who	originally	inquired	about	this	

question	says,	“Ok.	Now	I	get	it.”	The	definition	of	“solution”	provided	by	Ms.	Graham—

namely,	“something	that	makes	the	equation	true”	is	operational	(i.e.,	students	can	use	this	

definition	to	understand	and	accomplish	the	task	posed	by	the	given	question).	Indeed,	

once	the	definition	has	been	given,	substituting	 r  2 	and	checking	if	it	makes	the	

equation	true	is	a	natural	next	step.	

Ms.	Graham	concludes	this	episode	by	foreshadowing	what	students	will	be	learning	

next,	by	providing	them	with	another	definition:	
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T:	 We’re	getting	to	the	point	where	we’re	going	to	ask	you,	“What	is	the	value	of	r	that	

makes	the	equation	true?”		And	that’s	called	solving	the	equation.	

Throughout	the	lesson,	Ms.	Graham	consistently	uses	language	carefully.	She	corrects	a	

student	who	writes	828 903 305 25,	calling	it	a	“run‐on	sentence	in	math.”	When	

a	student	describes	two	sides	of	an	equation	by	saying,	“It’s	equals,”	Ms.	Graham	

immediately	responds,	“They’re	equal	to	each	other.”	She	repeatedly	tells	students	to	check	

their	answer	after	solving	an	equation,	reminding	them	what	“solution”	means.	She	is	also	

precise	in	her	instructions	(e.g.,	asking	the	students	to	“write	an	expression	for	the	right	

side	of	the	equation,	so	that	you’ve	got	an	equation	that	works	and	is	true	when x  3”).		

Mr.	Braun	

One	of	the	issues	we	have	encountered	in	the	development	of	our	observation	

protocol	is,	“What	counts	as	evidence	of	non‐use	of	MHoM?”	In	the	case	of	the	habit	of	using	

mathematical	language,	we	do	see	moments	in	which	teachers	choose	less	careful	language.	

For	example,	a	teacher	might	choose	to	use	informal	language.	Sometimes	there	is	evidence	

that	the	teacher	is	making	this	choice	because	the	informal	language	seems	more	accessible	

to	students.	But	such	choices—if	not	made	carefully—can	lead	to	student	confusion.	

In	the	following	example,	Mr.	Braun	is	setting	up	an	investigation	that	aims	to	lay	

the	foundation	that	the	graph	of	an	equation	is	a	representation	of	the	solution	set	of	the	

equation	(Education	Development	Center,	Inc.,	2009b).	To	launch	the	investigation,	Mr.	

Braun	writes	the	equation	3x 2y 12 	on	the	overhead	projector	and	asks	students,	

“What’s	the	answer?”	He	then	describes	some	of	the	solutions	students	offer	as	“that	

works”	or	“that	doesn’t	work.”	The	following	is	an	excerpt	from	the	launch	of	the	

investigation.	There	are	two	things	to	note.	First,	Mr.	Braun	is	modeling	how	students	
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might	experiment	with	numbers	as	a	way	of	making	sense	of	the	relationship	between	

graphs	and	equations.	Second,	observe	how	frequently	he	uses	the	word	“works.”		

T:	 3x 2y 12 .	What’s	the	answer?	

SN:	 It’s	complicated.	

T:	 Oh,	no.	What	do	you	think?	

SN:	 1	and	2?	

T:	 You	think	I	can	use	1	and	2?	

S:	 x	is	1	and	y	is	2.	

T:	 x	is	1	and	y	is	2.	How	would	I	find	out	if	[name]	is	right?	I	could	put	in	the	numbers	

that	he	gave	me,	so	I’m	going	to	put	in	1	for	x	and	I’m	going	to	put	in	2	for	y,	and	do	I	

get	12,	like	I’m	supposed	to?	What’s	31?	

Students	(Ss):	3.	

T:	 What’s	2 2 ?	

Ss:	 4.	

T:	 What’s	3	+	4?	

Ss:	 7.	

T:	 Did	I	get	12?	

Ss:	 No.	

T:	 Man,	[name],	that’s	a	bummer.		OK,	so—	

SN:	 Oh,	I	know	it.	

