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Globally, biodiversity is declining while emerging infectious diseases are on the rise. To 

explain this pattern, the “dilution effect” hypothesis predicts that with lower diversity, 

disease increases, because diversity “dilutes” disease.  Although there is strong support 

for this hypothesis, there is evidence to support the “amplification effect” hypothesis, 

which predicts lower disease with lower diversity. Recently, there has been a push to 

investigate underlying mechanisms than general patterns to create a more mechanistic 

framework across disease systems. However, mechanisms have been mostly examined 

with indirectly-transmitted disease systems (e.g., Lyme disease), while less attention has 

been directed towards directly-transmitted systems, such as rodent-hantavirus systems.  

 

For my dissertation, I investigated mechanisms behind diversity-disease patterns in 

directly-transmitted disease systems, using the North American deermouse (Peromyscus 

maniculatus)-Sin Nombre hantavirus (SNV) system as a model. SNV is an emerging 

zoonosis with high human fatality. A dilution effect has been primarily reported for this 

well-studied system, which exhibits density-dependent transmission. Because community 

composition than diversity pe se, is most likely responsible for a dilution effect, in this 

dissertation I primarily considered heterospecific competitors as the component of the 

community responsible for affecting disease. 

 

In Chapter 1, I briefly introduce my dissertation. In Chapter 2, I discuss theory and 

empirical evidence of mechanisms that underlie patterns between disease and diversity 

(or community composition) across rodent-hantavirus systems through a systematic 

literature review. I conclude that host density is most likely the primary mechanistic 

driver, with density-independent mechanisms (i.e. contact rates, probability of 

transmission given contact and infectious period) requiring further investigation. In 

Chapter 3, I experimentally validate the use of two enzyme immunoassays for measuring 

fecal corticosterone metabolites in deermice, as a measure of stress. In Chapter 4, I 

present observational data that voles and shrews have negative impacts on deermouse 

stress physiology but differentially influence scar numbers (a proxy for contact rates). In 

Chapter 5, I use a mathematical model with interspecific competition and a deconstructed 

transmission rate (i.e. contact rates and probability of transmission) to show that non-

monotonic patterns (increase then decrease) between competitor density and disease 

prevalence represent most of the realistic parameter space examined.
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CHAPTER 1 OVERVIEW OF DISSERTATION 

 

BACKGROUND 

Globally, biodiversity is declining while emerging infectious diseases are on the rise. To explain 

this pattern, the “dilution effect” hypothesis predicts that with lower diversity, there will be 

higher disease risk because diversity “dilutes” disease. However, community composition (e.g., 

competitors) may be more important than diversity per se. Although the “dilution effect” 

hypothesis has been tested across various disease systems, its underlying mechanisms have been 

studied mostly in vector-borne (e.g., Lyme disease) and environmentally-transmitted (e.g., 

amphibian trematodes) disease systems. However, mechanisms in directly-transmitted disease 

systems, such as rodent-hantavirus systems, have been relatively understudied. This is an 

important knowledge gap because mechanisms will differ between directly-transmitted and other 

disease systems. A mechanistic approach can help us better understand and predict how losses in 

biodiversity can impact disease outcomes in people, animals, and plants, across disease systems. 

RESEARCH OBJECTIVES 

Although rodent-hantavirus systems are commonly cited as examples of directly-transmitted 

disease systems that support the “dilution effect” hypothesis, we know little about the underlying 

mechanisms. The overall goal of this dissertation was to investigate the mechanisms that drive 

patterns between disease and diversity (or community composition) in directly-transmitted 

disease systems, using rodent-hantavirus systems as models. Through a systematic literature 

review, I collated the existing evidence on diversity-disease patterns across rodent-hantavirus 

systems, identified and synthesized mechanistic evidence, and demonstrated diversity-disease 

outcomes in a realistic modeling framework that incorporated opposing mechanisms. To 

empirically collect my own mechanistic evidence, I used Sin Nombre hantavirus (SNV), and its 

reservoir host, the North American deermouse (Peromyscus maniculatus, hereafter deermouse), 
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as a model system in western Montana grasslands. In this system, voles (Microtus spp.) are the 

dominant competitor of deermice with shrews (Sorex spp.) serving as an additional member in 

species-poor small mammal communities. Based on evidence from the literature, I hypothesized 

that voles would influence contact rates, induce chronic stress, and suppress immunity in 

deermice, with shrews having a lesser effect. To empirically quantify how competitors impacted 

stress physiology of deermice, I conducted experimental studies in the laboratory and field to 

validate two enzyme immunoassays for measuring fecal metabolites of corticosterone (the 

primary glucocorticoid hormone in deermice), as a measure of stress. Over approximately two 

years, I performed an observational study at Ninepipe WMA where I trapped small mammals 

monthly and collected measures of contact rates (scar numbers), immunity, and stress physiology 

from deermice (using one of the immunoassays from Chapter 3 in addition to other measures). 

Motivated by the theoretical results of Chapter 2 and empirical results of Chapter 4, I modified 

an existing mathematical model of the deermouse-SNV model to run simulations where I 

incorporated effects of vole competitors on deermouse density, intraspecific contact rates, and 

immunity via stress physiology, to examine single and interactive effects on disease outcomes.   

RESULTS 

In Chapter 2, I described all the possible density-dependent and -independent (contact rates, 

probability of transmission given contact, infectious period) mechanistic links between disease 

prevalence and species diversity (or community composition) for directly-transmitted diseases 

with one primary reservoir and density-dependent transmission, a combination representative of 

rodent-hantavirus systems. Through a systematic review, I found evidence for dilution, 

amplification, and neutral outcomes across rodent-hantavirus systems. Most importantly, 

mechanistic studies primarily examined host density, with fewer investigating density-

independent mechanisms. A modeling exercise inspired by empirical data, with the deermouse-
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SNV system, demonstrated a non-monotonic outcome between diversity and disease when 

density-dependent and -independent mechanisms competed within the same system. In Chapter 

3, I provided experimental evidence that physiologically validated two different enzyme 

immunoassays for quantifying fecal corticosterone metabolites (FCMs), a measure of stress in 

deermice and showed that confinement in a live-trap for more than four hours can increase 

FCMs in free-ranging deermice. In Chapter 4, I demonstrated associations between 

heterospecific competitors (voles and shrews) and measures of contact rates (scar numbers) and 

stress physiology (FCMs, body condition). In particular, only shrews decreased stress response 

FCMs in deermice whereas both shrews and voles decreased body condition scores. I also found 

that deermice had higher neutrophil/lymphocyte ratios (a measure of stress) during 

spring/summer, and lower white blood cell counts (a measure of immunity), with higher scar 

numbers (a measure of contact rates) in summer. In Chapter 5, I demonstrated that a non-

monotonic outcome between competitor density and disease prevalence, a result of competing 

density-dependent and -independent mechanisms, occupied most of the parameter space 

examined, which was kept realistic for the deermouse-SNV system.  

CONCLUSIONS 

The systematic review suggests that host density is most likely the primary mechanism by which 

diversity can indirectly impact disease prevalence, and that density-independent mechanisms 

(contact rates, probability of transmission given contact, and infectious period) still require 

further empirical investigation. The latter is especially important because non-monotonic 

outcomes between diversity and disease could occur when density-independent mechanisms 

compete with host density in the same disease system. Given the results from the observational 

study at Ninepipe WMA, stress physiology could perhaps be an important mediator by which 

diversity (or community composition) may impact probability of transmission given contact, 
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thereby increasing the host’s susceptibility to infection or infectiousness. Lastly, non-monotonic 

outcomes stemming from competing mechanisms, occupied most of the parameter space 

examined for the deermouse-SNV system. This is crucial because non-monotonic outcomes 

could be misinterpreted since researchers typically look only for linear relationships in field 

studies. Indeed, such misinterpretations could help explain why some studies report no 

relationships between diversity and disease.  
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CHAPTER 2 MECHANISTIC LINKS BETWEEN BIODIVERSITY AND DIRECTLY-

TRANSMITTED DISEASES: A REVIEW OF THEORY AND EMPIRICAL EVIDENCE 

FROM RODENT-HANTAVIRUS SYSTEMS 

 

ABSTRACT 

Globally, biodiversity is declining while emerging infectious diseases are on the rise. To explain 

this pattern, the “dilution effect” hypothesis predicts that with lower diversity, there will be 

higher disease risk because diversity “dilutes” disease. The mechanisms behind this hypothesis 

have been relatively understudied in directly- transmitted disease systems, such as 

orthohantaviruses (hereafter hantaviruses) and their rodent reservoirs. Here, we aim to: (1) 

characterize mechanisms underlying diversity-disease relationships in rodent-hantavirus systems, 

(2) review the literature to identify and synthesize mechanistic evidence, and (3) demonstrate 

relationships that could occur from competing mechanisms within a modeling framework. Our 

findings suggest that host density is the primary mechanistic driver of a diversity-disease pattern, 

and density-independent mechanisms (intraspecific contact rates, probability of transmission, 

and infectious period) still require further investigation. Our modeling exercises demonstrate that 

a decrease (dilution) or increase (amplification) in disease prevalence could occur, as well as a 

non-monotonic pattern (increase then decrease), depending on mechanisms considered (density-

dependent and -independent) and their relationship with diversity. The modeling findings 

advocate for the examination of understudied mechanisms and could explain the idiosyncratic 

nature of diversity-disease relationships. Although this review focuses on directly-transmitted 

diseases, our mechanistic approach and findings can be extended to other diseases.  

 

THE RELATIONSHIP BETWEEN DIVERSITY AND DISEASE 

Globally, anthropogenic actions have led to a rapid loss in species diversity [1] while 

emerging infectious diseases of humans [2] and wildlife [3] have been on the rise. To explain 
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this alarming pattern, the “dilution effect” hypothesis postulates that as species diversity 

decreases, disease risk increases (e.g. higher disease prevalence or transmission), because 

diversity “dilutes” disease [4]. This hypothesis has attracted a great deal of attention because if 

true and universal, conserving biodiversity would be a win-win scenario for both conservation 

and public health. However, there has been a heated debate about its generality and applicability 

across host-parasite systems [5-8]. This is partially because of evidence that supports an 

alternative hypothesis, the “amplification effect” hypothesis, which predicts that as diversity 

decreases, disease risk decreases [4,9]. The debate resulted in a call to move beyond simply 

describing correlations between diversity and disease, to investigating and identifying the 

mechanisms behind these patterns [10-12]. Such an approach can generate mechanistic models 

that can guide useful strategies for mitigation and prevention of infectious diseases [13].  

Of the empirical studies focused on testing mechanisms that lead to disease dilution or 

amplification [4], most have been with vector-borne parasites, such as Borrelia burgdorferi 

(causative agent of Lyme disease) (e.g. [14]), and parasites with complex life cycles, such as 

amphibian trematodes (e.g. [15]). Although most infectious diseases are transmitted directly, 

relatively few studies have examined the mechanisms that underlie relationships between such 

diseases and biodiversity [11,13]. This is problematic because mechanisms can differ between 

directly-transmitted and other systems. Therefore, more empirical studies that investigate 

mechanisms in directly-transmitted disease systems are urgently needed. 

 

DIVERSITY-DISEASE PATTERNS IN DIRECTLY-TRANSMITTED DISEASE SYSTEMS 

Orthohantaviruses (Orthohantavirus; Hantaviridae; Bunyavirales; hereafter hantaviruses), 

and their rodent hosts, [16] are examples of directly-transmitted disease systems, which have 

received considerable attention from a diversity-disease perspective. Indeed, these systems are 
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commonly cited as examples of directly-transmitted diseases that support the “dilution effect” 

hypothesis. The focus on these systems is likely because of two reasons. Firstly, because several 

hantaviruses can cause fatal disease in humans, there is an urgency to investigate their 

epidemiology and ecology to help inform public health [17]. Secondly, these systems meet the 

criteria necessary for diversity to “dilute” disease because other species do not typically serve as 

viable hosts and hantavirus reservoirs are likely to persist as species diversity declines [18]. 

To various degrees, six recent reviews have synthesized evidence about diversity-disease 

relationships across rodent-hantavirus systems [17,19-23]. However, there has been no 

systematic review delving into the mechanisms that drive these relationships, the focus of this 

review. Here, we summarize what is presently known about diversity-disease patterns. Next, we 

summarize and synthesize empirical evidence about the underlying mechanisms. Lastly, we 

demonstrate the significance of considering simultaneous mechanisms within the modeling 

framework of a directly-transmitted disease system.  

Although we focus on rodent-hantavirus systems, our mechanistic approach of reviewing 

theory and evidence can be valuable across host-parasite systems. Importantly, our quantitative 

approach of incorporating multiple mechanisms within a modeling framework can be customized 

and extended to other systems. 

DIVERSITY-DISEASE PATTERNS IN RODENT-HANTAVIRUS SYSTEMS 

 

HANTAVIRUSES AND THEIR RESERVOIR HOSTS 

Hantaviruses are found in Eurasia, Africa, and the Americas [24]. Several hantaviruses 

have been classified as emerging zoonoses, including Sin Nombre virus (SNV) and Andes virus 

(ANDV) in the Americas, Puumula virus (PUUV) in Europe, and Hantaan virus (HTNV) in Asia 

[25]. SNV and ANDV cause hantavirus cardiopulmonary syndrome with up to a 40% fatality 

rate in humans. In contrast, HTNV and PUUV cause hemorrhagic fever with renal syndrome 
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with lower fatality rates [17,26]. Humans are typically exposed to hantaviruses indirectly via 

aerosolized excreta and secreta of infected rodents [17]. 

Hantaviruses are primarily transmitted between hosts during aggressive encounters 

[17,27], although indirect transmission may also occur [28-29]. Hantaviruses typically cause a 

chronic infection in their hosts despite life-long production of antibodies [17]. Although 

infection does not typically lead to overt clinical signs [30], some studies with free-ranging hosts 

have found negative effects, such as lower survival [31] and reduced fecundity [32].  

 

EVIDENCE FOR DIVERSITY-DISEASE RELATIONSHIPS IN RODENT-HANTAVIRUS 

SYSTEMS 

Our literature review identified 35 studies (Table 2.1), including studies that did not test 

for mechanisms (see supplementary information about search process). However, two were 

meta-analyses [63-64] that included studies our search had already found. Consequently, these 

were not included in Table 2.1, but we discuss them further in the supplementary information. 

Out of the remaining 33 studies, three were experimental [39,54,59].  We also note that a few 

studies used subsets of the same datasets (N = 8, Table 2.1), which we counted only once if they 

generated identical outcomes. In the end, most studies identified a dilution effect (N = 12 

[18,33,36-38,41,43,46,48,54,58,60]). Others found either no effect (N = 6 [49,51,53,55,57,59]), 

amplification (N = 2 [42,50]), or a non-monotonic outcome (N = 1, [62]). The remaining studies 

reported conditional outcomes: a “component amplification” effect with overall dilution or no 

effect depending on geographic location (N = 1, [11]), amplification or a non-monotonic 

relationship depending on the diversity metric (N = 1, [61]), and dilution or no effect depending 

on the diversity (N = 1, [35]) or disease (N = 2, [47,50]) metric. 
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Most studies were done on a small spatial scale (i.e. field plots), which is the scale where 

we expect diversity to affect disease spread. Two studies were performed at a larger spatial scale 

(i.e. municipality or district) [61-62], which we revisit in the modeling section. 

 

DIVERSITY-DISEASE MECHANISMS: THEORY AND EVIDENCE 

Rodent-hantavirus studies have used various metrics to quantify disease, including prevalence of 

hantavirus antibody (i.e., seroprevalence), number of infected individuals, and individual 

probability of infection (i.e., force of infection). Because most studies used antibody prevalence, 

we focused on this metric. 

 

DETERMINANTS OF DISEASE PREVALENCE  

For directly-transmitted diseases with one primary reservoir host, such as hantaviruses, 

there are three determinants of R0, which dictates disease prevalence at equilibrium [4]. 

Therefore, when antibody prevalence is the metric used, there are three mechanisms that can 

directly drive diversity-disease relationships (Figure 2.1, gray arrows). The first is contact rates 

between infected and susceptible hosts, which diversity can affect directly (sensu encounter 

reduction, [4], Figure 2.1, gray arrow) or indirectly via host density (sensu susceptible host 

regulation, [4], Figure 2.1, blue arrow). The second is probability of transmission given contact 

(sensu transmission reduction, [4], Figure 2.1, gray arrow), representing host infectiousness and 

susceptibility to infection [65], which can also be affected indirectly via density (sensu 

susceptible host regulation, [4], Figure 2.1, blue arrow). The third is the infectious period of 

hosts (sensu infected host mortality, recovery augmentation, or both [4], Figure 2.1, gray arrow), 

which can be affected indirectly via density as well (sensu susceptible host regulation, [4], Figure 

2.1, blue arrow). For rodent-hantavirus systems, the infectious period is determined by host 
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survival because hosts never recover from infection. If diversity affects any of these 

mechanisms, it can alter disease prevalence and lead to dilution or amplification. 

As mentioned above, host density can play a powerful role in how the three determinants 

of R0 can influence disease prevalence. However, we do not consider host density as a direct 

determinant of R0 because it can only affect disease indirectly. Importantly, the indirect effect of 

density on disease via intraspecific contact rates, will only apply when disease transmission is 

density-dependent. With density-dependent transmission, contact rates are expected to increase 

directly with host density (Figure 2.1, blue arrow)— that is, the true contact rate will be 

determined by , where κ is a constant and N is host density [66]. For example, an increase in 

diversity could affect density-dependent contact rates by reducing host density and leading to 

lower overlap of home ranges, thereby reducing contact rates. For diversity to directly affect 

contact rates, it needs to do so independent of host density (Figure 2.1, gray arrow). For example, 

an increase in diversity could affect density-independent contact rates by changing host behavior, 

such as restricting movement in the presence of competitors. However, with frequency-

dependent transmission, contact rates are independent of density [66]; therefore, diversity cannot 

indirectly impact contact rates via density.  

In contrast to contact rates, mode of transmission does not matter when host density 

affects the other two determinants of R0 — probability of transmission given contact and 

infectious period (Figure 2.1, blue lines). Empirical evidence suggests that a higher host density, 

could increase the probability of transmission given contact (hereafter, probability of 

transmission), via stress-induced suppression of immunity (e.g. [67-68]). Alternatively, higher 

host density could reduce probability of transmission if it leads to enhanced immunity (e.g. [69]). 

Furthermore, evidence suggests that higher density could increase the infectious period by 
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increasing host survival if access to food resources is increased (e.g. [70]). However, higher 

density could also decrease the infectious period if it leads to a decline in food availability (e.g. 

[71]). Therefore, whenever we examine relationships between diversity and disease, there is 

evidence to suggest the need to consider the effects of density, not only on contact rates but also 

on the probability of transmission and infectious period.  

In the end, it is important to consider that multiple mechanisms, acting independent 

(Figure 2.1, gray lines) or dependent on host density (Figure 2.1, blue lines), may be at play at 

any given time, which may lead to opposing, additive, or synergistic effects on outcomes.  

We found 14 studies that examined mechanisms behind diversity-disease relationships 

for rodent-hantavirus systems. Studies have paid most attention to host density, and to a lesser 

extent, contact rates independent of density as hypothetical mechanisms, whereas probability of 

transmission, and infectious period, have been neglected (Table 2.1). Below, we review existing 

evidence to provide a strong foundation for future studies. We focus on the deermouse-SNV 

system because it was the most commonly investigated (Table 2.1). However, we provide some 

evidence for the bank vole-PUUV system in the supplementary information. 

 

HOST DENSITY 

Host density can have a central role in driving disease prevalence by potentially affecting 

each of three mechanisms: contact rates, probability of transmission, and infectious period. 

Consequently, when diversity is negatively or positively associated with host density, there will 

be fewer or more hosts, respectively, with higher diversity, which can indirectly influence 

contact rates, probability of transmission, and infectious period (Figure 2.1).  

For host density to indirectly drive diversity-disease relationships, two conditions must be 

met: (1) host density must associate with species diversity, and (2) transmission must be density-
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dependent for contact rates to serve as a mechanism (Figure 2.1, blue line). However, even if 

transmission is density-dependent, density-mediated changes in contact rates are not the only 

possible mechanism; probability of transmission and infectious period could also serve as 

possible mechanisms (Figure 2.1, blue lines). Generally, when diversity negatively affects 

density, dilution would be expected. Alternatively, if diversity positively affects density, 

amplification would be predicted. Below, we examine evidence for the two conditions listed 

above.  

