
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2021

EXTENDING BOOTSTRAP AGGREGATION OF NEURAL EXTENDING BOOTSTRAP AGGREGATION OF NEURAL

NETWORKS FOR PREDICTION WITH AN APPLICATION TO NETWORKS FOR PREDICTION WITH AN APPLICATION TO

COVID-19 FORECASTING COVID-19 FORECASTING

Mohsen Tabibian
University of Montana, Missoula

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Tabibian, Mohsen, "EXTENDING BOOTSTRAP AGGREGATION OF NEURAL NETWORKS FOR PREDICTION
WITH AN APPLICATION TO COVID-19 FORECASTING" (2021). Graduate Student Theses, Dissertations, &
Professional Papers. 11756.
https://scholarworks.umt.edu/etd/11756

This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University
of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers
by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F11756&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/11756?utm_source=scholarworks.umt.edu%2Fetd%2F11756&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

EXTENDING BOOTSTRAP AGGREGATION OF NEURAL NETWORKS FOR

PREDICTION WITH AN APPLICATION TO COVID-19 FORECASTING

By

MOHSEN TABIBIAN

Master of Science, Data Science, The University of Montana, Missoula, MT, 2020
Master of Art, Mathematical Statistics, Tarbiat Modares University, Tehran, Iran, 2010

Bachelor of Science, Statistics, Islamic Azad University, Markazi, Iran, 2007

Dissertation

presented in partial fulfillment of the requirements
for the degree of

PhD

in Mathematics

The University of Montana
Missoula, MT

May 2021

Approved by:

Scott Whittenburg, Dean of The Graduate School

Graduate School

Dr. Brian Steele, Chair
Department of Mathematical Sciences

Dr. Jonathan Graham,

Department of Mathematical Sciences

Dr. Johnathan Bardsley,
Department of Mathematical Sciences

Dr. Javier Perez Alvaro

Department of Mathematical Sciences

Dr. Erin Landguth
Department of Health Sciences

ii

Tabibian, Mohsen, Ph.D., May 2021 Mathematics

Abstract

Chairperson: Dr. Brian Steele

 The aim of this study is to improve the forecasting accuracy of artificial neural networks (ANNs)
and construct prediction bands for ANN models. The focus is on forecasting for epidemiological
purposes, and in particular, the problem of predicting new case and death counts from seven to h
days into the future for spatially contiguous regions. The task poses several challenges: datasets
are quite small, and both spatially and temporally correlated. To overcome these, the methods
attempt to exploit information induced by spatial and temporal dependencies. More importantly,
we have developed a fusion of ANNs and bootstrap methods. Bootstrap aggregation (bagging) is
an ensemble technique used for reducing the prediction variance and concurrently improving
predictive accuracy and constructing prediction bands. Random forests extend bagging by
sampling predictors in addition to observations with the result of often dramatic improvement in
accuracy. The method developed herein resembles random forests to improve predictive accuracy
and to construct prediction bands. We refer to this new approach as extended-bagging (E-
Bagging).

 Covid-19 is a highly contagious virus that has disrupted life around the world. Accurate
predictions of disease trajectory in the near term are critical. Recurrent neural networks based on
gated recurrent units (GRU) are a subclass of ANNs that exploits temporal data structures;
however, they are problematic to use and remain poorly understood by researchers. Hence, we
propose a simple alternative referred to as weighted neural networks and use this with E-Bagging.
To investigate and compare these innovations with standard ANN approaches, we apply the
methods to Covid-19 datasets using four counties as the spatial units. The predictive functions
forecast the number of deaths for 14 days ahead using four of the most populous US counties. The
performance of models is quantified by the mean absolute error. The E-Bagging of GRU models
yields highly informative predictions and outperformed the other prediction models. The
assessment of constructed prediction bands is measured by coverage probability and the GRU
model with the E-Bagging technique performed best. These methods can be applied to a wide
variety of other situations from Ebola outbreak mitigation to intra and inter-day stock price
forecasting.

iii

Acknowledgements

Throughout the completion of this dissertation, I have received a great deal of

support and assistance. I would first like to thank my advisor, Dr. Brian Steele,

whose expertise was invaluable in formulating the research topic and methodology

in particular.

I would like to thank my wife, Parto, for her love and constant support and help. But

most of all, thank you for being my best friend. I owe you everything.

This dissertation is dedicated to Covid-19 frontline workers and their families.

iv

Table of Contents

1 Introduction .. 1

1.1 Historical Introduction .. 3

1.2 Neural Networks in Plain Terms ... 4

1.3 Grand Challenge, Pitfalls, Limitations, and Future Directions .. 7

2 Literature review ... 11

2.1 Bootstrapping.. 11

2.2 Bootstrapping Neural Networks ... 11

2.3 Using Neural Networks for Medical Problems .. 12

2.4 Covid-19 Models ... 13

2.4.1 Using Neural Network for Covid-19 Predictions ... 15

3 Methodology ... 17

3.1 Data ... 17

3.1.1 Pre-processing of Data .. 23

3.2 Artificial Neural Networks ... 24

3.2.1 Activation Functions.. 24

3.2.2 Architecture of a Feed-forward Network ... 29

3.3 General Architecture of Feed-forward Networks ... 32

3.3.1 Network learning .. 33

3.4 Gradient Descent Optimization .. 34

3.4.1 Batch gradient descent ... 35

3.4.2 Stochastic gradient descent .. 35

3.4.3 Mini-batch gradient descent ... 36

3.4.4 Adam Optimizer .. 36

3.5 Regularizing Deep Neural Networks ... 37

3.5.1 Dropout ... 38

3.5.2 Dropout Rate ... 38

3.5.3 Use of Wider Neural Networks ... 39

3.5.4 Early Stopping Approach ... 39

3.6 Assessment of fits ... 40

3.7 Recurrent Neural Networks .. 40

3.7.1 Gated Recurrent Unit .. 42

3.8 Innovations ... 46

v

3.8.1 Weighted Neural Networks .. 46

3.8.2 Bootstrap Aggregation of Neural Networks ... 48

3.8.3 Hyper-Parameter Tuning .. 53

4 Results ... 59

4.1 Fitting Models Based on the GRU ... 59

4.1.1 Data preprocessing ... 60

4.1.2 GRU Architecture .. 60

4.2 Fitting Models Based on the WNN .. 86

4.2.1 WNN Architecture ... 86

5 Discussion and Conclusions .. 102

6 Appendix A .. 105

6.1 Loading Required Modules ... 105

6.2 A Function to Create Raw and Smoothed Datasets .. 105

6.3 Loading Dataset for LA County ... 106

6.4 Codes for Creating Figure 4 ... 106

6.5 Codes for Creating Figure 6 ... 107

6.6 Plotting Smoothed and Forecasted Cumulative COVID-19 Deaths Using Different Models 107

6.7 Build Rolling Window Matrix (R) and Split and Scale Train and Test Sets 110

6.8 A Function for Creating a Model for Tuning Hyperparameters .. 110

6.9 Create the Best LA GRU Model ... 113

6.10 Define a list of All Unique Combinations of Counties ... 114

6.11 Build Rolling Window Matrix (R) and Split Train and Test Sets, and scale them for E-Bagging 115

6.12 Create Residual Predictor Network .. 115

6.13 Create E-Bagging Models .. 116

6.14 Create Error Distribution... 118

7 References .. 120

vi

List of Tables

Table 1: 𝑀𝐴𝐸 of different models for each county on the training and test sets 71
Table 2: 𝑀𝐴𝐸 of different models for each county on the training and test sets 95
Table 3: Results of MAE and coverage probability of different models .. 102

vii

List of Figures

Figure 1: "Network" graph of the multilinear regression (model 𝑓1) ... 5
Figure 2: “Network” graphical representation of the 𝑓2 model ... 6
Figure 3: “Network” graph of the 𝑓3 model. Here we have a neural network with 2 features, 1 hidden
layer with 3 nodes and 1 output. .. 7
Figure 4: Real Cumulative Covid-19 confirmed cases in neighboring counties of LA County 19
Figure 5: Daily Covid-19 confirmed deaths in LA County as of 05/19/2021 ... 20
Figure 6: Unsmoothed and smoothed daily Covid-19 deaths using 2 types of smoothing in LA County as of
05/19/2021 ... 21
Figure 7: Unsmoothed and smoothed daily Covid-19 deaths in Cook County as of 05/19/202 22
Figure 8: Unsmoothed and smoothed daily Covid-19 deaths in Harris County as of 05/19/2021.............. 22
Figure 9: Unsmoothed and smoothed daily Covid-19 deaths in NY County as of 05/19/2021 23
Figure 10: Left: Sigmoid activation function; Right: Tanh activation function ... 26
Figure 11: ReLU activation function .. 28
Figure 12: ELU activation function .. 28
Figure 13: SELU activation function .. 28
Figure 14: A diagram of a neural network .. 29
Figure 15: Flow and operations in a GRU cell, Figure source [43] .. 43
Figure 16: Partitioning a sample to 𝑛 − 𝑚 + 1 rolling windows. .. 44
Figure 18: Diagnostic results with different hyperparameter combinations when batch size is 100 and
learning rate is 0.001 in the LA model; in total, 320 models were fit to produce this boxplot. 63
Figure 19: Diagnostic results with different hyperparameter combinations when batch size is 100 and
learning rate is 0.005 in the LA model; in total, 320 models were fit to produce this boxplot. 64
Figure 20: Diagnostic results with different hyperparameter combinations when batch size is 300 and
learning rate is 0.001 in the LA model; in total, 320 models were fit to produce this boxplot. 65
Figure 21: Diagnostic results with different hyperparameter combinations when batch size is 300 and
learning rate is 0.005 in the LA model; in total, 320 models were fit to produce this boxplot. 66
Figure 21: the smoothed daily Covid-19 confirmed deaths (blue curve) and forecasted daily deaths using
GRU (red curve) for different test sets as of 05/03/2021 for LA County. .. 68
Figure 22: (Top) smoothed daily Covid-19 confirmed deaths (blue curve) and predicted daily deaths using
GRU (red curve) for the training set up to 05/01/2021 and for the test set from May 02, 2021, to May 16,
2021, for LA County. (Bottom) cumulative counts. The box zooms in on the test set. 70
Figure 23: (Top) smoothed daily Covid-19 confirmed deaths (blue curve) and predicted daily deaths using
GRU (red curve) for the training set up to 05/01/2021 and for the test set from May 02, 2021, to May 16,
2021, for Cook County. (Bottom) cumulative counts. The box zooms in on the test set. 72
Figure 24: (Top) smoothed daily Covid-19 confirmed deaths (blue curve) and predicted daily deaths using
GRU (red curve) for the training set up to 05/01/2021 and for the test set from May 02, 2021, to May 16,
2021, for Harris County. (Bottom) cumulative counts. The box zooms in on the test set. 73
Figure 25: (Top) smoothed daily Covid-19 confirmed deaths (blue curve) and predicted daily deaths using
GRU (red curve) for the training set up to 05/01/2021 and for the test set from May 02, 2021, to May 16,
2021, for NY County. (Bottom) cumulative counts. The box zooms in on the test set. 74

viii

Figure 26: (Left) Coverage probability distribution, (Right) 𝑀𝐴𝐸 distribution for different E-Bagging
samples for LA County; in total, 9970 models were fit to produce each boxplot. 76
Figure 27: (Top) smoothed daily Covid-19 deaths (blue curve), GRU predictions (red curve), E-Bagging
predictions (green), and prediction bands (gray ribbon) for the training set up to 05/01/2021 and for the
test set from May 02, 2021, to May 16, 2021 for LA County. (Bottom) cumulative counts. The boxes zoom
in on the test set. ... 78
Figure 28: Prediction error distributions for the best GRU model (blue histogram) and for the E-Bagging
(red histogram) for LA County; both are centered at zero. The latter has less variance. 79
Figure 29: (Top) smoothed daily Covid-19 deaths (blue curve), GRU predictions (red curve), E-Bagging
predictions (green), and prediction bands (gray ribbon) for the training set up to 05/01/2021 and for the
test set from May 02, 2021, to May 16, 2021 for Cook County. (Bottom) cumulative counts. The boxes
zoom in on the test set. ... 81
Figure 30: (Top) smoothed daily Covid-19 deaths (blue curve), GRU predictions (red curve), E-Bagging
predictions (green), and prediction bands (gray ribbon) for the training set up to 05/01/2021 and for the
test set from May 02, 2021, to May 16, 2021 for Harris County. (Bottom) cumulative counts. The boxes
zoom in on the test set. ... 82
Figure 31: (Top) smoothed daily Covid-19 deaths (blue curve), GRU predictions (red curve), E-Bagging
predictions (green), and prediction bands (gray ribbon) for the training set up to 05/01/2021 and for the
test set from May 02, 2021, to May 16, 2021 for NY County. (Bottom) cumulative counts. The boxes
zoom in on the test set. ... 83
Figure 32: Prediction error distributions for the GRU model (blue histogram) and for E-Bagging (red
histogram) for Cook County (top); for Harris County (bottom); both are centered at zero. The E-Bagging
errors have less variance. .. 84
Figure 33: Prediction error distributions for the GRU model (blue histogram) and for E-Bagging (red
histogram) for NY County; both are centered at zero. The latter has less variance. 85
Figure 34: Diagnostic results with different hyperparameter combinations1 in the LA model (when # 1st
dense layer nodes is 30, activation function on the 1st dense layer is Tanh, dropout rate for the 1st
dropout layer is 0.5, # 2nd dense layer nodes is 40, and dropout rate for the 2nd dropout layer is 0); in
total, 360 models were fit to produce this boxplot. .. 89
Figure 35: Diagnostic results with different hyperparameter combinations1 in the LA model (when # 1st
dense layer nodes is 30, activation function on the 1st dense layer is SELU, dropout rate for the 1st
dropout layer is 0.5, # 2nd dense layer nodes is 40, and dropout rate for the 2nd dropout layer is 0); in
total, 360 models were fit to produce this boxplot. .. 90
Figure 36: Diagnostic results with different hyperparameter combinations1 in the LA model (when # 1st
dense layer nodes is 30, activation function on the 1st dense layer is ELU, dropout rate for the 1st dropout
layer is 0.5, # 2nd dense layer nodes is 40, and dropout rate for the 2nd dropout layer is 0); in total, 360
models were fit to produce this boxplot. .. 91
Figure 37: Diagnostic results with different hyperparameter combinations1 in the LA model (when # 1st
dense layer nodes is 30, activation function on the 1st dense layer is ReLU, dropout rate for the 1st
dropout layer is 0.5, # 2nd dense layer nodes is 40, and dropout rate for the 2nd dropout layer is 0); in
total, 360 models were fit to produce this boxplot. .. 92
Figure 38: (Top) smoothed daily Covid-19 deaths (blue curve), WNN predictions (red curve), E-Bagging
predictions (green), and prediction bands (gray ribbon) for the training set up to 05/01/2021 and for the

ix

test set from May 02, 2021, to May 16, 2021 for LA County. (Bottom) cumulative counts. The boxes
zoom in on the test set. ... 96
Figure 39: (Top) smoothed daily Covid-19 deaths (blue curve), WNN predictions (red curve), E-Bagging
predictions (green), and prediction bands (gray ribbon) for the training set up to 05/01/2021 and for the
test set from May 02, 2021, to May 16, 2021 for Cook County. (Bottom) cumulative counts. The boxes
zoom in on the test set. ... 97
Figure 40: (Top) smoothed daily Covid-19 deaths (blue curve), WNN predictions (red curve), E-Bagging
predictions (green), and prediction bands (gray ribbon) for the training set up to 05/01/2021 and for the
test set from May 02, 2021, to May 16, 2021 for Harris County. (Bottom) cumulative counts. The boxes
zoom in on the test set. ... 98
Figure 41: (Top) smoothed daily Covid-19 deaths (blue curve), WNN predictions (red curve), E-Bagging
predictions (green), and prediction bands (gray ribbon) for the training set up to 05/01/2021 and for the
test set from May 02, 2021, to May 16, 2021 for NY County. (Bottom) cumulative counts. The boxes
zoom in on the test set. ... 99
Figure 42: Prediction error distributions for the WNN model (blue histogram) and for E-Bagging (red
histogram) for LA County (top); for Cook County (bottom); both are centered at zero. The E-Bagging
errors have less variance. .. 100
Figure 43: Prediction error distributions for the WNN model (blue histogram) and for E-Bagging (red
histogram) for Harris County (top); for NY County (bottom); both are centered at zero. The E-Bagging
errors less variance. .. 101

1

1 Introduction

Recently discovered coronavirus disease 2019 (Covid-19) has affected many people

of all ages and shut down the world economy. Most Covid-19 patients do not need

any treatment to recover; however, some older people and those individuals with

certain health problems such as heart disease, lung disease, cancer, diabetes, and

asthma are at higher risk and more likely to become seriously ill. Covid-19 cases

started on Dec 31, 2019, in China [1] and continued to spread across the globe,

increasing the number of deaths due to Covid-19 on a daily basis. On January 20,

2020, the first case of Covid-19 in the United States was confirmed by a laboratory

and reported to the Centers of Disease Controls (CDC) on January 22, 2020, [2]. As

of the writing of this work, May 20, 2021, there are 33.1 million confirmed Covid-

19 cases in the US with 588,654 deaths attributed to Covid-19.

The Covid-19 virus is likely to spread from one county to adjacent counties. Thus,

the spatial nature of the contagion is an important attribute of Covid-19 spread and

the death counts attributed to Covid-19 in adjacent counties are likely spatially

correlated. Los Angeles County in California, Cook County in Illinois, Harris

County in Texas, and New York County in New York are populous US counties that

experienced many Covid-19 death counts as of May 19, 2021, [3]. For example, in

LA County there were 1.24 million confirmed Covid-19 cases and 24,143 deaths

due to the disease as of May 19, 2021. Covid-19 can attain exponential growth in its

spread in densely populated counties very easily. The number of deaths due to this

invisible disease increases daily. Hence, we decided to forecast the number of deaths

2

due to Covid-19 using deaths data from spatially adjacent counties for two weeks

beyond May 02, 2021. For all forecasts, we assume that existing social distancing

measures did not change through the projected 2-week time period.

Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks

(RNNs) that belong to a class of artificial neural networks (ANNs) where

connections between nodes form a directed cycle. This creates an internal state

(memory) of the network which allows them to exhibit dynamic temporal behavior.

Hence, GRUs would be able to process temporal data like daily Covid-19 death

counts. Also, to make ANNs more powerful to be able to handle temporal datasets,

we modified them by assigning more weight to more recent observations to preserve

and exploit the temporal structure; we refer to these as weighted neural networks

(WNNs). Moreover, for improving predicted results and constructing prediction

bands, we extended the bootstrap aggregation or bagging mechanism to introduce a

greater degree of differences from bootstrap-to-bootstrap NNs and refer to this new

approach as extended bagging (E-Bagging).

We use GRUs, WNNs, and their E-Bagging versions to train our models. Predictions

using these models are useful because they help us understand the most likely results

and can help researchers and policymakers make decisions that can lead to best

outcomes. To measure the performance of neural network models, the mean absolute

error (𝑀𝐴𝐸) was computed. For assessing and comparing constructed prediction

bands using E-Bagging techniques, coverage probability (CP) was computed.

The proposed models can be applied to other counties as well as other epidemic

diseases. Additionally, they can be applied to datasets at the state or the country

level. To our knowledge, the development of bagging techniques to improve multi-

step predictions and to construct prediction bands for recurrent neural network-based

3

models is novel to this work. Additionally, this is the first development of

conventional neural networks to handle temporal data.

1.1 Historical Introduction

The origin of the term ‘neural network’ comes from finding mathematical

representations of information processing in biological systems. McCulloch and

Walter [4], a neurophysiologist and a mathematician, respectively, wrote a paper on

how neurons might work and modeled a simple neural network based on

mathematics and logical algorithms. The 1956 Dartmouth Summer Research Project

on Artificial Intelligence provided a boost to both artificial intelligence and neural

networks research. In 1956, Rochester et al. [5] created some neural network

computational machines. In 1958, Rosenblatt [6], a neurobiologist, began work on

the perceptron which was built as hardware and is the oldest neural network still in

use today.

Between 1960 and 1980 was a time of regression for artificial neural networks

(ANNs). Minsky and Papert [7] proved that a single layer perceptron is limited. Until

1981, progress on neural networks research discontinued for a decade. As a result,

much of the funding was cut. In 1982, Japan announced their Fifth-Generation effort

at the US-Japan Joint Conference on Neural Networks. This led to the US worrying

about being left behind and prompted renewed funding efforts. Rumelhart et al.

[8] used the backpropagation algorithm, a robust and well-known network learning

procedure, for multilayer neural networks. They showed that such networks can

learn useful internal representations of data.

In 1997, Schmidhuber and Hochreiter [9] introduced a RNN framework called Long

Short-Term Memory. In 1998, LeCun et al. [10] studied the convolutional neural

4

network with backpropagation for document analysis. In 2009, Bengio [11]

introduced deep neural networks (DNNs) which are ANNs with multiple hidden

layers between the input and output layers. In 2012, Krizhevsky, Sutskever, and

Hinton [12] wrote a paper on image classification with deep convolutional neural

networks using Graphical Processing Units (GPUs); this was a great success for

neural networks because of the massive use of GPUs. The availability of massively

large data sets, advanced GPUs, and the development of techniques for training

DNNs have resulted in an acceleration of research on ANNs again.

1.2 Neural Networks in Plain Terms

The objective of this section is to give some insights and an overview of neural

networks. Machine learning (ML) algorithms are computer algorithms that improve

or learn automatically using data. An ML algorithm builds a model based on training

data, to make predictions without being explicitly programmed to do so. Hence, in

ML algorithms, we provide models to a computer that define possible rules, training

datasets, and plans to find better rules, while in a standard algorithm, rules are

provided to a computer to do an explicit task. The simple linear regression model is

one of the most basic machine learning models.

For example, consider a dataset containing house prices (𝑝) and their corresponding

sizes (𝑠). Consider a simple linear model that takes the size of a house and returns a

predicted price of such a house as given, 𝑝̂ = 𝑓(𝑠), where function 𝑓 expresses the

relationship between predicted house prices as output and house sizes as input. We

have: 𝑝̂ = 𝑓(𝑠) = 𝑎𝑠 + 𝑏, where 𝑎 and 𝑏 are estimates of unknown coefficients. In

theory, for the linear regression model, the least squares approach consists of

choosing 𝑎 and 𝑏 such that the sum of squared errors between true outputs, 𝑝’s, and

predicted values, 𝑝̂’s, is minimized. In a linear regression problem, there are three

5

parts: a regression model, a dataset, and an optimization algorithm. If we have no

idea what function 𝑓 looks like, we can rely on data to build our rules in a machine

learning environment. Neural network architectures are a complex generalization of

the linear regression model. They are capable of representing complex relationships

between predictor and response variables.

Now, consider the situation of two inputs, denoted by (𝑖ଵ, 𝑖ଶ), and suppose we want

to find a function 𝑓 of these inputs that explains the observed corresponding outputs,

denoted by (𝑜). Suppose further that there is no prior knowledge about the

relationship between these inputs and the output values. Therefore, we want to find

the function 𝑓 such that 𝑓(𝑖ଵ, 𝑖ଶ) is a good model for 𝑜. We could then suggest the

following initial model:

𝐸(𝑜) = 𝑓ଵ(𝑖ଵ, 𝑖ଶ) = 𝑤ଵଵ 𝑖ଵ + 𝑤ଵଶ 𝑖ଶ,

where 𝑤ଵଵ and 𝑤ଵଶ are scalars. For simplicity, there is no constant term in the

model. Such a model is a multilinear regression model and is represented by the

schematic in Figure 1.

Figure 1: "Network" graph of the multilinear regression (model 𝑓ଵ)

In this case, the model is simple and easy to fit but there is no non-linearity. In order

to introduce a non-linearity, a modified model is as follows:

𝑓ଶ(𝑖ଵ, 𝑖ଶ) = 𝜁(𝑤ଵଵ 𝑖ଵ + 𝑤ଵଶ 𝑖ଶ),

𝐸(𝑜) = 𝑓ଵ(𝑖ଵ, 𝑖ଶ) = 𝑤ଵଵ𝑖ଵ + 𝑤ଵଶ𝑖ଶ 𝑖ଵ

𝑖ଶ

𝐸(𝑜)

6

where 𝜁(.) is a non-linear activation function. Notice that the inner

expression 𝑤ଵଵ 𝑖ଵ + 𝑤ଵଶ 𝑖ଶ is still a linear combination, but after applying a non-

linear function to the linear combination, the transformation is nonlinear and, hence,

is possibly closer to our non-linearity assumption. This model is represented by the

schematic in Figure 2.