T:	 —that	was	something	that	didn’t	work.	It’s	not	bad	to	find	out	things	that	don’t	

work.	Sometimes,	you’re	going	to	be	asked	in	these	investigations	to	find	things	that	

don’t	work,	so	remember	how	we	did	that.	



TME, vol10, no.3, p. 761 

 

 

At	this	point,	the	teacher	continues	to	take	student	guesses	for	x	and	y.	Students	

make	guesses	and	one	student	suggests	 x  2 	and	 y  3.	Mr.	Braun	tries	that	suggestion,	

and	sees	that	indeed,	3(2) 2(3) 12.	

T:	 OK,	so	we	found	out	that	1	and	2	did	not	work;	we	found	out	that	2	and	3	did	work.	

Do	you	think	there	are	any	more	things	that	don’t	work?	

SN:	 Yes.	

T:	 A	lot	more	things	that	don’t	work.	OK,	do	you	think	there	are	any	more	things	that	

do	work?	

S:	 Yes.	

T:	 Can	you	think	of	another	thing	that	does	work?	[...]	

SN:	 3(3)…	

T:	 OK,	if	I	put	a	three	there,	OK.	

S:	 And	then,	the	2y	is	2,	2(1).	

T:									 21. 	OK,	this	is	9,	right?	Plus	2,	makes	11	instead	of	12.	So,	we	found	another	thing	

that	doesn’t	work.	So,	I—[name],	you	must	have	been	right,	there	were	more	things	

that	do	not	work.	Can	you	find	anything	else	that	does	work?	

SN:	 4	and	1.	

T:	 You	think	4	and	1	works?		Where	do	I	put	my	4,	for	x	or	for	y?	

S:	 For	x,	yeah.	

T:	 OK,	so	I	put	in	3(4)	+	2(1),	that	gives	me	12	+	2	=	14.	We	found	another	thing	that	

doesn’t	work.	

S:	 Actually,	put	3	for	y,	plus	1.5.	

T:	 […]	2(1.5),	what	are	we	going	to	get?	
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Ss:	 It’s	3.	

T:	 3,	and	we	had	9.	Is	3	+	9	=	12?	

Ss:	 Yes.	

T:	 Hey,	look	at	that.	All	right,	now,	that’s	the	kind	of	thing	I	want	you	to	do.	You’re	just	

going	to	try	some	things.	Some	of	them	will	work;	some	of	them	won’t	work.		

Mr.	Braun	has	modeled	a	detailed	investigation	of	looking	for	points	that	satisfy	the	

equation	3x  2y 12, 	using	the	word	“works”	as	a	substitute	for	“satisfies	the	equation.”	

He	uses	the	phrases	“works”	and	“doesn’t	work”	repeatedly.	He	then	hands	out	a	worksheet	

for	investigation	that	includes	the	problems:		

	 Each	point	in	the	following	table	satisfies	the	equation	 x  y  5. 		

a) Complete	the	table.		

x	 y	 (x,	y)	

1	 4	 (1,	4)

2	 	 	

3 	 	

	 0	 	

1
2 	 	 	

	 2 	 	

	  11
3
	 	

	

b) Graph	the	 (x, y) 	coordinates	that	satisfy	the	equation	 x y  5. 	[Grid	supplied.]	

c) What	shape	is	the	graph?		

and		

Use	the	equation	2x 3y 12.	
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a) Find	five	points	that	satisfy	the	equation.	

b) Find	five	points	that	do	not	satisfy	the	equation.		

Students	begin	the	investigation.	Some	do	not	know	what	it	means	for	a	point	to	

“satisfy	an	equation.”	Mr.	Braun	had	created	the	worksheet	based	on	problems	in	an	

Algebra	1	textbook—in	the	book,	students	are	reminded	that	“If	a	point’s	coordinates	make	

an	equation	true,	the	point	‘satisfies	the	equation’”	(Education	Development	Center,	Inc.,	

2009a,	p.	251).	Mr.	Braun	had	left	that	reminder	off	of	his	worksheet,	and	some	of	the	

students	get	stuck.	For	example:		

S:	 …	Please!	

T:	 You	just	told	me,	though.	[Laughter]	What	are	we	trying	to	do?	What’s	it	asking	you	

to	do?	

S:	 Find	this	point…	

T:	 OK,	what	does	“satisfy”	mean?	That’s	the	same	equation	we	played	with	at	the	

beginning	of	class,	right?	