There is compelling evidence that host density is a key mechanism driving the 

relationship between diversity and disease. This is exemplified by four empirical studies that 

identified dilution, and also a negative relationship between diversity and deermouse density 

(Table 2.1, [11, 33, 36-37]). However, depending on the ecological scenario, diversity does not 

always lead to a decrease in host density, and subsequently dilution is not observed. For 

example, Luis et al. [11] found a dilution effect in the southwest U.S.A., where they also saw a 

negative relationship between small mammal diversity and deer mouse density; however, they 

found no evidence for dilution in Montana, U.S.A., where there was no relationship between 

diversity and density (Table 2.1). Although the meta-analysis by Vadell et al. [63] merged 

deermouse-SNV with other systems, they found that host density was the main predictor of 

hantavirus prevalence, and once accounted for, there was no significant effect of diversity on 

disease prevalence, and only weak evidence for a negative relationship between diversity and 

density. Taken together, these studies strongly suggest that density is a strong indirect 

determinant of disease, and when diversity decreases host density, there is a dilution effect, but 

when diversity does not decrease host density, there is no effect.  
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A positive relationship between host density and disease prevalence is expected if there is 

density-dependent transmission. In the deermouse-SNV system, researchers have not 

consistently found a simultaneous positive relationship between host density and disease 

prevalence ([33, 36-37] but see [40]), and some have concluded that diversity could not affect 

contact rates via density. However, Luis et al. [72] showed that deermouse density does indeed 

correlate positively with SNV prevalence, but with a variable time lag, which is most apparent 

when using a dynamical mathematical model with density-dependent transmission. Because 

SNV prevalence lags behind deermouse density, testing for a simultaneous relationship between 

current deermouse density and SNV prevalence can lead to misinterpretations.  Given the rising 

support for density-dependent transmission, host density may indeed serve as a key indirect 

determinant of disease prevalence. 

However, there are two studies that contradict this line of reasoning. The first is by 

Dizney & Dearing [38], from Utah U.S.A., who found a dilution effect at two sites varying in 

diversity but not current deermouse density. However, because of inherent time lags in how SNV 

prevalence manifests, it is unclear if the two sites were indeed similar. The second study is by 

Carver et al. [41], from one site in Montana, U.S.A, who found a positive relationship between 

vole and deermouse densities. Although the authors found no relationship between SNV 

prevalence and vole density (i.e. no effect), they did find a dilution effect when voles were 

present (i.e. a temporal dilution).  

Despite their contradictory findings, these two studies used sites included in the more 

extensive studies by Clay et al. [33] and Luis et al. [11]. Although Clay et al. [33] did find 

dilution, they also found a negative relationship between diversity and density by using data 

collected over a longer time span from 16 sites. In contrast to Carver et al. [41], Luis et al. [11] 
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detected no dilution and no relationship between density and diversity when they analyzed five 

more sites from Montana. However, Luis et al. [11] used density and diversity values that were 

averaged across time, whereas Carver et al. [41] examined average values from month-to-month. 

Therefore, it will be important to further examine how incorporating temporal fluctuations in 

diversity, density and disease metrics could affect study conclusions. In summary, differences in 

study design and data analysis could be why these two studies do not fit the overall pattern. 

 

DENSITY-INDEPENDENT CONTACT RATES 

For directly-transmitted diseases with density-dependent transmission, intraspecific 

contact rates could be affected by species diversity in two ways— indirectly, through changes in 

host density (Figure 2.1, blue arrow), and directly, independent of density (Figure 2.1, gray 

arrow). To determine if diversity affects density-independent contact rates, studies must ensure 

that contact rates are not changing due to density (Figure 2.1, blue arrow). When diversity 

directly reduces contact rates (e.g. via changes in host behavior), dilution can emerge, whereas 

amplification can occur, when diversity directly increases contact rates (Figure 2.1, gray arrow).  

Only five studies tested contact rates as a hypothetical mechanism. Four directly 

evaluated contact rates through observational or experimental design setups, whereas one did so 

indirectly, as a component of the transmission rate (Table 2.1).  

Two of the five studies were performed at sites naturally varying in deermouse density. 

Therefore, density was not manipulated but accounted for during analyses. The first study is 

from Utah, U.S.A., which found lower intraspecific contact rates at more diverse sites [34]. The 

authors used foraging arenas and infrared cameras to document the frequency and duration of 

contacts. Their findings suggested that a higher diversity decreases frequency of contacts but not 

their duration. Although interesting, two limitations were the inclusion of an influential outlier, 
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and the foraging arenas may have artificially modified behavior. The second study from 

Montana, U.S.A., found that the number of scars (a proxy for contact rates) was differentially 

associated with densities of shrews (Sorex spp.) and voles (Microtus spp.), but not deermice [42]. 

Despite intriguing conclusions, number of scars is unlikely to be a very precise measure. Taken 

together, although these studies provide motivating evidence, it is challenging to definitively 

make conclusions about the role of density-independent contact rates because density was not 

controlled experimentally. 

Two other studies controlled for the effects of density more reliably. One of these two 

studies was done in Utah, U.S.A., where their two sites naturally varied in rodent diversity, but 

not current deermouse density [38]. Although there was no site replication, deermice at the less 

diverse site exhibited behaviors that could potentially increase contact rates (e.g. time spent 

foraging). However, because they used foraging arenas, it is unclear if behaviors were contrived, 

and whether they would lead to higher contact rates. The second study by Rubio et al. [39] used 

experimental enclosures in Mexico and found that rodent diversity did not influence deermouse 

contact rates. Although this study did not test deermice for SNV, used foraging arenas to record 

behaviors, and included treatments with only one or two nonhost species, they ensured that host 

density was held constant, making it more likely they measured density-independent contacts.  

The last study by Luis et al. [11] found that for a given host density, the SNV 

transmission rate (product of contact rates and probability of transmission), increased with higher 

small mammal diversity in Montana, and Southwest U.S.A. The authors called this pattern a 

“component amplification” because the net effect was either dilution or no effect. However, they 

could not disentangle contact rates from probability of transmission. 
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Although the aforementioned studies have strengths and weaknesses, they provide 

intriguing, yet inconclusive evidence, about whether diversity can affect contact rates 

independent of density. Nevertheless, Rubio et al. [39] may have most reliably examined 

density-independent contact rates by experimentally controlling for density in replicated 

treatment groups. However, community composition was different between their study in 

Mexico and studies in U.S.A., which makes definitive conclusions more difficult. 

 

DENSITY-INDEPENDENT PROBABILITY OF TRANSMISSION GIVEN CONTACT  

The probability of transmission will depend on host susceptibility to infection, and 

infectiousness, both of which are regulated by host immunity. However, studies that aim to test 

probability of transmission independent of density, must ensure that they account for changes via 

density (Figure 2.1, blue arrow) regardless of transmission mode. When diversity directly 

decreases or increases the probability of transmission, dilution or amplification can emerge, 

respectively (Figure 2.1, gray arrow). 

There are two studies that investigated probability of transmission as a hypothetical 

mechanism (Table 2.1). Because intricate physiological processes (e.g. endocrine) will typically 

affect host susceptibility or infectiousness, this mechanism can be difficult to estimate from field 

data [73]. Such complexity may explain why this mechanism has been rarely studied.  

The first study by Luis et al. [11], mentioned previously, could not identify whether 

contact rates, probability of transmission, or both, were responsible for a “component 

amplification”. The second study by Eleftheriou et al. [42], also mentioned previously, reported 

that densities of shrews and voles, but not deermice, were associated with measures of stress 

physiology in deermice. Although their findings come with limitations, they are relevant because 

changes in stress could negatively impact immunity, thereby increasing host susceptibility or 
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infectiousness. Therefore, there is some evidence to suggest that probability of transmission, 

independent of density, could potentially play an influential role. Indeed, both aforementioned 

studies suggest that diversity (or community composition) may have a positive impact on 

probability of transmission, an effect potentially mediated via stress physiology.  

 

DENSITY-INDEPENDENT INFECTIOUS PERIOD  

Because hosts never recover from hantavirus infection, host survival determines the infectious 

period. Therefore, when diversity directly reduces the survival of infected hosts, by either 

increasing natural and/or disease-induced mortality, it can reduce their infectious period and 

cause dilution. Alternatively, diversity could increase host survival and lead to amplification 

(Figure 2.1, gray arrow). In either case, density-independent infectious period could serve as a 

hypothetical mechanism. However, if diversity also regulates host density, it could become 

difficult to unravel the indirect effects of density (Figure 2.1, blue arrow).  

Only one study has examined density-independent infectious period as a potential mechanism. 

This study used deermouse persistence as a measure of infectious period, which makes 

separating survival from dispersal challenging [33]. Although deermouse persistence was lower 

with higher rodent diversity, this conclusion did not account for density effects (Figure 2.1, blue 

arrow). Thus, even if we assumed that dispersal was minimal, it would be misleading to state that 

dilution was due to a reduction in infectious period independent of density. 

 

EFFECTS OF MULTIPLE MECHANISMS ON DISEASE OUTCOMES  

CONCURRENT DILUTION AND AMPLIFICATION EFFECTS 

Although researchers typically search for dilution or amplification, Luis et al. [11] demonstrated 

that both can occur at the same time via different mechanisms in the deermouse-SNV system. 
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Therefore, researchers should consider whether concurrent effects could exist in their own 

systems as they examine all relevant mechanisms at play. To motivate this idea, we investigate 

through simulations how interactive mechanisms could modify outcomes using the deermouse-

SNV system as a model.  

 

SIMULATION EXERCISES WITH THE DEERMOUSE-SNV SYSTEM 

Here, we use a simpler version of the Susceptible-Infected (SI) model from [11], which 

assumes density dependence (supplementary information). There is no recovered class because 

deermice never recover. We first generated linear relationships between host density and species 

diversity, and between transmission rate (the product of density-independent contact rates and 

probability of transmission) and species diversity (supplementary information, Figure S2.1). 

These relationships were inspired by empirical patterns [11].  

By incorporating different relationships between each mechanism and diversity, we 

completed three scenarios to visualize patterns that could manifest at equilibrium (supplementary 

material, Table S2.1). Firstly, diversity influenced only host density (scenario 1, Figure 2.2). 

Secondly, diversity affected only the transmission rate for a given density (scenario 2, Figure 

2.2). Thirdly, diversity impacted both density and transmission rate (scenario 3, Figure 2.2).  

In scenario 1, where diversity negatively affected density, dilution occurred (Figure 2.2, 

blue line). In scenario 2, where diversity positively affected the transmission rate, amplification 

occurred instead (Figure 2.2, red line). In scenario 3, where diversity negatively affected density, 

but positively influenced transmission rate, our findings showed a non-monotonic relationship, 

where prevalence peaked at intermediate levels of diversity (Figure 2.2, black line). Collectively, 

we show that dilution, amplification, or a non-monotonic relationship, could theoretically 
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develop within the same system. These results were robust to the disease metric used 

(supplementary material, Figure S2.2). 

A non-monotonic relationship has previously been described as a potential pattern across 

systems, but under a different framework dependent on scales of biodiversity [13,74-75]. 

Specifically, at lower diversity, there could be no host species, so disease risk would be zero 

(e.g., urban centers). However, as diversity increases (e.g., urban to rural gradient), host species 

would be more likely to occur, thereby increasing disease risk. Conversely, at higher diversity, 

non-competent species would also be likely to exist (e.g., forests), thereby “diluting” disease. 

Such non-monotonic patterns have been described by studies we found during our search [61-

62]. These two studies, done at broad spatial scales, found non-monotonic patterns between 

predator diversity and cases of human infections. 

However, here, we show that a non-monotonic relationship between diversity and 

disease, can also occur independent of scale, when diversity affects determinants of prevalence 

in opposing directions. This pattern occurs because the dominant mechanism changes across 

values of diversity. At lower diversity, the transmission rate is the primary mechanism that 

increases disease whereas at higher diversity, host density predominates to decrease disease 

because density becomes too low to sustain transmission, despite a maximum transmission rate. 

Results from more complex models with the same system, where the transmission rate was 

deconstructed into its two components, demonstrated similar patterns (Eleftheriou & Luis, 

Chapter 5). Those findings suggest that non-monotonic outcomes could be misinterpreted as no 

effect, potentially helping to explain why some studies may report no pattern (Table 2.1).  

Given that we used a simple mathematical model with density-dependent transmission, 

our modeling approach can be applied to other systems, as long as additional mathematical 
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equations are incorporated that address system specifics. Using this approach, researchers can 

determine how mechanisms that vary in their relationship to diversity could alter final outcomes. 

This approach can also inform prospective studies, to help guide what mechanisms will be the 

most critical to evaluate empirically.  

  

CONCLUSIONS AND FUTURE DIRECTIONS  

In the context of the “dilution effect” hypothesis, we conclude that host density is the 

primary mechanism that has received the most attention from empirical studies using rodent-

hantavirus systems as models of directly-transmitted diseases. Indeed, several studies have 

provided support for host density as the strongest determinant of hantavirus prevalence, whereby 

dilution, amplification, or neutral outcomes can culminate according to the relationship between 

density and diversity. If there is a negative relationship between diversity and density, we would 

expect to see dilution as exemplified by several studies (Table 2.1). Alternatively, if there is a 

positive relationship, we would expect amplification, as shown by one study from Argentina 

(Table 2.1). However, if there is no relationship, we would expect no effect, a prediction 

supported by two studies (Table 2.1). Further support comes from studies that did not report a 

disease outcome but found a negative relationship between density and diversity (Table 2.1). 

Similarly, a meta-analysis by Rubio et al. [76] found lower small mammal diversity but higher 

host density in fragmented habitats. We acknowledge that the small number of studies highlights 

the need for further investigation to verify and generalize these conclusions. 

Despite our claim that host density appears to be the primary mechanistic driver, we 

know little about which mechanisms are actually affected (Figure 2.1, blue lines). Broadly, we 

also know much less about the roles of density-independent mechanisms: contact rates, 

probability of transmission, and infectious period. The latter becomes significant when we 
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consider studies that find dilution or amplification in the absence of the expected relationship 

between diversity and density. For example, Khalil et al. [46] found a positive relationship 

between nonhost and host densities despite finding a dilution effect (Table 2.1), suggesting that 

density-independent mechanisms may be at play. Therefore, we require more empirical studies to 

further characterize understudied mechanisms. 

When testing for relationships between diversity and disease, it will be crucial to consider 

the likelihood of competing dilution and amplification within the same system. Our simulation 

exercises emphasize that contrasting outcomes can result, depending on the relationship between 

each mechanism and diversity. These outcomes further highlight the need to expand our 

knowledge about understudied mechanisms because they could compete with density to affect 

the net outcome. Consequently, to best inform disease control and biological conservation, we 

suggest that researchers use similar exercises with other systems to elucidate theoretical 

outcomes that could potentially manifest in nature from competing mechanisms.  
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Figure 2. 1 Conceptual diagram describing possible relationships between diversity and 

prevalence for a directly-transmitted disease with density-dependent (DD) transmission and one 

primary reservoir host. Arrows propose hypothetical effects that diversity may have on 

mechanisms that determine disease prevalence. Diversity can indirectly determine prevalence via 

DD mechanisms (blue arrows), or directly (gray arrows) via density-independent mechanisms 

(contact rates, probability of transmission given contact, and infectious period). Numbers in 

brackets illustrate number of studies across rodent-hantavirus systems that found support for 

each mechanism (studies included in multiple counts if multiple mechanisms were examined). 
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Figure 2. 2 Simulation outcomes for three scenarios where density-dependent and density-

independent mechanisms varied in their relationship with diversity, using a mathematical model 

of the deermouse-Sin Nombre virus system. Scenario 1 (blue): When diversity has a negative 

effect on host density, a dilution effect emerges. Scenario 2 (red): When diversity has a positive 

effect on transmission rate for a given density, an amplification effect results. Scenario 3 (black): 

When diversity affects both mechanisms in opposing directions, there is a non-monotonic 

outcome. 
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Table 2. 1 Diversity-disease studies with rodent-hantavirus systems. We list data on the disease system, diversity-disease outcome, 

empirical support (with directionality) for density-dependent and -independent mechanisms (contact rates, probability of transmission, 

and host survival), metrics of diversity and disease, and study reference.  

 

Host-virus system Outcome Host 

density 

Host density-independent Diversity 

metric 

Disease 

metric 

Ref.  

Contact 

rates 

Prob. of 

transmission  

Host 

survival 

P. maniculatus–SNV Da - . . -? RDY AP [33]  

 Da - -? . . RDY AP [34] 

 N . . . . SDY AP [35] 

 D . . . . PDY AP [35] 

 D - . . . SDY AP [36] 

 D - . . . SDY AP/NI [37] 

 D NA - . . RDY AP [38] 

 . NA N . . RDY . [39] 

 Db - NA NA . SDY AP/NI [11] 

 Nc N . . . SDY AP/NI [11] 

 CAb,c NA +? +? . SDY AP [11] 

 Db . . . . RDY AP [40] 

 TDc + . . . NHP AP [41] 

 Db . . . . SDY AP [18] 

 . . + or NM + . NHD . [42] 

O. palustris – BAYV D . . . . SDY AP [43] 

M. glareolus – PUUV A . . . . SDY AP [44] 

 Dd . . . . SDY AP/NI [45] 

 Dd + . . . NHD IP [46] 

 . d - . . . NHD . [46] 

 D . . . . NHPr AP [47] 

 N . . . . NHPr NI [47] 

 D . . . . NHD IP [48] 

 N . . . . NHPr AP/NI [49] 

O. longicaudatus – ANDV D . . . . RDY NI [50] 
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Host-virus system Outcome Host 

density 

Host density-independent Diversity 

metric 

Disease 

metric 

Ref.  

Contact 

rates 

Prob. of 

transmission  

Host 

survival 

 N . . . . RDY AP [50] 

 N N . . . SDY AP/NI [51] 

 A + . . . RDY NI [52] 

R. rattus – THAIV N . . . . SDY IP [53] 

Various D - . . . RDY AP [54] 

 N . . . . RDY AAP [55] 

 . - . . . SDY . [56] 

 N . . . . SDY AP [57] 

 D . . . . RDY NI [58] 

 N . . . . RDY AP [59] 

 D . . . . SDY DP/HI [60] 

 A . . . . NPDY HI [61] 

 NM . . . . DPDY HI [61] 

 NM . . . . PDY HI [62] 

CATEGORIES: Prob. of transmission = probability of transmission given contact, Ref. = reference, HOST-VIRUS SYSTEM: SNV 

= Sin Nombre virus, BAYV = Bayou virus, PUUV = Puumula virus, ANDV = Andes virus, THAIV = Thailand virus OUTCOME: D 

= dilution, A = amplification, CA = component amplification (i.e. not the main effect), TD = temporal dilution. DISEASE METRIC: 

AP = antibody prevalence, NI = number of infected hosts, IP = infection probability, AAP = antibody and/or antigen prevalence, DP = 

disease present (i.e. presence of infected rodents), HI = human infection cases, DIVERSITY METRIC: RDY= rodent diversity, SDY 

= small mammal diversity, PDY = predator diversity, NHP= nonhost presence, NHD = nonhost density, NHPr = nonhost proportion, 

NPDY = nocturnal predator diversity, DPDY = diurnal predator diversity. ALL:  ‘.’ = not explicitly examined, ‘+’ = positive 

relationship, ‘-’ = negative relationship, N = no relationship, NM = non-monotonic relationship, NA= not applicable (variable 

accounted for or controlled).  
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SUPPLEMENTARY INFORMATION 

 

LITERATURE REVIEW METHODS  

We searched the literature for studies across rodent-hantavirus systems with the Google Scholar 

search engine using the following key words: “dilution effect” OR “amplification effect”, 

“hantavirus”, “disease”, “infection”, and “species diversity”. We restricted our literature search 

to peer-reviewed field studies (observational or experimental), and published in English, until 

March 28th, 2021. We also searched through reference lists of the six reviews mentioned in the 

main text, to identify studies our original search may have missed. We aimed to include only 

empirical studies that examined relationships between disease and diversity (or community 

composition) across rodent-hantavirus systems, with or without mechanistic evidence. 

This search approach generated 344 results when “dilution effect” was included and 87 

results when “amplification effect” was included. We selected relevant articles for further 

examination by reading through every article’s title. The abstract was reviewed only when there 

was not enough information to decide from the title alone. Articles with titles and abstracts 

deemed relevant were reviewed further to evaluate if they should be included, as stated above.  

 

EVIDENCE FROM META-ANALYSES 

During our literature search, we found two meta-analyses that focused on studies primarily not 

testing for a diversity-disease relationship. The first is by Vadell et al. [1], with disease systems 

from 22 studies in the Americas, and the second by Milholland et al. [2], with disease systems 

from 67 studies in Asia, Europe and the Americas. The first meta-analysis investigated the effect 

of rodent diversity on hantavirus prevalence and found no patterns after accounting for host 

density. The second meta-analysis examined the effect of small mammal richness and phylogeny 

on hantavirus prevalence and found that both were negatively associated with prevalence. 

However, host density was not included in their models. In summary, these two studies came to 
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contrasting conclusions, most likely because they used different studies (shared only six) and 

analytical approaches (e.g. accounting for density). 

 

HOST DENSITY: BANK VOLE-PUUV SYSTEM 

Several studies have found evidence that supports density-dependent transmission in the 

bank vole-PUUV system [3-5] suggesting that indirect effects via host density could result in a 

dilution effect. Density-dependent transmission has been echoed by Voutilainen et al. [6] and 

Khalil et al. [7], who found that bank vole density was important in predicting the probability of 

PUUV infection. However, not all studies found such a relationship. For example, although 

Tersago et al. [8] identified a critical threshold density required for PUUV persistence in vole 

populations, they did not find a relationship between vole density and PUUV prevalence during 

their two-year study. Similarly, Thoma Palo et al. [9] found no density-disease relationship over 

a three-year period. However, given that time lags may play a significant role in rodent-

hantavirus dynamics (e.g., [10]), a shorter temporal window of data collection could make 

density-dependent transmission more challenging to detect.   