Figure 2: “Network” graphical representation of the 𝑓ଶ model

However, there is still limited complexity in this model. To enrich the model, we

can consider a new intermediate layer of new features of our model called 𝑙, which

implies that the expression 𝜁(𝑤ଵଵ 𝑖ଵ + 𝑤ଵଶ 𝑖ଶ) is no longer the final output. Then

we could build three such features in the same way: 𝑙ଵ = 𝜁ଵଵ(𝑤ଵଵ 𝑖ଵ + 𝑤ଵଶ 𝑖ଶ), 𝑙ଶ =

𝜁ଵଶ(𝑤ଶଵ 𝑖ଵ + 𝑤ଶଶ 𝑖ଶ), and 𝑙ଷ = 𝜁ଵଷ(𝑤ଷଵ 𝑖ଵ + 𝑤ଷଶ 𝑖ଶ), where the 𝜁௜௝’s are activation

functions and the 𝑤௜௝’s are scalars. Note that the scalars and nonlinear activation

functions could be different for these three features. Lastly, the final output, 𝑜, is

built based on these new intermediate features with the same template: 𝜁ଶ(𝑣ଵ𝑙ଵ +

 𝑣ଶ𝑙ଶ + 𝑣ଷ𝑙ଷ) where 𝑣௜’s are weights for each new intermediate feature. Therefore,

the final composite model is represented in Figure 3 as follows:

𝑓ଷ(𝑖ଵ, 𝑖ଶ) = 𝜁ଶ(𝑣ଵ𝑙ଵ + 𝑣ଶ𝑙ଶ + 𝑣ଷ𝑙ଷ)

= 𝜁ଶ{𝑣ଵ𝜁ଵଵ(𝑤ଵଵ 𝑖ଵ + 𝑤ଵଶ 𝑖ଶ)

+ 𝑣ଶ𝜁ଵଶ(𝑤ଶଵ 𝑖ଵ + 𝑤ଶଶ 𝑖ଶ)

+ 𝑣ଷ𝜁ଵଷ(𝑤ଷଵ 𝑖ଵ + 𝑤ଷଶ 𝑖ଶ)}.

𝐸(𝑜) = 𝑓ଶ(𝑖ଵ, 𝑖ଶ) = 𝜁(𝑤ଵଵ 𝑖ଵ + 𝑤ଵଶ 𝑖ଶ) 𝑖ଵ

𝑖ଶ

𝐸(𝑜)

7

This final model is a basic feedforward neural network with two input features

(𝑖ଵ and 𝑖ଶ), one hidden layer with three nodes (𝑙ଵ, 𝑙ଶ and 𝑙ଷ) and one final output (𝑜).

To add complexity, we could add another intermediate hidden layer between

the input and output layers and the final output in the same way as we added the 𝑙௜’s

in the first hidden layer. The resulting model would be a neural network with two

hidden layers. Alternatively, we could continue with just one hidden layer but add

two more nodes. Thus, there are many different ways to develop models.

Figure 3: “Network” graph of the 𝑓ଷ model. Here we have a neural network with 2
features, 1 hidden layer with 3 nodes and 1 output.

1.3 Grand Challenge, Pitfalls, Limitations, and Future Directions

We can find an optimal model for many simple ML algorithms. For example, we

can find coefficients of a linear regression model by minimizing the sum of squared

errors. However, for a nonlinear model such as a logistic regression model, using an

optimization algorithm usually requires solving a convex optimization problem; An

optimization algorithm guarantees convergence when finding an optimal set of

model parameters. Although, the story is different in DNNs or even when optimizing

a convex error surface of a model with an ill-conditioned Hessian matrix consisting

of second-order partial derivatives.

𝐸(𝑜) = 𝑓ଷ(𝑖ଵ, 𝑖ଶ)

= 𝜁ଶ(𝑣ଵ𝑙ଵ + 𝑣ଶ𝑙ଶ + 𝑣ଷ𝑙ଷ)

𝑙ଷ = 𝜁ଵଷ(𝑤ଷଵ 𝑖ଵ + 𝑤ଷଶ𝑖ଶ)

𝑙ଶ = 𝜁ଵଶ(𝑤ଶଵ 𝑖ଵ + 𝑤ଶଶ 𝑖ଶ)

𝑙ଵ = 𝜁ଵଵ(𝑤ଵଵ𝑖ଵ + 𝑤ଵଶ 𝑖ଶ)

𝑣ଶ

𝑖ଵ

𝑖ଶ

𝑙ଶ

𝑙ଵ

𝑙ଷ

𝐸(𝑜)

8

A big challenge in DNNs with many layers and hundreds of nodes in each layer is

not only the estimation of model parameters with current hardware technology, but

also guaranteeing global convergence of the estimates. This results from using

nonlinear activation functions in neural networks coupled with an optimization

problem on a non-convex error surface for the model. Solving such optimization

problems is challenging, because the non-convex error surface of the model contains

many local minima, saddle points, and cliffs. To work with a non-convex error surface,

we must use an iterative process. In fact, the most challenging and time-consuming

part of using a neural network is training the model and computing model parameters.

Normally, training a neural network can be challenging and choosing a good

architecture is difficult and sometimes impossible; particularly when choosing the

initial hyperparameters, which are the parameters whose values are defined prior to

the beginning of the learning process. Small changes in these hyperparameters’

values can lead to large changes in the performance of models.

The grand challenge of neural networks is their nature. They are often considered

black boxes. We feed known input data into neural networks and know our model’s

fitted parameters, and how they are assembled. But we usually do not understand

relationships between predictors and output. For example, when we feed a neural

network model an image of a dog and it predicts a cat, it is very hard to understand

what caused this bizarre prediction.

While neural networks are not able to give the same level of interpretability and

insight as many statistical models can, it is a mistake to view them as complete black

boxes with the assumption that we know nothing about neural network structures.

9

The nonlinear and nonparametric nature of NN models has caused many pitfalls.

While this nature is desirable for many real-world applications, it opens more

possibilities to go wrong in the modeling process. Compared to linear statistical

models, they have fewer assumptions, more parameters to estimate, and many more

options to choose from in the modeling process, all of which increase the chance of

failing to build a near-optimal productive model.

Another conceptual error is thinking that the neural network can automatically

exploit the most important features during the model process. However, including

many unnecessary input variables in the model not only increases the model

complexity and the likelihood of overfitting, but also wastes time and effort in

training. Such pitfalls have been detected in building and selecting neural networks.

In published articles, many applications of neural networks do not reveal the detail

of many aspects of the modeling process including the data, data processing,

experimental design, model selection, tuning hyperparameters, and other choices

made during the process. This behavior can hide errors and misuses of the techniques

employed in studies.

The greater the network complexity, the more hyperparameters that need to be tuned.

More hyperparameters require greater amounts of data to be optimally determined.

To make sure that the deep learning algorithms deliver desired results we often need

large datasets. Finding these datasets can be a limitation. For training a neural

network with a large dataset, systems need to have adequate processing power such

as high-performing GPUs which can be another limitation. Moreover, employing

several GPUs together can be another limitation because they consume a lot of power

and are costly.

10

One future direction of neural networks is combining neural networks with

complementary technology, like symbolic functions, to perhaps compensate for any

weaknesses among them. Another future direction of neural networks is the

construction of training tools to help trainees gain competence and confidence in

difficult medical diagnoses. With technological advancements, we can make CPUs

and GPUs cheaper and/or faster, enabling the production of bigger, more efficient

algorithms. We can also design neural networks capable of processing more data, or

processing data faster, so they learn to recognize patterns with just 10,000 examples,

instead of 100,000.

The future directions of neural networks do not live solely in attempts to simulate

reality. All current neural network techniques will most likely be vastly improved

upon in the future as researchers develop better training techniques and network

designs. Neural networks could expand horizontally as they are applied to more

diverse applications rather than only advancing vertically in terms of faster

processing power and more complexity. Many big industries and startups in different

areas such as eCommerce, security, logistics, healthcare, and finance could feasibly

use neural networks to operate more efficiently or develop new products.

This dissertation is structured as follows. In chapter 2, we have undertaken a

literature review of several advancements in the use of neural networks; in chapter

3, we describe the Covid-19 data, the preprocessing involved and corresponding

methodology. Results and a comparative study are presented in chapter 4.

11

2 Literature review

2.1 Bootstrapping

There are two common methods of bootstrapping in regression models. One

approach is to take samples with replacement from the original data randomly to

compute separate estimates for every single bootstrap; this is called the bootstrap

pairs method. A second common approach is to take samples from model residuals;

this is called the bootstrap residual method.

Efron et al. [13] introduced the idea of bootstrapping for estimating the variance of

a statistic. The variation in these independent estimates is a good measure of the

certainty of the estimation. Efron and Tibshirani [14] wrote a review of applications

of bootstrapping and stated that the bootstrap method has very nice properties for

estimating standard errors and constructing confidence intervals for model

parameters, as well as evaluating the quality of predictions.

2.2 Bootstrapping Neural Networks

Paass [15] and Carney [16] applied bootstrap methods to neural networks to estimate

the predictive distribution for unobserved inputs and to calculate prediction

intervals. They showed that bootstrap methods offer practical advantages for model

performance with respect to a new input.

12

Tibshirani [17] compared the two common bootstrap methods (bootstrap pairs and

bootstrap residual) to two other techniques, the Delta method based on the Hessian

and the sandwich estimator, for estimating the standard error of neural network

predictions. He found that the bootstrap methods perform best partially because they

account for variability due to the choice of initial weights.

Heskes [18] applied bootstrap methods to compute prediction intervals for neural

networks by taking bootstrap samples from individuals. He reported that for a small

dataset, the width of a prediction interval depends on both the variance of the target

distribution and the accuracy of the estimator of the mean of the target. The

advantage of applying bootstrap approaches to neural nets is that averaging over

network predictions improves the network performance.

Khosravi et al. [19] compared four techniques including bootstrap methods for

constructing prediction intervals for neural network forecasts. They found that

bootstrap methods are best in terms of low computational load and the variability of

prediction intervals. Other techniques, such as the Delta and Bayesian methods

required computing the Hessian matrix which is computationally expensive for a

large dataset.

2.3 Using Neural Networks for Medical Problems

Neural network-based models have been developed for a variety of medical

problems. They can improve learning algorithms by training some neural network

models over time and combining their results to reduce the error rate of models. For

example, Mantzaris et al. [20] used a multilayer perceptron to distinguish types of

dementia. Zhang et al. [21] used a convolutional neural network-based model to

solve a multi-label classification system of chronic diseases to improve the

13

classification performance. Their model outperformed other models with a

prediction accuracy of 81.13%. Ren et al. [22] used a hybrid neural network model

based on a bi-directional long-short term memory (Bi-LSTM) network and an

Autoencoder network to predict kidney problems in hypertensive patients. Their

proposed model outperformed the strong neural baseline systems.

2.4 Covid-19 Models

Wang et al. [23] used a new Patient Information-based algorithm and estimated the

number of daily deaths due to COVID-19 in China. They estimated the number of

days from hospital admission to death is 13 days with a standard deviation of 6 days.

They predicted a case fatality of 1.6% for Covid-19 patients and reported that the

death rate due to Covid-19 ranged from 0.75% to 3% with 95% confidence at the

beginning of pandemic. Moreover, they reported that the mortality rate would vary

with respect to temperature and climate. Gupta et al. [24] pointed out that there is a

direct association between temperature and Covid-19 new cases based on an analysis

of US spread. They predicted that there would be a strong reduction in the number

of new cases in India during the summer months, though this did not actually occur.

Ceylan [25] developed Autoregressive Integrated Moving Average (ARIMA)

models with different parameters for predicting the total confirmed cases of Covid-

19 in Spain, Italy, and France. They found that the best models were an ARIMA

(1,2,0), ARIMA (0,2,1), and ARIMA (0,2,1) for Spain, Italy, and France,

respectively, in terms of mean absolute percentage error (MAPE), with MAPE

values of 5.849, 4.752, and 5.634, respectively. Ahmar and del Val [26] used

ARIMA and Sutte ARIMA models for forecasting the number of new daily cases of

Covid-19 in Spain 3 days into the future. The Sutte ARIMA model outperformed the

standard ARIMA model with MAPE values of 0.036 and 0.066, respectively.

14

Fanelli and Piazza [27] used simple mean-field models to analyze Covid-19 data

from January 22 to March 15, 2020, in Italy. Their model predicted the peak daily

number of Covid-19 cases to be near 26,000. On March 21, 2020, the number of

deaths at the end of the epidemic in Italy was about 18,000. Additionally, they

predicted the mortality rate of Covid-19 in Italy to be between 4% and 8%. They

also estimated the number of ventilators needed in Italy to be 2500 units for the peak.

Chande et al. [28] created an interactive online website for estimating the risk

associated with the presence of at least one Covid-19 case in gatherings of different

sizes in the US. This console used county level Covid-19 confirmed cases to

visualize the information. Zhou et al. [29] proposed a spatio-temporal epidemiological

model to forecast county level Covid-19 spread in the US 𝑡 days ahead in time. Their

model estimated the outbreak risk caused by intercounty traveling.

Mehta et al. [30] developed a three-stage model to forecast Covid-19 cases for short-

term predictions and risks at the county level in the US. Their model employed the

extreme gradient boosting (XGBoost) method to measure the likelihood of being

infected with COVID-19 and to estimate the number of possible cases for unaffected

counties. They found that population, population density, and percentage of adults

over the age of 70 play an important role in Covid-19 predictions. They reported

model sensitivity greater than 71% and specificity greater than 94%.

Ives and Bozzuto [31] estimated the Covid-19 outbreak rate among 160 counties in

the US using numbers of deaths by May 23, 2020. They found that four factors

explained the variability in the outbreak rate: timing of outbreak, population density

and size, and spatial location. They showed that different variations of SARS-CoV2

dominant in different parts of the US may be responsible for some of the effect of

spatial location.

15

2.4.1 Using Neural Network for Covid-19 Predictions

Wieczorek et al. [32] developed a 7 hidden layers neural network model for

predicting Covid-19 spread. They used a dataset provided by the Center for Systems

Science and Engineering (CSSE) at Johns Hopkins University. They tested a few

different time-steps and found that the past 14-day time-step is the best option to

predict unseen values. Also, they pointed out that using an RNN for predicting total

cases performed about 1–2% worse than the ANN-based model, and training with

the same parameters took about 3 times as long.

Saba et al. [33] used an ARIMA model and a model based on nonlinear

autoregressive ANNs (NARANNs) to forecast cumulative confirmed Covid-19

cases in Egypt. They trained models on daily COVID-19 cases for the period

between March 1, 2020, and May 10, 2020. Their proposed NARANN model had

an absolute percentage error of less than 5% and outperformed the ARIMA model.

Reddy and Zhang [34] predicted the end date of the Covid-19 pandemic to be around

June 2020 in Canada using an LSTM model based on daily Covid-19 cases prior to

March 31, 2020. Their network accuracy was 94% for a short-term period of time (2

days) and 93% for a long-term period (14 days). Note that how difficult it is to

predict Covid-19 development into future.

Arora et al. [35] predicted the number of Covid-19 confirmed cases for the next day

and one week ahead for all states and territories of India using an RNN based on

long-short term memory (LSTM) variants such as stacked LSTM, Bi-directional

LSTM, and Convolutional LSTM models for data between March 14, 2020, and

May 14, 2020. Their proposed stacked LSTM model outperformed other models

with error less than 3% for daily predictions and less than 8% for weekly predictions.

16

Shastri et al. [36] reported on Covid-19 forecasting for India and the USA by

applying variants of LSTM such as Stacked LSTM, Bi-directional LSTM, and

Convolution LSTM models. They forecasted the daily number of confirmed and

death cases of Covid-19 for one month ahead. They found that the Convolution

LSTM outperformed the other two models and predicted daily Covid-19 deaths with

the lowest mean absolute percentage error values of 3.33% and 2.50% for India and

the USA, respectively.

Shahid et al. [37] proposed ARIMA, support vector regression with polynomial

kernel, LSTM, and Bi-directional LSTM forecast models for predicting the daily

number of confirmed, death and recovered cases in ten major countries affected by

Covid-19. They found that the Bi-LSTM model outperformed the other models and

predicted daily Covid-19 confirmed cases, deaths, and recoveries with the lowest

values of 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸.

17

3 Methodology

3.1 Data

In this study, we used the Covid-19 deaths dataset from the USAFACTS website

[38]. This dataset contains counts of Covid-19 documented deaths for the USA at

the county level. According to the Centers for Disease Control (CDC), it is not

possible to report the exact number of deaths due to delays in reporting, and because

counties designate Covid-19 related deaths in different ways. The data of interest are

the counts of deaths per day from 1/24/2020 to 05/19/2021 (481 days). We want to

forecast the number of Covid-19 deaths for a reasonable time period, say ℎ = 14

days, in the future (𝑦௡ାଵ, … 𝑦௡ାଵସ), where 𝑛 is the number of days in the training

data set. Our overall goal of choosing ℎ = 14 days is to provide a practical model

with good performance.

It is assumed that people commute between neighbor counties more often than

traveling to more distant counties or states. Thus, the Covid-19 virus is more likely

to spread from one county to adjacent counties. In other words, spatial contagion is

an important aspect of the Covid-19 spread and the numbers of Covid-19 deaths in

adjacent counties are spatially correlated. If the daily count of Covid-19 deaths

increases in one county, the daily number of Covid-19 deaths in neighboring

counties will tend to increase as well. In other words, there is information in Covid-

19 cases/deaths in neighboring counties and we want to use this information for

predictive purposes. For this reason, we predicted the number of deaths in the 4 US

counties considered (Los Angeles County in California, Cook County in Illinois,

18

Harris County in Texas, and New York County in New York) using the numbers of

Covid-19 deaths in neighboring counties.

According to the 2018 official estimate by the US Census Bureau, the most populous

US counties are LA County, Cook County, and Harris County with about 9.82, 5.2,

and 4.1 million people, respectively [39]; NY County’s population was 1.59 million

people with a rank of 21 in the list of most populous US counties. Covid-19 can

attain exponential growth in its spread in these densely populated counties very

easily. LA County reached 24,143 confirmed Covid-19 deaths in total as of

05/19/2021. This total for Cook County was 10,745, for Harris County 6,372, and

for NY County 4,454.

The neighboring counties of LA County are Orange County, San Diego, Riverside,

San Bernardino, Kern, Ventura, Santa Barbara, Imperial, and San Luis Obispo. The

neighboring counties of Cook County in IL are Lake, McHenry, DuPage, Kane,

Will, Kankakee, Kendall, and Lake County, Indiana which borders Illinois. The

neighboring counties of Harris County are Montgomery, Liberty, Chambers,

Galveston, Brazoria, Fort Bend, Walker, and Austin. The surrounding counties of

NY County are Richmond, Queens, Kings, Bronx, Westchester, Rockland, Nassau,

Bergen, and Hudson, the last two of which are in New Jersey. Visualization of

confirmed deaths in the neighboring counties to LA county shows an upward trend

over time for all neighboring counties (Figure 4). LA County (the top green line) had

the largest number of deaths among all nearby counties in CA as of May 19, 2021.

19

Figure 4: Real Cumulative Covid-19 confirmed cases in neighboring counties of LA County

Death counts due to Covid-19 at the county level and state level are variable from

day to day, and it is difficult to quantify trends on a daily basis. For example, Figure

5 shows the daily data reported from Los Angeles County as of May 19, 2021. The

blue bars represent daily confirmed deaths. This graph shows the granular nature of

deaths data because many counties do not consistently report daily data and many

display weekly cycles of under-reporting on weekend days and over-reporting on

days following a weekend. As a result, some counties made corrections to their data

throughout the pandemic. Los Angeles’ data (Figure 5) includes several corrections

they have made to the deaths data in different months (the tall bars). For example,

930 people are reported to have died on one day on February 25, 2021; but this value

is inflated; Los Angeles County just reported a large correction on that day. These

over-reporting spikes significantly undermine the development of data analytic

models for those periods that include corrections. To overcome this, we used a

moving average smoothing technique to reduce these reporting abnormalities.

20

Figure 5: Daily Covid-19 confirmed deaths in LA County as of 05/19/2021

A full 7-day moving average curve was computed to obtain an accurate

representation of the data for each week. Figure 6 illustrates that the seven-day

moving average presents a clearer and more accurate picture of the underlying death

process trend than the unsmoothed daily numbers of deaths in LA County. Note that

the spike on February 25, 2021is much less unusual in the smoothed data. This figure

also illustrates which 7 days should be selected in the moving average to present the

clearer picture of the trend. In viewing this figure, the green curve represents a

moving average that includes the report day and the 6 days following. The red curve

shows a moving average that includes 3 days before the date of the report, the date

of the report, and 3 days after the date of the report. Since the green curve is somewhat

offset from the original trend in the unsmoothed death counts compared to the red

curve, we used the second of these moving averaging definitions. It is worth noting

that any other smoothing periods longer than 7 days (except for multiples of 7) or

shorter than 7 days increases the risk of improperly weighting the days on which

results are overreported or underreported.

21

Figure 6: Unsmoothed and smoothed daily Covid-19 deaths using 2 types of

smoothing in LA County as of 05/19/2021

Figure 7 - Figure 9 include time series representing the seven-day moving averages

and unsmoothed daily numbers of Covid-19 deaths in the other three counties. In

viewing these graphs, the red curve is the moving average that includes 3 days before

the date of the report, the date of the report, and 3 days after the date of the report.

The blue bars represent the unsmoothed daily Covid-19 deaths. These figures

illustrate that seven-day moving averages present a clearer picture of the trend. It is

worth noting that a 14- or 21-day moving average curve would smooth the large

spikes even more than a 7-day moving average, but the latter is a natural time scale

in the epidemiological context.

This smoothing has a minimal effect on our overall sample size, as we lose the first

and last 3 observations from the dataset, thus reducing our data to the period from

1/27/2020 to 05/16/2021 (475 days instead of 481). We considered the data from

May 02, 2021, to May 16, 2021, as the test set. Our objective is to predict the number

of Covid-19 deaths for the test set for each of the four counties considered.

22

Figure 7: Unsmoothed and smoothed daily Covid-19 deaths in Cook County as of
05/19/202

Figure 8: Unsmoothed and smoothed daily Covid-19 deaths in Harris County as of
05/19/2021

23

Figure 9: Unsmoothed and smoothed daily Covid-19 deaths in NY County as of 05/19/2021

3.1.1 Pre-processing of Data

The original dataset contains the cumulative number of Covid-19 deaths at the

county level. To make this dataset suitable for our models, we computed the first lag

differences to find the daily number of Covid-19 deaths. The data are preprocessed

in this way before being passed to the training algorithms. In addition, we

normalized the data as discussed in Section (3.1.1.1) since the numbers of deaths in

nearby counties vary considerably, potentially complicating our analyses.

3.1.1.1 Data Normalization

Using the unscaled data slows down the convergence process of the loss function. A

loss function measures the accuracy of the predictive function over the training

epochs (an epoch refers to one cycle running the model through the full training

dataset). Data normalization is a rescaling technique that maps the numerical dataset

from the original range scale to values between 0 and 1. The data normalization

approach subtracts the minimum value of a feature from each data value and divides

the result by the range of the feature. The range is the difference between the

24

unscaled maximum and unscaled minimum values. This normalization preserves the

shape of the distribution of the unscaled data. It requires accurately estimating the

minimum and maximum values from the available unscaled data. Mathematically,

we normalized the features in the smoothed collected deaths data as follows:

𝑥௜௞ =
𝑑𝑒𝑎𝑡ℎ௜௞– 𝑚𝑖𝑛௞

𝑚𝑎𝑥௞– 𝑚𝑖𝑛௞
,

where 𝑥௜௞ and 𝑑𝑒𝑎𝑡ℎ௜௞ are the normalized and non-normalized daily Covid-19 death

counts in the kth county on the ith day, respectively, and 𝑚𝑖𝑛௞ and 𝑚𝑎𝑥௞ are the

minimum and maximum values for the kth county, respectively. Similarly, we

normalized the target variable.