S:	 I	don’t	know.	

T:	 It	is,	right?	We	didn’t	say	“satisfy”	and	“not	satisfy”;	what	were	the	words	that	we	

used?	

S:	 I	don’t	know.	I	don’t	know.	

T:	 When	[name]	gave	us	3	and	1.5,	what	did	we	say?	

S:	 Decimal?	

T:	 Well,	we	said	they	were	decimals,	we	sighed	at	[name],	but	beside	that,	what	else	

did	we	say?		What	does	this	side	equal?	

S:	 x?	y?	What?	
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T:	 What’s	33?		

S:	 9.	

T:	 What’s	21.5?	

S:	 3.	

T:	 What’s	9	+	3?	

S:	 12.	

T:	 So,	what	did	we	say?	“[Name]’s	solution...”	

S:	 Works?	

T:	 Works!	“Works”	is	another	word	for	“satisfies.”	If	you	want	to	sound	smart,	you	say,	

“It	satisfies	the	equation.”	OK?	All	right.			

Similarly,	another	student	asks:			

S:	 I	don’t	understand	what	it’s	asking	us!	[Laughter]	

T:	 All	right,	fair	enough.	It	says,	“Sketch	a	graph	of	all	the	(x,	y)	coordinates	that	

satisfy”—work—“in	this	equation,”	and	here’s	my	equation.	

On	one	hand,	this	is	not	a	big	deal.	The	teacher	can	travel	from	group	to	group,	

reminding	them	what	“satisfies	the	equation”	means,	but	he	usually	simply	says	that	“it	

means	‘works.’”	However,	“works”	as	a	description	is	not	operational.	When	students	are	

solving	problems,	they	repeatedly	ask	about	the	phrase	“satisfies	the	equation.”	Rather	

than	offer	the	operationalizable	definition:	“if	a	point’s	coordinates	make	an	equation	true,	

the	point	satisfies	the	equation,”	Mr.	Braun	returns	to	the	phrase	“works.”		

It	is	worth	noting	that	the	following	day,	Mr.	Braun	poses	a	warm‐up	question	to	his	

class:	“What	does	it	mean	to	be	a	solution?”	Although	he	does	not	specifically	address	the	
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definition	of	a	point	satisfying	an	equation	(and	the	issue	continues	to	persist	for	students),	

he	does	start	working	on	unpacking	that	language	for	students.		

Common	Themes	in	the	Examples	

	 Several	observations	and	questions	emerge	for	us	in	these	examples.	First,	what	

strikes	us	again	and	again	is	the	complexity	of	teachers’	uses	of	MHoM.	These	habits	cannot	

be	deployed	independently	in	the	classroom	any	more	than	they	can	be	when	teachers	(and	

mathematicians)	do	mathematics	for	themselves.	In	fact,	we	saw	that	the	habit	of	using	

mathematical	language	can	either	complement	or	get	in	the	way	of	student	

experimentation	and	inquiry,	depending	on	how	the	teacher	uses	the	habit.	In	Mr.	Hart’s	

class,	the	precise	definition	of	recursive	function	is	motivated	by	the	structure	that	his	

students	discovered	through	experimentation.	And,	in	turn,	Mr.	Hart	plans	to	use	this	

function	notation	as	an	investigative	tool	to	explore	further	topics	(e.g.,	the	connection	

between	linear	and	exponential	functions).	Mr.	Braun	also	brings	experimentation	into	his	

classroom.	Indeed,	his	students	conduct	an	investigation	to	explore	the	relationship	

between	an	equation	and	its	graph.	However,	some	students	have	difficulty	beginning	the	

investigation,	because	they	do	not	understand	the	language	they	encounter	in	the	task.	

Here,	an	operational	definition	of	the	phrase	“satisfies	the	equation”	may	have	led	them	to	

understand	the	problem	statements	and	given	them	insight	into	how	to	proceed.	