Although most mechanistic studies that used the bank vole-PUUV system did not always 

examine relationships between host density and diversity per se, studies did look at relationships 

between host and nonhost densities (or their proportions relative to total captures) and found 

some support. For example, Khalil et al. [7], who observed a dilution effect found negative 

relationships between densities of field voles (Microtus agrestis) and bank voles, but only in the 

fall, and only in core field vole habitat. Interestingly, Ecke et al. [11] who observed no effect 

with α diversity (local diversity) but a dilution effect with β and γ diversity, found that when the 

community contribution of bank voles was higher, those of gray-sided voles (Myodes rufocanus) 

were lower. However, not all studies that reported a dilution effect found negative relationships. 
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Tersago et al. [8] detected no relationship between the densities of voles and wood mice 

(Apodemus sylvaticus), although they used proportion of wood mice (instead of their density) as 

their diversity measure (Table 2.1 in main text). Khalil et al. [7] found positive associations 

between densities of voles and other small mammals. In particular, there was a positive 

relationship with field vole density only in spring, and only in certain habitat types. However, the 

positive relationship they detected with density of common shrews (Sorex araneus) was 

irrespective of habitat, or season, suggesting that a dilution effect via shrews is more likely to be 

density-independent.  

When considering all the evidence, the empirical support for host density acting as an 

indirect driver of a dilution effect in the bank vole-PUUV system is not as strong compared to 

the deermouse-SNV system. However, it is likely this is the result of having fewer studies 

available for examination (Table 2.1 in main text). Most of the bank vole-PUUV studies do 

highlight an interesting point, however. Given that particular nonhost species are more likely to 

be the actual drivers of dilution or amplification effects than diversity pe se, it may be better in 

future studies to employ densities of relevant nonhost species (or functional groups of species), 

than broader diversity measures (e.g. [12]), such as small mammal diversity, especially in 

species-poor communities. 

 

MODELING METHODS  

 

The Model: 

 

                Equation (1a) 

       Equation (1b) 
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where S is the number of susceptible hosts, I is the number of infected hosts, N is the total host 

number (S+I) , K is the number of hosts the environment can sustain, b is the maximum birth 

rate, d is the minimum death rate, a is the proportion of density-dependence on birth rates, r is 

the intrinsic growth of the population (b-d) , µ is the disease-induced mortality rate, and β is the 

transmission rate.  

 

Below are the mathematical equations for the two linear regressions (Figure S2.1) that were used 

in simulations with the susceptible-infected (SI) model above (Equations 1a and b). The linear 

regressions were constructed, as such, to generate realistic values of K and β as reported by Luis 

et al. [13]. 

          Equation (2) 

where K is the environmental carrying capacity of deermice at equilibrium (and thus the density 

that can be sustained), and SDI is the Simpson’s Diversity Index as calculated by Luis et al. [13].  

           Equation (3) 

where β is the transmission rate of SNV for a given deermouse density (the product of contact 

rates and probability of transmission given contact).  

We parameterized the SI model using values estimated previously by Luis et al. [10] 

(Table S2.1) and we tested diversity (Simpson’s Index) values ranging from 1 to 4 as to remain 

within a realistic context [13] and to demonstrate the array of possible outcomes. We used R 

(version 4.0.3, [14]) within RStudio [15] to run simulations over 100 time steps to reach 

equilibrium using the package “deSolve” for generating solutions of differential equations [16]. 
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Figure S2. 1 : Color-coded relationships used in simulation scenarios whose outcomes are shown 

in figure 2 of the main text. Top left panel: Relationships between diversity and host density. Top 

right panel: Relationships between diversity and transmission rate for a given host density 

(contact rates × probability of transmission given contact). 

 

 

 

Table S2. 1 Variables and parameters used in model with descriptions and estimates. 

Parameter/Variable Value Description 

a 0.6142470 Density-dependent effect on births [10]. 

b 0.3154089 Birth rate of deermouse per capita [10]. 

d 3.655774e-05 Death rate of deermouse per capita [10]. 

µ 0.085 Disease-induced mortality [10]. 

SDI 1 – 4 Average Simpson’s Diversity Index. Values selected 

to represent range reported in [13]. 

 

  

CONSIDERING DISEASE METRICS OTHER THAN ANTIBODY PREVALENCE 

During our literature search, we found that a minority of studies reported two disease metrics 

other than antibody prevalence, including the density of infected hosts and the probability of 
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infection for a given host (i.e. force of infection). In particular, two studies identified contrasting 

relationships between diversity and disease, based on what metric they used [8,17]. Given this 

disagreement, we examined the relationships between diversity and disease, under all simulation 

scenarios, by using these two disease metrics instead of antibody prevalence. Overall, we found 

similar patterns to what we observed with antibody prevalence as the disease metric (Figure 2.1). 

However, we did find that disease risk peaked at lower diversity values with density of infected 

hosts under scenario 3 (Figure 2.2 in main text versus Figure S2.2 below). One of the studies 

[17] found a dilution effect with number of infected hosts but no effect with antibody prevalence. 

Our findings under scenario 3 suggest that, where a dilution effect could be seen with density of 

infected hosts, a neutral relationship could be observed instead with antibody prevalence if there 

was enough stochasticity in the data. Therefore, it is theoretically possible for the same study to 

report two contrasting disease outcomes depending on the disease metric used. However, our 

simulation findings do not explain the opposing conclusions generated by Tersago et al. [8] that 

reported a dilution effect with antibody prevalence but no effect with density of infected hosts.  
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Figure S2. 2 Conceptual representations of simulation results of diversity-disease outcomes for 

three scenarios where density-dependent (host density) and density-independent (transmission 

rate for a given host density) mechanisms were allowed to vary in their relationship with species 

diversity, using a Susceptible-Infected (SI) model of the deermouse-Sin Nombre virus (SNV) 

system. Instead of antibody prevalence, two other metrics employed by a minority of studies 

found by our review were used: density of infected individuals, and force of infection (i.e. 

probability of infection). Across both disease metrics, scenario 1 (blue) generated dilution, 

scenario 2 (red) amplification, and scenario 3 (black), a non-monotonic relationship, consistent 

with findings when antibody prevalence was used instead. 
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CHAPTER 3 ASSESSMENT OF THE STRESS RESPONSE IN NORTH AMERICAN 

DEERMICE: LABORATORY AND FIELD VALIDATION OF TWO ENZYME 

IMMUNOASSAYS FOR FECAL CORTICOSTERONE METABOLITES1 

 

ABSTRACT 

Stress physiology is commonly employed in studies of wildlife ecology and conservation. 

Accordingly, we need robust and suitable methods to measure stress physiology in the field. 

Fecal cortisol/corticosterone metabolites (FCMs) are now increasingly being used to non-

invasively evaluate adrenocortical activity; a measure of stress physiology. However, 

immunoassays that measure FCMs must be appropriately validated prior to their use and factors 

that can influence FCMs, such as trap-induced stress, must be considered. Deermice 

(Peromyscus maniculatus) are widely used in scientific studies so that developing methods that 

appropriately measure their adrenocortical activity is critical. In the laboratory, we tested the 

suitability of two enzyme immunoassays (EIAs; a corticosterone EIA, and a group-specific 5α-

pregnane-3β,11β,21-triol-20-one EIA) in deermice by challenging individuals with 

dexamethasone and adrenocorticotropic hormone (ACTH). We found that dexamethasone 

suppressed FCM levels within ~10 h post injection whereas ACTH increased FCM levels within 

~2 h post injection. In the field, we found that FCM levels generally increased with more time in 

trap confinement when using both EIAs. Although we acknowledge low sample sizes (N = 4), 

our results validated the two EIAs for use with FCMs from deermice. 

 

 

 
1 This chapter has been published as A. Eleftheriou, R. Palme, and R. Boonstra. 2020 Assessment of the Stress 

Response in North American Deermice: Laboratory and Field Validation of Two Enzyme Immunoassays for Fecal 

Corticosterone Metabolites. Animals. 10 (7): 1120. 
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INTRODUCTION 

 

In recent decades, researchers have started to employ stress physiology more often as a tool 

to evaluate how natural and anthropogenic stressors can affect survival and reproductive success 

of wildlife populations. Given the widespread use of stress physiology in managing and 

conserving wildlife, identifying suitable and robust methods for evaluating stress physiology in 

every species is of paramount importance. This is critical because anthropogenic stressors can 

induce chronic stress in wildlife, which can lead to pathological perturbations [1,2]. 

Adrenocortical activity, a measure of stress physiology, is typically evaluated via blood 

glucocorticoids (GCs) and more recently via fecal cortisol/corticosterone metabolites (FCMs), 

which are metabolized GCs excreted in feces [2–4]. Evaluation of stress physiology via FCMs is 

non-invasive and avoids the acute stress effects of capture, handling, and venipuncture [1]. 

Although researchers are increasingly using FCMs, there are concerns about the methodology 

used to measure them, such as lack of validation [4]. Immunoassays are validated when they can 

detect expected changes in FCM levels [4]. Without validation, inference becomes less robust. 

Thus, immunoassays need to undergo analytical, physiological, and biological validations before 

they are used to measure FCMs in field settings [4]. Analytical validation may include intra- and 

inter-assay coefficients of variation and parallelism tests [4]. Validations also must be performed 

in every species because suitable immunoassays for measuring FCMs can vary even between 

closely related species [4–6]. 

North American deermice (Peromyscus maniculatus, hereafter deermice) are widely used in 

biomedical (e.g., [7]), physiological (e.g., [8]), and ecological (e.g., [9]) research. Hence, it may 

not be surprising that FCM evaluation in deermice has already been investigated by others where 

a corticosterone radioimmunoassay (RIA; [10,11]) and two corticosterone enzyme 



41 

 

immunoassays (EIAs; [12,13]) have been used. Although the RIA was validated before use, the 

EIAs were not, which makes their use questionable [4]. In addition, all assays used antibodies 

that bind to corticosterone, which is the predominant GC in Peromyscus (e.g., [14]). However, 

intact corticosterone is essentially absent from feces so their use may be suboptimal [4]. For 

example, an EIA that used an antibody, which detects FCMs with a 5α-3β,11β-diol structure, 

demonstrated improved FCM detection in house mice (Mus musculus) compared with 

corticosterone EIAs [15]. Nevertheless, corticosterone immunoassays may still detect FCMs, 

albeit to a lesser degree, because of cross-reactivity between the corticosterone antibody and 

FCMs [4]. Commercial corticosterone immunoassays are also relatively easy to acquire and use, 

although expensive [4]. However, commercial RIAs, unlike EIAs, may be less appealing because 

they use radioactive materials and require a licensed laboratory for their use [4,16]. To the best 

of our knowledge, there have been no studies that compared or validated EIAs for measuring 

FCMs in deermice.  

We can physiologically validate immunoassays by using adrenocorticotropic hormone 

(ACTH) and dexamethasone (a synthetic steroid), which increase and decrease endogenous GC 

production, respectively [4]. However, to biologically validate immunoassays, we need to use 

stressors that are biologically relevant to the species of interest. Although immunoassays can be 

validated biologically if they can track diurnal rhythm changes in FCMs, this should be done in 

addition to other biological validations [4], such as live trapping, which can increase FCMs (e.g., 

[17,18]). Knowing when these trap-induced rises in FCMs manifest in feces is also of practical 

use because they can artificially increase FCMs and lead to erroneous results about baseline 

adrenocortical activity [19]. This time delay between blood GCs and the appearance of 

metabolites in feces is species-specific [20]. Specifically, in deermice, [21] found a delay of 4 h 



42 

 

before there were trap-induced effects on FCMs, but as they pointed out, the effects could have 

appeared sooner because they did not sample during a shorter interval (<4 h). 

In this study, we had three objectives. Firstly, in the laboratory, we wanted to validate two 

different EIAs in measuring FCMs using physiological challenges (i.e., dexamethasone and 

ACTH injections). The immunoassays were a corticosterone EIA [12] and a 5α-pregnane-

3β,11β,21-triol-20-one EIA (hereafter referred to as the group-specific EIA, [15]). Secondly, 

again in the laboratory, we wanted to use the diurnal rhythm in GC secretion to biologically 

validate both EIAs. Thirdly, in the field, we wanted to investigate temporal effects of trap 

confinement on FCMs using both EIAs to provide additional biological validation.  

MATERIALS AND METHODS 

 

ACQUISITION AND HUSBANDRY OF LABORATORY DEERMICE 

We acquired 4 adult deermice (2 females: 2 males) from McMaster University, Ontario, Canada, 

and transported them to the animal holding facility at the University of Toronto—Scarborough, 

ON, Canada, in April 2016. These deermice were F1 generation offspring from wild deermice 

that were originally captured from Nebraska, USA [8]. All were ear-tagged, weighed, and sexed. 

All deermice were non-reproductive (males were non-scrotal, and females had non-perforate 

vaginas). They were individually housed in polypropylene cages (47 cm × 26 cm × 20 cm) that 

were equipped with a wire bottom and a glass water bottle with a stainless-steel nipple. All cages 

were mounted within a second same-sized cage that was equipped with a fine metal mesh. The 

wire bottom allowed feces and urine to fall through the bottom of the first cage. Though urine 

continued to pass through the fine mesh, the feces did not. This arrangement minimized urine 

contamination of feces and disturbance to the animals [22]. Male and female deermice were kept 

separate on two different but opposite racks within the same animal facility to limit exposure to 

odor from the opposite sex. We provided them with ad libitum water, rodent chow (LabDiet, St. 
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Louis, Missouri, USA) and ample cotton bedding as nesting material. Deermice were housed 

under a 12:12 h dark-light cycle (lights on at 08:00 h) at room temperature (20 ± 5 °C). 

Ventilation fans were positioned in the wall at either end of the holding facility and operated in a 

push-pull method (the fan at one end pulled air out of the facility and the other pushed outside air 

into the facility). This method changed the air in the room 13 times/h. The direction of air flow 

was parallel to cage racks, which prevented cross contamination between cages that held males 

and females [23].  

FECAL SAMPLE COLLECTION 

We collected fecal samples by following Table 3.1 and discarded feces contaminated with 

urine. Forceps were disinfected between individuals during sample collection. If fecal pellets 

were in excess for an individual, we subsampled to get a representative pooled sample from all 

areas where the individual had defecated. We then stored samples at −20°C until analyses. 

During the acclimation period, fecal samples were collected every 2 h (during the dark and light 

cycles) whereas during the challenge experiments, samples were generally collected every 2 h 

during the dark cycle and every 4 h during the light cycle (Table 3.1). This sampling change 

occurred due to personnel constraints. 

ACCLIMATION PERIOD 

 

Fecal samples were collected for ~92 h after the animals were transferred to our facility 

(Table 3.1). We assumed that samples collected on the3 last day of acclimation reflected baseline 

FCMs given that previous work with wild meadow voles (Microtus pennsylvanicus) found that 

FCMs were the lowest by the end of the third day of captivity [24].  

DEXAMETHASONE SUPPRESSION CHALLENGE 

To test whether EIAs could detect an expected decrease in FCM levels, we injected all 

deermice with 2.5 mg/kg dexamethasone sodium phosphate (Vétoquinol, Québec, Canada) 
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diluted in sterile 0.9% saline intraperitoneally at ~20:00 h. In this way, each individual was used 

as its own control. Because dexamethasone doses have not been reported for deermice, we 

formulated this dose based on studies with other small rodents (e.g., [25–27]). We started to 

collect samples at 22:00 h for ~48 h although we were unable to analyze samples 12 h post 

injection (Table 3.1). No samples were collected at the time of injection.  

ACTH STIMULATION CHALLENGE 

To test whether EIAs could detect an expected increase in FCM levels, we injected all 

deermice with 250 µg/ kg ACTH (Cortrosyn, Amphastar Pharmaceuticals, Inc., Rancho 

Cucamonga, CA, USA) mixed in 0.9% sterile saline solution intraperitoneally at ~20:00 h. 

Again, each individual was used as its own control and because ACTH doses have not been 

reported for deermice, we formulated this dose based on above cited studies. As above, we 

started to collect samples at 22:00 h for ~48 h although we were unable to analyze samples 12 h 

post injection (Table 3.1). No samples were collected at the time of injection.  

FIELD VALIDATION 

We carried out two field studies to assess the temporal effect of trap confinement on FCM 

levels. In both studies, deermice were captured in individual non-folding Sherman traps (H.B. 

Sherman Traps, Tallahassee, FL, USA) baited with oats and peanut butter, and provided with 

cotton bedding. In field study 1 (for group-specific EIA), apple slices were also provided. For 

field study 1, we trapped 20 adult deermice (7 males, 13 females) near Drummond, MT, USA, in 

June 2017. Only three were non-reproductive. Once trapped, we confined deermice in a trap for 

either 0–2, 4–6 or 8–10 h prior to processing. To do this, we set traps around dusk and checked 

them after 2 h. Trapped deermice were either processed for the 0–2 h treatment or left in the trap 

to be processed for the 4–6 h and 8–10 h treatments, where they spent an additional 4 h and 8 h 

in the trap, respectively. Deermice were removed from traps by “emptying” contents into a 
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plastic bag. We then sexed, weighed, ear-tagged, and evaluated them for reproductive status. Age 

was determined based on mass (<14 g = juvenile, 14–17 g = subadult, >17 g = adult, [28]). 

Reproductive status was determined by the presence of scrotal testes in males, and presence of a 

perforate vagina, lactation, or pregnancy in females.  

In field study 2 (for corticosterone EIA), seven adult deermice (4 males, 3 females) were 

trapped near Charlo, MT, USA, in August 2017. Only two were non-reproductive. We checked 

traps after ~4 h of setup when we ear-tagged and collected feces from deermice. Afterwards, all 

deermice were returned to their respective clean traps where they spent the night until dawn (an 

additional ~7 h). At that time, they were sexed, weighed, evaluated for reproductive status, and 

sampled a second time for feces. Age and reproductive status were determined as above. 

In both field studies, we collected feces from restrained animals and/or their trap and released 

individuals on site after processing. Feces contaminated with urine were not collected. We 

followed field protocols to avoid accidental hantavirus infection [29]. All fecal samples were 

stored at −80 °C until analysis. All procedures involving animal use were approved by the 

University of Toronto (protocol # 20011602) and/or by the University of Montana Institutional 

Animal Care and Use Committees (protocol #s 024-16ALDECS-042616, 027-16ALDECS-

051016, 028-16ALDECS-051016). Field work was approved by Montana Fish, Wildlife and Parks 

(permit #2017-029-W).  

 

PROCESSING OF FECES AND EXTRACTION OF FCMs 

Laboratory and field study 1 fecal pellets were first oven-dried for 1 h at ~60 °C to heat-

inactivate hantavirus (if present) and then lyophilized (Labconco Corp., Kansas City, MO, USA) 

for at least 15.5 h at Pennsylvania State University, State College, Pennsylvania, USA. 

Laboratory study fecal samples were not pulverized; they remained in pelleted form. However, 
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in field study 1 we did pulverize, using a mortar and pestle, because there were fewer total 

samples (20 samples). To extract FCMs, we weighed 0.05 g (±0.005 g) of dried pellets/powder. 

Then, we added 1 mL of 80% methanol to each sample suspension, vortexed at 1500 RPM for 30 

min, and centrifuged at 2500× g at 22 °C for 20 min [4,15]. Supernatants were decanted and 

frozen at −20 °C. The extraction of field study 2 samples was slightly different and performed at 

the University of Montana, Missoula, MT, USA. Fecal pellets (14 samples total) were heat-

inactivated and oven-dried for 2 h at ~63 °C to ensure elimination of water, because a lyophilizer 

was unavailable. We pulverized dried pellets and weighed out 0.04 g (±0.005 g) of powder. The 

lower threshold weight was chosen because sample weights were generally lower in this field 

study. The rest of the extraction procedure remained unchanged.  

IMMUNOASSAY METHODS 

For the analysis of FCMs two different EIAs were used. The immunoassays were a 

corticosterone EIA (commercial kit #K014-H1 or H5, provided by Arbor Assays, Ann Arbor, MI, 

USA) [12] and a 5α-pregnane-3β,11β,21-triol-20-one EIA (group-specific EIA, measuring FCMs 

with a 5α-3β,11β-diol configuration [15]). Details of the EIAs including cross-reactions are 

given by Arbor Assays and Touma et al. [15], respectively. All fecal extracts were diluted with 

EIA buffer prior to being analyzed. The dilution factor was determined by running pooled sample 

extract at different dilutions against the standard curve, to identify the one that resulted in ~50% 

binding for the corticosterone EIA (Figure 3.1A) and the group-specific EIA (Figure 3.1B). 

Through parallelism tests, we showed that serial dilutions of pooled extract tracked the EIA’s 

standard curve (Figure 3.1). These findings demonstrated that methanol residue in sample extracts 

did not interfere with assay performance. Consequently, sample extracts were diluted 1:10 for the 

corticosterone EIA, and 1:200 for the group-specific EIA. However, extracts from field study 2 
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analyzed with the corticosterone EIA had to be diluted 1:80 instead of 1:10 (change discussed 

later).  

We followed manufacturer’s instructions for the corticosterone EIA. However, when we 

analyzed fecal samples with this EIA for field study 2, we also used a wavelength of 650 nm 

(reference wavelength) in addition to 450 nm. We followed the protocol described by Touma et al. 

[15] for the group-specific EIA. All samples were assayed in duplicate. Intra-assay coefficients of 

variation (CVs) were calculated by averaging all sample CVs and inter-assay CVs were calculated 

by averaging CVs of low and high concentration controls for all plates (except for field study 2, we 

could only calculate average of low concentration controls). Intra-assay and inter-assay CVs for the 

corticosterone EIA were (n = 9) 5.7% and 12.7% (field study 2: 12.8%) and for the group-specific 

EIA (n = 6) 8.6% and 8.6%, respectively.  