3.2 Artificial Neural Networks

The idea behind artificial neural networks (ANNs) came from theories of how the

human brain solves complex challenges. ANNs have become popular in recent

years, though, as early as the 1940’s, McCulloch and Pitts [4] performed primary

studies describing how neurons could work. ANNs with many layers are called deep

neural networks. These days, big technology companies are investing heavily in

ANNs and deep learning research and both are popular areas of academic research.

3.2.1 Activation Functions

Activation functions are used to introduce nonlinear transformations into the NN

algorithm and make multilayer NNs more powerful. The backpropagation learning

algorithm is an implementation of the chain rule followed by gradient descent. In

order to use the backpropagation algorithm, activation functions are required to be

differentiable, and are more useful if they are bounded.

25

A linear activation function (𝑦 = 𝑐𝑥) creates an output signal proportional to the

input. However, this function has two main problems. The first problem is that its

derivative with respect to the input 𝑥 is the constant 𝑐, and does not depend on 𝑥.

Therefore, it is not possible to use the gradient descent optimization to train the

model since we cannot go back and understand which input weights make better

predictions. The second problem is that a linear activation function turns a deep

neural network into a single-layer NN because a linear combination of linear

activation functions will be a linear function. In other words, NNs with a linear

activation function are simply linear regression models. They have limited ability

and power to handle the complexity of input data.

Non-linear activation functions are essential for learning and modeling complex

data, such as those originating from images, videos, and audios. NNs that use non-

linear activation functions can create complex mappings between the network’s

inputs and network’s outputs. These functions address the problems of linear

activation functions. Because most often they have a derivative function that depends

on the inputs, then they allow for backpropagation learning. Also, they allow a NN to

have meaningful multiple hidden layers and thus enable deep learning. In this study, we

used several non-linear activation functions including the Sigmoid, Tanh, ReLU, ELU,

and SELU functions. These are explained in the following sections.

 Sigmoid Activation Function

The most common non-linear continuously differentiable monotonic activation

function is the sigmoid function. This function is also called the logistic sigmoid

function. It takes a real value as input and its output is bounded on the unit

interval (0,1). This activation function is illustrated in Figure 10 to the left.

 𝜎(𝑧) = (1 + 𝑒ି௭)ିଵ, 𝑧 ∈ ℝ. (3-1)

26

 Hyperbolic Tangent Activation Function

Another popular non-linear differentiable monotonic activation function is the

hyperbolic tangent (Tanh) activation function which has a similar shape to the

logistic function, but the values map to the interval [-1, 1]. This function is given by

Formula (3-2), and takes the shape shown in Figure 10 to the right. Tanh is much

steeper around 0 than sigmoid; therefore, its gradient is stronger and larger than the

sigmoid.

 Tanh(𝑧) =
𝑒௭ − 𝑒ି௭

𝑒௭ + 𝑒ି௭
, 𝑧𝜖ℝ. (3-2)

The Tanh activation function may cause the vanishing gradient problem. It has

gradients in the range (0, 1), and the backpropagation algorithm computes gradients

by the chain rule. In an n-layer neural network, this has the effect of multiplying 𝑛 of

these small numbers to compute gradients of the early layers. This means that the

gradient decreases exponentially with 𝑛 while the early layers train slowly.

Figure 10: Left: Sigmoid activation function; Right: Tanh activation function

 Rectified Linear Unit Activation Function

The rectified linear unit (ReLU) activation function given in Equation (3-3) and

illustrated in Figure 11 (leftmost graph) is computationally more efficient than the

Tanh(𝑧) =
𝑒௭ − 𝑒ି௭

𝑒௭ + 𝑒ି௭

27

Tanh and Sigmoid functions, which allows the network to converge very quickly.

The ReLU function only needs to choose 𝑚𝑎𝑥{0, 𝑧} and thus does not perform

expensive exponential operations as with both Sigmoid and Tanh.

 𝑅𝑒𝐿𝑈(𝑧) = ቄ
0 𝑧 ≤ 0
𝑧 𝑧 > 0

= 𝑚𝑎𝑥{0, 𝑧}. (3-3)

In other words, the ReLU function replaces negative values with 0 and leaves

positive values unchanged. ReLU should only be used within hidden layers. This

function is differentiable everywhere except at a singular point 𝑧 = 0. In practice, it

is relatively rare to have the point 𝑧 = 0 in the context of deep learning, hence, we

usually do not have to worry too much about the ReLU derivative at zero. Typically,

we set it either to 0, 1, or 0.5. For 𝑧 > 0, RELU tends to inflate the activation value

with an output range of [0, ∞).

A potential problem with ReLU activation functions is the case where a large weight

update can mean that the summed input to the activation function is always negative,

regardless of the input values. In other words, a node with this problem will always

output an activation value of 0. The affected cell cannot contribute to the NN

learning and its gradient stays at zero. So, while ReLUs avoid the problem of

vanishing gradients, they give rise to a new problem referred to as dying ReLUs.

 Exponential linear Unit Activation Function

The exponential linear unit (ELU) activation function given in Formula (3-4) is a

function that tends to converge the loss function to zero faster and produce more

accurate results. This ELU function is illustrated in Figure 12 and is more

computationally expensive than the ReLU function.

 𝐸𝐿𝑈(𝑧) = ቄ
𝛼(𝑒௭ − 1) 𝑧 ≤ 0, 𝛼 > 0

𝑧 𝑧 > 0
 (3-4)

28

A common value for 𝛼 is between 0.1 and 0.3. ELU is the same as ReLU for 𝑧 > 0

and leaves positive values unchanged but gives a value slightly below zero for 𝑧 ≤

0. Hence, unlike the ReLU function, ELU can produce negative values and avoids

the dying ReLU problem. For 𝑧 > 0, ELU can inflate the activation value with the

output range of [0, ∞).

 Scaled Exponential Linear Unit Activation Function

The scaled exponential linear unit (SELU) activation function is a scaled variant of

the ELU function. SELU learns faster and better than other activation functions. The

SELU function is given in Equation (3-5) and illustrated in Figure 13.

 𝑆𝐸𝐿𝑈(𝑧) = 𝜆 ቄ
𝛼(𝑒௭ − 1) 𝑧 ≤ 0

𝑧 𝑧 > 0
, (3-5)

where the values of the two fixed parameters 𝛼 and 𝜆 are derived from the inputs.

However, for standardized inputs the suggested values are 𝛼 = 1.6733 and 𝜆 =

1.0507. The SELU activation function has the important property of self-

normalization meaning that output from SELU will preserve the mean of 0 and standard

deviation of 1. The SELU function solves the vanishing gradients problem. As opposed

to the ReLU activation function, the SELU avoids the dying ReLU problem as well.

Figure 11: ReLU activation

function

Figure 12: ELU activation function Figure 13: SELU activation

function

29

𝒃௛௢

1 × 1

Hidden Layer
4 × 1

𝒂௜௛ = 𝜎(𝑊௜௛𝒙 + 𝒃௜௛)

𝒘௛௢

1 × 4

Input Layer
3 × 1

The ith training example 𝒙𝒊

Output Layer
1 × 1

𝒚ෝ = 𝒘௛௢𝒂௜௛ + 𝒃௛௢

𝑥ଶ

𝑥ଵ

𝑥ଷ

𝑎ଵ
௜௛

𝑎ସ
௜௛

𝑎ଶ
௜௛

𝒚ෝ

𝑎ଷ
௜௛

𝑊௜௛

4 × 3

𝒃௜௛

4 × 1

3.2.2 Architecture of a Feed-forward Network

A feed-forward network is an ANN that sends inputs from one layer to another layer.

Each layer consists of a set of neurons or nodes where each node is a function 𝑓(𝑥)

that is fully connected to all other nodes in the next layer and each function receives

the same input (𝑥). The output of a network is the output of the last layer. Any layer

between the first layer and the last layer is called a hidden layer. It is common to use

one or two hidden layers. Figure 14 represents an example of a feed-forward network

architecture having an input layer with three inputs, one hidden layer with four

nodes, and an output layer with a single output. For context, suppose that the

objective is to map a 1 × 3 input vector 𝒙 to a scalar prediction 𝑦ො.

Figure 14: A diagram of a neural network

Figure 14 shows a three-four-one feed-forward network structure. The input layer

receives signals 𝑥ଵ, 𝑥ଶ, and 𝑥ଷ. Weights 𝑤௜௝
௜௛ and bias terms 𝑏௜

௜௛ (for 𝑖 = 1, 2, 3, 4 and

𝑗 = 1, 2, 3) are scalars as shown in Equation (3-6) where the superscript 𝑖ℎ indicates

that they are assigned to the connections between all the nodes in the input layer and

the hidden layer .

30

 𝑊ସ×ଷ
௜௛ =

⎣
⎢
⎢
⎢
⎡
𝑤ଵଵ

௜௛ 𝑤ଵଶ
௜௛ 𝑤ଵଷ

௜௛

𝑤ଶଵ
௜௛ 𝑤ଶଶ

௜௛ 𝑤ଶଷ
௜௛

𝑤ଷଵ
௜௛ 𝑤ଷଶ

௜௛ 𝑤ଷଷ
௜௛

𝑤ସଵ
௜௛ 𝑤ସଶ

௜௛ 𝑤ସଷ
௜௛

    

⎦
⎥
⎥
⎥
⎤

,   𝒃ସ×ଵ
௜௛ =

⎣
⎢
⎢
⎢
⎡
𝑏ଵ

௜௛

𝑏ଶ
௜௛

𝑏ଷ
௜௛

𝑏ସ
௜௛⎦

⎥
⎥
⎥
⎤

. (3-6)

Weights 𝑤௞
௛௢ and bias term 𝑏௛௢ (for all 𝑘 = 1, 2, 3, 4) are scalars as shown in

Equation (3-7) where the superscript ℎ𝑜 indicates that they are assigned to the

connections of all the nodes between the hidden layer and the output layer.

 𝒘ଵ×ସ
௛௢ = [𝑤ଵଵ

௛௢ 𝑤ଵଶ
௛௢ 𝑤ଵଷ

௛௢ 𝑤ଵସ
௛௢],    𝑏ଵ×ଵ

௛௢ = 𝑏ଵ
௛௢ . (3-7)

Matrix 𝑊௜௛ is multiplied by the input vector 𝒙 and the bias term 𝒃௜௛ is added to the

product in the hidden layer. Additionally, an activation function, such as the sigmoid

function defined in Equation (3-1) is applied to this sum to give new input signals

𝑎௝
௜௛ for 𝑗 = 1,2,3,4 for the next layer as given in Equation (3-8).

 𝒂ସ×ଵ
௜௛ = 𝜎൫𝑊௜௛𝒙 + 𝒃௜௛൯. (3-8)

The vector 𝒂௜௛ is fed-forward and multiplied by the weights 𝒘௛௢ and added to the

bias scalar 𝑏௛௢. This resulting signal is sent through the identity activation function

to give the network output 𝑦ො given in Formula (3-9):

 𝑦ො = 𝒘௛௢𝒂௜௛ + 𝑏௛௢ . (3-9)

Hence, the number of trainable weights in this feed-forward neural network is

Trainable Parameters = (3 × 4)ᇣᇧᇤᇧᇥ
ி௢௥ ௐ೔೓

+ (4 × 1)ᇣᇧᇤᇧᇥ
ி௢௥ 𝒘೓೚

+ (4 + 1)ᇣᇧᇤᇧᇥ
ி௢௥ ஻௜௔௦௘௦

= 21.

To obtain the output, we used two differentiable linear and non-linear activation

functions. Let 𝜁 denote the activation functions (Section 3.2.1). In general, a one-

hidden layer neural network can be expressed as the composition of two mappings.

The first mapping sends a 𝑝 × 1 input vector 𝒙 to 𝑞 different outputs by multiplying

31

a 𝑞 × 𝑝 weight matrix 𝑊௜௛ by a 𝑝 × 1 input vector 𝒙 and adding a 𝑞 × 1 bias term

𝒃௜௛ to the product in the hidden layer. Additionally, an activation function 𝜁௜௛: ℝ →

ℝ is applied to this sum to give a new 𝑞 × 1 input vector 𝒂௜௛ for the next layer. The

transformation of the vector 𝑊௜௛𝒙 + 𝒃௜௛ by activation function 𝜁௜௛ is defined in

Equation (3-10).

 𝒂௤×ଵ
௜௛ = 𝜁௜௛൫𝑊௜௛𝒙 + 𝒃௜௛൯. (3-10)

Note that the same 𝑝 input signals are sent to each of the hidden layer nodes.

However, the signal received by the jth node is 𝜁௜௛൫𝒘௝.
௜௛𝒙 + 𝑏௝

௜௛൯ where 𝒘௝.
௜௛ is the jth

row of 𝑊௜௛. Since the weight vectors 𝒘ଵ.
௜௛ , … , 𝒘௤.

௜௛ are generally different, the signals

received at different hidden layer nodes differ.

The second mapping sends the new 𝑞 × 1 signal input vector 𝒂௜௛ received in the

hidden layer to 𝑠 different network outputs by multiplying an 𝑠 × 𝑞 weight matrix

𝑊௛௢ by the new 𝑞 × 1 input 𝒂௜௛ and adding an 𝑠 × 1 bias term 𝒃௛௢ to the product

in the output layer. Additionally, an activation function 𝜁௛௢: ℝ → ℝ is applied to this

sum to give an 𝑠 × 1 network output 𝒚ෝ. The transformation of the vector 𝑊௛௢𝒂௜௛ +

𝒃௛௢ by function 𝜁௛௢ is defined in Equation (3-11).

 𝒚ෝ௦×ଵ = 𝜁௛௢൫𝑊௛௢𝒂௜௛ + 𝒃௛௢൯. (3-11)

Hence, the number of trainable weights is

Trainable Parameters = (𝑞 × 𝑝)ᇣᇧᇤᇧᇥ
ி௢௥ ௐ೔೓

+ (𝑠 × 𝑞)ᇣᇧᇤᇧᇥ
ி௢௥ ௐ೓೚

+ (𝑞 + 𝑠)ᇣᇧᇤᇧᇥ
ி௢௥ ஻௜௔௦௘௦

= 𝑁(𝑖 + 𝑜) + (𝑁 + 𝑜),

where 𝑁 is the number of hidden nodes, 𝑖 is the number of inputs, and 𝑜 is the number

of outputs. In the previous example, 𝑖 = 3, 𝑁 = 4, and 𝑜 = 1.

32

3.3 General Architecture of Feed-forward Networks

We turn now to determining good (perhaps optimal) weight matrices 𝑊௜௛ and 𝑊௛௢,

and bias vectors 𝒃௜௛ and 𝒃௛௢ where 𝑖ℎ indicates that those weights and biases are for

the connections between the input layer and the hidden layer. Similarly, ℎ𝑜 indicates

that those weights and biases are for the connections between the hidden layer and

the output layer. We add a row of ones corresponding to the bias vectors to the

𝑝 × 𝑛 matrix of the predictors 𝑋 and then say the matrix has been augmented and

denote the (𝑝 + 1) × 𝑛 augmented matrix of the predictors as ቂ𝑋
𝟏

ቃ. Also, we combine

the weights and biases together in each connection and introduce them as augmented

matrices [𝑊௜௛ 𝒃௜௛] and [𝑊௛௢ 𝒃௛௢].

In general, a one-hidden layer neural network can be expressed as the composition

of two mappings. The first mapping sends a (𝑝 + 1) × 𝑛 input augmented matrix

ቂ
𝑋
𝟏

ቃ to a 𝑞 × 𝑛 matrix of outputs 𝑨௜௛ by multiplying a 𝑞 × (𝑝 + 1) weight matrix

[𝑊௜௛ 𝒃௜௛] by a (𝑝 + 1) × 𝑛 augmented matrix ቂ
𝑋
𝟏

ቃ in the hidden layer.

Additionally, an activation function 𝜁௜௛: ℝ → ℝ is applied to this product to give a

new 𝑞 × 𝑛 input matrix 𝑨௜௛ for the next layer. The transformation of the matrix

[𝑊௜௛ 𝒃௜௛] ቂ
𝑋
𝟏

ቃ by the activation function 𝜁௜௛ is defined in Equation (3-12).

 𝐴௤×௡
௜௛ = 𝜁௜௛ ቀ[𝑊௜௛ 𝒃௜௛] ቂ

𝑋
𝟏

ቃቁ (3-12)

The second mapping sends the new (𝑞 + 1) × 𝑛 signal input augmented matrix

൤𝑨௜௛

𝟏
൨ received in the hidden layer to 𝑛 different network outputs by multiplying a

1 × (𝑞 + 1) weight vector [𝒘௛௢ 𝑏௛௢] by the new (𝑞 + 1) × 𝑛 input augmented

33

matrix ൤𝑨௜௛

𝟏
൨ in the output layer. Additionally, an activation function 𝜁௛୭: ℝ → ℝ is

applied to this product to give a 1 × 𝑛 network output 𝒚ෝ. The transformation of the

matrix [𝒘௛௢ 𝑏௛௢] ൤𝑨௜௛

𝟏
൨ by the function 𝜁௛୭ is defined in Equation (3-13).

 𝒚ෝଵ× ௡ = 𝜁௛୭ ൬[𝒘௛௢ 𝑏௛௢] ൤𝑨௜௛

𝟏
൨൰. (3-13)

Here, the number of trainable weights is

Trainable Parameters = 𝑁(𝑖 + 𝑜) + (𝑁 + 𝑜)

= 𝑞 × (𝑝 + 1) + (𝑞 + 1).

3.3.1 Network learning

NNs learn new patterns by updating their weights between all the layers. The

architecture of an NN determines its learning ability of which there are two major

types: supervised and unsupervised learning. In supervised learning, the training set

(𝑋௜ , 𝑦௜) provides the learning rule. The inputs 𝑋௜ are entered into the neural network

to compute the outputs 𝑦ො௜, which are then compared to the targets 𝑦௜ , 𝑖 = 1, . . . , 𝑛.

One supervised learning network procedure is the backpropagation algorithm, a

well-known network learning procedure. The backpropagation algorithm is an

implementation of the chain rule followed by gradient descent.

We now optimize the ANN by determining the optimal weights and biases

[𝑊௜௛ 𝒃௜௛] and [𝒘௛௢ 𝑏௛௢] through minimization of the loss function using

gradient descent (Section 3.4). The learning rule is then used to update the network’s

weights and biases to minimize the squared error loss between the predicted vector

𝒚ෝଵ× ௡ and the observed vector 𝒚ଵ× ௡, given as:

𝐿([𝑊 𝒃]) = (𝒚ଵ× ௡ − 𝒚ෝଵ× ௡)(𝒚ଵ× ௡ − 𝒚ෝଵ× ௡)் = ෍(𝑦௜ − 𝑦ො௜)ଶ

௡

௜ୀଵ

,

34

where 𝐿([𝑊 𝒃]) is the network’s squared error loss function parameterized by the

model’s weights and biases of interest [𝑊 𝒃] ∈ ℝ௣ାଵ.

Analytically, minimizing the loss function with respect to 𝑊 by computing the

partial derivatives, setting them to zero and solving for 𝑊, yields an optimal weights

matrix. Unfortunately, for most neural networks, the loss function is nonlinear. Thus,

there exists no closed form solution and so it is not possible to use this approach.

However, the backpropagation system using gradient descent optimization computes

the network weights iteratively and requires the partial derivatives 𝛻ௐ𝐿([𝑊 𝒃]).

These derivatives are calculated using the chain rule. For example, 𝛻𝒘೓೚𝐿([𝑊 𝒃])

is calculated as follows:

𝛻𝒘೓೚𝐿([𝑊 𝒃])ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
ଵ× (௤ାଵ)

=
𝜕𝐿([𝑊 𝒃])

𝜕𝒚ෝ

𝜕𝜁௛୭

𝜕𝒘௛௢

𝜕𝒚ෝ

𝜕𝜁௛୭

= −2(𝒚 − 𝒚ෝ) ቆ𝜁௛௢
ᇱ ൬[𝒘௛௢ 𝑏௛௢] ൤𝑨௜௛

𝟏
൨൰ ⊙

𝜕𝒘௛௢𝑨௜௛

𝜕𝒘௛௢
ቇ

= −2 (𝒚 − 𝒚ෝ)ᇣᇧᇤᇧᇥ
(ଵ× ௡)

⎝

⎜
⎛

𝐷
఍೓೚

ᇲ ൬[𝒘೓೚ ௕೓೚]൤𝑨೔೓

𝟏
൨൰ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ

(௡× ௡)

൫𝑨௜௛൯
்

ᇣᇤᇥ
൫௡×(௤ାଵ)൯

⎠

⎟
⎞

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
൫௡×(௤ାଵ)൯

,

where ⊙ denotes the Hadamard or element-wise product of matrices and
𝐷

఍೓೚
ᇲ ൬[𝒘೓೚ ௕೓೚]൤𝑨೔೓

𝟏
൨൰

 is the corresponding diagonal matrix for the (1 ×  𝑛)-vector

𝜁௛௢
ᇱ ൬[𝒘௛௢ 𝑏௛௢] ൤𝑨௜௛

𝟏
൨൰ with this vector as its main diagonals.

3.4 Gradient Descent Optimization

Gradient descent is an iterative optimization algorithm and the most common way

to optimize NNs by minimizing a network’s loss function 𝐿(𝒘) parameterized by a

model’s weights 𝒘 ∈ ℝ௣. The loss function describes how well the model will

perform given the current set of weights, and gradient descent algorithm is a way to

35

find the best set of weights by updating the weights in the opposite direction of the

gradient of the loss function 𝛻𝒘𝐿(𝒘) with respect to the weights.

There are three variants of gradient descent optimization: Batch gradient descent,

Stochastic gradient descent, and Mini-batch gradient descent. They vary in the

amount of data we use to compute the gradient of the loss. Depending on how much

data we use to compute 𝛻𝒘𝐿(𝒘), there is a trade-off between the accuracy of the

weight update and the time it takes to perform the update.

3.4.1 Batch gradient descent

Batch gradient descent (BGD) calculates the gradient of the loss function 𝐿(𝒘) with

respect to the weights 𝒘 for the entire training dataset:

𝒘 = 𝒘 − 𝜂 · 𝛻𝒘𝐿(𝒘),

where 𝜂 is the learning rate and determines the size of the steps we take to reach a

(local) minimum. In other words, we follow the direction of the slope of the surface

created by the loss function downhill until we reach a valley. Hence, BGD converges

to the minimum of the basin the weights are placed in. Since we need to compute

the gradients for the entire dataset to do just one update, BGD cannot only be very

slow but is also problematic for datasets with large memory requirements. Moreover,

it does not allow us to update our model online (with new examples).

3.4.2 Stochastic gradient descent

Stochastic gradient descent (SGD) performs a weight update for each training

example 𝑥(௜) and label 𝑦(௜):

𝒘 = 𝒘 − 𝜂 · 𝛻𝒘𝐿൫𝒘; 𝑥(௜); 𝑦(௜)൯.

The training examples in the training set are randomly permuted at every epoch.

SGD performs one update at a time and is usually much faster allowing us to update

our model online. It performs many updates with high variance that causes the loss

36

function to fluctuate greatly. These fluctuations enable SGD to jump to new and

potentially better local minima but complicates convergence to the exact minimum.

3.4.3 Mini-batch gradient descent

Mini-batch gradient descent (Mini-BGD) performs an update for every mini-batch

of 𝑛 training examples:

𝒘 = 𝒘 − 𝜂 · 𝛻𝒘𝐿൫𝒘; 𝑥(௜:௜ା௡); 𝑦(௜:௜ା௡)൯.

Mini-BGD not only reduces the variance of the weight updates, which can lead to

more stable convergence, but also can make computing the gradient with respect to

a mini-batch very efficient.

Mini-BGD does not guarantee good convergence and offers a few challenges that

need to be addressed. For example, selecting an appropriate learning rate can be

difficult. While choosing a very small 𝜂 leads to slow convergence, choosing a very

large 𝜂 can hinder convergence and cause the loss to fluctuate around the minimum

or even to diverge. There are some algorithms like the Adam optimizer that are

widely used in NNs to deal with such challenges.