	 Throughout	these	examples,	we	also	saw	how	the	use	of	mathematical	language	can	

support	students’	understanding.	In	Ms.	Graham’s	class,	we	see	how	she	pushes	her	

students	to	clearly	state	the	meaning	of	the	word	“solution.”	And	its	definition	becomes	a	

vehicle	that	facilitates	the	problem‐solving	process.	In	contrast,	we	see	Mr.	Braun	whose	

students	encounter	the	phrase,	“satisfy	the	equation.”	Instead	of	providing	a	usable	
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definition,	he	offers	an	alternative,	namely	“works.”	We	believe	Mr.	Braun	is	well‐

intentioned	here.	Specifically,	there	is	evidence	that	he	is	trying	to	make	the	language	less	

intimidating	for	students	by	offering	a	more	informal	phrase.	Indeed,	he	says,	“‘Works’	is	

another	word	for	‘satisfies.’		If	you	want	to	sound	smart,	you	say,	‘It	satisfies	the	equation.’”	

But	as	discussed	earlier,	“works”	is	a	phrase	that	is	difficult	to	operationalize.	It	leads	to	

confusion	for	his	students,	because	they	do	not	know	how	to	use	it.	One	of	the	mathematical	

practices	advocated	by	the	Common	Core	is	attending	to	precision.	The	Common	Core	

states	that,	“Mathematically	proficient	students	try	to	communicate	precisely	to	others.	

They	try	to	use	clear	definitions	in	discussion	with	others	and	in	their	own	reasoning”	

(NGA	Center	&	CCSSO,	2010,	p.	7).	That	“usability”	of	language	is	an	important	part	of	

communicating	precisely,	and	one	that	seems	especially	important	for	teachers.		

In	particular,	the	careful	use	of	mathematical	language	not	only	helps	clarify	ideas	

for	students,	as	it	did	in	Ms.	Graham’s	class,	but	it	helps	them	understand	the	mathematics	

itself	in	a	deeper	way.	We	see	this	in	Mr.	Hart’s	lesson,	where	the	recursive	formula	for	

f (n) 	captures	the	properties	of	the	function	that	students	found	through	their	

investigations.	Indeed,	this	formula	is	both	a	product	and	a	reflection	of	their	experiences.	

In	our	work	with	FoM	teachers,	we	have	found	that	encapsulating	various	insights	into	

precise	language—as	we	saw	in	Mr.	Hart’s	class—helps	one	better	understand	the	ideas	

themselves.		

Mr.	Hart	also	recognizes	the	power	of	precise	language	to	drive	further	

investigations.	Later	in	the	school	year,	these	students	will	use	function	notation	to	study	

transformations	of	functions	(e.g.,	stretches,	shrinks,	and	translations).	He	adds,	“I	think	
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that	will	be	a	place	where	students	will	really	appreciate	the	function	notation	in	

representing	those	transformations	more	easily.”	

Mr.	Hart	concludes	the	post‐interview	by	describing	how	today’s	lesson	is	part	of	a	

bigger	unit	and	how	it	sets	the	foundation	for	later	lessons.	He	plans	to	use	these	recursive	

rules	as	a	vehicle	for	better	understanding	their	closed‐form	counterparts.	In	a	future	

lesson,	students	will	investigate	the	connection	between	linear	and	exponential	functions.	

“I	want	my	students	to	see	that	recursively,	exponential	functions	are	very,	very	similar	in	

their	representation	to	linear	functions.	I	think	that	will	provide	a	nice	foundation	for	

studying	exponents,”	he	says.	Here,	Mr.	Hart	is	using	the	language	of	recursive	functions	to	

shed	light	on	the	connections	between	their	corresponding	closed‐form	representations.		

Our	own	goals	in	watching	these	videos	have	been	to	better	understand	teachers’	

uses	of	MHoM,	and	to	learn	about	how	we	might	measure	that	use.	Part	of	our	desire	to	

measure	the	use	stems	from	our	desire	to	understand	(eventually)	the	link	between	

teachers’	uses	of	MHoM	and	learning	outcomes	for	students,	particularly	if	we	can	measure	

students’	uses	of	MHoM	or	students’	facility	with	Common	Core’s	Mathematical	Practices,	

which	include	significant	overlap	with	MHoM.	Within	the	context	of	the	examples	in	this	

paper,	might	teachers’	use	of	language	have	an	impact	on	student	achievement?	Even	to	

begin	to	answer	such	a	question,	we	must	have	some	objective	way	of	deciding	whether	or	

not	a	given	teacher	is	using	clear,	usable,	and	precise	language.		This,	too,	is	complex.	