STATISTICAL ANALYSES 

All data analyses were done in R [30] within RStudio [31]. We used linear mixed effect 

models (LMMs) from R packages “lme4” [32] and “lmerTest” [33] to test for diurnal patterns 

and how each treatment (dexamethasone suppression and ACTH stimulation) affected FCM 

levels of laboratory-bred deermice compared to baseline. We considered FCMs collected on the 

last day of acclimation as baseline FCMs. Because deermice were sampled repeatedly, individual 

identification was included as a random effect, where the model structure was sex + treatment × 

sampling time, except for when testing for diurnal patterns, which was sex + sampling time. P-

values were calculated using Satterthwaite’s method [33]. We used the R package “emmeans” 

[34] to perform post hoc pairwise comparisons where p-values were adjusted accordingly.  

For field study 1, we used a one-way ANOVA with post hoc Tukey’s Honest Significant 

Differences to compare FCM levels across trap confinement treatments (i.e., 0–2, 4–6 and 8–10 

h), sex and reproductive status, where the model structure was treatment + sex + reproductive 
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status. For field study 2, we used a LMM to examine the difference between FCMs across two 

sampling times (i.e., 0–4 h vs. overnight), sex, and reproductive status, where the model structure 

was treatment + sex + reproductive status. Because each deermouse was sampled twice, 

individual identification was included as a random effect.  

FCM data were ln-transformed prior to all analyses to meet the assumptions of normality 

and homoscedasticity. Below, we present ln-transformed means with standard errors (ln ng/g of 

dry feces) where we considered results statistically significant at α = 0.05. However, in the 

figures we present non-transformed data to ease comparisons with other studies.  

RESULTS 

 

ACCLIMATION PERIOD 

We did not find changes across sex (p = 0.16) or time (p = 0.10) with the corticosterone EIA 

(Figure 3.2A). Similarly, there were no changes across sex (p = 0.60) or time (p = 0.22) with the 

group-specific EIA (Figure 3.2B). However, it is noteworthy that the variability in FCMs 

appeared smaller towards the end of the dark cycle compared to the beginning. FCMs collected 

during the third day of acclimation were considered as baseline when we evaluated the effects of 

treatments (dexamethasone and ACTH). 

DEXAMETHASONE SUPPRESSION CHALLENGE 

We found a sampling time by treatment effect for the corticosterone EIA (F4, 18.31 = 3.73, p = 

0.02; Figure 3A). Deermice had lower FCM levels (n = 4, 6.23 ± 0.26 ln ng/g) ~10 h post 

injection than baseline (06:00 h, n = 3, 7.54 ± 0.30 ln ng/g, post hoc, t18.32 = −3.37, p = 0.003). 

We also found a sampling time by treatment effect for the group-specific EIA (F4, 21 = 3.39, p = 

0.03; Figure 3B). Deermice had lower FCMs (n = 4, 7.03 ± 0.15 ln ng/g) than baseline ~10 h 

post injection (06:00 h, n = 3, 7.60 ± 0.17 ln ng/g, post hoc, t19.46 = −2.47, p = 0.02). 

Interestingly, deermice showed a marginal increase in FCMs (n = 4, 8.16 ± 0.15 ln ng/g) ~4 h 



49 

 

post injection compared to baseline (n = 2, 7.63 ± 0.22 ln ng/g, t20.42 = 1.96, p = 0.06). We note 

that baseline FCM levels at 06:00 h represent a 2 h interval (04:00–06:00 h) whereas treatment 

FCM levels at the same time represent a 4 h interval (02:00–06:00 h; Table 3.1). 

ACTH STIMULATION CHALLENGE 

We found an effect of treatment for the corticosterone EIA (F1, 19.22 = 11.94, p = 0.003; 

Figure 3.4A) where deermice had consistently higher FCM levels (7.77 ± 0.19 ln ng/g) post 

injection than baseline (7.27 ± 0.20 ln ng/g, post hoc, t19.17 = 3.44, p = 0.003). We also found an 

effect of sampling time (F4, 19.19 = 5.42, p = 0.004) where deermice had higher FCM levels at 

22:00 h (7.84 ± 0.23 ln ng/g; t19.07 = 4.06, p = 0.005), 00:00 h (7.74 ± 0.24 ln ng/g; t19.17 = 3.45, p 

= 0.02), and 06:00 h (7.62 ± 0.22 ln ng/g; t19.05 = 3.14, p = 0.04) compared to 08:00 h (6.99 ± 

0.22 ln ng/g) regardless of treatment. Similarly, using the group-specific EIA, we found an effect 

of treatment (F1, 20.25 = 14.16, p = 0.001; Figure 3.4B) where deermice had higher (7.99 ± 0.12 ln 

ng/g) FCM levels consistently post injection than baseline (7.58 ± 0.12 ln ng/g, t20.16 = 3.75, p = 

0.001; Figure 3.4B). Again, we also found an effect of sampling time (F4, 20.28 = 3.42, p = 0.03) 

where deermice had higher FCM levels at 22:00 h (8.02 ± 0.15 ln ng/g) compared to 08:00 h 

(7.48 ± 0.14 ln ng/g, t20.06 = 3.50, p = 0.02) regardless of treatment. We note that baseline FCM 

levels at 06:00 h represent a 2 h interval (04:00–06:00 h) whereas treatment FCM levels at the 

same time represent a 4 h interval (02:00–06:00 h; Table 3.1).  

FIELD VALIDATION 

For field study 1 (group-specific EIA), we found that there was a marginal effect of 

confinement time on FCM levels (F2,15 = 3.38, p = 0.06), which we still elected to explore 

because of likely biological relevance. We found no effect of sex (p = 0.56) or reproductive 

status (p = 0.39). Deermice confined for 4–6 h had marginally higher FCM levels (n = 6, 4 

females and 2 males, 8.33 ± 0.08 ln ng/g) compared to those confined for 0–2 h (n = 7, 4 females 
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and 3 males, 7.90 ± 0.11 ln ng/g, p = 0.07). However, deermice confined for 0–2 h had no 

differences in their FCM levels compared to those of deermice confined for 8–10 h (n = 7, 5 

females and 2 males, p = 0.16) or 4–6 h versus 8–10 h (p = 0.85; Figure 3.5). For field study 2 

(corticosterone EIA), we found a significant effect of confinement time on FCM levels (F1, 10 = 

23.21, p = 0.001). Deermice had lower FCMs (9.12 ± 0.32 ln ng/g) when confined for 0–4 h 

compared to after short-term restraint and overnight confinement (n = 7, 11.10 ± 0.32 ln ng/g, t6 

= 4.82, p = 0.003; Table 3.2). Sex (p = 0.60) and reproductive status (p = 0.75) were not 

significant. 

 

DISCUSSION 

We provided evidence that validates the use of both the corticosterone and the group-

specific EIAs with FCMs in deermice. In the laboratory studies, both EIAs showed a similar 

decrease and increase in FCMs post dexamethasone and ACTH injections, respectively. Despite 

the group-specific EIA’s ability to detect particular corticosterone metabolites in feces, FCM 

values were comparable to the ones we detected with the corticosterone EIA. Field study 1 

(group-specific EIA) showed that deermice had marginally higher FCM levels when confined for 

4–6 h versus 0–2 h. Field study 2 (corticosterone EIA) more strongly echoed these results where 

deermice had higher FCMs after short-term restraint and confinement more than 0–4 h. Although 

we did not verify whether the stressors we used increased blood corticosterone, we do not think 

this affects our conclusions because of two main reasons. Firstly, the stressors we used have been 

known to influence blood GCs in other species (e.g., [18,35]), and secondly, many other 

validation studies for FCMs were successful without performing this type of verification (e.g., 

[15,36–38]). Although comparing between studies with different extraction and assay protocols 
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is difficult, both EIAs we used consistently detected higher values compared to the 

corticosterone RIA used in previous deermouse studies (e.g., [10,11]).  

DIURNAL RHYTHM AND SEX EFFECTS 

We detected no effects of diurnal rhythm or sex on FCMs with either EIA when using only 

data from the third day in captivity. However, the variability in FCM data was smaller towards 

the end of the dark cycle compared to the beginning, suggesting that if we had FCM data from 

each deermouse for each time point, a significant change over time may have manifested. 

Regardless, we did find higher FCMs at 22:00 h compared to 08:00 h when using pooled data 

from the ACTH challenge for both EIAs. In fact, FCMs were also higher at 00:00 h and 06:00 h 

compared to 08:00 h for the corticosterone EIA. This finding from pooled data is most likely 

because, although treatment FCMs were relatively higher than baseline, they still showed a 

declining trend, similar to baseline FCMs, across the dark cycle. Previous studies with small 

mammals found either a presence or absence of a diurnal rhythm in FCMs (e.g., [24,25]). 

However, when a diurnal rhythm is found, FCM levels will typically rise before the period of 

highest activity and start to decrease closer to the period of inactivity, which is similar to what 

we found [25,39]. This reflects the dynamics of blood GCs before they appear in feces, which is 

governed by a species-specific time delay [4]. This delay can range from 4 h in small mammals 

(e.g., house mice, [15]) to ~24 h in larger mammals [20]. Similarly, [40] found no effect of sex 

on FCM levels in deermice, although [25] detected sex differences in house mice where females 

had higher FCM levels. Due to low sample size of females and males, there may have been an 

effect of sex on FCMs, which we were unable to detect. 
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SUPPRESSION OF ADRENOCORTICAL ACTIVITY 

We found that FCM levels decreased significantly ~10 h post dexamethasone injection with 

both EIAs. FCMs decreased on average by ~73% and ~43% for the corticosterone and group-

specific EIAs, respectively. This however, could have happened sooner (i.e., ~8 h post injection) 

since we lacked FCM data at 04:00 h. Nevertheless, other rodent studies found FCM levels 

decreased 8-10 h post dexamethasone in house mice [25] and 10–12 h in Norway rats (Rattus 

norvegicus) [41], although injections were given during the light cycle. However, the percentage 

decreases we observed were lower than in Norway rats (~86%; [41]) but higher than in 

Columbian ground squirrels (Urocitellus columbianus) (~33%; [36]), both of which used the 

same group-specific EIA. This could suggest that a higher dexamethasone dose could be used to 

more strongly suppress FCMs in deermice. It is noteworthy that the group-specific EIA did 

detect a marginal increase in FCM levels ~4 h post dexamethasone injection (~69% average 

increase), most likely due to restraint/injection stress. Even if a higher dose may have resulted in 

a larger effect size, both EIAs tracked the expected suppression in FCMs post dexamethasone. 

 

STIMULATION OF ADRENOCORTICAL ACTIVITY 

FCM levels increased ~2 h post ACTH injection and remained elevated when using both 

EIAs. In particular, FCMs on average increased by ~65% and ~50% with the corticosterone and 

group-specific EIAs, respectively. Given that other rodent studies found longer time delays than 

2 h post ACTH injection, such as 5–7 h in Egyptian spiny mice (Acomys cahirinus) [42] and 6–8 

h in bank voles (Myodes glareolus) [43], this finding was unexpected. However, in these studies 

the ACTH injections were given during the light cycle in rodents that are mostly nocturnal, 

which could have affected time delays [15]. Regardless, [44] did find that brown lemmings 

(Lemmus trimucronatus) reached their half maxima FCM values within 2 h of capture, 

anesthesia, and transportation in the field. Similarly, [26] found that fecal radioactivity appeared 
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as early as 2 h in a radiometabolism study of California mice (Peromyscus californicus). 

Nonetheless, in our study, it is still possible that capture and restraint for injection significantly 

decreased gut passage time [4]. The percentage increases we found are much lower than previous 

mammal studies. For example, [36] found ~255% increase post ACTH in Columbian ground 

squirrels using the group-specific EIA. However, [24] found ~56% increase in meadow voles 

using the group-specific EIA. Therefore, the ACTH dose we used may not have been high 

enough to reach a stronger effect. Regardless, the modest yet significant increase in FCM levels 

post ACTH injection provides validation evidence for both EIAs.  

 

TRAP-INDUCED EFFECTS ON FCMs 

Trap confinement for 4–6 h marginally increased FCM levels in free-ranging deermice, 

compared to confinement for 0–2 h but not compared to 8–10 h (field study 1). Similarly, 

deermice confined for 0–4 h had lower FCM levels compared to additional confinement of ~7 h 

and after short-term restraint (field study 2). Although we cannot easily tease apart effects from 

restraint and trap confinement time in field study 2, the findings still provide biological validation. 

Because FCM levels tend to decrease shortly into the active phase [25,39], the elevations we 

observed after 4 h would most likely have been due to trap-induced stress. The lack of difference 

between 0–2 h and 8–10 h could stem from how the stressor of trap confinement remained 

consistent over time so that FCMs eventually returned to baseline. Alternatively, it could be that 

the natural decline of FCMs overnight conflicted with the increase in FCMs from trap-induced 

stress, thereby leading to a lower average FCMs and a larger variability in the data for the 8–10 h 

group (Figure 3.5). Similarly, [21] found no differences in FCM levels between deermice in traps 

for 4–8 h versus overnight, although FCM levels did continue to increase with more trap 

confinement in another deermouse population. Based on field study 1 findings, the lag time 
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between corticosterone in the blood to excretion in the feces may be ~4 h during the period of 

highest activity (i.e., dark cycle). This is similar to what has been reported in another deermouse 

study that used a corticosterone RIA [21]. Although sex and reproductive status can influence 

stress physiology [4], we did not find any effects on FCMs from sex or reproductive status. 

However, this may have been due to low sample sizes, and not a limitation of the EIAs. 

Nevertheless, our findings suggest that trap-induced stress may affect FCM levels even within 4 

h of confinement so that earlier fecal collection may better capture baseline adrenocortical 

activity and unmask individual heterogeneity.  

 

DRYING EFFECTS ON FCMs 

Although samples oven-dried for 1 h and then lyophilized were diluted 1:10 for the 

corticosterone EIA, samples oven-dried for 2 h with no lyophilization had to be diluted 1:80 

instead. This increase in the dilution factor could be the result of additional drying time where 

further alteration of FCMs can affect actual FCM levels and influence antibody binding. Similar 

heat effects on FCM levels were reported by [45] where autoclaving ungulate feces artificially 

increased FCM levels. However, an alternative reason could be the origin of the samples because 

those that were diluted more came from free-ranging deermice whereas those that were diluted 

less came from laboratory deermice on rodent chow diet. Because diet can affect FCM levels, the 

diet of free-ranging deermice may have led to artificially higher FCM levels [46]. However, 

because the group-specific EIA did not detect differences between laboratory and wild deermice 

(i.e., same dilution factor), it is most likely that an additional hour of oven-drying induced 

structural changes to FCMs that were detected by the corticosterone EIA antibody, thereby 

increasing FCM levels (e.g., [47]). Therefore, the drying protocol needs to remain consistent 
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throughout a study, (e.g., for multiple samples from one individual) if valid FCM comparisons 

are to be made. 

CONCLUSIONS 

We analytically, physiologically, and biologically validated two EIAs for measuring FCMs 

in deermice. Although we used identical sample processing and extraction methods for 

laboratory samples, this was not the case with field samples so direct comparisons should be 

made with caution. Nevertheless, both field studies demonstrated similar temporal patterns, so 

they provided biological validation for the two EIAs. Although we acknowledge low sample 

sizes, our study is the first to provide validation evidence for EIAs that can quantify FCMs in 

deermice. 
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Table 3. 1 Timeline of treatments and samples used in statistical analyses for evaluation of fecal 

corticosterone metabolites in deermice. 

Date Treatment 1 Immunoassay 

Sample Collection 2 Schedule (h Post 

Treatment) 

May 2–3 Acclimation 

Corticosterone EIA 70, 72, 74, 76, 80, 82 

Group-specific EIA 70, 72, 74, 76, 78, 80, 82 

May 3–4 Adrenal suppression 

Corticosterone EIA 2, 4, 6, 10, 12 

Group-specific EIA 2, 4, 6, 10, 12 

May 5–6 Adrenal stimulation 

Corticosterone EIA 2, 4, 6, 10, 12 

Group-specific EIA 2, 4, 6, 10, 12 

1 Injections administered at ~20:00 h, 2 Acclimation lasted for ~92 h whereas adrenal treatments 

lasted for ~48 h (see text for details). 
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Table 3. 2 Summary of demographic factors and fecal cortisol/corticosterone metabolite (FCM) 

values from free-ranging deermice captured in MT, USA in August 2017 for field study 2. 

Sex 

Reproductive 

1 

FCMs at 0–4 h 

(ng/g) 

FCMs Overnight 

(ng/g) 

FCM 

Difference 2 

Male No 21034 49709 28676 

Male No 5407 76071 70663 

Male Yes 11224 185928 174704 

Male Yes 4649 91514 86865 

Female Yes 37172 37776 604 

Female Yes 3611 41678 38067 

Female Yes 9704 82299 72595 

1 Reproductive status was determined via scrotal testes in males and presence of a perforate 

vagina, lactation, or pregnancy in females, 2 FCM difference was calculated by subtracting 

FCMs at 0–4 h from FCMs overnight. 
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Figure 3. 1 Parallelism curves for pooled fecal extract from deermice measured with (A) 

corticosterone enzyme immunoassay (EIA) and (B) group-specific EIA. Standard curves for each 

EIA are shown in black with each concentration as an open diamond. Parallelism is shown in red 

with serial dilutions of pooled fecal extract as open red circles. 
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Figure 3. 2 Changes in corticosterone baseline fecal cortisol/corticosterone metabolites (FCMs) 

from laboratory-bred deermice across the dark cycle measured with (A) corticosterone enzyme 

immunoassay (EIA) and (B) group-specific EIA. Lines connect means from each sampling time 

and circles indicate data points whereby an individual is denoted with a different color. Males are 

shown in blue and green colors, whereas females are shown in red and tan. 
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Figure 3. 3 Corticosterone baseline fecal cortisol/corticosterone metabolites (FCMs) (solid lines 

and circles) versus post dexamethasone FCMs (dashed lines and triangles) in laboratory-bred 

deermice measured with (A) corticosterone enzyme immunoassay (EIA) and (B) group-specific 

EIA. Lines connect means from each sampling time. Circles and triangles indicate individual 

data points whereby an individual is denoted with a different color. Males are shown in blue and 

green colors, whereas females are shown in red and tan. Dexamethasone was administered at 

~20:00 h (not shown). Asterisk (*) denotes significant differences at α = 0.05. 
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Figure 3. 4 Corticosterone baseline fecal cortisol/corticosterone metabolites (FCMs) (solid lines 

and circles) versus post adrenocorticotropic hormone (ACTH) FCMs (dashed lines and triangles) 

in laboratory-bred deermice measured with (A) corticosterone enzyme immunoassay (EIA) and 

(B) group-specific EIA. Lines connect means from each sampling time. Circles and triangles 

indicate individual data points whereby an individual is denoted with a different color. Males are 

shown in blue and green colors, whereas females are shown in red and tan. ACTH was 

administered at ~20:00 h (not shown). 
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Figure 3. 5 Fecal cortisol/corticosterone metabolites (FCMs) across different trap confinement 

times in free-ranging deermice. FCMs were measured with the group-specific EIA. Boxplots 

display the median (line), 25–75% interquartile range (boxes) and the full range (whiskers). In 

the 0–2 h group, there is a large outlier. Circles indicate individual data points whereby blue 

denotes males and red denotes females. 
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CHAPTER 4 HETEROSPECIFIC COMPETITORS AND SEASONALITY CAN 

AFFECT HOST PHYSIOLOGY AND BEHAVIOR: KEY FACTORS IN DISEASE 

TRANSMISSION2 

 

ABSTRACT 

Ecological and environmental factors can influence the transmission of infectious diseases. They 

can accomplish this via effects on host susceptibility and exposure to infection, which are 

governed by host physiology and behavior, respectively. To better inform disease control, more 

information is needed about how extrinsic factors affect physiological and behavioral processes 

that determine transmission. We investigated how heterospecific competitors and seasonality 

may influence host susceptibility and intraspecific contact rates using a directly-transmitted 

disease system, the North American deermouse (Peromyscus maniculatus) - Sin Nombre 

hantavirus (SNV) system. In grasslands of western Montana, USA, deermice compete with 

dominant voles (Microtus spp.) and shrews (Sorex spp.) and experience a seasonal temperate 

climate. Higher SNV transmission occurs primarily during spring/summer, when changes in 

physiology and behavior may serve as influential contributors. We hypothesized that: (1) voles, 

and to a lesser extent shrews, will induce chronic stress, suppress immunity, and may change 

contact rates of deermice, and (2) during spring/summer, deermice may experience chronic 

stress, suppressed immunity, and higher contact rates, which may help explain the reported 

seasonality in SNV transmission. Over two years, we trapped small mammals at four grids in 

western Montana. Deermice were sampled for feces and blood and evaluated for scar numbers, 

demography and body condition scores (BCSs). We evaluated stress physiology with fecal 

 
2 This paper is in press in “Ecosphere”. A. Eleftheriou, A. J. Kuenzi and A.D. Luis. 2021. Heterospecific 

competitors and seasonality can influence host physiology and behavior: key factors in disease transmission. 