3.4.4 Adam Optimizer

Adaptive Moment Estimation (Adam), introduced by Kingma and Ba [40], is an

optimization method that computes adaptive learning rates for each weight. In

addition to storing an exponentially decaying average of past squared gradients 𝑣௧,

Adam also retains an exponentially decaying average of past gradients 𝑚௧:

𝑚௧ = 𝛽ଵ𝑚௧ିଵ + (1 − 𝛽ଵ)∇𝒘𝐿(𝒘௧)

𝑣௧ = 𝛽ଶ𝑣௧ିଵ + (1 − 𝛽ଶ)[∇𝒘𝐿(𝒘௧)]ଶ,

where 𝑚௧ and 𝑣௧ are estimates of the first and second moments of the gradients,

respectively. 𝛽ଵ and 𝛽ଶ are the exponential decay rates for the corresponding 𝑚௧ and

37

𝑣௧. Since these estimates are initialized as vectors of 0’s, the authors of the Adam

method observe that they are biased towards 0. These biases are neutralized by

calculating bias-corrected estimates of the first and second moments:

𝑚ෝ௧ =
௠೟

ଵିఉభ

, 𝑣ො௧ =
௩೟

ଵିఉమ

.

The Adam rule for updating the weights is as follows:

𝒘௧ାଵ = 𝒘௧ −
𝜂

ඥ𝑣ො௧ + 𝜖
𝑚ෝ௧ ,

where 𝜖 is a very small number to prevent any division by zero. The authors suggest

a default value of 0.9 for 𝛽ଵ, a default value of 0.999 for 𝛽ଶ, and a default value

of 10ି଼ for 𝜖. They illustrate empirically that the Adam optimizer works well in

practice using these default values.

3.5 Regularizing Deep Neural Networks

Deep learning neural networks are likely to overfit a relatively small training dataset and

to increase generalization error which results in poor performance when the model is

evaluated on a test dataset. An effective regularization method to reduce overfitting in

large neural networks (more layers or nodes) of all kinds is the dropout method. This

method is applied to a model by randomly dropping out nodes during the training model.

Another approach to regularization is fitting all possible different neural network models

on the same training dataset and taking average predictions from each model. In practice,

this is not feasible, but can be done using an ensemble approximation (a small collection

of different models). One problem with this is that it requires multiple models to be fit,

which can be a problem for large datasets that require multiple days to train and tune.

38

3.5.1 Dropout

Dropout is a regularization method that approximates training many neural networks

with different designs in parallel. It makes the training process noisy and forces nodes

within a hidden layer to probabilistically take different responsibility for the inputs. In

other words, setting the dropout rate to a specific rate (say 50%) indicates that the prior

nodes should be dropped from training with the assigned rate or the probability of a

certain node to be dropped from the training as 50%, and so the remaining nodes will

have different worth.

Dropout regularization can be used with most types of neural networks such as the

multilayer perceptron and gated recurrent unit (GRU). It can also be used with most

types of layers, such as dense and recurrent layers like the GRU layer. For example, the

input and recurrent connections in the GRU layer may use different dropout rates.

When training a NN model, some outputs of its hidden layers are randomly ignored or

dropped out. This treats the current layer as having a different number of nodes and

connectivity to the prior layer.

3.5.2 Dropout Rate

Dropout rate is the probability of training a given node in a layer. Because the outputs

of a layer under dropout regularization are randomly subsampled, this reduces the

capacity of the network during training. Hence, the network may require more nodes

when using the dropout method. A good dropout rate in a hidden layer is between 0.5

and 0.8. A common dropout rate is 0.5. Rates close to 1.0 indicate no outputs from the

layer and rates close to 0.0 mean no dropout. Note that input layers use larger rates.

Using dropout makes the model’s weights larger. Hence, before the final network layer,

the weights should be rescaled by the chosen dropout value. Then the network model

can be used to make predictions as normal.

39

3.5.3 Use of Wider Neural Networks

Using dropout has made it possible to use larger networks with less risk of overfitting.

In fact, larger neural networks are probably required as dropout will probabilistically

thin the network. As a rule of thumb, the new larger network including the dropout

regularization contains a greater number of nodes. This is computed by dividing the

number of nodes in the previous network layer before using dropout by the chosen

dropout rate [41].

3.5.4 Early Stopping Approach

The early stopping approach is perhaps one of the oldest and most widely used forms

of neural network regularization. When training a large neural network, there will

be a point where the model will stop generalizing and start overfitting the training

dataset, making the model less useful at predicting new data. It is important to train

a neural network long enough that it can learn the data, but not train the network so

long that it overfits the training data.

The way this approach works is to train a network once over a larger number of

epochs than would normally be required to give the network plenty of room to fit

and just start to overfit the training dataset. At the point where the performance of

the model on the validation dataset starts to degrade, the training process is stopped.

The model at the time of stopping is then used and is known to have good

generalization performance.

An alternative approach to overcoming overfitting is to treat the number of training

epochs as a hyperparameter, train the network multiple times with different epochs,

and then choose the number of epochs that results in the best performance on the

training or test dataset. This can be computationally expensive and time-consuming.

40

3.6 Assessment of fits

In all algorithms, the mean absolute error (𝑀𝐴𝐸) is used to evaluate the performance

of the models. The 𝑀𝐴𝐸 is a scale-dependent accuracy measure that uses the same

scale as the data being measured.

 𝑀𝐴𝐸 =
1

𝑛
෍|𝑦௜ − 𝑦ො௜|, (3-14)

where |. | is the absolute value function, 𝑦௜ is the ith target value, 𝑦ො௜ is the ith predicted

value, 𝑖 = 1, … , 𝑛, and 𝑛 is the number of observations.

To assess a prediction band, the coverage probability (CP) of the band is computed.

The coverage probability is the percentage of target values 𝑦௜’s covered by the

prediction band using the predicted values:

 CP =
1

𝑛
෍ 1௬೔∈(௅೔,௎೔)

௡

௜ୀଵ

, (3-15)

where 𝐿௜ and 𝑈௜ are the lower and upper limits of the ith prediction band, respectively.

The performance of a prediction band can be evaluated by comparing the coverage

probability of the interval and the nominal prediction level. A forecasted model

performs well if the coverage probability and the nominal prediction level are close.

3.7 Recurrent Neural Networks

Rumelhart et al. (1986) [8] introduced recurrent neural networks or RNNs which are

a family of NNs. They are capable of remembering past information for processing

new events accordingly. Hence, they are designed for modeling sequence data. In a

feedforward NN, information flows from input layers to hidden layers, and then from

hidden layers to output layers. In RNNs, the hidden layers take their inputs from

both the input layers of the current time steps and the hidden layers from the previous

time steps. The main idea behind RNNs is to use not only the input sequence 𝒙௧ at

41

the current time step 𝑡 (where 𝑡 indicates the time step of an input), but also the

previous outputs 𝒉௧ିଵ for making the current prediction. Hence, an RNN accepts an

input sequence 𝒙௧ at time 𝑡 and assumes that there is a hidden state 𝒉௧ିଵ to represent

the system status at time 𝑡 − 1. The status is updated by a nonlinear mapping

function f from one time step to the next:

𝒉௧ = 𝑓(𝒉௧ିଵ, 𝒙௧).

One common way of defining the recurrent unit f is with a linear transformation plus

a nonlinear function 𝜁 which applies to every component of the inputs, e.g.,

 𝒉௧ = 𝜁 ቌ[𝑊௜௛ 𝒃௜௛]ᇣᇧᇧᇤᇧᇧᇥ
௤×(௣ାଵ)

ቂ
𝒙௧

𝟏
ቃต

(௣ାଵ)×ଵ

+ 𝑊௛௛ถ
௤×௤

𝒉௧ିଵถ
௤×ଵ

ቍ, (3-16)

where 𝑊௜௛ and 𝑊௛௛ are the weight matrices related to 𝒙௧ and 𝒉௧ିଵ, respectively,

and 𝒃௜௛ is a vector of bias terms.

The task of an RNN is to learn the weight matrices 𝑊௜௛ and 𝑊௛௛ and the bias vector

𝒃௜௛. An RNN may also have an optional output 𝒚௧ in addition to the hidden state 𝒉௧.

A simple RNN only has simple recurrent operations without any gates to control the

flow of information among the cells. The gates are a linear transformation plus the

nonlinear sigmoid activation function. However, an RNN in simple form suffers

from the vanishing or exploding gradient problem, especially in long sequences (

[42], [9]). In machine learning, these problems can occur when training NNs using

gradient-based learning algorithms and backpropagation. In such algorithms, each

of the NN weights receives an update proportional to the partial derivative of the

loss function with respect to the current weight in each iteration of training. The

problems are that in some cases, the gradient will be either vanishingly small,

effectively preventing the weight from updating, or so large, effectively overflow

the weight. These may completely stop the NN from further training. We will begin

by introducing a widely used NN called gated recurrent units to solve this problem.

42

3.7.1 Gated Recurrent Unit

Cho et al. (2014) introduced the gated recurrent unit (GRU), an RNN that is

comprised of two internal gates which are: an update gate 𝒛௧ and a reset gate 𝒓௧

given in Formula (3-17) and (3-18). This means that we have dedicated procedures

for when a hidden state should be updated and also when it should be reset. For

instance, a reset gate would allow us to control how much of the previous state we

might still want to remember. An update gate decides how much information is

updated. If the reset gate is set to zero, it reads input sequences and forgets the

previously calculated state. Unlike other RNNs, the network’s internal gates allow

the model to be trained successfully using backpropagation through time and avoids

the vanishing gradients problem. The data flow and operations in the GRU are

illustrated in Figure 15. The GRU’s rules are given in Formula (3-17)- (3-20),

Update Gate: 𝒛௧ = 𝜎(𝑊௭[𝒉௧ିଵ, 𝒙௧] + 𝒃𝒛) (3-17)

Reset Gate: 𝒓௧ = 𝜎(𝑊௥[𝒉௧ିଵ, 𝒙௧] + 𝒃𝒓), (3-18)

where 𝜎(.) is the sigmoid function and is applied to every component of the input

to transform input values to the unit interval (0,1). The matrices 𝑊௭ and 𝑊௥ contain

the combined weights for 𝒉௧ିଵ and 𝒙௧, and 𝒃𝒛 and 𝒃𝒓 are the bias vectors. The vector

𝒛௧ is referred to as the update gate and is determined by the weights in 𝑊𝒛 and 𝒃𝒛.

The vector 𝒓௧ is referred to as the reset gate and is determined by the weights in 𝑊𝒓

and 𝒃𝒓. These formulae have the same form. The difference comes in the weights

and biases and the gate’s usage. When 𝒙௧ is plugged into these gates, it is multiplied

by its own weight. The same is true for 𝒉௧ିଵ which holds the information for the

previous 𝑡 − 1 units and is multiplied by its own weight. Both results are added

together, and a sigmoid function is applied to force the result between 0 and 1. There

43

is a new memory content called the candidate hidden state which uses the reset gate

to store the relevant information from the past and is expressed as follows:

Candidate Hidden State: 𝒉෩௧ = tanh(𝑊௛[𝒓௧ ⊙ 𝒉௧ିଵ, 𝒙௧] + 𝒃𝒉) (3-19)

where ⊙ means the component-wise product between two vectors. The activation

function “tanh”, defined in Formula (3-2), is applied to every element of its input.

The candidate hidden state 𝒉෩௧ is a linear transformation plus the nonlinear tanh

activation function determined by the weights in 𝑊𝒉 and 𝒃𝒉. The task of the GRU is

to learn these weights and biases. Lastly, to control information inside the network

units, there is a hidden state 𝒉௧ as shown in Formula (3-20):

Hidden State: 𝒉௧ = (1 − 𝒛௧) ⊙ 𝒉௧ିଵ + 𝒛௧ ⊙ 𝒉෩௧ (3-20)

where the update gate 𝒛௧ determines the portion of 𝒉௧ିଵ and 𝒉෩௧ to be updated.

Figure 15: Flow and operations in a GRU cell, Figure source [43]

A GRU cell may also have an optional output 𝒚௧. It has no additional memory cell

to retain information; therefore, it can only control information inside the unit.

3.7.1.1 Number of Trainable Weights in a GRU

In a GRU, the number of trainable weights is given by:

 𝑔[𝑁(𝑁 + 𝑖) + 𝑁], (3-21)

where g is the number of Feed Forward Neural Networks (FFNNs) in the GRU

(which is 3), 𝑁 is the number of hidden nodes, and 𝑖 is the number of inputs. In the

next chapter, we will see the GRU’s application in modeling sequence data.

44

3.7.1.2 Producing Rolling Windows

Because we aim to exploit predictive information induced by serial correlation, it is

necessary to preserve the temporal structure of the data. Hence, rolling (or moving)

windows are used to capture this temporal information. The rolling window size (𝑚)

is the number of consecutive days per rolling window. The size of the rolling window

should be tuned for each model.

We assume that the time increment between successive rolling windows is one day.

The first rolling window contains the first 𝑚 observations from day 1 through day 𝑚;

the second one contains observations from day 2 through day (𝑚 + 1), and so on.

This is illustrated in Figure 16. Thus, if we continue this procedure, we can build

𝑛 – 𝑚 + 1 rolling windows of length 𝑚 from the entire dataset where 𝑛 is the

number of observations.

Figure 16: Partitioning a sample to 𝑛 − 𝑚 + 1 rolling windows.

Let 𝑹 denote the set of all rolling windows. An element of 𝑹 is a rolling window 𝑅௧

for 𝑡 = 1, . . . , 𝑛 − 𝑚 + 1, where 𝑚 is the rolling window size, as given by:

 𝑅௧ = ൥

𝑥௧ଵ 𝑥௧ଶ ⋯ 𝑥௧௣

⋮ ⋮ ⋱ ⋮
𝑥௧ା௠ିଵ,ଵ 𝑥௧ା௠ିଵ,ଶ ⋯ 𝑥௧ା௠ିଵ,௣

൩, (3-22)

1 𝑚 + 1
𝑚

3
2 𝑚 + 2

⋱

Rolling Window 1

Rolling Window 𝑛 − 𝑚 + 1
Rolling Window 𝑛 − 𝑚

Rolling Window 3
Rolling Window 2

1
𝑛

Samples

45

where in our Covid-19 application, 𝑝 is the number of neighboring counties and the

𝑥௜௞’s are the daily Covid-19 deaths in county 𝑘 on day 𝑖. Hence, the 3-dimensional

rolling windows array 𝑹 has the following form:

 𝑹 =

⎣
⎢
⎢
⎢
⎢
⎡

𝑅ଵ

𝑅ଶ

⋮
𝑅௡ି௠ି௛ାଵ

⋮
𝑅௡ି௠ାଵ ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

൥

𝑥ଵଵ 𝑥ଵଶ ⋯ 𝑥ଵ௣

⋮ ⋮ ⋱ ⋮
𝑥௠,ଵ 𝑥௠,ଶ ⋯ 𝑥௠,௣

൩

(௠,௣)

൥

𝑥ଶଵ 𝑥ଶଶ ⋯ 𝑥ଶ௣

⋮ ⋮ ⋱ ⋮
𝑥௠ାଵ,ଵ 𝑥௠ାଵ,ଶ ⋯ 𝑥௠ାଵ,௣

൩

(௠,௣)
⋮

൥

𝑥௡ି௠ି௛ାଵ,ଵ 𝑥௡ି௠ି௛ାଵ,ଶ ⋯ 𝑥௡ି௠ି௛ାଵ,௣

⋮ ⋮ ⋱ ⋮
𝑥௡ି௛,ଵ 𝑥௡ି௛,ଶ ⋯ 𝑥௡ି௛,௣

൩

(௠,௣)
⋮

൥

𝑥௡ି௠ାଵ,ଵ 𝑥௡ି௠ାଵ,ଶ ⋯ 𝑥௡ି௠ାଵ,௣

⋮ ⋮ ⋱ ⋮
𝑥௡,ଵ 𝑥௡,ଶ ⋯ 𝑥௡,௣

൩

(௠,௣) ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(௡ି௠ାଵ,௠,௣)

 (3-23)

where 𝑚 and ℎ are the rolling window size and the number of days ahead to forecast,

respectively. Note that the last ℎ rolling windows are only for forecasting purposes

and we have not trained any models on them.

3.7.1.3 Producing Targets

In this study, we want to predict the number of daily Covid-19 deaths only using

data from earlier time points for ℎ days into the future in a desired county, as denoted

(𝑦௡ାଵ, … 𝑦௡ା௛). Note that each of the p counties can be the target. Hence, we need

to create a supervised training dataset to train a model. By considering the creation

of rolling windows as discussed in Section (3.7.1.2), the first observation of the

target vector 𝒚 is the daily Covid-19 death count on the (ℎ + 𝑚)th day in the targeted

county where 𝑚 is the rolling window size. The second observation of 𝒚 is the death

count on the (ℎ + 𝑚 + 1)th day and so on. Hence, the target vector is given as

46

 𝒚 = (𝑦௛ା௠, 𝑦௛ା௠ାଵ, … , 𝑦௡). (3-24)

3.8 Innovations

Artificial neural networks cannot handle temporal data since they assign each

observation equal weights. However, to compare the results of GRU models with

conventional NNs, we modified the NNs by adding observation weights to

conventional neural networks (Section 3.8.1).

3.8.1 Weighted Neural Networks

We assume that the daily Covid-19 death count for a reported day is correlated with

reported death counts for the previous 𝑚 days. Thus, Covid-19 deaths counts are

temporal data and fitting an ANN ignores the temporal structure. RNNs (Section

3.7) preserve and exploit temporal structure but are problematic to use and are

computationally expensive. Hence, we propose a simple alternative referred to as

the Weighted Neural Network (WNN). We modified the ANN by assigning a sample

weight to each observation to learn the dynamic dependence structure present in the

daily Covid-19 deaths data. To set up a WNN model, we place more importance on

recent observations by introducing sample weights (denoted by 𝑣௝’s) to the deaths

data and modify the loss function accordingly. Note that these sample weights differ

from the model’s weights.

One might use the exponential decay weights given in Equation (3-25) to assign

sample weights to the data. Let 𝒗 be the 𝑛 × 1 exponential decay sample weights

vector used to weight our dataset where each element of 𝒗 is defined as:

 𝑣௝ =
𝛼(1 − 𝛼)௝ିଵ

∑ 𝛼(1 − 𝛼)௝ିଵ
௝

; 𝑗 = 1, 2, . . . , 𝑛, (3-25)

where 0 < 𝛼 < 1 is a tuning constant to control the influence of observations. The

sum of the sample weights is normalized to be exactly one.

47

We turn now to determining good (perhaps optimal) weight matrices 𝑊௜௛ and 𝑊௛௢,

and bias vectors 𝒃௜௛ and 𝒃௛௢ for training a one-hidden layer WNN using a set of

training data where "𝑖ℎ" indicates the weights and biases for connections between

the input layer and the hidden layer. Similarly, "ℎ𝑜" indicates weights and biases for

connections between the hidden layer and the output layer. Recall that we added a

row of ones corresponding to the bias vectors to the 𝑝 × 𝑛 matrix of predictors 𝑋

and denoted the resulting (𝑝 + 1) × 𝑛 augmented matrix of the predictors as ቂ𝑋
𝟏

ቃ. If

we augment a constant 1 corresponding to the bias to the 𝑞 × 1 input vector 𝒂௜௛,

this gives a (𝑞 + 1) × 1 augmented vector of the inputs: ൤𝒂௤×ଵ
௜௛

1
൨ . We then combined

all weights and biases together from each connection to create the augmented

matrices [𝑊௜௛ 𝒃௜௛] and [𝑊௛௢ 𝒃௛௢].

A one-hidden layer WNN can be expressed as the composition of two mappings.

The first mapping sends the product of the (𝑝 + 1) × 𝑛 input augmented matrix ቂ𝑋
𝟏

ቃ

with the 𝑛 × 1 exponential decay sample weight 𝒗 to a 𝑞 × 1 vector of outputs 𝒂௜௛

by multiplying the product ቂ𝑋
𝟏

ቃ 𝒗 by the 𝑞 × (𝑝 + 1) weight matrix [𝑊௜௛ 𝒃௜௛] in

the hidden layer. Additionally, an activation function 𝜁௜௛: ℝ → ℝ is applied to the

final product to give a new 𝑞 × 1 input 𝒂௜௛ for the next layer. This transformation

by the function 𝜁௜௛ is defined in Equation (3-26).

𝒂௤×ଵ

௜௛ = 𝜁௜௛

⎝

⎜⎜
⎛

[𝑊௜௛ 𝒃௜௛]ᇣᇧᇧᇤᇧᇧᇥ
௤×(௣ାଵ)

ቌ ቂ
𝑋
𝟏

ቃ
ด

(௣ାଵ)×௡

𝒗⏟
𝒏×𝟏

ቍ

ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
(௣ାଵ)×ଵ ⎠

⎟⎟
⎞

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௤×ଵ

.
(3-26)

48

The second mapping sends the new (𝑞 + 1) × 1 augmented vector of signal input

൤
𝒂௤×ଵ

௜௛

1
൨ received in the hidden layer to an 𝑠 × 1 vector of different network outputs

by multiplying an 𝑠 × (𝑞 + 1) weight matrix [𝑊௛௢ 𝒃௛௢] by the new (𝑞 + 1) × 1

input augmented vector ൤
𝒂௤×ଵ

௜௛

1
൨ in the output layer. Additionally, an activation

function 𝜁௛௢: ℝ → ℝ is applied to this product to give an 𝑠 × 1 network output 𝒚ෝ.

The transformation of the matrix [𝑊௛௢ 𝒃௛௢] ൤
𝒂௤×ଵ

௜௛

1
൨ by the function 𝜁௛௢ is:

 𝒚ෝ௦× ଵ = ζ௛௢ ൮[𝑊௛௢ 𝒃௛௢]ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
௦×(௤ାଵ)

൤
𝒂௤×ଵ

௜௛

1
൨

ᇣᇤᇥ
(௤ାଵ)×ଵ

൲

ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ
௦× ଵ

. (3-27)

We then optimize the WNN model by determining optimal weights and biases

[𝑊௜௛ 𝒃௜௛] and [𝑊௛௢ 𝒃௛௢] through minimization of the loss function that

measures the accuracy of the predictive function over the training epochs using

gradient descent (Section 3.4).

3.8.2 Bootstrap Aggregation of Neural Networks

One disadvantage of NNs is that they do not provide prediction bands (PIs) for

forecasted values. PIs quantify how well we can estimate the target values. Such

interval estimates could make our forecasts more meaningful. One way to estimate

PIs in the NN setting is with bootstrapping. This involves drawing many bootstrap

samples by repeatedly randomly sampling with replacement the original dataset to

approximate the distribution of the statistic of interest. Efron et al. [13] introduced

the idea behind bootstrapping to estimate the variance of estimators. The variance of

the independent estimates of a parameter is assumed to be a good estimate of the

true variance of the estimator of that parameter.

49

Bootstrap aggregation or bagging (Breiman [44], Hall and Samworth [45], Steele

[46]) is an ensemble technique for reducing the variance of estimated predictions.

Bagging appears to work especially well for low-bias and high-variance statistics

(Hastie et al. [47]). Bagging is performed by taking 𝐵 bootstrap samples from the

training dataset 𝒁 = (𝑋, 𝒚), retraining the prediction function, predicting the target

𝒚 from each bootstrap sample, and then averaging the bootstrap predictions.

Random forests (Breiman [48]) is a significant modification of bagging. Recall that

the idea of bagging is to average many noisy but roughly unbiased model predictions

thereby reducing the variance. In the bootstrapping method, we only take random

samples from the original data; however, in random forests, we take random samples

not only from the data, but also from the predictor variables. A random forest is

created by taking 𝐵 samples of the same size from the training dataset 𝑍 = (𝑋, 𝒚),

selecting 𝑞 variables at random from the 𝑝 existing variables, making a prediction

from each bootstrap data set, and averaging the predictions.

We translated this idea to the NN prediction setting. Specifically, we extended the

bagging mechanism to introduce a greater degree of variation from the bootstrap-to-

bootstrap NNs. We used the random forest idea of drawing random samples from

the available features (i.e., predictor variables). We refer to this new approach as

“extended bagging” (E-Bagging). In brief, we take random samples not only from

the original observations, but also from the 𝑝 available features in the dataset.