Establishing	what	counts	as	“clear,	usable,	and	precise”	language	depends	very	much	on	the	

classroom	context.	Mr.	Braun	uses	the	word	“works”	so	consistently	in	his	classroom	

discussion,	that	if	it	did	not	cause	confusion,	surely	we	would	want	to	“rate”	that	as	totally	

acceptable	language,	taken	as	shared	by	the	whole	classroom.			
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Impact	and	Next	Steps		

	 We	began	our	research	work	partly	because	we	wanted	to	assess	the	effects	of	our	

own	MSP	professional	development	programs	using	tools	that	were	consistent	with	the	

goals	of	our	MSP,	and	partly	because	we	wanted	to	understand	the	MHoM	of	secondary	

teachers	better.	We	did	not	find	instruments	that	measured	teachers’	MHoM—either	when	

doing	mathematics	for	themselves	or	teaching	mathematics	in	their	classrooms—in	

existence	in	the	field,	so	we	began	to	create	our	own.	Although	we	expected	to	learn	from	

the	data	gathered	using	our	instruments,	we	did	not	anticipate	the	immediate	implications	

that	our	research	would	have	on	the	professional	development	programs	in	our	MSP.	For	

example,	based	on	what	we	had	learned	from	our	research,	we	piloted	the	Mathematical	

Habits	of	Mind	Shadow	Seminar	in	the	summer	of	2011,	geared	toward	teacher	participants	

returning	to	PROMYS	for	Teachers	(our	summer	immersion	program)	for	a	second	

summer.	Through	discussions,	readings,	curriculum	analyses,	and	lesson	designs,	the	goal	

of	this	seminar	was	to	explore	(a)	the	ways	in	which	secondary	teachers	know	and	use	

MHoM	in	their	profession,	and	(b)	the	effects	that	a	learning	environment	that	stresses	

MHoM	might	have	on	secondary	students.	We	will	continue	to	offer	and	refine	this	course	

as	part	of	our	summer	immersion	program	for	teachers.	

We	also	did	not	anticipate	the	potential	for	impact	on	the	field.	While	development	

and	validation	of	truly	reliable	tools	is	beyond	the	scope	of	the	current	FoM‐II	study,	we	

have	been	laying	the	groundwork	for	our	MHoM	instruments—the	P&P	assessment	and	the	

observation	protocol—over	the	last	few	years.	This	exploratory	phase	of	instrument	

development	also	coincided	with	the	emergence	of	the	Common	Core	State	Standards	and	

its	adoption	by	45	states	(NGA	Center	&	CCSSO,	2010).	Our	MHoM	construct	is	closely	



TME, vol10, no.3, p. 769 

 

 

aligned	with	the	Common	Core,	especially	its	Standards	for	Mathematical	Practice,	and	

there	is	considerable	overlap	in	the	two.	For	example,	both	place	importance	on	seeking	

and	using	mathematical	structure,	uses	of	precision,	and	the	act	of	abstracting	regularity	

from	repeated	actions.	As	we	presented	our	preliminary	findings	at	national	conferences	

(Matsuura,	Cuoco,	Stevens,	&	Sword,	2011;	Matsuura,	Sword,	Cuoco,	Stevens,	&	Faux,	

2011),	we	received	several	requests	to	use	our	instruments,	even	though	they	were	in	the	

pilot	phase	of	development.	One	district	leader	wanted	to	diagnose	the	preparedness	of	her	

teachers	to	teach	from	a	curriculum	based	on	the	Common	Core.	Others	wanted	to	use	the	

instruments	as	pre‐	and	post‐	measures	for	evaluating	professional	development	programs	

aligned	to	the	Common	Core.	We	have	become	abundantly	aware	of	the	national	need	for	

valid	and	reliable	instruments	to	measure	teachers’	knowledge	and	use	of	

MHoM/Mathematical	Practices,	as	well	as	guidelines	for	acceptable	use	of	such	

instruments.	Thus,	in	the	next	phase	of	our	research,	we	plan	to	subject	our	pilot	

instruments	to	rigorous	scientific	testing.	The	examples	in	this	paper	are	exemplars	of	

those	that	provide	both	the	content	basis	for	the	P&P	assessment	and	the	behavioral	

indicators	for	the	observation	protocol.	
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