Ecosphere. In Press.  
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corticosterone metabolites (FCMs), neutrophil/lymphocyte (N/L) ratios and BCSs, immunity 

with white blood cell (WBC) counts, and contact rates with scar numbers. We found that shrew 

density was negatively associated with stress response FCMs, suggestive of chronic stress. 

Additionally, although complex interactions existed, shrew and vole densities were negatively 

associated with BCSs, but differentially with scar numbers. N/L ratios were higher in 

spring/summer whereas WBC counts were lower in summer, suggestive of chronic stress and 

suppressed immunity, respectively. Our results suggest that (1) heterospecific competitors may 

differentially influence disease transmission via stress physiology and contact rates, and that (2) 

chronic stress, suppressed immunity, and higher contact rates may help explain why higher SNV 

transmission has been previously reported during spring/summer in Montana. Our findings may 

extend to other directly-transmitted disease systems.  

 

INTRODUCTION 

Globally, emerging infectious diseases are causing wildlife populations to decline and species to 

go extinct (Daszak et al. 1999, Williams et al. 2002, Smith et al. 2006). Extrinsic (i.e., ecological 

and environmental) factors may drive a rise in disease emergence, because they can influence 

two key determinants of disease transmission. These include host susceptibility and exposure to 

infection, which are governed by host physiology and behavior, respectively (Hawley et al. 

2011). Therefore, to better inform wildlife conservation and disease management, it is imperative 

that we identify physiological and behavioral mechanisms that link extrinsic factors to disease 

transmission so we can better understand and predict their impacts on wildlife disease dynamics. 

Extrinsic factors may impact host physiology via glucocorticoid (GC) hormones, crucial 

regulators of the stress response. Although an acute rise in GCs from a stressor is considered 

adaptive, persistently elevated GCs (i.e., chronic stress) are maladaptive because they can lower 
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immunity and increase susceptibility to infection (Dickens and Romero 2013, Dantzer et al. 

2014). Stress physiology is typically evaluated with blood GCs but also with metabolized GCs in 

feces called fecal cortisol/corticosterone metabolites (FCMs) (Palme 2019). When vertebrates 

experience chronic stress, their baseline FCMs can rise and their stress response to an acute 

challenge (i.e., stress response FCMs) can decline (Busch and Hayward 2009). However, GC 

secretion patterns can be highly variable, which can make interpretation of hormone data a 

cumbersome task. Therefore, it is best practice to employ several measures that span GC 

metabolism (i.e., downstream effects of GCs) to attain a more comprehensive evaluation of stress 

physiology (Breuner et al. 2013, Dantzer et al. 2014).  

There are various downstream measures of GCs (reviewed in Breuner et al. 2013). For 

example, because GCs increase neutrophils and decrease lymphocytes in the peripheral 

circulation, individuals under chronic stress are expected to have higher neutrophil/lymphocyte 

(N/L) ratios (Davis et al. 2008), while they are expected to have lower body condition scores 

(BCSs) from GC-induced breakdown of fat and muscle reserves (Sapolsky et al. 2000). 

However, the effect of GCs on immunity is much less straightforward because components of 

the immune system (e.g., humoral versus cellular) may respond differently to chronic stress 

(Sapolsky et al. 2000). Despite this inherent complexity, total white blood cell (WBC) counts are 

largely expected to decline with chronic stress (Martin 2009).  

Heterospecific competitors may influence host susceptibility and exposure to infection. In 

particular, competitors may increase host susceptibility to infection via GCs. For example, 

Santicchia et al. (2018) found that invasive grey squirrels (Sciurus carolinensis) increased 

baseline FCMs in Eurasian red squirrels (Sciurus vulgaris), and Narayan et al. (2015) showed 

that invasive cane toads (Rhinella marina) decreased body condition in Fijian ground frogs 
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(Platymantis vitiana). Therefore, interspecific competition can influence stress physiology, and 

presumably, host immunity. Additionally, heterospecific competitors may alter host behavior, 

thereby affecting exposure to infection. For example, Glass and Slade (1980) found that prairie 

voles (Microtus ochrogaster) avoided space that was used by reproductive cotton rats (Sigmodon 

hispidus), and Gutman and Dayan (2005) found that common spiny mice (Acomys cahirinus) 

inhibited the nocturnal activity of golden spiny mice (A. russatus). Taken together, heterospecific 

competitors may influence disease transmission via both host physiology and behavior.  

Environmental factors that fluctuate seasonally, such as food availability and ambient 

temperature, may influence stress physiology, immunity, and behavior, which may explain why 

disease prevalence can vary seasonally in wildlife hosts (Altizer et al. 2006). Particularly in 

temperate habitats, seasonal environmental factors can affect stress physiology and immunity of 

wildlife, which may have ramifications for disease transmission (Nelson and Demas 1996). In 

fact, most vertebrates undergo seasonal changes in baseline and stress-induced GCs, with higher 

baseline GCs expected during the breeding period, although this can be species-specific (Reeder 

et al. 2005, Romero et al. 2008). Similarly, vertebrates undergo seasonal changes in immunity. 

For example, birds and small mammals enhance their immunity in winter (Martin et al. 2008). 

Wildlife can also exhibit seasonal changes in behavior that may affect disease transmission. For 

example, by aggregating in flocks during winter, house finches may experience seasonal 

exposure to Mycoplasma gallisepticum (Altizer et al. 2004), and by engaging in aggressive 

interactions during their breeding season, bank voles (Myodes glareolus) may experience 

seasonal exposure to Puumula hantavirus (Escutenaire et al. 2002). In summary, seasonality in 

environmental factors may impact disease transmission via host physiology and behavior. 
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To examine physiological and behavioral links between extrinsic factors and mechanisms 

affecting disease transmission, we conducted an observational study in grasslands of western 

Montana, USA, with the North American deermouse (Peromyscus maniculatus; hereafter 

deermouse), the reservoir host for the directly-transmitted Sin Nombre hantavirus (SNV). This is 

an appropriate system for examining how physiology and behavior may link extrinsic factors to 

transmission for two main reasons. Firstly, there has been considerable research regarding the 

“diluting” effect of species diversity on disease risk (i.e. dilution effect; sensu Keesing et al. 

2006) across rodent-hantavirus systems (e.g., Suzán et al. 2009, Dearing et al. 2015, Khalil et al. 

2016). However, the dilution effect observed may not be due to diversity per se but due to 

ecological processes, such as interspecific competition between host and nonhost species, which 

may happen to correlate with diversity (Johnson et al. 2015). Regardless, we still require more 

information about the physiological and behavioral mechanisms behind the dilution effect that 

may be applicable to other directly-transmitted disease systems (Rubio et al. 2017, Luis et al. 

2018). Secondly, although seasonality has been extensively studied as a crucial driver for disease 

dynamics across rodent-hantavirus systems (Luis et al. 2015, Voutilainen et al. 2016), potential 

physiological and behavioral mechanisms have received comparatively less attention. Therefore, 

we used the deermouse-SNV system as a model to investigate how ecological and environmental 

factors affect physiological and behavioral mechanisms of disease transmission.  

At our study site, deermice experience a temperate climate with strong seasonality and 

coexist with voles (Microtus spp.) and shrews (Sorex spp.). This study system allowed us to 

examine how heterospecific competitors (i.e., voles and shrews) and seasonality associated with 

measures of deermouse physiology (i.e., stress physiology and immunity) and behavior (i.e., 

contact rates), which has implications for SNV transmission. Given that demography, parasites, 
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and habitat may influence physiology and behavior, they were also accounted for in our analyses 

(Dantzer et al. 2014). 

Voles are considered dominant competitors of deermice. For example, Grant (1971) 

found that meadow voles excluded deermice from grasslands through aggressive interactions. 

However, we found no evidence to suggest that shrews are also dominant over deermice, and 

because of their much smaller size, we reasoned that they are most likely less dominant. 

Consequently, we hypothesized that dominant voles will induce chronic stress, depress immunity 

and/or alter contact rates of deermice, with shrews having a lesser effect (Table 4.1). We did not 

have a priori hypotheses as to how contact rates may be altered because previous field studies 

generated inconsistent findings (Clay et al. 2009, Rubio et al. 2017, Luis et al. 2018).  

In Montana, SNV transmission is typically highest during spring/summer, which 

coincides with the breeding season of deermice during which they will engage in aggressive 

intraspecific encounters, leading to the accumulation of scars (Douglass et al. 2001, Bagamian et 

al. 2012). Field studies from nearby Idaho, suggest that stress physiology of deermice varies 

seasonally given that deermice were found to have lower FCMs during fall than summer (Harper 

and Austad 2001). Deermouse immunity may also vary seasonally as indicated through 

laboratory experiments where deermice under short-day conditions (i.e., mimicking winter 

conditions in North America), had higher WBC counts compared to long day conditions (Blom 

et al. 1994). Given all the evidence above, we also hypothesized that deermice will experience 

chronic stress, suppressed immunity, and higher contact rates during spring/summer (Table 4.1).  

MATERIALS AND METHODS 

STUDY SYSTEM 

Deermice are the primary reservoir for SNV in North America (Childs et al. 1994). At grasslands 

in western Montana, deermice coexist with few other small mammals, which include meadow 
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(Microtus pennsylvanicus) and montane voles (Microtus montanus), and vagrant (Sorex vagrans) 

and montane shrews (Sorex monticolus; Carson et al. 2006). None of these small mammals are 

considered to be competent SNV hosts (Mills et al. 2010).  

VARIABLES MEASURED 

We evaluated stress physiology with four measures that span GC metabolism: (1) baseline FCM 

levels, (2) stress response FCM levels (FCMs after overnight trap confinement minus baseline), 

(3) N/L ratio, and (4) BCS. Immunity was evaluated with total WBC counts. We used number of 

scars to evaluate contact rates because positive correlations between presence of scars and SNV 

infection in deermice have been found (e.g., Douglass et al. 2001). Despite its limitations, we 

thought number of scars was suitable for two reasons: (1) SNV is primarily directly transmitted 

via bites that can result in scars (Mills et al. 1999, Warner et al. 2019), and (2) it allowed us to 

incorporate a measure of contact rates, which are notoriously difficult to quantify in the field.  

SITE DESCRIPTION AND LIVE-TRAPPING 

Four 1-hectare grids were established, where each grid had 100 trap stations 10 m apart in a 10 X 

10 array (Kuenzi et al. 2001). These were located at the Ninepipe Wildlife Management Area, 

Montana, USA, and were at least 1600 meters away from each other. The most common grasses 

were intermediate wheatgrass (Agropyron intermedium), smooth brome (Bromus sp.) and 

timothy grass (Phleum pratense) (see Supplementary Information for more grid descriptions).  

Small mammals were live-trapped November 2016 - August 2018. Grids A and B were 

trapped October - November 2016, February - December 2017 (excluding June and July for A, 

and July for B) and March - July 2018. Grids C and D were trapped from October - November 

2017 and March - August 2018. We trapped two grids concurrently at a time (i.e., grids A and B 

together, grids C and D together) once a month for three nights. We initially removed voles from 

grid B by euthanasia August 2017 - April 2018, so we could assess removal effects on deermice 
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(Vole N removed = 25). However, we considered this approach to be unsuccessful because voles 

were trapped consistently despite removal. Although removal may have influenced vole 

densities, we still typically trapped voles most often at this grid (Fig. 1). Therefore, we still had 

enough variation in vole densities to address our competitor hypotheses. We speciated 

euthanized or dead voles by examining their dentition; meadow voles have an extra cusp on their 

upper middle molar (Hall and Kelson 1959). We did not speciate shrews but, most likely, they 

were vagrant and montane shrews (Carson et al. 2006).  

We baited non-folding Sherman live traps (H. B. Sherman, Tallahassee, Florida, USA) 

with peanut butter and oats and supplied them with polyester bedding. Traps were opened around 

dusk and checked approximately four hours later when trap-induced stress is less likely to 

influence baseline FCMs (Harper and Austad 2001, Eleftheriou et al. 2020). Voles and shrews 

were released after processing, whereas deermice were returned to their traps so they could be 

processed again around dawn before release on site. This allowed evaluation of the FCM 

response to an acute stressor (i.e. trap confinement; Eleftheriou et al. 2020).  

ANIMAL SAMPLING 

At the initial check, traps that contained animals were taken to a central station for processing. 

We tagged deermice with metal ear tags (National Band and Tag Co., Newport, Kentucky, 

USA), collected feces and returned them to their traps until around dawn, which is when we 

collected more feces and blood, and also weighed them. Sex, presence of fleas and reproductive 

status were also noted. A BCS was estimated between one minus and five plus by palpation of 

tissue at the base of the tail, with five plus being extremely obese (Ullman - Culleré and Foltz 

1999). BCS estimation was performed by the same experienced investigator throughout the 

entire course of the study. We also examined deermice for scars, which we counted, if present. 

We assigned deermice to four scar categories starting in April 2017: (0) no scars, (1) ≤ 4, (2) 5-8 
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and (3) ≥ 9 scars. Age was estimated from weight (juveniles < 14 g, subadults 14-17 g and adults 

> 17 g; Fairbairn 1977). Voles were ear tagged, weighed, sexed and evaluated for BCS and 

reproductive status. Given that shrews cannot be ear tagged, we began marking them in April 

2017 with a permanent marker. Because recaptures of marked shrews were rare (two recaptured 

April 2017 - August 2018), we are confident we did not count the same animals twice within the 

same trapping session. Active reproductive status in female rodents was determined via the 

presence of a perforate vagina, pregnancy and/or lactation, and in male rodents via the presence 

of scrotal testes. Blood was collected with heparinized capillary tubes (Fisher Scientific, 

Pittsburgh, Pennsylvania, USA) from the retroorbital capillary sinus, after topical anesthesia with 

proparacaine (Akorn, Inc., Lake Forest, Illinois, USA). Blood and feces were immediately 

frozen. We followed safety guidelines for working with animals potentially infected with 

hantavirus (Mills et al. 1995). All animal procedures were approved by the Institutional Animal 

Care and Use Committee (# 027-16ALDECS-051016) at the University of Montana, Missoula, 

MT. Land access was granted by Montana Fish, Wildlife and Parks. 

FCM ANALYSES 

We heated feces in a laboratory oven within a biosafety cabinet at ~ 63ºC for two hours to 

inactivate any SNV (J.N. Mills, personal communication) and reach constant weight. Dried feces 

were ground into powder and 0.040 (+/- 0.005) g was weighed out for extraction. One ml of 80% 

methanol was added to powdered samples, vortexed for 30 minutes at 1500 rpm, and centrifuged 

for 20 minutes at ~ 2500g (Eleftheriou et al. 2020). Supernatants were frozen until analyses. 

Because corticosterone is the main glucocorticoid in Peromyscus maniculatus (e.g., Bradley and 

Terman 1981), we quantified FCMs using a corticosterone enzyme immunoassay (EIA) after 

supernatants were diluted (typically 1:80). We followed manufacturer’s instructions (Assay 

Designs, Ann Arbor, Michigan, USA) but also used a reference wavelength of 650 nm. This EIA 
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has been validated with deermouse feces (Eleftheriou et al. 2020). Intra-assay and inter-assay 

coefficients of variation were less than 15% and 20%, respectively.  

WBC COUNT ANALYSES 

In healthy deermice, the most common WBCs in circulation are lymphocytes and neutrophils 

(Schountz et al. 2014). To evaluate WBCs, we followed methodology by Eleftheriou and Luis 

(2020). We stained blood smears with Modified Wright stain (Sigma-Aldrich, St. Louis, 

Missouri, USA) and counted WBCs using light microscopy. Total WBC counts were estimated 

by counting cells from the feathered edge towards the smear’s center for 20 fields at 400X. The 

mean count of 20 fields was multiplied by 2000 to get an estimate of cells/µL. At 1000X, we 

counted lymphocytes, neutrophils, monocytes, eosinophils and basophils out of 100 WBCs. 

SNV ANTIBODY DETECTION 

Because deermice never resolve SNV infections, antibodies are a reliable marker of infection 

(Mills et al. 1999). Therefore, we detected infected deermice by the presence of SNV antibodies 

in blood samples. We coated 96-well plates with SNV recombinant nucleocapsid antigen and 

followed an enzyme-linked immunosorbent assay (ELISA) protocol (Schountz et al. 2007) to 

determine antibody presence.  

STATISTICAL ANALYSES 

To examine seasonal effects, months were grouped to create a season variable where we 

assigned October - February to fall/winter, March - May to spring, and June - August to summer. 

We also grouped juveniles with sub-adults into one group we called non-adults to increase 

sample size. Minimum number alive (MNA) was used as an index of deermouse and vole 

densities (sensu Krebs 1966) because it works well for small mammals (e.g., Luis et al. 2010). 

Number of unique captures was used as an index for shrew densities. We used linear and 

generalized mixed effect regression trees, which use model-based recursive data partitioning, 

where each tree node is a regression coefficient (Fokkema et al. 2018). When individuals were 
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sampled more than once, tag number was a random effect. We considered regression trees as 

appropriate because they can easily handle and identify complex interactions among many 

potential predictor variables that could be overlooked with traditional statistical approaches that 

use stepwise variable selection (Strobl et al. 2009). We used linear mixed effect trees for each of 

these response variables: baseline FCMs, BCSs, N/L ratios, and WBC counts. For scar numbers, 

we used a generalized linear mixed effect tree with a Poisson error structure (Fokkema et al. 

2018). However, for stress response FCMs, we used a generalized linear tree with a Gaussian 

error structure and no random effects because deermice were sampled only once (Hothorn and 

Zeileis 2015). The trees included the following predictor variables: deermouse, vole, and shrew 

densities, trapping grid, season, reproductive status, age, sex, flea presence and SNV infection 

status. Statistical significance was set to α = 0.05. Back transformed means with standard errors 

are presented. We performed analyses in R (R Core Development Team 2018) within R Studio 

(RStudio Team 2015), using R package “glmertree” (Fokkema et al. 2018) to build mixed effect 

regression trees and R package “partykit” (Hothorn and Zeileis 2015) to build generalized linear 

trees. All response variables except stress response FCMs, BCSs and scar numbers were natural 

log transformed to meet normality and homoscedasticity assumptions. We excluded any extreme 

outliers that were identified during this process and noted below whenever this was done.  

RESULTS 

LIVE-TRAPPING 

We captured 289 individual deermice (1028 captures) and 152 individual voles (211 captures). 

Additionally, we had 131 shrew captures. There was variability in animal densities across space 

and time (Figure 4.1). Nearly all voles identified to species were meadow voles (~93%, n = 27).  

STRESS PHYSIOLOGY MEASURES 

We only found a temporal effect on baseline FCMs. Deermice had higher FCMs in fall/winter 

2017 (12030.13 ± 1503.06 ng/g, n = 149, P < 0.001) compared to other times (7547.49 ± 
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1112.90 ng/g, n = 307). Initially, only presence of shrews was associated with lower stress 

response FCMs (19526 ± 2614 ng/g, n = 61, P < 0.001). However, after removing one extreme 

outlier (174703.9 ng/g) the more nuanced effect of shrew density was apparent (Figure 4.2). 

Shrew density > 4/ha was then associated with lower stress response FCMs (10565 ± 3201 ng/g, 

n = 14, P= 0.01). When shrew density was 1- 4/ha, deermice had higher stress response FCMs 

(21537 ± 3071 ng/g, n = 49). However, deermice had even higher stress response FCMs when 

shrews were absent (31612 ± 3471 ng/g, n = 67, P = 0.04). In summary, as shrew density 

increased, stress response FCMs decreased, indicative of chronic stress with a higher shrew 

density.  

 Significant predictors for N/L ratio were season, grid, and age (Figure 4.3). N/L ratios 

were lowest in deermice at grid A (0.42 ± 0.05, n = 61) compared to other grids (0.70 ± 0.10, n = 

115, P = 0.002), only in fall/winter. In spring/summer, adults had higher N/L ratios (1.43 ± 0.18, 

n = 279, P < 0.001) compared to non-adults (0.69 ± 0.15, n = 22).  

Significant predictors for BCS were reproductive status, shrew and vole densities, season, 

and age (Figure 4.4). Non-reproductive deermice had higher BCSs (3.07 ± 0.05, n = 138, P < 

0.001) when shrew density was ≤ 1/ha. When shrew density was > 1/ha, BCSs were lower (2.79 

± 0.09, n = 76). Reproductive non-adults had higher BCSs (3.18 ± 0.12, n = 27, P = 0.001) than 

reproductive adults. For adults, the presence of voles had a significant effect on BCSs (P< 

0.001), and was associated with a temporal effect, where deermice had lower BCSs in spring and 

summer 2018 (2.34 ± 0.08, n = 116), compared to other times (2.64 ± 0.08, n = 109, P=0.002). 

When voles were absent, higher shrew density (˃ 1/ha) was associated with lower BCSs (2.28 ± 

0.12, n = 37), compared to lower density (≤ 1/ha; 2.92 ± 0.11, n = 46, P < 0.001). In summary, 
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deermice had lower BCSs when heterospecific competitors were present, and reproductive adults 

had lower BCSs compared to other age/reproductive classes.  