3.8.2.1 Extended Bagging Neural Networks

We consider neural networks for time series forecasting. It is assumed that target

values 𝑦௜’s can be modeled by

 𝑦௜ = 𝑓(𝒁; [𝑊𝒇 𝒃𝒇]) + 𝜖௜; 𝑖 = 1, . . . , 𝑛, (3-28)

50

where 𝑓(𝒁; [𝑊𝒇 𝒃𝒇]) is the neural network model in which 𝑊𝒇 and 𝒃𝒇 are the

weight matrix and bias vector of the model, respectively. Also, 𝜖௜ denotes noise

(error) with a zero-mean. It is also assumed that the errors are independent and

identically distributed. In practice, an estimate of the model is obtained using some

estimator 𝑦ො௜ = 𝑓መ൫𝒁; ൣ𝑊෡ 𝒇෠ 𝒃෡𝒇෠ ൧൯. Thus, we have

 𝑦௜ − 𝑦ො௜ = ൣ𝑓(𝒁; [𝑊𝒇 𝒃𝒇]) − 𝑓መ൫𝒁; ൣ𝑊෡ 𝒇෠ 𝒃෡𝒇෠ ൧൯൧ + 𝜖௜ . (3-29)

Prediction bands try to quantify the uncertainty associated with the difference

between the target values (𝑦௜’s) and the predicted values (𝑦ො௜’s). If the two terms on

the right-hand side of (3-29) are statistically independent, the total variance

associated with the NN model outputs is given by the sum of the model

misspecification variance denoted by 𝜎௬ො
ଶ and the noise variance denoted by 𝜎ఢො

ଶ and

can be calculated as follows:

 𝜎௣೔

ଶ = 𝜎௬ො೔

ଶ + 𝜎ఢො೔

ଶ , (3-30)

Upon proper estimation of these variances, prediction intervals can be constructed

for the NN outputs. The E-Bagging technique can be used to estimate the first

component, 𝜎௬ො
ଶ. Maximum likelihood techniques can be used to estimate the second

component, 𝜎ఢො
ଶ.

The extended bagging technique is carried out by taking 𝐵 random samples of the

same size as the original dataset with replacement from the training dataset 𝒁 =

(𝑹, 𝒚), consisting of a 3-dimensional rolling window array 𝑹 defined in Equation

(3-23) and an output vector 𝒚 defined in Equation (3-24), selecting 𝑞 features (1 ≤

𝑞 ≤ 𝑝) at random with replacement from the set of all possible unique combinations

up to size 𝑝 of all available features in the dataset, training a separate NN with the

same hyperparameters on each resample, making predictions for ℎ days ahead from

each resample 𝒚ෝ∗௕ = (𝑦ොଵ, … , 𝑦ො௡)∗௕, and averaging the predictions. If 𝐵 resamples

51

𝒁∗ଵ, …, and 𝒁∗஻ are drawn and used to compute 𝒚ෝ∗௕ = 𝑓(𝑹ห𝒁∗௕), then the E-Bagging

estimator of 𝒚 is as follows:

 𝒚ෝ∗ =
1

𝐵
෍ 𝒚ෝ∗௕

஻

௕ୀଵ

=
1

𝐵
෍ 𝑓(𝑹ห𝒁∗௕)

஻

௕ୀଵ

, (3-31)

where the superscript (*) indicates that the predictions has been computed by E-

Bagging. To estimate prediction bands for the NN predictions, we must compute an

estimate of the total variance 𝜎௣
ଶ given in (3-30), (Heskes [18]). Assuming that the

NN models are unbiased, the first component 𝜎௬ො೔

ଶ on the right-hand side of (3-30)

can be estimated by the sample variance of 𝐵 model outputs 𝒚ෝ∗ଵ, . . . , 𝒚ෝ∗஻ as follows:

 σෝ𝒚ෝ∗
ଶ =

1

𝐵
෍(𝒚ෝ∗௕ − 𝒚ෝ∗)ଶ

஻

௕ୀଵ

. (3-32)

This variance is mainly due to the random initialization of network weights and the

use of different datasets for training 𝐵 neural network models. The remaining task

is to estimate the noise variance 𝜎𝝐ො
ଶ using maximum likelihood techniques. We

assume that the 𝜖௜’s are normally distributed such that it suffices to compute their

sample variance which may however depend on the input 𝑹. Mathematically, from

(3-30), this variance can be calculated as follows:

 𝜎𝝐ො
ଶ ≅ 𝐸[(𝒚 − 𝒚ෝ∗)ଶ] − σෝ𝒚ෝ∗

ଶ , (3-33)

where 𝒚ෝ∗ and σෝ𝒚ෝ∗
ଶ are obtained from (3-31) and (3-32), respectively. Thus, based on

this equation, the squared residuals denoted by 𝑟௜
ଶ can be calculated as follows:

 𝑟௜
ଶ = 𝑚𝑎𝑥 ቄ(𝑦௜ − 𝑦ො௜

∗)ଶ − 𝜎ො௬ො೔
∗

ଶ , 0ቅ, (3-34)

where 𝑦ො௜
∗ and 𝜎ො௬ො೔

∗
ଶ are obtained from (3-31) and (3-32), respectively. These residuals

are linked by their corresponding inputs 𝑹 to form a new training set 𝒁𝒓మ = (𝑹, 𝒓ଶ)

52

where 𝒓ଶ = {𝑟௜
ଶ}௜ୀଵ

௡ . The variance 𝜎𝝐ො
ଶ can be approximated by training the following

network referred to as the residual predictor NN,

𝑟௜
ଶ = 𝑔(𝒁௥೔

మ; [𝑊𝒈 𝒃𝒈]) + 𝜖ଶ௜; 𝑖 = 1, . . . , 𝑛,

where 𝑊𝒈 and 𝒃𝒈 are the weight matrix and bias vector of the new NN, respectively.

In this new NN, the squared residuals 𝑟௜
ଶ’s are used as the target values. The negative

loglikelihood:

𝐿 = − ෍ log

⎩
⎨

⎧
1

ට2𝜋𝜎ఢො೔

ଶ

𝑒𝑥𝑝 ቆ−
𝑟௜

ଶ

2𝜎ఢො೔

ଶ ቇ

⎭
⎬

⎫௡

௜ୀଵ

,

where log(.) is the natural logarithm, becomes the measure of error. In this case, the

loss function that is being minimized in fitting is:

 𝐿 =
1

2
෍ ቊlog(𝜎ఢො೔

ଶ) +
𝑟௜

ଶ

𝜎ఢො೔

ଶ ቋ

௡

௜ୀଵ

, (3-35)

and then an estimate of the noise variance would be:

 𝜎ො𝜺ො
ଶ ≈ 𝑔ො(𝒁𝒓మ; ൣ𝑊෡𝒈ෝ 𝒃෡𝒈ෝ൧). (3-36)

The activation function of the residual predictor NN output layer is selected to be

the exponential function, forcing a positive value for all predicted noise variances.

The minimization of the new loss function can be done using a variety of methods,

including gradient descent algorithms. To construct prediction intervals, we totally

need to train (𝐵 + 1) NN models. Then we can construct the following approximate

100(1 − 𝛼)% prediction interval:

 𝑷𝑰 = ቆ𝒚ෝ∗ − 𝑧
ቀଵି

ఈ
ଶ

ቁ

∗ ට𝜎ෝ𝒚ෝ∗
2 + 𝜎ෝ𝜺ෝ

2
,  𝒚ෝ∗ + 𝑧

ቀଵି
ఈ
ଶ

ቁ

∗ ට𝜎ෝ𝒚ෝ∗
2 + 𝜎ෝ𝜺ෝ

2
ቇ, (3-37)

where 𝑧
ቀଵି

ഀ

మ
ቁ

∗ is the critical z-value, corresponding to the ቀ1 −
ఈ

ଶ
ቁ cutoff of the standard

normal distribution.

53

3.8.3 Hyper-Parameter Tuning

Hyperparameters are parameters that define network architecture and are not model

parameters (weights). Hence, they define how the network is structured and cannot

be directly obtained from the training data. Model weights are learned during

training when we optimize a loss function using the backpropagation learning

algorithm. These hyperparameters might address model design concerns such as the

best number of nodes in a hidden layer, the best rate of dropout, the best optimizer

and learning rate, or the best number of epochs or batch size. A batch size refers to

the number of training examples utilized in one iteration.

The number of nodes affects the network’s learning capacity. In general, more nodes

help a network learn more structure from the problem which makes the training time

longer. Moreover, more learning capacity creates the problem of potentially

overfitting the training data. Dropout regularization addresses this problem.

Activation functions are used to add nonlinearity to models, which allows models to

learn nonlinear prediction boundaries and make multilayer NNs more powerful.

In order to tune network architecture, we generally resort to experimentation to

figure out what works best. Here, we used a sophisticated technique called error

analysis to optimize hyperparameters. Briefly, we analyzed the resulting errors from

fitting a model by computing 𝑀𝐴𝐸s at different times for each of the different

combinations of NN hyperparameters.

The first half of the data is used as the first and larger training dataset, 𝑇ଵ, to feed

into the NN model for training. The other half of the observations is split into 𝑈

consecutive and disjoint sets (𝑆ଵ, … , 𝑆௎) such that each of them contains ℎ

observations. The first set 𝑆ଵ is used as the first test set to evaluate the first fitted

model by computing the 𝑀𝐴𝐸. Next, the set 𝑆ଵ is combined with the first training

54

dataset 𝑇ଵ to build the second training dataset 𝑇ଶ. The NN model is updated on the

set 𝑆ଵ. One benefit of using advanced adaptive learning rate optimization algorithms

such as Adam when training is that a model would be capable of updating on new

observations, instead of training the model on the entire dataset. This can reduce

training time exponentially and so is computationally less expensive. The set 𝑆ଶ is

used as the second test set to evaluate the 2nd fitted model by computing the 𝑀𝐴𝐸.

We continue these procedures until all remaining sets 𝑆ଶ, 𝑆ଷ, …, and 𝑆௎ିଵ have been

used to train the NN model. In more detail, at each step, a set 𝑆௨ (𝑢 = 2, … 𝑈 − 1) is

combined with the previous training set 𝑇௨ to build the next training dataset 𝑇௨ାଵ.

The NN model is updated on this new set. The following set 𝑆௨ାଵ is used as another

test set to evaluate the updated training NN model using the 𝑀𝐴𝐸. Finally, to

complete the overall evaluation of the NN model, we average all resulting 𝑀𝐴𝐸s.

We repeatedly run the error analysis technique 𝑟 times to obtain 𝑟 overall 𝑀𝐴𝐸s for

each of the different combinations of NN hyperparameters. We create a side-by-side

boxplot to show the resulting 𝑀𝐴𝐸 distributions for all combinations. The best set

of hyperparameters is selected based on a tradeoff between the median 𝑀𝐴𝐸s and

their variance. We now turn to the algorithm used to tune the model hyperparameters

for training the one-hidden layer WNN.

3.8.3.1 Hyperparameter Tuning for WNN Architecture

We split the observations into the following disjoint sets. The first set is the first and

largest training set which contains the first half of the observations and is denoted

by 𝑇ଵ = 𝑋௣×௠ (where 𝑚 = ቔ
௡

ଶ
ቕ is the largest integer less than

௡

ଶ
). The other half of

the observations are split into 𝑈 equivalent sets (𝑆ଵ, … , 𝑆௎) such that each of them

contains ℎ observations. Note that 𝑚 may not evenly divide ℎ, so we do not consider

those last observations to make all sets the same size.

55

Step 1:

The one-hidden layer WNN can be expressed as the composition of two mappings.

We use the largest training dataset 𝑇ଵ and its corresponding sample weights 𝒗௠×ଵ,

with a tuning constant 𝛼 =
௖

௠
 where 𝑐 is a positive integer, to feed into the WNN

model to train. The first mapping sends the product of the (𝑝 + 1) × 𝑚 augmented

input matrix ൤
𝑇ଵ

𝟏ଵ×௠
൨ with the 𝑚 × 1 exponential decay sample weight 𝒗 to a (𝑝 + 1)

vector of outputs 𝒂௜௛ by multiplying a 𝑞 × (𝑝 + 1) weight matrix [𝑊௜௛ 𝒃௜௛] with

the (𝑝 + 1)-vector (ቂ𝑇ଵ

𝟏
ቃ 𝒗௠×ଵ) in the hidden layer. The transformation of the

resulting 𝑞-vector [𝑊௜௛ 𝒃௜௛] ቀቂ
𝑇ଵ

𝟏
ቃ 𝒗௠×ଵቁ by the activation function 𝜁௜௛ is:

𝒂௤×ଵ
௜௛ = 𝜁௜௛

⎝

⎜⎜
⎛

[𝑊௜௛ 𝒃௜௛]ᇣᇧᇧᇤᇧᇧᇥ
௤×(௣ାଵ)

ቌ ቂ
𝑇ଵ

𝟏
ቃ

ต
(௣ାଵ)×௠

𝒗⏟
௠×ଵ

ቍ

ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
(௣ାଵ)×ଵ ⎠

⎟⎟
⎞

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௤×ଵ

.

The second mapping is the same as the second mapping for the WNN discussed in

Section (3.8.1); hence,

𝒚ෝ௦× ଵ = ζ௛௢ ൮[𝑊௛௢ 𝒃௛௢]ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
௦× (௤ାଵ)

൤
𝒂௤×ଵ

௜௛

1
൨

ᇣᇤᇥ
(௤ାଵ)×ଵ

൲

ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ
௦× ଵ

.

We now optimize the WNN model using the first training dataset 𝑇ଵ by determining

optimal weights and biases matrices [𝑊௜௛ 𝒃௜௛] and [𝑊௛௢ 𝒃௛௢] through

minimization of the mean squared error (MSE) loss function over the training epochs

using gradient descent (Section 3.4).

56

The set 𝑆ଵ with their sample weights is used as the first test set to evaluate the fitted

model by computing the following 𝑀𝐴𝐸:

𝑀𝐴𝐸ଵ =
1

ℎ
෍ |𝑦௜ − 𝑦ො௜|

௠ା௛

௜ୀ௠ାଵ

,

where the subscript “1” indicates that it is computed for the first test set. We then

need to update our training model on the set 𝑆ଵ as explained in the next step.

Step 2:

In the second step, the set 𝑆ଵ which contains the observations [𝒙.௠ାଵ, . . . , 𝒙.௠ା௛]

(where 𝒙.௝ is the jth column of 𝑋) will be added to the previous training set 𝑇ଵ to build

the second training set 𝑇ଶ = 𝑋௣×(௠ା௛). Their sample weights 𝒗(௠ା௛)×ଵ will be

recomputed based on the new length, with a new tuning constant 𝛼 =
௖

௠ା௛
 where c

is a positive integer. The WNN model will be updated on this new set 𝑆ଵ using its

new weights. This updating can be expressed as the composition of two mappings.

The first mapping sends the product of a (𝑝 + 1) × ℎ augmented input matrix ቂ𝑆ଵ

𝟏
ቃ

with an ℎ × 1 exponential decay sample weight 𝒗 to a (𝑝 + 1)-vector of outputs 𝒂௜௛

by multiplying a 𝑞 × (𝑝 + 1) weight matrix [𝑊௜௛ 𝒃௜௛] with a (𝑝 + 1)-vector

ቀቂ
𝑆ଵ

𝟏
ቃ 𝒗ቁ in the hidden layer. Additionally, a function 𝜁௜௛ is applied to this product:

𝒂௤×ଵ
௜௛ = 𝜁௜௛

⎝

⎛[𝑊௜௛ 𝒃௜௛]ᇣᇧᇧᇤᇧᇧᇥ
௤×(௣ାଵ)

ቌ ቂ
𝑆ଵ

𝟏
ቃ

ต
(௣ାଵ)×௛

𝒗⏟
௛×ଵ

ቍ

⎠

⎞.

The second mapping is the same with the step 1. We now optimize the updated

model by determining optimal weights and biases matrices [𝑊௜௛ 𝒃௜௛] and

[𝑊௛௢ 𝒃௛௢] through minimization of the 𝑀𝑆𝐸 loss measuring the accuracy of the

57

predictive function over the training epochs. The set 𝑆ଶ with its sample weights is

used as the second test set to evaluate the fitted model by again computing the 𝑀𝐴𝐸:

𝑀𝐴𝐸ଶ =
1

ℎ
෍ |𝑦௜ − 𝑦ො௜|

௠ାଶ௛

௜ୀ௠ା௛ାଵ

,

Step 3:

We repeat step 2 with the new set 𝑆௨ = ൣ𝒙.(௠ା(௨ିଵ)௛ାଵ), . . . , 𝒙.(௠ା௨௛)൧ for 𝑢 =

2, … , 𝑈 where 𝑈 = ቔ
௠

௛
ቕ until all these small sets except the last one 𝑆௎ are fed into

the model for training. Note that the last set, 𝑆௎, is only for evaluation.

In other words, the set 𝑆௨ for 𝑢 = 2, … , 𝑈 − 1 is added to the previous training set

𝑇௨ = 𝑋௣×(௠ା(௨ିଵ)௛) with their sample weights 𝒗(௠ା௨௛)×ଵ recomputed based on the

new length, and a tuning constant 𝛼 =
௖

௠ା௨௛
 where c is a positive integer. The model

is updated on the set 𝑆௨ for 𝑢 = 2, … , 𝑈 − 1 using their new sample weights. A

hidden layer outputs 𝒂௜௛, gives network outputs 𝒚ෝ which has the same form as

previous steps and computes the 𝑀𝐴𝐸 as specified in the following forms:

𝒂௤×ଵ
௜௛ = 𝜁௜௛

⎝

⎜⎜
⎛

[𝑊௜௛ 𝒃௜௛]ᇣᇧᇧᇤᇧᇧᇥ
௤×(௣ାଵ)

ቌ ቂ
𝑆௨

𝟏
ቃ

ถ
(௣ାଵ)×௛

𝒗⏟
௛×ଵ

ቍ

ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
(௣ାଵ)×ଵ ⎠

⎟⎟
⎞

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௤×ଵ

,

 𝑀𝐴𝐸௨ =
1

ℎ
෍ |𝑦௜ − 𝑦ො௜|

௠ା௨௛

௜ୀ௠ା(௨ିଵ)௛ାଵ

, 𝑢 = 1, … , 𝑈. (3-38)

58

Step 4:

Finally, to compute the overall evaluation (𝑀𝐴𝐸) of the model, we average the

resulting 𝑀𝐴𝐸s at the different stages of updating the WNN model:

 𝑀𝐴𝐸୭୴ୣ୰ୟ୪୪ =
1

𝑈
෍ 𝑀𝐴𝐸௨

௎

௨ୀଵ

. (3-39)

We repeatedly run these steps 𝑟 times for each of the different combinations of WNN

hyperparameters and create a boxplot to show the resulting 𝑀𝐴𝐸 distribution. The

best set of hyperparameters is selected based on a tradeoff between the median

𝑀𝐴𝐸s and their variance.

59

4 Results

The model fits explored in this chapter are performed using open source libraries

such as NumPy (Oliphant [49]), Pandas (McKinney et al. [50]), and Keras (Chollet

et al. [51]) with the TensorFlow backend (Abadi et al. [52]) in the Python

programming language (Van Rossum [53]). Models based on GRUs in Section 4.1

and WNNs in Section (0) are used to learn the dynamic dependence structure present

in the Covid-19 death counts data and also to map the learning sequence to produce

future forecasts of the number of Covid-19 deaths in four particular US counties.

We used Covid-19 deaths data ranging from 1/27/2020 to 05/16/2021 (475 days) for

training and data from May 02 to May 16, 2021for testing our prediction models.

Hyper-parameter optimization of each of these models for four counties is

performed, but only selection procedures of these hyperparameters for LA County

(the most populous county) are explained in detail in Section (4.1.2.1) for the GRU

and in Section (4.2.1.1) for the WNN. In all these models, the Adam optimizer is

used for optimization with the mean squared error (MSE) loss function.

The errors of these NN models are evaluated on the test datasets and based on this

evaluation, the best model with the smallest 𝑀𝐴𝐸 is selected as the prediction model

for Covid-19 deaths.

4.1 Fitting Models Based on the GRU

In this section, we report the process of predicting the number of daily Covid-19

deaths forecasted ℎ = 14 days ahead using GRU models in the following counties:

60

LA County, CA; Cook County, IL; Harris County, TX; and NY County, NY. For

each county of interest, the target prediction of daily Covid-19 deaths is obtained

using the procedure in Section (3.7.1.3).

4.1.1 Data preprocessing

A full 7-day moving average of Covid-19 deaths including 3 days before and 3 days

after the date of the report and the reporting date itself is computed to obtain a

smoothed estimate of the trend for one week. The smoothed daily number of Covid-

19 deaths is normalized using the MinMaxScaler function from the Preprocessing

package in the scikit-learn library [54].

The raw data are converted to a 3-dimensional rolling window array defined in

Formula (3-23) to have a proper GRU input structure. The input for a GRU model

is a 3-dimensional tuple (batch size, # sequences, # features), where the first

dimension corresponds to the batch size, the second dimension is the number of

sequences, and the last dimension corresponds to the number of features in our

datasets. The first two dimensions are hyperparameters and were chosen for our data

through tuning. We considered the tuple of (100, 28, 9 or 10) as the GRU input shape

for each county.

4.1.2 GRU Architecture

A sequential model including a hidden GRU layer followed by a hidden dense layer

was built and trained using Keras with the TensorFlow backend. In the next sections,

we explain how GRU models are obtained, and we go further and explain the tuning

of hyperparameters in detail for LA County only. Other counties also have similar

architectures.

61

4.1.2.1 GRU Architecture for LA County

All predictions on the test dataset are retained and the mean absolute error (𝑀𝐴𝐸)

calculated to summarize the quality of the model. Note that the 𝑀𝐴𝐸 has the same

units as the forecast data. The idea is to compare the model configurations using

𝑀𝐴𝐸 summary statistics over a large number of runs (10 runs) and see exactly which

of the configurations perform better on average. We created boxplots to visually

represent the 𝑀𝐴𝐸 values for the 10 configurations. Tuning model hyperparameters

is a tradeoff between the median 𝑀𝐴𝐸 and the variability of the 𝑀𝐴𝐸s; an ideal

result would have a small median 𝑀𝐴𝐸 with low variability.

Since hyperparameter tuning is time consuming and there are a lot of them here to

be tuned, it could last forever. To avoid this, we set the following hyperparameters

in advance based on experience. The number of epochs was set to be 1000. In

addition, the early stopping approach was used to monitor the loss to avoid

overfitting when training NNs. Additionally, the number of epochs with no

improvement (patience) in the early stopping approach was set to 50 based on

experimentation. The patience is an argument name in the early stopping function.

We used a Tanh activation function on the output layer. The Adam optimizer was

used to minimize the 𝑀𝑆𝐸 loss function. The LA GRU model hyperparameters we

tuned are the batch size, learning rate, number of GRU layer nodes, activation

function on the first dense layer, dropout rates for both dropout layers, and number

of dense layer nodes.

The initial LA model used a sequential model consisting of an input layer of 10

features and a one-layer GRU, followed by a dropout layer. A dense layer followed

by a dropout layer was added. This also was followed by an output layer of a single

62

node with a Tanh activation function. The loss was minimized using the Adam

optimizer.

We explored the effect of training this configuration for different batch sizes (100,

300), learning rates (0.001, 0.005), number of GRU layer nodes (20, 80), activation

functions (Tanh, SELU) on the first dense layer, dropout rates (0.1, 0.5) for both

dropout layers, and number of dense layer nodes (20, 80). We used the error analysis

method and repeated this training regimen 10 times and calculating the overall 𝑀𝐴𝐸

given in Equation (3-39) for each configuration on the 17 test sets created from the

second half of the observations. Boxplots of the overall 𝑀𝐴𝐸 distributions on these

test sets after each training with different hyperparameter combinations are shown

in Figure 17 - Figure 20.

The overall 𝑀𝐴𝐸 values range from 21.5 to 32 deaths. Comparing these boxplots

shows that the choice of setting the batch size to 100, learning rate to 0.005, number

of GRU layer nodes to 80, activation functions to Tanh on the first dense layers,

dropout rate to 0.5 for the first dropout layer, dropout rate to 0.1 for the second

dropout layer, and number of dense layer nodes to 20 offers the best performance on

average in terms of both median 𝑀𝐴𝐸 and variability. Also, we tuned the rolling

window size (𝑚) as a hyperparameter and found that the choice of setting 𝑚 to 28

offers the best performance on average (graphs are not shown).

63

Figure 17: Diagnostic results with different hyperparameter combinations when
batch size is 100 and learning rate is 0.001 in the LA model; in total, 320 models

were fit to produce this boxplot.

64

Figure 18: Diagnostic results with different hyperparameter combinations when
batch size is 100 and learning rate is 0.005 in the LA model; in total, 320 models

were fit to produce this boxplot.

65

Figure 19: Diagnostic results with different hyperparameter combinations when
batch size is 300 and learning rate is 0.001 in the LA model; in total, 320 models

were fit to produce this boxplot.