IMMUNITY 

Significant predictors for WBC counts were grid and season. Deermice at grids A and B had 

lower WBC counts compared to grids C and D (P<0.001; Figure 4.5), which is most likely a 

temporal artifact of which grids were trapped together every month. For all grids, WBC counts 

were higher (A and B: 2239.37 ± 139.00 /µl, n = 230; C and D: 3273.81 ± 340.23/µl, n = 118) in 

fall/winter and spring, and lower in summer (A and B: 1511.72 ± 146.38 /µl, n = 81; C and D: 

2271.31 ± 295.96 /µl, n = 52, P = 0.002). To meet the normality assumption, we had to exclude 

two outliers that had counts of 100 WBCs each from grids A and B. 

SCAR NUMBERS 

Significant predictors for scar numbers were season, vole and shrew densities, and reproductive 

status. Deermice had more scars in spring 2018 and across both summers, compared to spring 

2017 and fall/winter 2017 (P < 0.001; Figure 4.6). During spring and fall/winter 2017, 

reproductive deermice had more scars (1.20 ± 0.17, n = 94) than non-reproductive individuals 

(0.85 ± 0.09, n = 115, P = 0.04). In spring 2018 and both summers, intermediate vole density (1- 

3/ ha) was associated with more scars (2.33 ± 0.28, n = 96, P < 0.001), compared to when voles 

were absent or at a higher density (> 3/ha; 1.59 ± 0.20, n = 101, P =0.001). Shrews only mattered 

when voles were absent; then, with a shrew density > 1/ha, deermice had more scars (2.13 ± 

0.30, n = 45) than when shrew density was ≤ 1/ha (1.53 ± 0.22, n = 58, P = 0.013). Taken 

together, the identity of heterospecific competitors was important in how number of scars in 

deermice were affected. 

SNV INFECTION 

We detected 23 infected deermice with most of them (n=21) from grids where voles were also 

trapped. All, except for one, were trapped August 2017 - August 2018 (Figure 4.1). Because of a 
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low number of infected deermice, there was not enough power to perform formal statistical tests 

for evaluating competition or seasonality effects on SNV prevalence. 

DISCUSSION 

We showed that two key determinants of SNV transmission, host susceptibility and exposure to 

infection, were associated with ecological and environmental factors. In particular, we examined 

how heterospecific competitors and seasonality associated with: (1) stress physiology and 

immunity (i.e., host susceptibility), and (2) scar numbers (i.e., host exposure to infection) in 

deermice. Broadly, we found significant associations between both factors and select measures 

of stress physiology, immunity, and contact rates (summarized in Table 4.1).  

Unfortunately, a low number of SNV-infected deermice, made it difficult to evaluate 

direct relationships between SNV prevalence or transmission with any of our physiological and 

behavioral measures. This was not surprising given the low deermouse densities at our site 

during the study. Deermouse density varies widely over space and time and has been shown to 

be the main driver of SNV prevalence (Luis et al. 2015; 2018). The densities at our field site 

ranged between 2 and 32 deermice/ha (Figure 4.1), with most hovering around the critical host 

density needed for SNV to invade (estimated at ~ 17 deermice/ha at another site in Montana; 

Luis et al 2015). Given the deermouse densities observed, we would expect to see, at most, one 

infected individual when using the epidemiological model of Luis et al. (2015), which is similar 

to what we observed (maximum of three infected individuals per any given month). Although 

deermouse density appears to be the most important driver of SNV prevalence, Luis et al. (2018) 

showed that species diversity can also affect the SNV transmission rate (for a given deermouse 

density), with SNV transmission rate higher in communities with more diverse heterospecific 

competitors. However, Luis et al. (2018) could not discern if this increase in transmission rate 

was due to changes in host susceptibility or contact rates. Here, we present evidence that 
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heterospecific competitor densities may induce chronic stress, which could potentially result in 

suppressed immunity and increased susceptibility to infection. We also present evidence that 

competitors may potentially alter contact rates, which could impact exposure to infection, as 

evidenced by changes in scar numbers.  

INTERSPECIFIC COMPETITION 

We found evidence that heterospecific competitor densities were associated with chronic stress 

in deermice. Shrews were associated with two stress measures (stress response FCMs and BCSs) 

and voles were associated with one (BCSs). Although we hypothesized, based on support from 

the literature, that voles are dominant over deermice, we reasoned that shrews are most likely 

less dominant given the lack of evidence to suggest otherwise. Thus, we expected shrews to 

minimally influence deermouse stress physiology, but we found that shrew density, and not vole 

density, was negatively associated with stress response FCMs, indicative of chronic stress at a 

higher shrew density. Because shrew and deermouse diets can overlap (i.e., insects, Rychlik and 

Jancewicz 2002, Witmer and Moulton 2012), exploitative competition may be intense enough to 

induce chronic stress in deermice. In contrast to our findings, we expected to see an effect of 

voles on deermouse baseline FCMs because: (1) they are dominant over deermice, and (2) a 

positive correlation between vole densities and deermouse baseline FCMs has been found 

previously (Fredebaugh et al. 2013). However, we may have missed an effect because we did not 

sample frequently enough (e.g., weekly) or the effect was too subtle to detect. The absence of 

changes in N/L ratios was also unexpected but may have been due to the aforementioned 

reasons.  

Both vole and shrew densities were negatively associated with body condition scores 

(BCSs) in deermice. BSCs are one measure of chronic stress. However, they could indicate 

lower food availability; another potential result of interspecific competition. Regardless of the 
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cause, individuals with lower BCSs may be more susceptible to infection (Beldomenico et al. 

2009). We found that the presence of voles, and higher shrew density, were associated with 

lower BCSs in reproductive adults only. However, shrew density was associated with larger 

changes (Figure 4.4). This pattern may ensue if reproductive adults compete with voles and 

shrews relatively more, perhaps due to their higher energetic demands. 

Despite associations between heterospecific competitors and stress physiology, we found 

no association with WBC counts, the immunity measure. The complex and multifaceted 

relationship between stress physiology and immunity makes it difficult to choose the best suited 

immune measure that can capture the desired response (Martin 2009). Although relatively cheap 

and simple to attain, WBC counts may increase in response to infection or inflammation, 

potentially masking stress-induced reductions (Davis et al. 2008). Nevertheless, our findings 

suggest that we may need to explore other immunity measures that are more functional in nature, 

such as lymphocyte proliferation assays, which allow for a real-time immune challenge (Demas 

et al. 2011). 

We also found that vole and shrew densities were differentially associated with 

deermouse scar numbers, primarily during the breeding period. Interestingly, the relationship 

between vole density and scar numbers was non-monotonic. Deermice had the most scars at 

intermediate vole densities (between 1 and 3/ha), with fewer scars either when voles were absent 

or present at densities > 3/ha (Figure 4.6). However, at higher shrew densities (>1/ha), deermice 

had more scars than when shrews were absent. Although we did not have clear a priori 

predictions on how contact rates might change in response to interspecific competition, our 

findings suggest that deermice may change their behavior based on what competitor is present. 

Such behavioral changes were reported by Clay et al. (2009) in deermice from Utah, USA, at 
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sites with high small mammal diversity, although Rubio et al. (2017) found no change in 

deermice kept in outdoor enclosures with dominant Merriam's kangaroo rats (Dipodomys 

merriami). We acknowledge that using scar numbers as a proxy for contact rates has limitations 

(e.g., wounds healed with no scars), so our findings related to this measure need to be evaluated 

with caution. Thus, controlled experiments where technology is used to better estimate contact 

rates are needed (e.g., Dearing et al. 2015).  

In summary, our findings suggest that identity of competitor species may matter in how 

transmission is affected because deermouse physiology and behavior responded differently to 

vole and shrew densities. Studies of other disease systems have demonstrated the importance of 

species identity in affecting disease transmission in the focal host, such as with Lyme disease 

(vector-borne transmission, LioGuidice et al. 2003) and chytridiomycosis (environmental 

transmission, Venesky et al. 2013). However, our study is one of the few to examine 

consequences of competitor species on both physiological and behavioral traits of the host that 

have implications for transmission of directly-transmitted diseases. Given our results, it is crucial 

that we continue to test how heterospecific competitors can differentially affect host physiology 

and behavior so we can improve how we understand and predict disease dynamics across diverse 

communities.  

SEASONALITY 

There was no clear seasonality (consistent between years) in baseline or stress response FCMs. 

Although seasonal variation in photoperiod necessarily affected how long deermice were in 

overnight confinement, this did not appear to be influential for stress response FCMs because 

season was not selected as a predictor (Figure 4.2). Our findings are not entirely surprising 

because a review by Romero (2002) found no consistent seasonal patterns in baseline or stress-

induced FCMs (i.e., after trap confinement) in mammals.  
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 We found seasonality in N/L ratios, where deermice had higher N/L ratios in 

spring/summer compared to fall/winter. Seasonal environmental factors that influence GCs may 

also affect N/L ratios, although these two measures may evaluate the stress response differently 

across time (Davis et al. 2008, Goessling et al. 2015). However, inflammation and infection may 

also affect N/L ratios (Davis et al. 2008). Given that deermice were not tested for infection other 

than with SNV, we cannot discern if the seasonality observed was explicitly due to GCs. 

However, given the large sample size and consistent pattern across years, seasonality in stress 

physiology is a more parsimonious explanation. It is noteworthy that seasonal variation in 

photoperiod necessitated that time in confinement also varied by season. Although this may have 

influenced the findings, seasonality in N/L ratios (or heterophil to lymphocyte ratio in birds and 

reptiles) has been observed in other vertebrates (e.g., Norte et al. 2009, Goessling et al. 2016). In 

contrast to N/L ratios, we did not find clear seasonality in BCSs, despite seasonal changes in 

body condition occurring in other vertebrates (e.g., Milenkaya et al. 2013, Pokharel et al. 2017).  

 There was clear seasonality in the immunity measure, WBC counts, which were higher in 

fall/winter and spring, but lower in summer. Similar to N/L ratios, inflammation or infection may 

also influence WBC counts and possibly time in confinement as well (Davis et al. 2008). 

However, evidence consistent with our field data from previous studies of small mammals, 

including deermice, propose that seasonality is the most likely parsimonious explanation for our 

findings (Blom et al. 1994, Martin et al. 2008). 

 Aggressive encounters between deermice that lead to scars are associated with breeding 

and typically occur in spring/summer (Bagamian et al. 2012). Similar changes in scarring from 

intraspecific fights occur seasonally in other vertebrates (Christian 1970, Woodroffe and 

Macdonald 1995). Such seasonal changes in aggressive encounters can result from changes in 
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home range dictated by reproduction and food availability (e.g., Perelberg et al. 2003). For the 

most part, our study confirms this pattern. We also observed that deermice had more scars across 

summers and spring 2018 compared to fall/winter. However, lower scar numbers in spring 2017 

did not fit this pattern. Perhaps food availability, which we did not measure, was greater in 

spring 2017, which may have led to fewer aggressive encounters.   

Taken together, higher N/L ratios in spring/summer, lower WBC counts in summer, and 

more scar numbers in summer, may provide valuable insight as to why previous studies in 

Montana found that SNV transmission is higher in spring/summer. However, experimental 

studies would be needed to causally link these findings to SNV transmission in deermice.  

CONCLUSIONS 

Overall, we found evidence that heterospecific competitors and seasonality were 

associated with select physiological and behavioral measures in deermice. However, we found 

no effects of deermouse density, which was surprising given that density has been associated 

with stress physiology and intraspecific contact rates in rodents (Harper and Austad 2004, 

Ostfeld and Keesing 2019). Similarly, there were no effects from flea infestation or SNV 

infection (although we very likely lacked power to detect an effect). Absence of these 

associations suggests that neither deermouse density nor parasitism were as important as 

heterospecific competitors and seasonality in affecting physiological and behavioral measures. 

However, if deermouse density were high enough for a long enough duration to sustain SNV 

transmission and increase infection, perhaps those associations could manifest. We should note 

that because we did not measure temporal or spatial heterogeneity in vegetation cover across 

grids, we cannot ascertain its consequences on physiological and behavioral measures. However, 

because grid was not a significant predictor in most models, it seems likely that vegetation cover 

itself did not play a widely influential role.   
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The mechanistic approach of our study can inform other disease ecology studies that seek 

to identify potential physiological and behavioral links between extrinsic factors and disease 

transmission. Going forward, conducting controlled experiments in outdoor enclosures where 

host densities are held constant will allow for more robust evaluations of the effects of 

interspecific competition and seasonality on stress physiology, immunity and intraspecific 

contact rates in our system and other directly-transmitted disease systems.  
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Table 4. 1 List of hypotheses for how heterospecific competitors and seasonality will associate 

with stress physiology, immunity, and contact rates of deermice, with corresponding predictions 

and empirical support for each measured variable. Seasonality hypotheses received support if 

there was consistency across both years.  

Hypothesis  Prediction Support? 

Heterospecific competitors  

(voles, and to a lesser extent,  

shrews) 

↑ stress  ↑ Baseline FCMs † No 

  ↓ Stress response FCMs † Yes (shrews) 

  ↑ N/L ratio ‡ No 

  ↓ BCS § Yes (both) 

↓ immunity ↓ WBC counts ¶ No 

˗ or Δ contacts  ˗ or Δ scar numbers Yes Δ (both) 

Spring/summer seasons ↑ stress  

  

  

  

↑ Baseline FCMs † 

↓ Stress response FCMs † 

↑ N/L ratio ‡ 

↓ BCS § 

No 

No 

Yes (both) 

No 

↓ immunity ↓ WBC counts ¶ Yes (summer) 

↑ contacts ↑ scar numbers Yes (summer) 

† Fecal corticosterone metabolites 

‡ Neutrophil/lymphocyte ratio 

§ Body condition score 

¶ White blood cell counts 
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Figure 4. 1 Small mammal densities for each grid (A-D) across study period (October 2016 to 

August 2018). Deermouse and vole densities were estimated using Minimum Number Alive 

(MNA) index. Shrew densities were estimated using unique captures per trapping session.  
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Figure 4. 2 Regression tree for stress response fecal corticosterone metabolites (FCMs) of 

deermice. Each terminal node provides a sample size with a boxplot for that subgroup. Density is 

per hectare. Statistical significance was set to 0.05. 
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Figure 4. 3 Regression tree for ln neutrophil to lymphocyte (N/L) ratio of deermice. Each 

terminal node provides a sample size with a boxplot for that subgroup. Grids A and B were 

trapped October’16 – July’18. Grids C and D were trapped October’17 – August’18. Juveniles 

and subadults were grouped into “Non-Adult”. F1, S1, Su1, F2, S2, and Su2 represent 

Fall/Winter‘16, Spring‘17, Summer’17, Fall/Winter’17, Spring’18, and Summer’18, 

respectively. Statistical significance was set to 0.05. 
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Figure 4. 4 Regression tree for body condition score (BCS) of deermice. Each terminal node 

provides a sample size with a boxplot for that subgroup. “ReproStatus” stands for reproductive 

status. Juveniles and subadults were grouped together into “Non-Adult”. F1, S1, Su1, F2, S2, and 

Su2 represent Fall/Winter‘16, Spring‘17, Summer’17, Fall/Winter’17, Spring’18, and 

Summer’18, respectively. Density is per hectare. Statistical significance was set to 0.05.  

 

 

 



100 

 

 

Figure 4. 5 Regression tree of white blood cell (WBC) counts of deermice. Each terminal node 

provides a sample size with a boxplot for that subgroup. Grids A and B were trapped October’16 

– July’18. Grids C and D were trapped October’17 – August’18. F1, S1, Su1, F2, S2, and Su2 

represent Fall/Winter‘16, Spring‘17, Summer’17, Fall/Winter’17, Spring’18, and Summer’18, 

respectively. Statistical significance was set to 0.05. 
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Figure 4. 6 Regression tree for scar numbers of deermice. Each terminal node provides a sample 

size with a boxplot for that subgroup. Density is per hectare. “ReproStatus” stands for 

reproductive status. S1, F2, Su1, S2, and Su2 represent Spring‘17, Fall/Winter’17, Summer’17, 

Spring’18, and Summer’18, respectively. Statistical significance was set to 0.05. 
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SUPPLEMENTARY INFORMATION 

 

Grid descriptions: Most common grasses at grid A were intermediate wheatgrass (Agropyron 

intermedium) and smooth brome (Bromus sp.), at grid B, slender wheatgrass (Elymus 

trachycaulus) and timothy grass (Phleum pratense), at grid C, smooth brome and timothy grass, 

and at grid D, intermediate wheatgrass and wild oat (Avena fatua). Grid B had the most forbs 

including mustards (Brassica spp.), thistles (Cirsium spp.) and whitetop (Lepidium draba), and 

grid D the least.  
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CHAPTER 5 INTERSPECIFIC COMPETITION CAN LEAD TO NON-MONOTONIC 

DISEASE OUTCOMES: A THEORETICAL INVESTIGATION WITH A DIRECTLY-

TRANSMITTED ZOONOSIS 

ABSTRACT  

The “dilution effect” and “amplification effect” hypotheses predict negative and positive 

monotonic relationships, respectively, between biodiversity and disease. However, non-

monotonic patterns have also received support, and community composition, such as 

heterospecific competitors, has been argued to be more important than biodiversity per se. 

Because underlying mechanisms of dilution and amplification have been studied less with 

directly-transmitted disease systems, here, we theoretically investigated how a heterospecific 

competitor could affect disease outcomes via disparate mechanisms in such a system. To mimic 

a natural system, we used realistic parameters for Sin Nombre virus, hosted by the North 

American deermouse (Peromyscus maniculatus), with the vole (Microtus spp.) serving as the 

competitor. Because such competitors could affect host density, behavior, and physiological 

stress, we used a mathematical model with density-dependent transmission, to explore how 

competitor density could influence disease prevalence through these transmission mechanisms 

(either singly or combined). Our results indicated that, although dilution was more commonly 

predicted than amplification, a non-monotonic relationship (increase then decrease), was the 

most commonly predicted outcome in the parameter space we examined. Taken together, our 

findings broadly highlight that heterospecific competitors could, via competing mechanisms, 

generate non-monotonic disease outcomes within the same system, which could indeed be 

common and subject to misinterpretation in natural systems.  
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INTRODUCTION 

Globally, species diversity has been declining, while emerging infectious diseases of 

humans and animals have been increasing (Daszak et al. 2000; Jones et al. 2008; Cardinale et al. 

2012). To explain this pattern, the “dilution effect” hypothesis proposes that as species diversity 

decreases, infectious disease risk increases because diversity “dilutes” disease (Keesing et al. 

2006). Although most empirical evidence suggests that the dilution effect is prevalent in nature 

(Civitello et al. 2015), many have argued against its generality across disease systems (Randolph 

& Dobson 2012; Wood et al. 2014). This is partially because of evidence supporting the 

“amplification effect” hypothesis, which proposes that as diversity decreases, disease risk also 

decreases (Keesing et al. 2006; Salkeld et al. 2013). However, community composition (e.g., 

heterospecific competitors), and not diversity per se, has been argued to be more relevant 

(Randolph & Dobson 2012; Johnson et al. 2015), a concept termed the “identity effect” (Huang 

et al. 2016).  

Regardless of whether species diversity or community composition is considered, there 

has been more attention given towards the shapes of the patterns present (i.e. dilution versus 

amplification), instead of the underlying mechanisms that dictate those patterns. Such critical 

mechanistic work has been performed predominantly with vector-borne diseases, such as Lyme 

disease (e.g., Ostfeld & Keesing 2000), and environmentally-transmitted diseases, such as 

chytridiomycosis (e.g., Venesky et al. 2014), with directly-transmitted diseases receiving 

comparatively less attention (Luis et al. 2018). If we can broadly document how key mechanistic 

drivers interact together to govern the net disease outcome, we can better understand the shapes 

of the outcomes observed in natural systems (Wood et al. 2016; Halliday & Rohr 2019; Rohr et 

al. 2020). Consequently, we will be better equipped to predict the shapes of disease outcomes 

across host-parasite systems and environmental contexts.  
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Based on epidemiological theory, diversity can affect prevalence of a directly-transmitted 

disease, with one primary reservoir host, via three key mechanisms: intraspecific contact rates, 

probability of transmission given contact (hereafter probability of transmission), and infectious 

period, which is determined by infected host mortality and recovery (Keesing et al. 2006). The 

transmission rate of a disease, commonly referred to as β, is the product of contact rates, βc 

(behavioral component), and probability of transmission, βp (physiological component), for a 

given host density (Hawley et al. 2011). With density-dependent transmission, intraspecific 

contact rates are expected to increase directly with host density, N, that is the true contact rate is 

equal to βc N, where βc is a constant (Begon et al. 2002). Therefore, when diversity affects host 

density, it will indirectly affect intraspecific contact rates. For diversity to directly affect the true 

contact rate, it needs to do so via βc, independent of host density, N (e.g. via causing hosts to 

behaviorally aggregate in refugia). Because βc and βp are difficult to estimate from empirical data 

(Hawley et al. 2011), they are often collapsed to the single parameter, β. However, this has 

received valid criticism because crucial information about transmission could be otherwise lost 

(McCallum et al. 2017; White et al. 2018). In order to clearly understand the effects of diversity 

on disease outcomes, we need to examine how diversity can affect each of the key mechanisms 

independently and ascertain the potential for interactions (synergistic or antagonistic) among 

mechanisms that could impact the net outcome.  

Rodent-hantavirus systems have been employed as models of directly-transmitted disease 

systems for studying relationships between diversity (or community composition) and disease. 

Hantaviruses are primarily transmitted between hosts via bites and are closely associated with 

one primary reservoir species that once infected, never recovers (Jonsson et al. 2010). An 

example of such a system is the Sin Nombre virus (SNV) and its primary host, the North 
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American deermouse (Peromyscus maniculatus, hereafter deermouse), which has received 

considerable attention in the dilution effect literature (e.g., Mills 2006; Clay et al. 2009a; Rubio 

et al. 2017; Luis et al. 2018). The deermouse is the primary reservoir for SNV in North America 

(Childs et al. 1994), and this system exhibits direct (Warner et al. 2019) and density-dependent 

transmission (Luis et al. 2015). Although dilution is the effect primarily found in this system 

(e.g., Calisher et al. 2002; Mills 2006; Clay et al. 2009a; Dizney & Ruedas 2009; Lehmer et al. 

2012), neutral relationships between diversity and disease have also been identified (Orrock et al. 

2010; Milholland et al. 2017; Vadell et al. 2020). However, the mechanisms responsible for these 

patterns have been studied comparatively less (Clay et al 2009b; Dizney & Dearing 2016; Rubio 

et al. 2017). Most importantly, Luis et al. (2018) found that dilution and amplification can occur 

concurrently within the same system and are driven by different mechanisms. In particular, the 

authors found that an overall dilution effect in the Southwest United States was driven by 

deermouse density, despite a concurrent “component amplification effect”– a positive 

relationship between diversity and SNV transmission rate, β, at a given deermouse density. 

Therefore, the deermouse-SNV system presents an ideal opportunity to examine how key 

mechanisms could work in tandem to influence the net disease outcome; a concept that applies 

across host-parasite systems. 

Studies testing the “dilution effect” hypothesis in the deermouse-SNV system have 

largely focused on small mammal diversity instead of broader diversity measures. Consequently, 

the patterns observed between disease and diversity (or community composition) in this system, 

most likely stem from interspecific competition exerted on deermice, by one or more small 

mammal competitors. Therefore, the deermouse-SNV system allows us to tease apart how and 

why a heterospecific competitor can alter the spread of a directly-transmitted disease. In 
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particular, the deermouse-SNV system in grasslands of western Montana, USA, provides a 

suitable framework. There are two main reasons why this is the case. Firstly, deermice primarily 

compete with voles (Microtus spp.) in simple small mammal communities (Eleftheriou et al. 

2021). Unlike deermice, voles are considered dead-end hosts for SNV (Mills 2006). Secondly, 

voles are dominant competitors of deermice and could regulate their density (e.g., Redfield et al. 

1977), alter their intraspecific contact rates (i.e. interference competition; Grant 1971), and 

suppress their immunity via a rise in physiological stress, thereby potentially increasing 

probability of transmission (Dickens & Romero 2013; Fredebaugh-Siller et al. 2013, Eleftheriou 

et al. 2021). Therefore, voles could influence SNV prevalence via multiple mechanisms, and the 

simpler community in western Montana allows us to disentangle their relative importance on 

disease outcomes.  

Our study objective was to broadly examine, in a theoretical yet realistic framework, how 

community composition, represented here by a heterospecific competitor, could affect disease 

prevalence, via multiple key mechanisms, within a directly-transmitted disease system that 

exhibits density-dependent transmission. To accomplish this, we modified a deterministic model 

previously validated for the deermouse-SNV system (Luis et al. 2015) to include a heterospecific 

competitor. Because we wanted to evaluate an array of potential, yet realistic, disease outcomes, 

we varied the strength of vole-induced effects on deermouse density (i.e. regulatory interspecific 

competition), contact rates (βc), and probability of transmission (βp), as best informed by 

published data. Importantly, although our study focused on the deermouse-SNV system within a 

simple small mammal community, we emphasize that our modeling approach could be modified, 

and broadly applied to other disease systems that experience interspecific competition.  
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METHODS 

 
Susceptible-infected-recovered (SIR) models are compartmentalized models developed to 

track disease dynamics within a host population. The compartments are connected through 

parameters that allow one host to leave one compartment and enter another (Anderson & May 

1979). For example, a host can leave the susceptible compartment and enter the infected 

compartment, through transmission from an infected individual. Our model incorporates 

background birth and death rates of all deermouse classes irrespective of age or sex. This 

approach has been successful in predicting SNV dynamics in deermouse populations (Luis et al. 

2018). Our model also incorporates logistic growth where there is density-dependence in 

background birth and death rates, and assumes density-dependent transmission (Luis et al. 2015). 

Because deermice never recover from infection, there is no recovered compartment (Mills et al. 

1999). Our model also incorporates disease-induced mortality (Luis et al. 2012). The following 

model is based on the model from Luis et al. (2018), with the addition of vole density (V), a 

competition coefficient (α), β split into its behavioral and physiological components, and 

removal of immigration of infected individuals:  

 

                                   (1a) 

         (1b) 

 

 

where N is the total deermouse density (S+I) , S is the susceptible deermouse density, I is the 

infected deermouse density, K is the fixed carrying capacity for deermice, b is the maximum 

birth rate (in absence of density-dependence), d is the minimum death rate, c is the proportion of 
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density dependence attributed to density dependence in birth rates, r is the intrinsic growth of the 

population (b-d) , µ is the disease-induced mortality rate, α is the Lotka-Volterra competition 

coefficient that measures the effect of vole density on deermouse density in the absence of 

disease, V is vole density, βc is the contact rate, and βp is the probability of transmission (Table 

1).  

 In order to theoretically examine a comprehensive range of the regulatory pressure 

deermice could experience from voles, we initially selected three α values that spanned from 

weak competition (α = 0.8) to competitive exclusion (α = 2). Later, we explored the full range 

from 0 to 2, in a broader analysis. 

 

DECONSTRUCTING TRANSMISSION RATE 

Given that no previous studies have estimated βc and βp separately, we explored a range 

of plausible values for β informed by Luis et al. (2018). These authors estimated a range of 

values from various Montana field sites (Table S5.1). We used this range to first calculate a 

mean transmission rate. Given that βp can only take values between 0 and 1, we assumed an 

arbitrary value of 0.5 in the absence of effects from competitor density ( ); we later performed 

an elasticity analysis to test how this parameter affects the outcome. A value for a contact rate in 

the absence of effects from competitors ( ) was calculated by dividing the mean transmission 

rate by 0.5. This approach allowed our simulations to generate β estimates within the reported 

range (Luis et al. 2018) and thus, keep our findings realistic (Table S5.1). 

Because of ambiguity as to how deermouse contact rates change with diversity or 

competitor density (Clay et al. 2009b; Rubio et al. 2017; Luis et al. 2018; Eleftheriou et al. 

2021), we either allowed density-independent contact rates to stay constant ( , increase, 

or decrease with competitor density using the equation below: 
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 ,          (2)  

where  is the effect of vole density, V (Table 2). At the highest simulated V (V = 20), βc reaches 

its lowest value, 0, when  (Figure 5.1A, Table 5.1). However, this changes when 

 , where βc reaches its highest value, 0.04257778, at the highest V. We decided on this 

mathematical expression for ψ because we wanted to incorporate scenarios where the competitor 

could completely block intraspecific contact rates when at their highest density (V = 20). 

Previous evidence suggests that vole density can impact measures of physiological stress 

in deermice (Fredebaugh-Siller et al. 2013, Eleftheriou et al. 2021). A sustained increase in 

physiological stress could suppress host immunity, which could increase probability of 

transmission as a result, here modeled by:   

 ,         (3)   

where γ is the effect from vole density, V. The probability of transmission, βp, increases with vole 

density but as a probability it is constrained between 0 and 1 with the logit function. In the 

absence of vole-induced effects, probability of transmission remains constant ( . We 

elected to model the relationship between βp and V using three different γ values (0.03, 0.15, 

0.30), which allowed us to explore how a range in the rates of increase in physiological stress 

could affect the final outcome (Figure 5.1B, Table 5.1).  

ESTIMATING CRITICAL HOST DENSITY 

 

Because SNV has density-dependent transmission, we can calculate a critical host density (Nc), 

below which SNV cannot persist. We can examine how voles could influence Nc, and thus, SNV 

prevalence indirectly, by:  

 ,         (4)          
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RUNNING MODEL SIMULATIONS FOR ALL SCENARIOS 

 

We used R (version 4.0.3, R Core Team 2018) within RStudio (RStudio Team 2015) to run all 

scenario simulations where we initially tested three α values (0.8, 1.2, 2), three γ values (0.03, 

0.15, 0.30) and three ψ values (0, ±0.001064445) across a range of V (V = 0-20) (Figure 5.1). To 

solve differential equations, we used the R package “deSolve” (Soetaert et al. 2010). We 

introduced one infected deermouse in a population of 29 susceptible deermice, while keeping 

environmental carrying capacity, K, constant at 30 deermice. In the end, we ran each of the 

scenarios for 100 time steps (months), which was enough to reach equilibrium in all simulations. 

SNV prevalence was estimated as density of infected deermice divided by the total density of 

deermice at equilibrium. We ensured that our simulation results remained within a realistic 

context by confirming that the β values we generated were within or near the range previously 

reported (Table S5.1).  

To demonstrate in a larger parameter space what outcomes would be possible, we ran 

another set of simulations with a wider range of α, γ and ψ values that generated 5859 possible 

combinations. Additionally, to better generalize our findings to other disease systems, we ran a 

broader sensitivity analysis where we varied system-specific parameters or variables that were 

typically kept fixed in our model simulations, to understand their effect on disease outcomes 

(fixed parameters and variables in Table 5.1). To do this, we varied fixed parameter or variable 

values by ±10% or 30% and generated outcomes for the simulation scenario where ψ was kept at 

zero (center square in Figure 5.3). 

RESULTS 

 

COMPETITOR AFFECTS EACH MECHANISM INDIVIDUALLY 

Firstly, we examined the impact of competitor density on disease outcomes via each individual 

mechanism of transmission (host density, density-independent contact rates and probability of 
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transmission) separately, by varying α, ψ, and γ , one at a time, and evaluating how each 

parameter, in isolation, influenced the relationship between competitor density and disease 

prevalence. If disease prevalence (at equilibrium) declined as competitor density increased, we 

considered this a “dilution effect”, i.e. the competitor “diluted” disease. Alternatively, if disease 

prevalence increased with competitor density, we considered this an “amplification effect”.  

We found that as the strength of interspecific competition (α) increased, the competitor 

more strongly regulated host density, leading to a steeper decline in density. We observed 

extinction of hosts (competitive exclusion) at α = 2 at intermediate competitor densities, for our 

simulated scenario of K = 30. This reduction in host density led to a decrease in disease 

prevalence (due to density-dependent transmission) and disease extinction when host density (N) 

declined below the critical host density (Nc) (Figure S5.1). Thus, as the strength of interspecific 

competition (α) increased, disease extinction happened at lower competitor densities (V) and a 

dilution effect occurred.  

As the strength of stress-induced immunosuppression (γ) increased, competitor density 

(V) had a greater effect on the probability of transmission (βp), leading to higher disease 

prevalence at lower competitor densities and, thus, an amplification effect (Figure S5.2).  

When we allowed the competitor to influence contact rates (βc) between hosts, we found 

that a positive ψ (competitor increases βc) led to an amplification effect, whereas a negative ψ 

(competitor decreases βc) generated a dilution effect (Figure S5.3).  

Taken together, our findings demonstrate that dilution or amplification can occur in this 

system, depending on the mechanism working in isolation and its relationship with competitor 

density. 
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COMPETITOR AFFECTS VARIOUS MECHANISMS SIMULTANEOUSLY 

Next, we explored how the combination of competitor regulation (α) and stress-induced 

immunosuppression (γ) could affect disease outcomes by simultaneously varying α and γ, while 

holding ψ at zero (no direct effect of competitor on density-independent contact rates). With 

stronger interspecific competition (α = 2), the negative effect of competitor density (V) on host 

density (N), and thus, density-dependent transmission, outweighed the positive effect of V on the 

probability of transmission (βp), leading to dilution. The only exception was when V had a 

stronger effect on βp (γ = 0.3) where a non-monotonic relationship occurred (figure 2, figure A4). 

A dilution effect was also predicted when the effect of competitor density (V) on βp was weak (γ 

= 0.03). However, the combination of weaker competition (α < 2) and intermediate to strong 

effect of V on βp (γ > 0.03), led to a non-monotonic relationship between competitor density (V) 

and disease prevalence, such that prevalence increased at lower competitor densities (V), was 

highest at low to intermediate V, and then decreased at higher V (Figure 5.2).  

 Next, we added the potential effect of the competitor on intraspecific contact rates (βc) by 

varying the effect of competitor density (V) on βc (while varying α and γ). When competitor 

density, V, increased intraspecific contact rates, βc (positive ψ), a wider parameter space 

generally led to a non-monotonic relationship between competitor density and disease prevalence 

(Figure S5.4). The only exception was when V had a stronger regulatory effect (α = 2) on host 

density but a weaker effect on probability of transmission, βp (γ = 0.03), resulting in dilution 

(Figure S5.5). However, when competitor density, V , decreased βc (negative ψ), a wider 

parameter space most often led to a dilution effect, whereas a non-monotonic relationship was 

only observed when the effect of V on probability of transmission, βp, was stronger (γ = 0.30) 

(Figure S5.6). 
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Lastly, we explored a broader parameter space to characterize which parameter 

combinations led to dilution (decrease), amplification (increase), or a non-monotonic (increase 

followed by decrease) relationship between competitor density, V, and disease prevalence. Only 

when ψ < -5e-04 (i.e. V decreases βc), a greater portion of parameter space predicted a dilution 

effect (light purple, Figure 5.3). Indeed, this effect gradually comprised a narrower parameter 

space as the effect of V on contact rates (βc), ψ, reached its maximum value (parameter space 

from 61.9% to 3.8%). A non-monotonic relationship was predicted most commonly when α was 

lower (i.e. weaker regulatory strength) and γ was higher (i.e., greater stress-induced 

immunosuppression). This relationship gradually comprised a wider parameter space (increased 

from 38.1% to 70.5%) as the effect of V on contact rates (βc), ψ, reached its maximum value 

(dark green, Figure 5.3). Importantly, a non-monotonic relationship was predicted even when 

there was no regulatory effect on host density (α = 0), suggestive that the sole interactions 

between components of the transmission rate (βc and βp) can still manifest in non-monotonic 

outcomes. Additionally, an amplification effect emerged (dark purple, Figure 5.3), although 

across a narrower parameter space (ranged from 9.2% to 25.7%), when ψ ≥ 0 (i.e. V has no effect 

or increases βc) and interspecific competition was weaker (α < 0.5). Taken together, dilution 

became less prominent across the parameter space we examined as the effect of competitor 

density on contact rates, ψ, switched from negative to positive values, whereas a non-monotonic 

relationship became the most commonly predicted outcome. Overall, an amplification effect was 

the least predicted outcome, which only appeared under restricted conditions given realistic 

parameter values for this system.   

In order to extend our findings beyond the deermouse-SNV system, we conducted a 

broader elasticity analysis where we varied parameters or variables previously assumed to be 



115 

 

fixed (Table 5.1) in a standardized manner (Tables S5.2-S5.5). These findings did not indicate 

any significant deviations from our conclusions suggesting that our simulation findings are 

robust to the fixed parameter and variable values we used in this study. Indeed, the greatest 

change that we observed was relatively small, ~ 12% reduction in dilution for 30% decrease in 

the intercept for contact rates, βc0 (Tables S5.2, S5.4).  

 

DISCUSSION 

Using a directly-transmitted disease system, we theoretically examined possible effects of 

interspecific competition on three mechanisms of transmission (i.e. host density, density-

independent contact rates, and probability of transmission). We show that monotonic 

(amplification or dilution) and, most importantly, non-monotonic relationships between 

competitor density and disease prevalence can occur under a range of realistic parameter values. 

Non-monotonic relationships between diversity and disease have been previously considered, 

typically across a land-type gradient (e.g. urban-forest). However, here we show that non-

monotonic relationships could also occur due to antagonistic interactions of key mechanisms 

within the same study system. 

The most intriguing finding of our study was a non-monotonic relationship that was the 

most commonly predicted outcome in the parameter space we examined (~60%, Figure 5.3). 

This relationship was characterized by an increase in disease prevalence at lower competitor 

densities (V), a peak at intermediate V, and a decline at higher V (Figure 5.2). Regardless of an 

effect on contact rates (βc), this outcome was most evident when the competitor (1) weakly 

regulated host density (N), and (2) had a greater effect on the probability of transmission (βp) via 

stress-induced immunosuppression.  
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Such non-monotonic relationships have been previously considered between diversity 

and disease because when there are no host or vector species present (e.g., a parking lot or urban 

center), no to little disease risk would be expected, and therefore amplification would need to 

occur prior to any dilution (Wood et al. 2016; Kirkpatrick et al. 2017). This concept has been 

exemplified with the Lyme disease system, which requires the presence of multiple host and 

vector species for sustained transmission (Wood & Lafferty 2013). For instance, in urban areas 

with zero diversity, there will be no hosts (e.g. mice or deer) or vectors (i.e. ticks), and thus, 

Lyme disease cannot persist. However, diversity is expected to increase when moving across 

different land-types, such as from urban to rural as suggested for the Lyme disease system. As 

competent hosts and vectors become more likely to be present along this gradient, an 

amplification effect can manifest. However, in areas with higher levels of diversity, represented 

by forests in the Lyme disease system, more non-competent hosts are also likely to be present, 

which can lead to a dilution effect. 

However, our study suggests that non-monotonic relationships between diversity and 

disease could occur for another reason, the result of competing mechanisms within the same 

study system. This novel result could explain why non-monotonic relationships between 

diversity and disease have been reported in various systems (Halliday & Rohr 2019). 

Importantly, our findings could explain why some studies have found no diversity-disease 

patterns in the deermouse-SNV system (Orrock et al. 2010, Milholland et al. 2017; Vadell et al. 

2020). To demonstrate this concept, we added stochasticity to simulation findings where non-

monotonic patterns were most notable (e.g., when α = 0.8 and ψ = 0), where we show that fitted 

linear regressions can only find neutral patterns as they are inherently unable to identify non-

monotonic relationships (figure A7). Given that linear relationships are typically the patterns 
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searched for in field studies, non-monotonic outcomes could be easily mistaken for the absence 

of a pattern in the presence of stochasticity. Although findings similar to our own were also 

shown by a recent theoretical study (Lee & Mohd 2020), the transmission rate, (β), was not 

deconstructed into its two components. Therefore, our study further extends their findings, 

introduces guidelines for when a non-monotonic relationship could occur in the presence of 

interspecific competition, and provides theoretical support for why empirical studies may find no 

diversity-disease patterns in natural systems. 

Dilution was the second most commonly predicted outcome (~29%) in the parameter 

space we examined, with amplification rarely predicted (~11%). Conversely, dilution was the 

sole outcome found by theoretical studies that examined the regulatory role of a non-competent 

competitor on host density in a directly-transmitted disease system with density-dependent 

transmission (Peixoto & Abramson 2006; O’Regan et al. 2015). Importantly, dilution is often 

reported in empirical studies with the deermouse-SNV system (e.g., Mills 2006; Clay et al. 

2009a; Dizney & Ruedas 2009). In contrast, amplification has received limited support and only 

as a weak effect (Luis et al. 2018). Indeed, our findings support that amplification could be less 

common in nature given that it occurred in a narrower parameter space, where the relationship 

between contact rates (βc) and competitor density (V ) was primarily neutral or positive, and 

when the regulatory effect (α) on host density (N) was weak or absent. Therefore, our findings 

provide theoretical support for a more common dilution, than amplification effect in nature, at 

least within the parameter space used for this disease system.  

Our findings of the great potential for competitor density to lead to a non-monotonic 

relationship with disease prevalence is contingent upon the parameter space examined. We 

informed our model with realistic parameter values for the deermouse-SNV system with vole 
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competitors, and the results of our broader elasticity analysis suggest that our conclusions are 

largely robust to the fixed parameter/variable values that we used to inform the model. 

Therefore, our conclusions likely apply to other directly-transmitted disease systems that 

experience interspecific competition. Despite uncertainties in parameter values, we are confident 

that a non-monotonic outcome between competitor density and disease prevalence could arise 

from a wide range of parameter space, especially since it was by far, the most commonly 

predicted relationship in the parameter space we examined. 

Although we acknowledge that a two-species framework implies that we did not examine 

diversity per se, as would be expected for placing our findings within a dilution effect context, 

there are three primary reasons as to why our approach and findings are still relevant to the 

“dilution effect” hypothesis. Firstly, community composition (e.g., heterospecific competitors) 

has been suggested to be more relevant (Randolph & Dobson 2012). Secondly, a simple two-

species system has been exploited by others when asking similar questions (Peixoto & Abramson 

2006; O’Regan et al. 2015). Lastly, competitive interactions are most likely the primary 

ecological process by which small mammal diversity (typically used as the diversity index in 

deermouse-SNV studies) can actually impact hantavirus prevalence.  

It is important to note that our findings are based on equilibrium conditions, which are 

not always found in natural disease systems, such as the deermouse-SNV system (Luis et al. 

2015). Although rodent densities and their environmental carrying capacities will vary across 

time and space, we elected to keep these fixed to allow for a more tangible examination of our 

research objective. Additional layers of complexity where rodent densities and their carrying 

capacities can vary across time and space will be useful, but these were beyond the scope of this 

study. Furthermore, we did not examine infectious period as a mechanism to keep our modeling 
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framework more tractable and because this mechanism has received scant empirical attention. 