66

Figure 20: Diagnostic results with different hyperparameter combinations when
batch size is 300 and learning rate is 0.005 in the LA model; in total, 320 models

were fit to produce this boxplot.

67

 Visualizing the Error Analysis for the best LA GRU Model

To visualize how the error analysis technique was used on different test sets through

tuning the hyperparameters for the LA GRU model for computing each 𝑀𝐴𝐸 value

in the boxplots, we plotted all two-weeks forecasted predictions using the near

optimal hyperparameters for the LA GRU model in Figure 21. The blue curve

represents the smoothed daily Covid-19 confirmed deaths and the red curve shows

the 14-days-ahead forecasted daily Covid-19 deaths using the best GRU model for

different test sets separated by vertical black lines from September 21, 2020, to May

03, 2021, for LA County. Their Corresponding 𝑀𝐴𝐸s at different times are reported

below the curves.

To create Figure 21, the first half of the Covid-19 death counts for LA County was

used as the first and larger training dataset, 𝑇ଵ, up to September 21, 2020, to feed

into the best LA GRU model for training. The other half of the observations was

split into 𝑈 = 16 equivalent sets (𝑆ଵ, … , 𝑆ଵ଺) such that each of them contains ℎ =

14 observations. The 2-weeks-ahead forecasted daily Covid-19 deaths for the first

set 𝑆ଵ from September 21, 2020, to October 05, 2020, resulted in an 𝑀𝐴𝐸 of 12.9.

Next, the best LA GRU model is updated on this new set 𝑆ଵ and the 2-weeks-ahead

forecasted daily Covid-19 deaths for the second set 𝑆ଶ between October 05-19, 2020,

resulted in an 𝑀𝐴𝐸 of 3.5. We continue these procedures until all remaining sets

𝑆ଶ, 𝑆ଷ, …, and 𝑆ଵହ were used to train the best LA GRU model. The 𝑀𝐴𝐸 values for

different sets are reported below the curves. Lastly, the best LA GRU model is

updated on the set 𝑆ଵହ and the 2-weeks-ahead forecasted daily Covid-19 deaths for

the last set 𝑆ଵ଺ from April 19 to May 03, 2020, resulted in an 𝑀𝐴𝐸 of 4.8. To find

the overall 𝑀𝐴𝐸 of the best LA GRU model, we averaged all 16 resulting 𝑀𝐴𝐸

values which is 25.3.

68

Figure 21: the smoothed daily Covid-19 confirmed deaths (blue curve) and
forecasted daily deaths using GRU (red curve) for different test sets as of

05/03/2021 for LA County.

 Predictions for LA County

According to the hyperparameter tuning in the LA GRU model, the best LA GRU

architecture was obtained using a sequential model consisting of an input layer

containing 10 features and a hidden GRU layer of 80 nodes. It is immediately

followed by a dropout layer to prevent the model from overfitting with a dropout

rate of 0.5 which was applied to the non-recurrent connections. Following the

dropout layer, we added a dense layer of 20 nodes with a Tanh activation function,

followed by a dropout layer with a dropout rate of 0.1. Lastly, this was followed by

an output layer of a single node. The activation function on the output layer was a

Tanh. The MSE loss function was minimized using the Adam optimizer. The

learning rate was set to 0.005. The batch size and the number of epochs were 100

Daily Covid-19 Known Deaths in LA County as of 05/03/2021

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using GRU

69

and 1000, respectively. The early stopping method was used to monitor the loss with

patience of 50.

The number of trainable parameters in the WNN layer as given in Formula (3-21)

for LA County was 𝑔[𝑢(𝑢 + 𝑖) + 𝑢] = 3[80(80 + 11) + 80] = 22,080. Since the

numbers of trainable parameters in the first and second dense layers were 1620 and

21, respectively, the total number of trainable parameters is thus 22,080 + 1620 +

21 = 23,721.

The smoothed daily Covid-19 confirmed deaths (blue curve) and the 14-days-ahead

predicted daily Covid-19 deaths using the GRU model (red curve) for the training

set up to 05/01/2021 and for the test set from May 02, 2021, to May 16, 2021 for LA

County are shown in Figure 22 (top graph). The vertical black line separates the

training and test sets. The red curve in all plots represents 2-week ahead forecasts

only for the test set period from May 02 to May 16, 2021, and to make all predictions

prior to May 01, 2021, we used all the training data. The 14-days-ahead predicted

daily Covid-19 deaths for the training set (to the left of the vertical black line)

resulted in an 𝑀𝐴𝐸 of 7.363, while for the test set (to the right of the vertical black

line) resulted in an 𝑀𝐴𝐸 of 9.343.

To see how well the best LA GRU model has done it suffices to compute the

cumulative Covid-19 deaths of the daily 14-days-ahead predictions. We then added

them to the end of the smoothed cumulative deaths and plotted them. The cumulative

counts are shown in Figure 22 (bottom graph) and the model predictions are only

plotted for the test set from May 02, 2021, to May 16, 2021 (to have a closer look

into the test data, see the box on the graph).

70

Figure 22: (Top) smoothed daily Covid-19 confirmed deaths (blue curve) and
predicted daily deaths using GRU (red curve) for the training set up to 05/01/2021
and for the test set from May 02, 2021, to May 16, 2021, for LA County. (Bottom)

cumulative counts. The box zooms in on the test set.

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using GRU

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using GRU

Daily Covid-19 Known Deaths in LA County as of 05/16/2021

Cumulative Covid-19 Known Deaths in LA County as of 05/16/2021

71

4.1.2.2 GRU Model Predictions for Other Counties

This section presents the three sets of GRU model predictions for the following

counties: Cook County, IL; Harris County, TX; and NY County, NY. We considered

their architectures and hyperparameters in the same way as with the best LA GRU

model. The smoothed daily Covid-19 confirmed deaths (blue curve) and the 14-

days-ahead predicted daily Covid-19 deaths using the GRU model (red curve) for

the training set up to 05/01/2021 and for the test set from May 02, 2021, to May 16,

2021 for Cook County are shown in Figure 23 (top graph); for Harris County in

Figure 24 (top graph); and for NY County in Figure 25 (top graph). The vertical

black line in each figure separates the training and test sets. The 𝑀𝐴𝐸s of the GRU

models for the different counties on the training and test sets are reported in Table 1.

The cumulative counts for Cook County are shown in Figure 23 (bottom graph) and

the model predictions are only plotted for the test set from May 02, 2021 to May 16,

2021; for Harris County in Figure 24 (bottom graph); and for NY County in Figure

25 (bottom graph). The fit was not good in NY County.

Table 1: 𝑀𝐴𝐸 of different models for each county on the training and test sets

 Train 𝑀𝐴𝐸 Test 𝑀𝐴𝐸
CP (%)

 GRU E-Bagging GRU E-Bagging

LA County 7.363 4.155 9.343 5.884 99.8

Cook County 8.373 5.023 6.528 1.073 98.6

Harris County 4.547 2.018 4.904 2.386 100

NY County 5.099 4.466 2.575 1.277 97.9

Average 6.346 3.916 5.838 2.655 99.1

72

Figure 23: (Top) smoothed daily Covid-19 confirmed deaths (blue curve) and
predicted daily deaths using GRU (red curve) for the training set up to 05/01/2021

and for the test set from May 02, 2021, to May 16, 2021, for Cook County.
(Bottom) cumulative counts. The box zooms in on the test set.

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using GRU

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using GRU

Cumulative Covid-19 Known Deaths in Cook County as of 05/16/2021

Daily Covid-19 Known Deaths in Cook County as of 05/16/2021

73

Figure 24: (Top) smoothed daily Covid-19 confirmed deaths (blue curve) and
predicted daily deaths using GRU (red curve) for the training set up to 05/01/2021

and for the test set from May 02, 2021, to May 16, 2021, for Harris County.
(Bottom) cumulative counts. The box zooms in on the test set.

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using GRU

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using GRU

Cumulative Covid-19 Known Deaths in Harris County as of 05/16/2021

Daily Covid-19 Known Deaths in Harris County as of 05/16/2021

74

Figure 25: (Top) smoothed daily Covid-19 confirmed deaths (blue curve) and
predicted daily deaths using GRU (red curve) for the training set up to 05/01/2021
and for the test set from May 02, 2021, to May 16, 2021, for NY County. (Bottom)

cumulative counts. The box zooms in on the test set.

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using GRU

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using GRU

Cumulative Covid-19 Known Deaths in NY County as of 05/16/2021

Daily Covid-19 Known Deaths in NY County as of 05/16/2021

75

4.1.2.3 E-Bagging of GRU Models

This section includes the results of the extended bagging technique on the GRU

models for different counties. After finding the GRU models for each county

considered, we performed the E-Bagging technique on the GRU models to predict

the Covid-19 death counts and construct 95% prediction bands for 14 days of

forecasted values in each county. In the next sections, we explain how the GRU

models were improved using the E-Bagging technique and for LA County only,

tuning the size of E-Bagging samples as a hyperparameter for the E-Bagging

technique is explained in detail.

 E-Bagging of the Best LA GRU Model

To find the optimal size of extended bagging samples (𝐵) for the best LA GRU

model, we fit the same best model on each of 𝐵 samples of sizes 32, 64, 128, and

512 and iterate 10 times. For each iteration, we average the 𝐵 predictions to compute

an overall prediction, defined in Equation (3-31); we compute the variance of the 𝐵

predictions, defined in Equation (3-32); and, we compute the squared residuals,

defined in Equation (3-34), to estimate the noise variance, defined in Equation

(3-36). We fit a new NN on the squared residuals as new target variable values. The

loss function that is being minimized in fitting the residual predictor NN is defined

in Equation (3-35). Thus, we need to train (𝐵 + 1) NN models for each iteration.

Now, we can construct prediction bands for the overall prediction.

To find the best 𝐵, we calculated the 𝑀𝐴𝐸 and coverage probability of the intervals,

defined in Equation (3-15), and reported in Figure 26. Intuitively, the optimal 𝐵

occurs when the model gives low 𝑀𝐴𝐸 and coverage probability close to 95% on

average.

76

The left boxplot in Figure 26 demonstrates how many E-Bagging samples are

required to obtain a coverage probability for the prediction band close enough to the

nominal 95% prediction level. The right boxplot shows how many E-Bagging

samples are required to obtain a model with less error and higher accuracy.

Comparing boxplots illustrates that all 𝑀𝐴𝐸 distributions are almost in the same

range. All the E-Bagging sample sizes offer a coverage probability of our prediction

bands exceeding the specified level of 95% in each case except one single case when

𝐵 = 256. Papadopoulos et al. [55] in 2001 found that bootstrap methods consistently

overestimate prediction band coverage probability. This is consistent with our

results. It might be helpful to further optimize the residual predictor NN to construct

prediction bands closer to the specified coverage level. Since there is no real

difference among the choice of selection of 𝐵 on average, we used a size of 128.

This size of bootstrap samples will be used when employing the E-bagging method

for other counties as well.

Figure 26: (Left) Coverage probability distribution, (Right) 𝑀𝐴𝐸 distribution for different E-
Bagging samples for LA County; in total, 9970 models were fit to produce each boxplot.

77

 E-Bagging of the Best LA GRU Model

The smoothed daily Covid-19 confirmed deaths (blue curve), their corresponding

14-day forecasted predictions using the best LA GRU model (red curve), the 14-day

forecasted predictions using E-Bagging of the best LA GRU model (green curve),

and the corresponding 95% prediction bands (gray ribbon) for the training set up to

05/01/2021 and for the test set from May 02, 2021, to May 16, 2021 for LA County

are shown in Figure 27 (top graph). The vertical black line separates the training and

test sets. In viewing these two graphs, the forecasted results using E-Bagging (green

curve) are generally closer to the blue curve (with 𝑀𝐴𝐸 values of 4.155 and 5.884

on the training and test sets, respectively) than the red curve (with 𝑀𝐴𝐸 values of

7.363 and 9.343 on the training and test sets, respectively).

The prediction error distributions for the best LA GRU model (blue histogram) and

for E-Bagging of the best LA GRU model (red histogram) are shown in Figure 28.

While both distributions are centered at zero, the red histogram is more symmetric.

This graph also shows that using the E-Bagging technique on the best LA GRU

model yielded less variability in predictions. These results generally indicate that the

E-Bagging technique has improved our predictions. Applying the E-Bagging

technique to the best LA GRU model provides a coverage probability of 0.998 for

the entire dataset, which is higher than what we specified.

The cumulative counts are shown in Figure 27 (bottom graph) and both model

predictions and prediction bands are only plotted for the test set from May 02, 2021,

to May 16, 2021 (especially see the black box). According to this figure, the 14-

days-ahead forecasted cumulative Covid-19 deaths using E-Bagging with GRU

model (green curve) is closer to the true values than the red curve.

78

Figure 27: (Top) smoothed daily Covid-19 deaths (blue curve), GRU predictions
(red curve), E-Bagging predictions (green), and prediction bands (gray ribbon) for

the training set up to 05/01/2021 and for the test set from May 02, 2021, to May
16, 2021, for LA County. (Bottom) cumulative counts. The boxes zoom in on the

test set.

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using GRU
 E-Bagging 14-Day Forecasted Predictions
 95% Prediction Bands

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using GRU
 E-Bagging 14-Day Forecasted Predictions
 95% Prediction Bands

Daily Covid-19 Known Deaths in LA County as of 05/16/2021

Cumulative Covid-19 Known Deaths in LA County as of 05/16/2021

79

Figure 28: Prediction error distributions for the best GRU model (blue histogram)
and for the E-Bagging (red histogram) for LA County; both are centered at zero.

The latter has less variance.

 E-Bagging of the GRU Model for Other Counties

This section presents the results for the extended bagging technique applied to the

GRU models for the three other counties. The predictions were made with

approximate 95% prediction bands. The smoothed daily Covid-19 confirmed deaths

(blue curve), their corresponding 14-day forecasted predictions using the GRU

model (red curve), 14-day forecasted predictions using E-Bagging of the GRU

model (green curve), and the corresponding 95% prediction bands (gray ribbon) for

the training set up to 05/01/2021 and for the test set from May 02, 2021, to May 16,

2021 for Cook County are shown in Figure 29 (top graph); for Harris County in

Figure 30 (top graph); and for NY County in Figure 31 (top graph). The vertical

black line in each graph separates the training and test sets. The 𝑀𝐴𝐸 values of the

 GRU Prediction Error Distribution
 E-Bagging Prediction Distribution

80

E-Bagged GRU models along with the 𝑀𝐴𝐸 values of the GRU models for each

county considered on the training and test sets are reported in Table 1. All E-Bagging

𝑀𝐴𝐸 values on both sets are less than their corresponding GRU 𝑀𝐴𝐸’s. According

to the graphs and reported 𝑀𝐴𝐸 values, the forecasted results using the E-Bagging

method (green curve) outperformed the single GRU model (red curve) in every

county.

The prediction error distributions for the GRU model (blue histogram) and for E-

Bagging of the GRU model (red histogram) for Cook County are shown in Figure

32 (top graph); for Harris County are shown in Figure 32 (bottom graph); and for

NY County are shown in Figure 33. While both distributions in each graph are

centered at zero, the red distributions are symmetric, but the blue distributions are

skewed to the left. These graphs also show that applying the E-Bagging technique

to the GRU models yielded less variability in predictions. These results generally

indicate that the E-Bagging technique has improved our predictions. The prediction

band coverage probabilities using the E-Bagging technique on the GRU models for

each county dataset are available in Table 1 (last column). They are higher than what

we specified.

The cumulative counts for the different counties are shown in Figure 29 - Figure 31

(bottom graphs). In these graphs, both model predictions and prediction bands are

only plotted for the test set from May 02, 2021, to May 16, 2021. According to these

graphs, the 14-days-ahead forecasted cumulative Covid-19 deaths using the E-

Bagging technique with the GRU models (green curves) are closer to the true values.

81

Figure 29: (Top) smoothed daily Covid-19 deaths (blue curve), GRU predictions
(red curve), E-Bagging predictions (green), and prediction bands (gray ribbon) for

the training set up to 05/01/2021 and for the test set from May 02, 2021, to May
16, 2021, for Cook County. (Bottom) cumulative counts. The boxes zoom in on the

test set.

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using GRU
 E-Bagging 14-Day Forecasted Predictions
 95% Prediction Bands

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using GRU
 E-Bagging 14-Day Forecasted Predictions
 95% Prediction Bands

Cumulative Covid-19 Known Deaths in Cook County as of 05/16/2021

Daily Covid-19 Known Deaths in Cook County as of 05/16/2021

82

Figure 30: (Top) smoothed daily Covid-19 deaths (blue curve), GRU predictions
(red curve), E-Bagging predictions (green), and prediction bands (gray ribbon) for

the training set up to 05/01/2021 and for the test set from May 02, 2021, to May
16, 2021, for Harris County. (Bottom) cumulative counts. The boxes zoom in on the

test set.

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using GRU
 E-Bagging 14-Day Forecasted Predictions
 95% Prediction Bands

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using GRU
 E-Bagging 14-Day Forecasted Predictions
 95% Prediction Bands

Cumulative Covid-19 Known Deaths in Harris County as of 05/16/2021

Daily Covid-19 Known Deaths in Harris County as of 05/16/2021

83

Figure 31: (Top) smoothed daily Covid-19 deaths (blue curve), GRU predictions
(red curve), E-Bagging predictions (green), and prediction bands (gray ribbon) for

the training set up to 05/01/2021 and for the test set from May 02, 2021, to May
16, 2021, for NY County. (Bottom) cumulative counts. The boxes zoom in on the

test set.

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using GRU
 E-Bagging 14-Day Forecasted Predictions
 95% Prediction Bands

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using GRU
 E-Bagging 14-Day Forecasted Predictions
 95% Prediction Bands

Cumulative Covid-19 Known Deaths in NY County as of 05/16/2021

Daily Covid-19 Known Deaths in NY County as of 05/16/2021

84

Figure 32: Prediction error distributions for the GRU model (blue histogram) and
for E-Bagging (red histogram) for Cook County (top); for Harris County (bottom);

both are centered at zero. The E-Bagging errors have less variance.

 GRU Prediction Error Distribution
 E-Bagging Prediction Distribution

 GRU Prediction Error Distribution
 E-Bagging Prediction Distribution

85

Figure 33: Prediction error distributions for the GRU model (blue histogram) and
for E-Bagging (red histogram) for NY County; both are centered at zero. The latter

has less variance.

 GRU Prediction Error Distribution
 E-Bagging Prediction Distribution

86

4.2 Fitting Models Based on the WNN

In this section, we describe the process of predicting the number of daily Covid-19

deaths forecasted ℎ = 14 days ahead based on WNN models in the following

counties: LA County, CA; Cook County, IL; Harris County, TX; and NY County,

NY. For each county, the target is daily Covid-19 deaths starting at the 14th

observation of the county of interest. The last 14 observations were considered as

the test set. A full 7-day moving average was computed to obtain an accurate

smoothed picture of the data for each week. The smoothed daily number of Covid-

19 deaths were then normalized.

4.2.1 WNN Architecture

A sequential model including two stacked hidden layers was built and trained using

Keras with the TensorFlow backend. In the next sections, we explain how WNN

models are obtained, and we go further and explain the tuning of hyperparameters

in detail for LA County only. NN models for other counties have similar

architectures.

4.2.1.1 WNN Architecture for LA County

All predictions on the test dataset are retained and the 𝑀𝐴𝐸 calculated to summarize

the quality of the model. The idea is to compare the model configurations using 𝑀𝐴𝐸

summary statistics over many runs (10 runs) and see exactly which of the

configurations perform better on average.

Since hyperparameter tuning is time consuming and there are a lot of them here to

be tuned, this could be very time-consuming. To avoid this, we set the following

hyperparameters in advance based on experience. The number of epochs was set to

be 1000. The early stopping approach was used to monitor the 𝑀𝑆𝐸 to avoid

87

overfitting. Additionally, the number of epochs with no improvement (patience) in

the early stopping approach was set to 50. The Adam optimizer with a learning rate

of 0.005 was used to minimize the 𝑀𝑆𝐸. The batch size was set to 32. The LA WNN

model hyperparameters we tuned are the numbers of nodes for all dense layers,

activation functions on the dense layers, and dropout rates for both dropout layers.

Another hyperparameter we tuned is the tuning constant 𝛼 in the sample weights as

given in Equation (3-25). This constant is a multiple of 𝑚ିଵ (𝛼 =
௖

௠
) and hence we

should tune the value 𝑐.

The initial LA model used a sequential model consisting of an input layer of 10

features and two dense hidden layers. This also was followed by an output layer of

a single node with an ELU function.

We explored the effect of training this configuration for different numbers of nodes

for the 1st dense layer (20, 30, 40), numbers of nodes for the 2nd dense layer (40, 60,

80), activation functions (Tanh, SELU, ELU, ReLU) on the first two dense layers,

activation functions (Tanh, SELU, ELU) on the 3rd dense layer, dropout rates (0.1,

0.5) for both dropout layers, and values (1, 4, 7) for c. In total there are 5,184

different hyperparameter combinations. We used the error analysis method and

repeated this training regimen 10 times, calculating the overall 𝑀𝐴𝐸 given in

Equation (3-39) for each configuration on the 17 test sets created from the second

half of the observations. Boxplots of the overall 𝑀𝐴𝐸 distributions on these test sets

after each training with different hyperparameter combinations are shown in Figure

34 - Figure 37. Note that from all possible 5,184 different hyperparameter

combinations, just 144 are reported here.

The overall 𝑀𝐴𝐸 values range from 21.5 to 36. Based on examination of the median

𝑀𝐴𝐸 and variance for all hyperparameter combinations, the choice of setting the

88

number of 1st dense layer nodes to 30, activation function on the 1st dense layer to

SELU, dropout rate for the 1st dropout layer to 0.5, number of 2nd dense layer nodes

to 40, activation function on the 2nd dense layer to Tanh, dropout rate for the 2nd

dropout layer to 0.1, activation function on the 3rd dense layer to ELU, and value 𝑐

to 1 offers the best performance on average in terms of both median 𝑀𝐴𝐸 and

variability.

89

Figure 34: Diagnostic results with different hyperparameter combinations1 in the LA model
(when # 1st dense layer nodes is 30, activation function on the 1st dense layer is Tanh, dropout
rate for the 1st dropout layer is 0.5, # 2nd dense layer nodes is 40, and dropout rate for the 2nd

dropout layer is 0); in total, 360 models were fit to produce this boxplot.

90

Figure 35: Diagnostic results with different hyperparameter combinations1 in the LA model
(when # 1st dense layer nodes is 30, activation function on the 1st dense layer is SELU, dropout
rate for the 1st dropout layer is 0.5, # 2nd dense layer nodes is 40, and dropout rate for the 2nd

dropout layer is 0); in total, 360 models were fit to produce this boxplot.

91

Figure 36: Diagnostic results with different hyperparameter combinations1 in the LA model
(when # 1st dense layer nodes is 30, activation function on the 1st dense layer is ELU, dropout
rate for the 1st dropout layer is 0.5, # 2nd dense layer nodes is 40, and dropout rate for the 2nd

dropout layer is 0); in total, 360 models were fit to produce this boxplot.

92

Figure 37: Diagnostic results with different hyperparameter combinations1 in the LA model
(when # 1st dense layer nodes is 30, activation function on the 1st dense layer is ReLU, dropout
rate for the 1st dropout layer is 0.5, # 2nd dense layer nodes is 40, and dropout rate for the 2nd

dropout layer is 0); in total, 360 models were fit to produce this boxplot.

93

4.2.1.2 E-Bagging of WNN Models

According to the hyperparameter tuning in the LA WNN model, the best LA WNN

architecture was obtained using a sequential model consisting of an input layer

containing 10 features. This was followed by a dense layer of 60 nodes with an

SELU activation function. It is immediately followed by a dropout layer to prevent

the model from overfitting with a dropout rate of 0.5. Following the dropout layer,

we added another dense layer of 40 nodes with a Tanh activation function, followed

by a dropout layer with a dropout rate of 0.1. Lastly, this was followed by an output

layer of a single node. The activation function on the output layer was an ELU. The

𝑀𝑆𝐸 was minimized using the Adam optimizer with a learning rate of 0.005. The

batch size and the number of epochs were 32 and 1000, respectively. The early

stopping method was used to monitor the 𝑀𝑆𝐸 with a patience (number of epochs

with no improvement in the loss) of 50.

The total number of trainable parameters for the best LA WNN model is 1,611,

where 330 parameters were trained in the first dense layer, 1,240 parameters were

trained in the 2nd dense layer, and lastly, 41 parameters were trained in the output

layer. Note that this total number is much less than the number for the best LA GRU

model which was 23,721. Hence, using this WNN architecture is roughly 7 times

faster in fitting than the GRU models.

Other NN models for different counties have a similar architecture to the best LA

WNN model as well. However, they may have different numbers of input features.

After finding the WNN models for each county considered, we performed the E-

Bagging technique on the WNN models using 𝐵 = 128 to predict the Covid-19

death counts and construct 95% prediction bands for 14 days of forecasted values in

each county. Since there was no real difference in results when tuning the GRU

model as a function of 𝐵, we chose 𝐵 = 128 to match the GRU model choice.

94

The smoothed daily Covid-19 confirmed deaths (blue curve), their corresponding

14-day predictions using the WNN model (red curve), using E-Bagging of the WNN

model (green curve), and the corresponding 95% prediction bands (gray ribbon) for

the training set up to 05/01/2021 and for the test set from May 02, 2021, to May 16,

2021 for LA County are shown in Figure 38 (top graph); for Cook County in Figure

39 (top graph); for Harris County in Figure 40 (top graph); and for NY County in

Figure 41 (top graph). The vertical black line in each graph separates the training

and test sets. The 𝑀𝐴𝐸 values of the E-Bagged of the WNN models along with the

𝑀𝐴𝐸 values of the WNN models for each county considered with the training and

test sets are reported in Table 2. All E-Bagging 𝑀𝐴𝐸 values for both sets are less

than their corresponding WNN 𝑀𝐴𝐸’s. According to the graphs and reported 𝑀𝐴𝐸

values, the forecasted results using the E-Bagging method (green curve)

outperformed using the single WNN model (red curve) in every county.

The prediction error distributions for the WNN model (blue histogram) and for E-

Bagging of the WNN model (red histogram) are shown in Figure 42 and Figure 43.

While both distributions in each graph are centered at zero, the red distributions are

symmetric, but the blue distributions are skewed to the left. These graphs also show

that applying the E-Bagging technique to the WNN models yielded less variability

in predictions. These results generally indicate that the E-Bagging technique has

improved our predictions. The prediction band coverage probabilities using the E-

Bagging technique on the WNN models for each county dataset are available in

Table 2 (last column). They are higher than what we specified.

The cumulative counts for the different counties are shown in Figure 38 - Figure 41

(bottom graphs). In these graphs, both model predictions and prediction bands are

only plotted for the test set from May 02, 2021, to May 16, 2021.

95

Table 2: 𝑀𝐴𝐸 of different models for each county on the training and test sets

 Train 𝑀𝐴𝐸 Test 𝑀𝐴𝐸
CP (%)

 WNN E-Bagging WNN E-Bagging

LA County 14.158 11.269 12.346 8.768 98.1

Cook County 9.360 8.098 4.441 2.079 96.8

Harris County 5.786 5.661 9.550 5.841 97.4

NY County 7.274 4.761 1.150 0.512 96.5

Average 9.145 7.445 6.872 4.300 97.2

96

Figure 38: (Top) smoothed daily Covid-19 deaths (blue curve), WNN predictions
(red curve), E-Bagging predictions (green), and prediction bands (gray ribbon) for

the training set up to 05/01/2021 and for the test set from May 02, 2021, to May
16, 2021, for LA County. (Bottom) cumulative counts. The boxes zoom in on the

test set.

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using WNN
 E-Bagging 14-Day Forecasted Predictions
 95% Prediction Bands

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using WNN
 E-Bagging 14-Day Forecasted Predictions
 95% Prediction Bands

Cumulative Covid-19 Known Deaths in LA County as of 05/16/2021

Daily Covid-19 Known Deaths in LA County as of 05/16/2021

97

Figure 39: (Top) smoothed daily Covid-19 deaths (blue curve), WNN predictions
(red curve), E-Bagging predictions (green), and prediction bands (gray ribbon) for

the training set up to 05/01/2021 and for the test set from May 02, 2021, to May
16, 2021, for Cook County. (Bottom) cumulative counts. The boxes zoom in on the

test set.

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using WNN
 E-Bagging 14-Day Forecasted Predictions
 95% Prediction Bands

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using WNN
 E-Bagging 14-Day Forecasted Predictions
 95% Prediction Bands

Cumulative Covid-19 Known Deaths in Cook County as of 05/16/2021

Daily Covid-19 Known Deaths in Cook County as of 05/16/2021

98

Figure 40: (Top) smoothed daily Covid-19 deaths (blue curve), WNN predictions
(red curve), E-Bagging predictions (green), and prediction bands (gray ribbon) for

the training set up to 05/01/2021 and for the test set from May 02, 2021, to May
16, 2021, for Harris County. (Bottom) cumulative counts. The boxes zoom in on the

test set.

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using WNN
 E-Bagging 14-Day Forecasted Predictions
 95% Prediction Bands

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using WNN
 E-Bagging 14-Day Forecasted Predictions
 95% Prediction Bands

Cumulative Covid-19 Known Deaths in Harris County as of 05/16/2021

Daily Covid-19 Known Deaths in Harris County as of 05/16/2021

99

Figure 41: (Top) smoothed daily Covid-19 deaths (blue curve), WNN predictions
(red curve), E-Bagging predictions (green), and prediction bands (gray ribbon) for

the training set up to 05/01/2021 and for the test set from May 02, 2021, to May
16, 2021, for NY County. (Bottom) cumulative counts. The boxes zoom in on the

test set.

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using WNN
 E-Bagging 14-Day Forecasted Predictions
 95% Prediction Bands

 7-day Moving Ave. Smoothed Covid-19 Deaths
 14-Day Forecasted Predictions Using WNN
 E-Bagging 14-Day Forecasted Predictions
 95% Prediction Bands

Cumulative Covid-19 Known Deaths in NY County as of 05/16/2021

Daily Covid-19 Known Deaths in NY County as of 05/16/2021

100

Figure 42: Prediction error distributions for the WNN model (blue histogram) and
for E-Bagging (red histogram) for LA County (top); for Cook County (bottom);

both are centered at zero. The E-Bagging errors have less variance.

 WNN Prediction Error Distribution
 E-Bagging Prediction Distribution

 WNN Prediction Error Distribution
 E-Bagging Prediction Distribution

101

Figure 43: Prediction error distributions for the WNN model (blue histogram) and
for E-Bagging (red histogram) for Harris County (top); for NY County (bottom);

both are centered at zero. The E-Bagging errors less variance.

 WNN Prediction Error Distribution
 E-Bagging Prediction Distribution

 WNN Prediction Error Distribution
 E-Bagging Prediction Distribution

102

5 Discussion and Conclusions

In this study, we have proposed deep learning models for predicting the number of

Covid-19 death counts at the US county level. GRUs, WNNs and E-Bagging of these

two networks are used as prediction models. The 𝑀𝐴𝐸 performance measure was

used to compare the models. Models were tested on four US counties and based on

the 𝑀𝐴𝐸, the model with minimum error was chosen. The results of the 𝑀𝐴𝐸 of NN

models and the coverage probability for assessment of constructed prediction bands

using the E-Bagging technique for four counties are available in Table 3. In viewing

this table, WNN model predictions have higher errors than other model predictions

on both training and test sets on average. The WNNs predict the number of deaths

on both training and test sets with the highest average 𝑀𝐴𝐸 values of 9.145 and

6.872, respectively.

Table 3: Results of MAE and coverage probability of different models

 Train 𝑀𝐴𝐸 Test 𝑀𝐴𝐸
CP (%)

 WNN GRU WNN GRU

 Conventional
E-

Bagging
Conventional

E-

Bagging
Conventional E-Bagging Conventional

E-

Bagging
WNN GRU

LA County 14.158 11.269 7.363 4.155 12.346 8.768 9.343 5.884 98.1 99.8

Cook County 9.360 8.098 8.373 5.023 4.441 2.079 6.528 1.073 96.8 98.6

Harris County 5.786 5.661 4.547 2.018 9.550 5.841 4.904 2.386 97.4 100

NY County 7.274 4.761 5.099 4.466 1.150 0.512 2.575 1.277 96.5 97.9

Average 9.145 7.445 6.346 3.916 6.872 4.300 5.838 2.655 97.2 99.1

E-Bagging applied to the GRU models outperformed other models on average and

gave lower average 𝑀𝐴𝐸 values with the training set than the test set. On the test

103

set, it gives the least error for LA County, Cook County, and Harris County while

for NY County, E-Bagging applied to the WNN model gives the least 𝑀𝐴𝐸. E-

Bagging applied to NNs shows improved predictions when compared with

conventional GRU and WNN predictions, depicting lower average prediction errors.

 In viewing the columns of the coverage probabilities in Table 3, it seems all

prediction bands have a higher coverage probability than the specified level of 95%.

Our residual predictor NN could probably have been further optimized in order to

generate prediction bands with coverage probabilities closer to the specified

coverage level. Applying the E-Bagging technique to the GRU models also provides

higher (worse) coverage probability (99.1%) than to the WNN models (97.2) on

average.

It can be concluded that E-Bagging of GRU models is an appropriate prediction

technique for such spatially and temporally correlated data. It is capable of

forecasting 14 days into the future with improved accuracy. However, prediction

intervals tended to be too wide for all cases. These predictions and their prediction

bands may be helpful to county and state authorities, researchers, and planners who

manage services such as arranging medical infrastructure, the public health system,

closure, and lockdown.

If a valid model predicts a severe increase in the number of deaths due to Covid-19

in a particular county for the two coming weeks, this can put enormous pressure on

the healthcare system. With accurate forecasting, we can control the virus spread in

advance through various public health measures from mask mandates to lockdown.

The proposed model can be used by other counties, states, and nations for Covid-19

predictions and can be applied to a wide variety of other situations from Ebola

epidemic mitigation to intra- and inter-day stock price forecasting.

104

For future work, we can apply the proposed E-Bagging techniques to other RNNs

such as the Bi-directional GRU, stacked GRU or variations of LSTM architectures.

Also, we can apply the proposed models over other temporally correlated data such

as stock market price datasets for forecasting opening prices for ℎ days into the

future.

The output of our proposed models can help planners and authorities decide on

appropriate measures to limit Covid-19 spread. The county-wide predictions can

help county authorities balance the load taken on by the medical infrastructure. Such

predictions can also help authorities manage appropriate levels of economic activity

in the community.

Public awareness is an important and key step in implementing Covid-19 mitigation

strategies. Los Angeles County is the most populous county in the US with a

population of around 9.82 million. Large counties are of great concern due to their

high population density and higher likelihood of spread. Covid-19 can attain

exponential growth in its spread in densely populated areas very easily.

105

6 Appendix A

Python Codes for GRU and E-Bagging

6.1 Loading Required Modules

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import plotly.graph_objects as go
from sklearn.preprocessing import MinMaxScaler
import keras
import tensorflow.compat.v1 as tf
import keras.backend as K
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, GRU, Input, Activation
from tensorflow.keras import optimizers
from tensorflow.keras.callbacks import EarlyStopping
from itertools import combinations
from scipy.stats import norm
from itertools import compress

6.2 A Function to Create Raw and Smoothed Datasets

def dataset(data, countyFIPS):
 dropped_variables = ['countyFIPS', 'State', 'stateFIPS']
 data = data[data.countyFIPS.isin(countyFIPS)]
 data.set_index('County Name', inplace=True)
 data = data.drop(data.columns[[0, 2,3]], axis=1).T.reset_index()
 data = data.rename(columns = {'index': 'Date'}, inplace = False)
 data.set_index('Date', inplace=True)
 data = data[1:].diff(periods=1,axis=0)[1:]
 smoothed_data = data.rolling(window=7, center=True).mean()
 smoothed_data = smoothed_data.dropna()
 return data, smoothed_data

106

6.3 Loading Dataset for LA County

df = pd.read_csv('covid_deaths_usafacts_3.csv')

Read in the csv file

counties = ['Los Angeles County ', 'Orange County ',
'San Diego County ', 'Riverside County ', 'San
Bernardino County ', 'Kern County ', 'Ventura County
', 'Santa Barbara County ', 'Imperial County ', 'San Luis
Obispo County ']

Select the US neighboring counties
of LA County and find their FIPS in
the excel file

countyFIPS = [6037, 6059, 6073, 6065, 6071, 6029,
6111, 6083, 6025, 6079]
deaths, smoothed_deaths = dataset(df, countyFIPS)

Create raw and smoothed datasets
using “dataset” function

target_name = "Los Angeles County " # Set a county of target to be
analyzed

target = deaths.columns.get_loc(target_name) # Find the corresponding column
number of the county of target

6.4 Codes for Creating Figure 4

Create a line chart for Cumulative raw COVID-19 deaths in different counties around the target

fig = go.Figure()
for i in range(deaths.shape[1]):
 fig.add_trace(go.Scatter(x=deaths.index, y=deaths.iloc[:,i].cumsum(), name=
deaths.columns[i]))

fig.update_layout(legend=dict(x=0.01, y=.99),
 title={'text': "Cumulative Real Covid-19 Known Deaths in Different Counties in
California as of 05/19/2021 ",'y':0.9, 'x':0.5,
 'xanchor': 'center', 'yanchor': 'top'},
 xaxis_title="Date",
 yaxis_title="Cumulative Covid-19 Deaths",
 width=1000, height=600)
fig.show()

107

6.5 Codes for Creating Figure 6

Create a bar chart with a smoothed line for daily COVID-19 deaths in County of target
fig = go.Figure()

fig.add_bar(name= 'Real Covid-19 Confirmed Deaths',
 x=deaths.index,
 y=deaths.iloc[:, target])

fig.add_trace(go.Scatter(name= '7-day Moving Ave. Smoothing Including 3 Days Before and
aAfter the Date of the Report',
 x=deaths.index[3:-3],
 y=smoothed_deaths.iloc[:,target],
 line=dict(width=3)))

fig.update_layout(legend=dict(x=0.01, y=.99),
 title={'text': "Real and Smoothed Daily Covid-19 Known Deaths in %s as of
05/19/2021"%target_name,'y':0.9, 'x':0.5,
 'xanchor': 'center', 'yanchor': 'top'},
 xaxis_title="Date",
 yaxis_title="Daily Covid-19 Deaths",width=1000, height=600)

fig.show()

6.6 Plotting Smoothed and Forecasted Cumulative COVID-19

Deaths Using Different Models

def visualize(data, y_predicted, Ebagging_interval, Ebagging_y_pred, lower_bound,
upper_bound):
 y = data.iloc[rolling_window+days_ahead:, target].values
Plot Smoothed vs. Forecasted Daily COVID-19 Deaths in County of target
 fig = go.Figure()

 fig.add_trace(go.Scatter(x=data.index[rolling_window+days_ahead:],
 y=y,
 name='7-Day Moving Ave. Smoothed Covid-19 Deaths',))

 fig.add_trace(go.Scatter(x=pd.date_range(data.index[rolling_window+days_ahead],
periods=len(y_predicted)),
 y=y_predicted,
 name='14-Day Forecasted Predictions Using GRU',
 fill=None))
 fig.add_vline(x=data.index[-days_ahead])

108

 fig.add_annotation(x=data.index[-days_ahead+7], y=np.max(y_predicted),
 text="Test", showarrow=False)

 if Ebagging_interval == True:
 fig.add_trace(go.Scatter(x=pd.date_range(data.index[rolling_window+days_ahead],
periods=len(y_predicted)),
 y=Ebagging_y_pred,
 name='Extended Bagging 14-Day Forecasted Predictions',
 fill=None))

fig.add_trace(go.Scatter(x=pd.date_range(smoothed_deaths.index[rolling_window+days_ahead],
periods=len(y_predicted)),
 y=lower_bound,
 #name='Lower Bound',
 showlegend=False,
 mode='lines',
 marker=dict(color="#444"),
 line=dict(width=0)))

fig.add_trace(go.Scatter(x=pd.date_range(smoothed_deaths.index[rolling_window+days_ahead],
periods=len(y_predicted)),
 y=upper_bound,
 name='95% Prediction bands',
 mode='lines',
 marker=dict(color="#444"),
 line=dict(width=0),
 fillcolor='rgba(68, 68, 68, 0.3)',
 fill='tonexty'))

 fig.update_layout(legend=dict(x=0.01, y=.99),
 title={'text': "Daily Covid-19 known deaths in %s as of
05/16/2021"%target_name,'y':0.9, 'x':0.5,
 'xanchor': 'center', 'yanchor': 'top'},
 xaxis_title="Date",
 yaxis_title="Daily Number of Covid-19 Deaths",
 height=600, width=1000)

 fig.show()

 # Plot Smoothed vs. Forecasted Cumulative COVID-19 Deaths in County of target
 fig = go.Figure()

109

 fig.add_trace(go.Scatter(x=data.index[rolling_window+days_ahead:],
 y=y.cumsum(),
 name='7-Day Moving Ave. Smoothed Covid-19 Deaths',))

 fig.add_trace(go.Scatter(x=pd.date_range(data.index[-days_ahead-1], periods=days_ahead+1),
 y=np.append(y.cumsum()[-days_ahead-1], y.cumsum()[-days_ahead-
1]+y_predicted[-days_ahead:].cumsum()),
 name='14-Day Forecasted Covid-19 Deaths Using GRU',
 mode='lines',
 fill=None))

 if Ebagging_interval == True:
 fig.add_trace(go.Scatter(x=pd.date_range(data.index[-days_ahead-1], periods=days_ahead+1),
 #y=Ebagging_y_pred.cumsum(),
 y=np.append(y.cumsum()[-days_ahead-1], y.cumsum()[-days_ahead-
1]+Ebagging_y_pred[-days_ahead:].cumsum()),
 name='Extended Bagging 14-Day Forecasted Predictions',
 mode='lines',
 fill=None))
 fig.add_trace(go.Scatter(x=pd.date_range(data.index[-days_ahead-1], periods=days_ahead+1),
 #y=lower_bound.cumsum(),
 y=np.append(y.cumsum()[-days_ahead-1], y.cumsum()[-days_ahead-
1]+lower_bound[-days_ahead:].cumsum()),
 #name='Lower Bound',
 showlegend=False,
 mode='lines',
 marker=dict(color="#444"),
 line=dict(width=0)))

 fig.add_trace(go.Scatter(x=pd.date_range(data.index[-days_ahead-1], periods=days_ahead+1),
 #y=upper_bound.cumsum(),
 y=np.append(y.cumsum()[-days_ahead-1], y.cumsum()[-days_ahead-
1]+upper_bound[-days_ahead:].cumsum()),
 name='95% Prediction bands',
 mode='lines',
 marker=dict(color="#444"),
 line=dict(width=0),
 fillcolor='rgba(68, 68, 68, 0.3)',
 fill='tonexty'))

 fig.update_layout(legend=dict(x=0.01, y=.99),
 title={'text': "Cumulative COVID-19 known deaths in %s as of
05/16/2021"%target_name,'y':0.9, 'x':0.5,
 'xanchor': 'center', 'yanchor': 'top'},
 xaxis_title="Date",
 yaxis_title="Cumulative Number of Covid-19 Deaths",

110

 height=600, width=1000)

 fig.show()

6.7 Build a 3-Dimensional Rolling Window Array (R) and Split

and Scale Train and Test Sets

def split_train_test(data):
 target = data.columns.get_loc(target_name)
 dataset = data.values
 unscaled_y = dataset[rolling_window + days_ahead : , target].reshape(-1, 1)
 n = len(unscaled_y) - days_ahead

 # Transform the data to have a specific scale. Specifically, to rescale the data to [-1,1] to meet
the tanh activation function of the GRU model.
 y_normaliser = MinMaxScaler(feature_range=(-1, 1))
 y_normaliser.fit(unscaled_y[:n])

 y_normalised = y_normaliser.transform(unscaled_y)

 data_normaliser = MinMaxScaler(feature_range=(-1, 1))
 data_normaliser.fit(dataset[:n+rolling_window])

 data_normalized = data_normaliser.transform(dataset)

 X_normalised = np.array([data_normalized[i : i + rolling_window] for i in
range(len(data_normalized) - rolling_window - days_ahead)])

 # split data into train and test-sets
 X_train, y_train = X_normalised[:n], y_normalised[:n]
 X_test, y_test = X_normalised[n:], y_normalised[n:]

 return X_normalised, y_normalised, X_train, y_train, X_test, y_test, unscaled_y[n:],
y_normaliser

6.8 A Function for Creating a Model for Tuning

Hyperparameters

def create_model_for_hyperparameter_tuning(smoothed_data, n_epoch, n_epoch1, batch_size,
optimizer, learning_rate,

111

 gru_neuran1, dropout_rate1, node2, activation_fun2, dropout_rate2,
activation_fun3):
 callback = EarlyStopping(monitor="loss", patience=20, mode="min")
prepare model
 model = Sequential()
 model.add(GRU(units=gru_neuran1, input_shape=(None, smoothed_data.shape[1])))
 model.add(Dropout(dropout_rate1))
 model.add(Dense(node2, activation=activation_fun2))
 model.add(Dropout(dropout_rate2))
 model.add(Dense(1, activation=activation_fun3))
 model.compile(optimizer=optimizer(lr=learning_rate), loss='mse',
metrics=[tf.keras.metrics.MeanAbsoluteError(name='MAE')])

 # Initial fitting model and evaluate over test set
 MAE_TEST = []
 m = int(len(smoothed_data)/2)

 _, _, X_train, y_train, X_test,_, unscaled_y_test, y_normaliser =
split_train_test(smoothed_data[:m])
 history = model.fit(x=X_train, y=y_train, batch_size=batch_size, epochs=n_epoch,
 shuffle=False, verbose=0, callbacks=[callback])
 y_test_predicted = model.predict(X_test)
 y_test_predicted = y_normaliser.inverse_transform(y_test_predicted).reshape(-1)
 MAE_TEST.append(np.abs(unscaled_y_test - y_test_predicted).mean())
 #visualize_history(history)

 # fitting model over a few more data and evaluate over new test set through for loop
 i = 1
 while m+i*days_ahead < len(smoothed_data)-days_ahead:

 _, _, X_train, y_train, X_test,_ , unscaled_y_test, y_normaliser =
split_train_test(smoothed_data[:m+i*days_ahead])
 model.fit(x=X_train[-days_ahead:], y=y_train[-days_ahead:], batch_size=batch_size,
epochs=n_epoch1,
 shuffle=False, verbose=0, callbacks=[callback])
 y_test_predicted = model.predict(X_test)
 y_test_predicted = y_normaliser.inverse_transform(y_test_predicted).reshape(-1)
 MAE_TEST.append(np.abs(unscaled_y_test - y_test_predicted).mean())
 i += 1

 return MAE_TEST

def run(repeats, batch, lr, unit1, unit2, act2, drop1, drop2):
 rolling_window = 28
 MAEs = []
 for i in range(repeats):

112

 MAE_TEST = create_model_for_hyperparameter_tuning(smoothed_deaths, n_epoch=1000,
n_epoch1=100, batch_size=batch,
 optimizer=optimizers.Adam, learning_rate=lr,
 gru_neuran1=unit1, dropout_rate1=drop1,
 node2=unit2, activation_fun2=act2, dropout_rate2=drop2,
 activation_fun3="tanh")
 MAEs.append(np.mean(MAE_TEST))
 return MAEs

batch_size = [100, 300]
learning_rates = [5e-3, 1e-3]

units = [20, 80]
act_funs = ['tanh', 'selu']
dropouts = [.1, .5]

results6 = pd.DataFrame()
for b in batch_size:
 print(b)
 for l in learning_rates:
 for u1 in units:
 for u2 in units:
 for a2 in act_funs:
 for d1 in dropouts:
 for d2 in dropouts:
 results6[str([b,l,u1,u2,a2,d1,d2])] = run(repeats = 10, batch=b, lr=l,
 unit1=u1, unit2=u2, act2=a2, drop1=d1, drop2=d2)

axes6 = results6.boxplot(grid=True, figsize=(21,5), fontsize=14, rot=90)
axes6.set_title('Distribution of 10 MAEs for 128 Different Hyperparametere Combinations',
fontsize=16)
axes6.set_xlabel("[Batch Size, Learning Rate, Number of GRU Nodes, Activation Function,
Dropout Rate for GRU, Number of Dense Nodes, Dropout Rate for Dense]", fontsize=16)
axes6.set_ylabel("MAE", fontsize=16)
plt.show()

axes6 = results6.iloc[:,:32].boxplot(grid=True, figsize=(21,5), fontsize=14, rot=90)
axes6.set_title('Distribution of 10 MAEs for Different Hyperparametere Combinations',
fontsize=16)
axes6.set_xlabel("[Batch Size, Learning Rate, Number of GRU Nodes, Number of Dense Nodes,
Activation Function, Dropout Rate for GRU, Dropout Rate for Dense]", fontsize=16)
axes6.set_ylabel("MAE", fontsize=16)
plt.show()

axes6 = results6.iloc[:,32:64].boxplot(grid=True, figsize=(21,5), fontsize=14, rot=90)