Therefore, future studies can investigate how non-equilibrium conditions could affect our 

findings and incorporate competitor-induced effects on infectious period in more complex 

modeling frameworks.   

A passionate debate has been ongoing (Randolph & Dobson 2012; Ostfeld 2013; Ostfeld 

& Keesing 2013; Wood & Lafferty 2013) since the “dilution effect” hypothesis was first 

formally proposed (Ostfeld & Keesing 2000). Although we did not focus on species diversity per 

se, it is more likely that community composition (e.g., competitor species) is more relevant in 

how disease outcomes manifest (Randolph & Dobson 2012; Johnson et al. 2015; Kilpatrick et al. 

2017). Therefore, focusing on the density of relevant species, such as heterospecific competitors, 

may provide more explanatory or predictive power than broad measures of diversity (e.g. species 

richness or evenness). By placing our study within the dilution effect framework, we propose 

that monotonic and non-monotonic relationships can theoretically occur within the same system 

depending on the interaction strengths of mechanisms that work in tandem. Therefore, to 

advance the field forward, we need to consider the co-occurring effects of relevant mechanisms 

under realistic ecological scenarios. We predict that our findings and approach can extend 

diversity-disease theory, stimulate novel empirical studies, and inform disease management in 

applied settings.  

 

LITERATURE CITED 

Anderson, R. M., and R. M. May. 1979. Population biology of infectious diseases: Part I. Nature 

280:361-367. 



120 

 

Begon, M., M. Bennett, R. G. Bowers, N. P. French, S. Hazel, and J. Turner. 2002. A 

clarification of transmission terms in host-microparasite models: numbers, densities and areas. 

Epidemiology & Infection 129:147-153.  

Calisher, C. H., J. J. Root, J. N. Mills, and B. J. Beaty. 2002. Assessment of ecologic and 

biologic factors leading to hantavirus pulmonary syndrome, Colorado, USA. Croatian Medical 

Journal 43:330-337. 

Cardinale, B. J., J. E. Duffy, A. Gonzalez, D. U. Hooper, C. Perrings, P. Venail, A. Narwani, G. 

M. Mace, D. Tilman, and D. A. Wardle. 2012. Biodiversity loss and its impact on humanity. 

Nature 486:59-67. 

Childs, J. E., T. G. Ksiazek, C. F. Spiropoulou, J. W. Krebs, S. Morzunov, G. O. Maupin, K. L. 

Gage, P. E. Rollin, J. Sarisky, and R. E. Enscore. 1994. Serologic and genetic identification of 

Peromyscus maniculatus as the primary rodent reservoir for a new hantavirus in the 

southwestern United States. The Journal of Infectious Diseases 169:1271-1280. 

Civitello, D. J., J. Cohen, H. Fatima, N. T. Halstead, J. Liriano, T. A. McMahon, C. N. Ortega, E. 

L. Sauer, T. Sehgal, S. Young, and J. R. Rohr. 2015. Biodiversity inhibits parasites: Broad 

evidence for the dilution effect. Proceedings of the National Academy of Sciences of the United 

States of America 112:8667-8671. 

Clay, C. A., E. M. Lehmer, S. S. Jeor, and M. D. Dearing. 2009a. Sin Nombre virus and rodent 

species diversity: a test of the dilution and amplification hypotheses. PloS one 4:e6467. 

Clay, C. A., E. M. Lehmer, S. S. Jeor, and M. D. Dearing. 2009b. Testing mechanisms of the 

dilution effect: deer mice encounter rates, Sin Nombre virus prevalence and species diversity. 

EcoHealth 6:250-259. 



121 

 

Daszak, P., A. A. Cunningham, and A. D. Hyatt. 2000. Emerging infectious diseases of wildlife--

threats to biodiversity and human health. Science 287:443-449. 

Dickens, M. J., and L. M. Romero. 2013. A consensus endocrine profile for chronically stressed 

wild animals does not exist. General and comparative endocrinology 191:177-189. 

Dizney, L., and M. D. Dearing. 2016. Behavioural differences: a link between biodiversity and 

pathogen transmission. Animal Behaviour 111:341-347. 

Dizney, L. J., and L. A. Ruedas. 2009. Increased host species diversity and decreased prevalence 

of Sin Nombre virus. Emerging infectious diseases 15:1012-1018. 

Eleftheriou, A., A. J. Kuenzi, and A. D. Luis. 2021. Heterospecific competitors and seasonality 

can affect physiology and behavior, key determinants of disease transmission. Ecosphere. In 

Press. 

Fredebaugh-Siller, S., C. Suski, Z. Zuckerman, and R. Schooley. 2013. Ecological correlates of 

stress for a habitat generalist in a biofuels landscape. Canadian Journal of Zoology 91:853-858. 

Grant, P. 1971. Experimental studies of competitive interaction in a two-species system. The 

Journal of Animal Ecology 40:323-350. 

Halliday, F. W., and J. R. Rohr. 2019. Measuring the shape of the biodiversity-disease 

relationship across systems reveals new findings and key gaps. Nature communications 10:1-10. 

Hawley, D. M., R. S. Etienne, V. O. Ezenwa, and A. E. Jolles. 2011. Does animal behavior 

underlie covariation between hosts’ exposure to infectious agents and susceptibility to infection? 

Implications for disease dynamics. Integrative and Comparative Biology 51:528-539. 

Huang, Z., F. Van Langevelde, A. Estrada-Peña, G. Suzán, and W. De Boer. 2016. The diversity-

disease relationship: evidence for and criticisms of the dilution effect. Parasitology 143:1075-

1086. 



122 

 

Johnson, P. T., R. S. Ostfeld, and F. Keesing. 2015. Frontiers in research on biodiversity and 

disease. Ecology Letters 18:1119-1133. 

Jones, K. E., N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman, and P. Daszak. 

2008. Global trends in emerging infectious diseases. Nature 451:990-993. 

Jonsson, C. B., L. T. Figueiredo, and O. Vapalahti. 2010. A global perspective on hantavirus 

ecology, epidemiology, and disease. Clinical Microbiology Reviews 23:412-441. 

Keesing, F., R. D. Holt, and R. S. Ostfeld. 2006. Effects of species diversity on disease risk. 

Ecology Letters 9:485-498. 

Kilpatrick, A. M., D. J. Salkeld, G. Titcomb, and M. B. Hahn. 2017. Conservation of biodiversity 

as a strategy for improving human health and well-being. Philosophical Transactions of the 

Royal Society B: Biological Sciences 372:20160131. 

Lee, L. W. F., and M. H. Mohd. 2020. The Effects of Amplification and Dilution Agent in 

Transmitting Sin Nombre Virus (SNV) in Deer Mouse Population. MATEMATIKA: Malaysian 

Journal of Industrial and Applied Mathematics 36:85-98. 

Lehmer, E. M., J. Korb, S. Bombaci, N. McLean, J. Ghachu, L. Hart, A. Kelly, E. Jara-Molinar, 

C. O’Brien, and K. Wright. 2012. The interplay of plant and animal disease in a changing 

landscape: The role of sudden aspen decline in moderating Sin Nombre virus prevalence in 

natural deer mouse populations. EcoHealth 9:205-216.  

Luis, A. D., A. J. Kuenzi, and J. N. Mills. 2018. Species diversity concurrently dilutes and 

amplifies transmission in a zoonotic host-pathogen system through competing mechanisms. 

Proceedings of the National Academy of Sciences of the United States of America 115:7979-

7984. 



123 

 

Luis, A. D., R. J. Douglass, J. N. Mills, and O. N. Bjørnstad. 2015. Environmental fluctuations 

lead to predictability in Sin Nombre hantavirus outbreaks. Ecology 96:1691-1701. 

Luis, A. D., R. J. Douglass, P. J. Hudson, J. N. Mills, and O. N. Bjørnstad. 2012. Sin Nombre 

hantavirus decreases survival of male deer mice. Oecologia 169:431-439. 

McCallum, H., A. Fenton, P. J. Hudson, B. Lee, B. Levick, R. Norman, S. E. Perkins, M. Viney, 

A. J. Wilson, and J. Lello. 2017. Breaking beta: deconstructing the parasite transmission 

function. Philosophical transactions of the Royal Society of London.Series B, Biological 

Sciences 372:20160084. 

Milholland, M. T., I. Castro-Arellano, E. Arellano, E. Nava-García, G. Rangel-Altamirano, F. X. 

Gonzalez-Cozatl, G. Suzán, T. Schountz, S. González-Padrón, and A. Vigueras. 2017. Species 

identity supersedes the dilution effect concerning hantavirus prevalence at sites across Texas and 

Mexico. ILAR Journal 58:401-412. 

Mills, J. N. 2006. Biodiversity loss and emerging infectious disease: an example from the rodent-

borne hemorrhagic fevers. Biodiversity 7:9-17. 

Mills, J. N., T. G. Ksiazek, C. J. Peters, and J. E. Childs. 1999. Long-term studies of hantavirus 

reservoir populations in the southwestern United States: a synthesis. Emerging Infectious 

Diseases 5:135-142. 

O'Regan, S. M., J. E. Vinson, and A. W. Park. 2015. Interspecific Contact and Competition May 

Affect the Strength and Direction of Disease-Diversity Relationships for Directly Transmitted 

Microparasites. The American Naturalist 186:480-494. 

Orrock, J. L., B. F. Allan, and C. A. Drost. 2011. Biogeographic and ecological regulation of 

disease: prevalence of Sin Nombre Virus in island mice is related to island area, precipitation, 

and predator richness. The American Naturalist 177:691-697. 



124 

 

Ostfeld, R. S. 2013. A Candide response to Panglossian accusations by Randolph and Dobson: 

biodiversity buffers disease. Parasitology 140:1196-1198. 

Ostfeld, R. S., and F. Keesing. 2013. Straw men don’t get Lyme disease: response to Wood and 

Lafferty. Trends in Ecology & Evolution 28:502-503. 

Ostfeld, R. S., and F. Keesing. 2000. Biodiversity and disease risk: the case of Lyme disease. 

Conservation Biology 14:722-728. 

Peixoto, I. D., and G. Abramson. 2006. The effect of biodiversity on the hantavirus epizootic. 

Ecology 87:873-879. 

R Core Team. 2018. R: A Language and Environment for Statistical Computing; R Foundation 

for Statistical Computing: Vienna, Austria. 

Randolph, S. E., and A. Dobson. 2012. Pangloss revisited: a critique of the dilution effect and the 

biodiversity-buffers-disease paradigm. Parasitology 139:847-863. 

Redfield, J., C. Krebs, and M. Taitt. 1977. Competition between Peromyscus maniculatus and 

Microtus townsendii in grasslands of coastal British Columbia. The Journal of Animal Ecology 

46:607-616. 

Rohr, J. R., D. J. Civitello, F. W. Halliday, P. J. Hudson, K. D. Lafferty, C. L. Wood, and E. A. 

Mordecai. 2020. Towards common ground in the biodiversity–disease debate. Nature Ecology & 

Evolution 4:24-33. 

RStudio Team. 2015. RStudio: Integrated Development for R; RStudio, Inc.: Boston, MA, USA. 

Rubio, A. V., I. Castro-Arellano, J. N. Mills, R. List, R. Ávila-Flores, and G. Suzán. 2017. Is 

species richness driving intra-and interspecific interactions and temporal activity overlap of a 

hantavirus host? An experimental test. PloS one 12:e0188060. 



125 

 

Salkeld, D. J., K. A. Padgett, and J. H. Jones. 2013. A meta‐analysis suggesting that the 

relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic. 

Ecology Letters 16:679-686. 

Soetaert K., T. Petzoldt, R.W. Setzer. 2010. Solving Differential Equations in R: Package 

deSolve. Journal of Statistical Software 33: 1–25. 

Vadell, M. V., I. E. G. Villafañe, and A. E. Carbajo. 2020. Hantavirus infection and biodiversity 

in the Americas. Oecologia 192:169-177. 

Venesky, M. D., X. Liu, E. L. Sauer, and J. R. Rohr. 2014. Linking manipulative experiments to 

field data to test the dilution effect. Journal of Animal Ecology 83:557-565. 

Warner, B. M., D. R. Stein, B. D. Griffin, K. Tierney, A. Leung, A. Sloan, D. Kobasa, G. 

Poliquin, G. P. Kobinger, and D. Safronetz. 2019. Development and Characterization of a Sin 

Nombre Virus Transmission Model in Peromyscus maniculatus. Viruses 11:183. 

White, L. A., J. D. Forester, and M. E. Craft. 2018. Covariation between the physiological and 

behavioral components of pathogen transmission: host heterogeneity determines epidemic 

outcomes. Oikos 127:538-552. 

Wood, C. L., and K. D. Lafferty. 2013. Biodiversity and disease: a synthesis of ecological 

perspectives on Lyme disease transmission. Trends in Ecology & Evolution 28:239-247. 

Wood, C. L., K. D. Lafferty, G. DeLeo, H. S. Young, P. J. Hudson, and A. M. Kuris. 2016. Does 

biodiversity protect humans against infectious disease? Reply. Ecology 97:542-546. 

Wood, C. L., K. D. Lafferty, G. DeLeo, H. S. Young, P. J. Hudson, and A. M. Kuris. 2014. Does 

biodiversity protect humans against infectious disease? Ecology 95:817-832. 

 

 

 



126 

 

 

 

 

 

 

Table 5. 1 Variables and parameters used in the models with descriptions and estimates. 

Parameter Value Description 

K 30 Carrying capacity of deermice (per hectare) (Eleftheriou et al. 2021) 

V 0-20 Vole competitor density (per hectare) (Eleftheriou et al. 2021) 

α 0.8,1.2, 2 Competition coefficient  

c 0.6142470 Density-dependent effect on birth rates (Luis et al. 2015) 

b 0.3154089 Maximum birth rate of deermice (Luis et al. 2015) 

d 3.655774e-05 Minimum death rate of deermice (Luis et al. 2015) 

µ 0.085 Disease-induced mortality rate (Luis et al. 2015) 

βc0 

 

βp0 

0.02128889 

0.5 

Density-independent contact rate in the absence of voles  

 

Probability of transmission in the absence of voles (Luis et al. 2018) 

βp0 0.5 Probability of transmission in the absence of voles  

ψ 0,±0.001064445 Effect on intraspecific contact rate from vole density  

γ 0.03, 0.15, 0.3 Effect on probability of transmission from vole density 
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Figure 5. 1 Relationships of density-independent contact rate (βc) (A) and probability of 

transmission (βp) (B) with competitor density (V). A. The effect of V on βc, (ψ), was set to either 

zero (—) to denote constant βc, or 0.001064445  (—) and - 0.001064445 (—), to denote 

increasing or decreasing βc with V, respectively. The intercept was set to 0.02128889. B. The 

effect of V on βp, (γ), was set to either 0.03  (—), 0.15 (—), or 0.30 (—), to develop 

relationships that ranged from linear to more exponential with V. The intercept was set to 0.50.  
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Figure 5. 2 Relationships between Sin Nombre virus (SNV) prevalence and vole competitor 

density. The effect of the competitor on host density (α) and probability of transmission (γ) via 

stress-induced immunosuppression, were varied as shown, while assuming constant density-

independent contact rates between hosts (ψ = 0). 
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Figure 5. 3 Parameter space of 5859 combinations of α, γ and ψ values corresponding to their 

respective outcome for a fixed competitor density, V, (0-20). Dark purple signifies an 

amplification effect or a sole increase in disease prevalence, light purple, a dilution effect or a 

sole decline in prevalence, light green, no change in prevalence (i.e. represents baseline when all 

parameters are set to zero), and dark green, a non-monotonic relationship between prevalence 

and competitor density. The percentage values indicate the proportion of parameter space 

represented by each outcome.  
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SUPPLEMENTARY INFORMATION  

 
Figure S5. 1 Total deermouse (host) density, N, (- - -), and critical host density, Nc, (—) 

relationships with vole competitor density, V, (top row), and respective outcome between Sin 

Nombre virus (SNV) prevalence (bottom row) and V. The effect of competitors on contact rates, 

(ψ), and probability of transmission, (γ), were kept at zero. The effect of competitors on host 

density, α, was varied in strength as displayed. 
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Figure S5. 2 Total deermouse (host) density, N, (- - -), and critical host density, Nc, (—) 

relationships with vole competitor density, V, (top row), and respective outcome between Sin 

Nombre virus (SNV) prevalence (bottom row) and V. The effect of competitors on host density 

(α), and contact rates (ψ) were kept at zero. The effect of competitors on the probability of 

transmission, (γ), was varied in strength as displayed. 
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Figure S5. 3 Total deermouse (host) density, N, (- - -), and critical host density, Nc, (—) 

relationships with vole competitor density, V, (top row), and respective outcome between Sin 

Nombre virus (SNV)  prevalence (bottom row) and V. The effect of competitors on host density 

(α) and on the probability of transmission (γ) were kept at zero. The effect of competitors on 

contact rates (ψ) was varied as displayed. 
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Figure S5. 4 Total deermouse (host) density, N, (- - -), and critical host density, Nc, (—) 

relationships with vole competitor density, V, to complement figure 2 in the main text. The effect 

of competitors on host density (α) and on the probability of transmission (γ) were varied as 

shown. The effect of competitors on contact rates (ψ) was kept at zero. 
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Figure S5. 5 Total deermouse (host) density, N, (- - -), and critical host density, Nc, (—) 

relationships with vole competitor density, V, (top row), and respective outcome between Sin 

Nombre virus (SNV) prevalence (bottom row) and V. The effect of competitors on host density 

(α) and probability of transmission (γ) were varied as shown, while the effect of competitors on 

contact rates, (ψ), was fixed at 0.001064445.  
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Figure S5. 6 Total deermouse (host) density, N, (- - -), and critical host density, Nc, (—) 

relationships with vole competitor density, V, (top row), and respective outcome between Sin 

Nombre virus (SNV) prevalence (bottom row) and V. The effect of competitors on host density 

(α) and probability of transmission (γ) were varied as shown, while the effect of competitors on 

contact rates, (ψ), was fixed at - 0.001064445.  
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Figure S5. 7Relationships between Sin Nombre virus (SNV) prevalence and vole competitor 

density as modeled with linear regression  (—) when competitors have a weak effect on host 

density (α = 0.8) and no effect on contact rate (ψ = 0), a scenario shown in Figure 5.2 of the main 

text. When we add a degree of stochasticity to the simulated data, an obvious dilution effect can 

only be seen when a monotonic relationship is predicted (γ = 0.03). Otherwise, no pattern is 

found with linear regression due to the non-monotonic shape of the predicted relationship.  
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Table S5. 1 Model-estimated β values generated from all possible simulations compared to 

published β values from Montana, USA. 

Parameter Mean  Standard deviation Range 

β (this study) 0.01592162 0.00772337 0 – 0.0424725 

β (Luis et al. 2018) 0.01064 0.006088331 0.00270 – 0.02020 
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Table S5. 2 Results of broad elasticity analyses where the effect of competitor density on 

intraspecific contact rates, βc, (ψ), was kept at zero (scenario in center of Figure 5.3 in main text). 

Parameters and variables were changed ± 30% to visualize the percentage change in disease 

outcomes compared to their fixed values (Table 5.1 in main text). For each figure inset, the 

horizontal axis, represents γ, the degree of stress-induced immunosuppression (range; 0-0.3) 

while the vertical axis represents α, the strength of regulatory competition (range; 0-2), both of 

which are effects exerted on hosts by competitor density. Dark purple signifies an amplification 

effect, light purple, a dilution effect, light green, no change in prevalence (i.e. represents baseline 

when ψ, α & γ are set to zero), and dark green, a non-monotonic relationship.  
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Table S5. 3 Results of elasticity analyses where the effect of competitor density on contact rates, 

βc, (ψ), was kept at zero (scenario in center of Figure 5.3). Parameters and variables were 

changed to document the percentage change in non-monotonic outcomes compared to their fixed 

values. Red signifies increase, blue decrease, and gray no change. 

 

% ∆ βp0 βc0 c b d μ 

+30 0 -1.70 -2.20 0.48 0 0.24 

+10 0 -0.96 -0.96 0.24 0 0 

-10 0 0.71 0.48 -1.21 0 0 

-30 0 3.01 1.41 -3.46 0 0 

 

 

 

 

 

Table S5. 4 Results of elasticity analyses where the effect of competitor density on contact rates, 

βc, (ψ), was kept at zero (scenario in center of Figure 5.3). Parameters and variables were 

changed to document the percentage change in dilution outcomes compared to their fixed values. 

Red signifies increase, blue decrease, and gray no change. 

 

% ∆ βp0 βc0 c b d μ 

+30 0 4.47 5.52 -3.64 0 -0.59 

+10 0 2.29 2.29 -1.18 0 0 

-10 0 -2.40 -1.18 2.84 0 0 

-30 0 -11.76 -5.56 8.56 0 -1.18 
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Table S5. 5 Results of elasticity analyses where the effect of competitor density on contact rates, 

βc, (ψ), was kept at zero (scenario in center of Figure 5.3). Parameters and variables were 

changed to document the percentage change in amplification outcomes compared to their fixed 

values. Red signifies increase, blue decrease, and gray no change. 

 

% ∆ βp0 βc0 c b d μ 

+30 0 -1.69 -1.69 6.25 0 0 

+10 0 0 0 1.64 0 0 

-10 0 1.64 0 0 0 0 

-30 0 7.69 0 -3.45 0 3.23 
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