113

axes6.set_title('Distribution of 10 MAEs for Different Hyperparametere Combinations',
fontsize=16)
axes6.set_xlabel("[Batch Size, Learning Rate, Number of GRU Nodes, Number of Dense Nodes,
Activation Function, Dropout Rate for GRU, Dropout Rate for Dense]", fontsize=16)
axes6.set_ylabel("MAE", fontsize=16)
plt.show()

axes6 = results6.iloc[:,64:96].boxplot(grid=True, figsize=(21,5), fontsize=14, rot=90)
axes6.set_title('Distribution of 10 MAEs for Different Hyperparametere Combinations',
fontsize=16)
axes6.set_xlabel("[Batch Size, Learning Rate, Number of GRU Nodes, Number of Dense Nodes,
Activation Function, Dropout Rate for GRU, Dropout Rate for Dense]", fontsize=16)
axes6.set_ylabel("MAE", fontsize=16)
plt.show()

axes6 = results6.iloc[:,96:].boxplot(grid=True, figsize=(21,5), fontsize=14, rot=90)
axes6.set_title('Distribution of 10 MAEs for Different Hyperparametere Combinations',
fontsize=16)
axes6.set_xlabel("[Batch Size, Learning Rate, Number of GRU Nodes, Number of Dense Nodes,
Activation Function, Dropout Rate for GRU, Dropout Rate for Dense]", fontsize=16)
axes6.set_ylabel("MAE", fontsize=16)
plt.show()

6.9 Create the Best LA GRU Model

def create_model(smoothed_data, node1, drop1, node2, act2, drop2, act3, opt, learn, batch, epoch):
 callback = EarlyStopping(monitor="loss", patience=20, verbose=1, mode="min")
 # prepare model
 model = Sequential()
 model.add(GRU(units=node1, input_shape=(None, smoothed_data.shape[1])))
 model.add(Dropout(drop1))
 model.add(Dense(units=node2, activation=act2))
 model.add(Dropout(drop2))
 model.add(Dense(units=1, activation=act3))

 model.compile(optimizer=opt(lr=learn), loss='mse',
metrics=[tf.keras.metrics.MeanAbsoluteError(name='MAE')])
 #model.summary()

 X_normalised, y_normalised, X_train, y_train, _,_ , _, y_normaliser =
split_train_test(smoothed_data)

 model.fit(x=X_train, y=y_train, batch_size=batch, epochs=epoch, shuffle=False, verbose=0,
callbacks=[callback])

114

 y_predicted = model.predict(X_normalised)
 # These transforms are inverted on forecasts to return them into their original scale before
calculating an error score.
 y_predicted = y_normaliser.inverse_transform(y_predicted).reshape(-1)

 return y_predicted

days_ahead = 14
rolling_window = 28
yhat = create_model(smoothed_deaths, node1=80, drop1=.5, node2=20, act2="tanh", drop2=.1,
act3="tanh",
 opt=optimizers.Adam, learn=.005, batch=100, epoch=1000)
mae_GRU_Train = np.abs(yhat[:-days_ahead] -
smoothed_deaths.iloc[rolling_window+days_ahead:-days_ahead,target]).mean()
mae_GRU_Test = np.abs(yhat[-days_ahead:] - smoothed_deaths.iloc[-
days_ahead:,target]).mean()
print("MAE of GRU Model for Tain set is %.3f and for Test set is %.3f." %(mae_GRU_Train,
mae_GRU_Test))
visualize(smoothed_deaths, yhat, False, _, _, _)

6.10 Define a list of All Unique Combinations of Counties

def define_a_list_of_all_unique_combinations_of_counties(counties):
 all_combinations = []
 for r in range(len(counties) + 1):
 combinations_object = combinations(counties, r)
 combinations_list = list(combinations_object)
 for i, item in enumerate(combinations_list):
 if target_name not in item:
 item += (target_name,)
 combinations_list[i] = item
 all_combinations += combinations_list
 #print(all_combinations)

 unique_combin_counties = list(set([tuple(sorted(i)) for i in all_combinations]))
 unique_combin_counties.sort(key=lambda x: len(x))

 return unique_combin_counties

115

6.11 Build a 3-Dimensional Rolling Window Array (R) and Split

Train and Test Sets, and scale them for E-Bagging

def scale_Ebagging(resampled_smoothed_data):

 target = resampled_smoothed_data.columns.get_loc(target_name)
 unscaled_y = np.array([resampled_smoothed_data.iloc[rolling_window + days_ahead : -
days_ahead, target].copy()]).reshape(-1, 1)

 # Transform the data to have a specific scale. Specifically, to rescale the data to [-1,1] to meet
the tanh activation function of the GRU model.
 y_normaliser = MinMaxScaler(feature_range=(-1, 1))
 y_normalised = y_normaliser.fit_transform(unscaled_y)

 data_normaliser = MinMaxScaler(feature_range=(-1, 1))
 data_normalized = data_normaliser.fit_transform(resampled_smoothed_data)

 X_normalised = np.array([np.array(data_normalized[i : i + rolling_window].copy()) for i
in range(len(data_normalized) - rolling_window - days_ahead)])

 idx = np.random.choice(np.arange(len(y_normalised)), len(y_normalised),
replace=True)
 resampled_X_normalised = X_normalised[:-days_ahead][idx]
 resampled_y_normalised = y_normalised[idx]

 return X_normalised, resampled_X_normalised, resampled_y_normalised, y_normaliser

6.12 Create Residual Predictor Network

def custom_loss(y_true, y_pred):
 y_pred = K.max(tf.concat([y_pred, tf.zeros_like(y_pred)], axis=1) , axis=1)
 y_pred = tf.reshape(y_pred, tf.shape(y_true)) + 1e-17
 loss = K.sum(K.log(y_pred) + y_true / y_pred) / 2
 return loss

def create_second_model(smoothed_data, yhat_Ebagging, yhat_var):
 callback = EarlyStopping(monitor="loss", patience=100, mode="min", verbose=0)
 # prepare model
 model = Sequential()
 model.add(GRU(units=200, input_shape=(None, smoothed_data.shape[1])))
 model.add(Dropout(.1))
 model.add(Dense(units=100, activation="tanh"))
 model.add(Dropout(.1))

116

 model.add(Dense(1, activation="exponential"))
 model.compile(optimizer=optimizers.Adam(lr=5e-3), loss=custom_loss)
 ##
 dataset = smoothed_data.values
 r_squared = np.maximum((y - yhat_Ebagging)**2 - yhat_var, np.zeros(len(y))).reshape(-1, 1)
 n = len(r_squared) - days_ahead

 # Transform the data to have a specific scale. Specifically, to rescale the data to [-1,1] to meet
the tanh activation function of the GRU model.
 r_squared_normaliser = MinMaxScaler()
 r_squared_normaliser.fit(r_squared[:n])
 r_squared_normalised = r_squared_normaliser.transform(r_squared)

 data_normaliser = MinMaxScaler(feature_range=(-1, 1))
 data_normaliser.fit(dataset[:n+rolling_window])
 data_normalized = data_normaliser.transform(dataset)

 X_normalised = np.array([data_normalized[i : i + rolling_window] for i in
range(len(data_normalized) - rolling_window - days_ahead)])

 # split data into train and test-sets
 X_train, r_squared_train = X_normalised[:n], r_squared_normalised[:n]
 ##
 model.fit(x=X_train, y=r_squared_train, batch_size=100, epochs=1000, shuffle=True,
verbose=0, callbacks=[callback])

 r_squared_predicted = model.predict(X_normalised);
 # These transforms are inverted on forecasts to return them into their original scale before
calculating an error score.
 r_squared_predicted =
r_squared_normaliser.inverse_transform(r_squared_predicted).reshape(-1)

 return r_squared, r_squared_predicted

6.13 Create E-Bagging Models

def create_model_Ebagging(resampled_smoothed_data):

 X_normalised, resampled_X_normalised, resampled_y_normalised, y_normaliser =
scale_Ebagging(resampled_smoothed_data)

 callback = EarlyStopping(monitor="loss", patience=50, mode="min", verbose=0)
 # prepare model
 model = Sequential()
 model.add(GRU(units=80, input_shape=(None, resampled_X_normalised.shape[2])))
 model.add(Dropout(.5))

117

 model.add(Dense(units=20, activation="tanh"))
 model.add(Dropout(.1))
 model.add(Dense(1, activation="tanh"))
 model.compile(optimizer=optimizers.Adam(lr=5e-3), loss='mse')

 model.fit(x=resampled_X_normalised, y=resampled_y_normalised, batch_size=100,
epochs=1000,
 shuffle=False, verbose=0, callbacks=[callback])

 y_predicted = model.predict(X_normalised);
 # These transforms are inverted on forecasts to return them into their original scale before
calculating an error score.
 y_predicted = y_normaliser.inverse_transform(y_predicted).reshape(-1)

 return y_predicted

def Ebagging(smoothed_data, counties, y_predicted, iterations):

 unique_com = define_a_list_of_all_unique_combinations_of_counties(counties)
 Ebagging_y_predicteds = []

 for iter in range(iterations):
 q = randrange(1, len(unique_com))
 resampled_smoothed_data = smoothed_data[list(unique_com[q])]
 pred = create_model_Ebagging(resampled_smoothed_data)
 Ebagging_y_predicteds.append(pred)

 yhat_Ebagging = np.mean(Ebagging_y_predicteds, axis=0)
 yhat_var = np.var(Ebagging_y_predicteds, axis=0)
 MAE_Ebagging = np.abs(yhat_Ebagging -
smoothed_deaths.iloc[rolling_window+days_ahead:, target]).mean()

 return yhat_Ebagging, yhat_var, MAE_Ebagging

yhat_Ebagging, yhat_var, MAE_Ebagging = Ebagging(smoothed_deaths, counties, yhat,
iterations=128)

ci = 0.95

z_critical = norm.ppf(1-(1-ci)/2)

lower_lim = yhat_Ebagging - z_critical * np.sqrt(yhat_var + r_squared_predicted)

upper_lim = yhat_Ebagging + z_critical * np.sqrt(yhat_var + r_squared_predicted)

y = smoothed_deaths.iloc[rolling_window+days_ahead:, target].values

visualize(smoothed_deaths, yhat, True, yhat_Ebagging, lower_lim, upper_lim)

118

mae_GRU_Train = np.abs(yhat[:-days_ahead] - y[:-days_ahead])).mean()

mae_GRU_Test = np.abs(yhat[-days_ahead:] - y[-days_ahead:]).mean()

print("MAE of GRU Model for Tain set is %.3f and for Test set is %.3f." %(mae_GRU_Train,
mae_GRU_Test))

mae_Ebagging_GRU_Train = np.abs(yhat_Ebagging[:-days_ahead] - y[:-days_ahead]).mean()

mae_Ebagging_GRU_Test = np.abs(yhat_Ebagging[-days_ahead:] - y[-days_ahead:]).mean()

print("MAE of Extended Bagging of GRU Model for Tain set is %.3f and for Test set is %.3f."
%(mae_Ebagging_GRU_Train, mae_Ebagging_GRU_Test))

print("Predicted value for 14 days ahead =", yhat_Ebagging.cumsum()[-1])

coverage_prob = round(np.count_nonzero((lower_lim < y) & (upper_lim>y))/len(y),3)

print("coverage_Probability =", coverage_prob)

6.14 Create Error Distribution

fig = go.Figure()

fig.add_trace(go.Histogram(

 x=yhat - smoothed_deaths.iloc[rolling_window+days_ahead:,target],

 name='Prediction Error distribution'))

fig.add_trace(go.Histogram(

 x=yhat_Ebagging - smoothed_deaths.iloc[rolling_window+days_ahead:,target],

 name='Extended bagging Prediction Distribution'))

fig.update_layout(legend=dict(x=0.01, y=.99),

 title={'text': "Forecasting Error Distribution",'y':0.9, 'x':0.5,

 'xanchor': 'center', 'yanchor': 'top'},

 xaxis_title="Error",

 yaxis_title="Percent",

119

 barmode='overlay', # Overlay both histograms

 height=600, width=1000)

Reduce opacity to see both histograms

fig.update_traces(opacity=0.4)

fig.show()

120

7 References

[1] W. H. Organization, "Archived: WHO Timeline - COVID-19," 2020. [Online]. Available:
https://www.who.int/news/item/27-04-2020-who-timeline---covid-19.

[2] K. E. Fullerton, E. K. Stokes, L. D. Zambrano, K. N. Anderson, E. P. Marder, K. M. Raz, S. El Burai
Felix, Y. Tie and K. E. Fullerton, "Coronavirus Disease 2019 Case Surveillance — United States,
January 22–May 30, 2020," Center of disease control and prevention, 2020.

[3] "Coronavirus (COVID-19) statistics data," [Online]. Available:
https://www.google.com/search?rlz=1C1SQJL_enUS810US810&sxsrf=ALeKk02NbfkORId-
jFXuKR4i8cu4F9bR7w%3A1607048370539&ei=spzJX7KvIMP29AP90L-
4Cg&q=covid+map+usa&oq=covid+map+usa&gs_lcp=CgZwc3ktYWIQAzIICAAQsQMQyQMyBQgAE
LEDMgIIADICCAAyAggAMgIIADICCAAyAggAMgIIADICC.

[4] W. S. McCulloch and W. Pitts, "A logical calculus of the ideas immanent in nervous activity," The
Bulletin of Mathematical Biophysics, vol. 5, no. 4, p. 115–133, 1943.

[5] N. Rochester, J. Holland, L. Habit and W. Duda, "Tests on a cell assembly theory of the action of
the brain, using a large digital computer," IRE Transactions on Information Theory, vol. 2, no. 3,
pp. 80-93, 1956.

[6] F. Rosenblatt, "The Perceptron: A Probabilistic Model For Information Storage And Organization
In The Brain," Psychological Review, vol. 65, no. 6, p. 386–408, 1958.

[7] M. Minsky and S. Papert, Perceptrons: An Introduction to Computational Geometry, MIT Press,
1969.

[8] D. E. Rumelhart, G. E. Hinton and R. J. Williams, "Learning representations by back-propagating
errors," Nature, vol. 323, no. 6088, p. 533–536, 1986.

[9] S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural Computation, vol. 9, no. 8,
pp. 1735-1780, 1997.

[10] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document
recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

[11] Y. Bengio, "Learning Deep Architectures for AI," Machine Learning, vol. 2, no. 1, pp. 1-27, 2009.

[12] A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet Classification with Deep Convolutional
Neural Networks," Advances in Neural Information Processing, vol. 25, no. 2, p. 2447–2455, 2012.

121

[13] B. Efron, "Bootstrap Methods: Another Look at the Jackknife," The Annals of Statistics, vol. 7, no.
1, pp. 1-26, 1979.

[14] B. Efron and R. Tibshirani, "Bootstrap methods for standard errors, confidence intervals, and
other measures of statistical accuracy," Statistical science, pp. 54-75, 1986.

[15] G. Paass, "Assessing and Improving Neural Network Predictions by the Bootstrap Algorithm,"
NIPS, 1992.

[16] J. G. Carney, P. Cunningham and U. Bhagwan, "Confidence and prediction intervals for neural
network ensembles," Neural Networks, 1999.

[17] R. Tibshirani, "A comparison of some error estimates for neural network models," Neural
Computation, vol. 8, pp. 152-163, 1996.

[18] T. Heskes, "Practical confidence and prediction intervals," In Advances in neural information
processing systems, pp. 176-182, 1997.

[19] A. Khosravi , S. Nahavandi, D. Creighton and A. F. Atiya, "Comprehensive review of neural
network-based prediction intervals and new advances," IEEE Transactions on neural networks,
vol. 22, no. 9, pp. 1341-1356, 2011.

[20] D. H. Mantzaris, G. C. Anastassopoulos and D. K. Lymberopoulos, "Medical disease prediction
using Artificial Neural Networks," in 2008 8th IEEE International Conference on BioInformatics and
BioEngineering, Athens, Greece, 2008.

[21] X. Zhang, H. Zhao, S. Zhang and R. Li, "A Novel Deep Neural Network Model for Multi-Label
Chronic Disease Prediction," Frontiers in Genetics, vol. 10, p. 351, 2019.

[22] Y. Ren, H. Fei, X. Liang, D. Ji and M. Cheng , "A hybrid neural network model for predicting kidney
disease in hypertension patients based on electronic health records," BMC Medical Informatics
and Decision Making, vol. 19, 2019.

[23] L. Wang, J. Li, S. Guo and N. Xie, "Real-time estimation and prediction of mortality caused by
COVID-19 with patient information based algorithm," Total Environment, vol. 727, 2020.

[24] S. Gupta, G. S. Raghuwanshi and A. Chanda, "Effect of weather on COVID-19 spread in the US: A
prediction model for India in 2020," The Total Environment, vol. 728, 2020.

[25] Z. Ceylan, "Estimation of COVID-19 prevalence in Italy, Spain, and France," The Total Environment,
vol. 729, 2020.

[26] A. S. Ahmar and E. B. del Val, "SutteARIMA: Short-term forecasting method, a case: Covid-19 and
stock market in Spain," The Total Environment, vol. 729, 2020.

[27] D. Fanelli and F. Piazza, "Analysis and forecast of COVID-19 spreading in China, Italy and France,"
Chaos, Solitons & Fractals, vol. 134, 2020.

122

[28] A. Chande, S. Lee, M. Harris, Q. Nguyen, S. J. Beckett, T. Hilley, C. Andris and J. S. Weitz, "Real-
time, interactive website for US-county-level COVID-19 event risk assessment," Nature Human
Behaviour, vol. 4, pp. 1313-1319, 2020.

[29] . Y. Zhou, L. Wang, . L. Zhang, L. Shi and K. Yang, "A Spatiotemporal Epidemiological Prediction
Model to Inform County-Level COVID-19 Risk in the United States," Harvard Data Science Review,
2020.

[30] M. Mehta, J. Julaiti, P. Griffin and S. Kumara, "Early Stage Machine Learning–Based Prediction of
US County Vulnerability to the COVID-19 Pandemic: Machine Learning Approach," JMIR Public
Health Surveill., no. 3, 2020.

[31] A. Y. Ives and C. Bozzuto, "Estimating and explaining the spread of COVID-19 at the county level in
the USA," Communications Biology, vol. 4, no. 1, 2020.

[32] M. Wieczorek, a. Siłka and M. Woźniak, "Neural network powered COVID-19 spread forecasting
model," Chaos, Solitons & Fractals, vol. 140, 2020.

[33] A. I. Saba and A. H. Elsheikh, "Forecasting the prevalence of COVID-19 outbreak in Egypt using
nonlinear autoregressive artificial neural networks," Process Saf Environ Prot, vol. 141, pp. 1-8,
2020.

[34] V. K. R. Chimmula and L. Zhanmg, "Time series forecasting of COVID-19 transmission in Canada
using LSTM networks," Chaos Solitons Fractals, vol. 135, 2020.

[35] P. Arora, H. Kumar and B. Panigrahi, "Prediction and analysis of COVID-19 Positive cases using
deep learning models: a descriptive case study of India," Chaos, Solitons and Fractals, vol.
10.1016, 2020.

[36] S. Shastri, K. Singh, S. Kumar, P. Kour and V. Mansotra, "Time series forecasting of Covid-19 using
deep learning models: India-USA comparative case study," Chaos, Solitons and Fractals, vol. 140,
pp. 1-10, 2020.

[37] F. Shahid, A. Zameer and M. Muneeb, "Predictions for COVID-19 with deep learning models of
LSTM, GRU and Bi-LSTM," Chaos, Solitons and Fractals, vol. 140, p. 110212, 2020.

[38] "USAFACT," [Online]. Available: https://usafacts.org/visualizations/coronavirus-covid-19-spread-
map/.

[39] "List of the most populous counties in the United States," [Online]. Available:
https://en.wikipedia.org/wiki/List_of_the_most_populous_counties_in_the_United_States.

[40] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint, vol.
arXiv:1412.6980, 2014.

123

[41] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, "Dropout: A Simple Way
to Prevent Neural Networks from Overfitting," Journal of Machine Learning Research, vol. 15, no.
56, p. 1929−1958, 2014.

[42] Y. Bengio, P. Simard and P. Frasconi, "Learning Longterm Dependencies with Gradient Descent is
Difficult," IEEE Trans. Neural Networks, vol. 5, no. 2, pp. 157-166, 1994.

[43] G. Zhou, J. Wu, C. Zhang and Z. Zhou, "Minimal Gated Unit for Recurrent Neural Networks,"
International Journal of Automation and Computing, vol. 13, p. 226–234, 2016.

[44] L. Breiman, "Bagging predictors," Machine Learning, vol. 24, p. 123–140, 1996.

[45] P. Hall and R. L. Samworth, "Properties of bagged nearest neighbor classifiers," Journal of the
Royal Statistical Society, Series B, vol. 67, no. 3, p. 363–379, 2005.

[46] B. M. Steele, "Exact bootstrap k-nearest neighbor learners," Machine Learning, vol. 74, p. 235–
255, 2009.

[47] T. Hastie, R. Tibshirani and J. Friedman, The elements of statistical learning, New York: Springer,
2001.

[48] L. Breiman, "Random forests," Machine Learning, vol. 45, p. 5–32, 2001.

[49] T. E. Oliphant, A guide to NumPy,, vol. 1, Trelgol Publishing USA, 2006.

[50] W. McKinney, "Data Structures for Statistical Computing in Python," Proceedings of the 9th
Python in Science Conference, pp. 51-56, 2010.

[51] F. Chollet and others, "Keras," GitHub repository, 2015.

[52] M. Abadi and Others, "TensorFlow: a System for Large-Scale Machine Learning on Heterogeneous
Systems," 12th {USENIX} Symposium on Operating Systems Design and Implementation (OSDI),
vol. 16, pp. 265-283, 2016.

[53] G. a. D. J. F. L. Van Rossum, Python tutorial, Centrum voor Wiskunde en Informatica Amsterdam,
The Netherlands, 1995.

[54] F. a. V. G. a. G. A. a. M. V. a. T. B. a. G. O. a. B. M. a. P. P. Pedregosa, "Scikit-learn: Machine
Learning in Python}," Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

[55] G. Papadopoulos, P. J. Edwards and A. F. Murray, "Confidence estimation methods for neural
networks: A practical comparison," IEEE transactions on neural networks, vol. 12, no. 6, pp. 1278-
1287, 2001.

[56] M. Schuster and K. K. Paliwal, "Bidirectional Recurrent Neural Networks," IEEE TRANSACTIONS ON
SIGNAL PROCESSING, vol. 45, no. 11, pp. 2673-2681, 1997.

124

[57] G. Ganssle, "Neural networks," The Leading Edge, vol. 37, no. 8.

[58] "Rolling-Window Analysis of Time-Series Models," [Online]. Available:
https://www.mathworks.com/help/econ/rolling-window-estimation-of-state-space-models.html.

[59] "Tracking COVID-19 in California," [Online]. Available: https://covid19.ca.gov/state-dashboard/.

[60] D. Hebb, The Organization of Behavior: A Neuropsychological Theory publish, Psychology Press,
1949.

[61] G. E. Hinton, S. Osindero and Y.-W. Teh, "A Fast Learning Algorithm for Deep Belief Nets," Neural
Computation, vol. 18, pp. 1527-1554, 2006.

[62] J. Rocca, "A gentle journey from linear regression to neural networks," 2018. [Online]. Available:
https://towardsdatascience.com/a-gentle-journey-from-linear-regression-to-neural-networks-
68881590760e.

[63] H. R. Niazkar and . M. Niazkar, "Application of artificial neural networks to predict the COVID-19
outbreak," Global Health Research and Policy, vol. 5, 2020.

	EXTENDING BOOTSTRAP AGGREGATION OF NEURAL NETWORKS FOR PREDICTION WITH AN APPLICATION TO COVID-19 FORECASTING
	Let us know how access to this document benefits you.
	Recommended Citation

	Microsoft Word - Dissertation - Final

