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Abstract  

 

Neurodegenerative diseases (NDs) take a wide spectrum of pathologies and have a tendency to 

present themselves later in life. Neurodegenerative diseases affect 6 million Americans annually 

with ~1 million currently living with Parkinson’s disease (PD). One of the greatest contributors 

to the pathogenesis of neurodegenerative diseases is the occurrence of a traumatic brain injury 

(TBI) during life.  

 

All-trans-retinoic acid (atRA) is the active metabolite of Vitamin A. The retinoic acid pathway is 

known to be activated following TBI and is reduced in PD patients. Previous studies found a 

decrease in inflammation and behavioral deficits following administration of Vitamin A or atRA 

post TBI.  Retinoic acid receptor stimulation has been found to protect dopaminergic neurons of 

the substantia nigra. Studies have shown that endogenous atRA within brain tissue supports 

neuronal protection, axonal growth, inflammatory modulation, and glial differentiation. Retinoic 

acid metabolism blocking agents (RAMBAs) are emerging as new therapeutic interventions with 

the goal of increasing endogenous atRA brain concentration, for the treatment of TBI and PD.  

 

Our hypothesis was that instead of directly activating retinoic acid receptors, inhibition of the 

metabolism of atRA produced after central nervous system injury will have a neuroprotective 

effect and reduce the development of neurodegenerative diseases or cognitive impairments 

induced by TBI. This research sourced a newly synthesized RAMBA, DX308, for the purpose of 

confirming its action as a CYP26A1/B1 inhibitor. The aim of this project was to determine 

DX308 binding mode, and to characterize the effect of DX308 on atRA signaling in vitro. 

Modeling DX308-CYP26A1/B1 ligand-protein interaction was performed in order to support 

competitive binding of DX308. Glial- and neuroblastoma cell culture experiments were the 

preliminary investigation into DX308 as a functional RAMBA within the central nervous 

system.  

 

DX308 was shown to have a binding mode similar with tazarotenic acid, and atRA. Treatment of 

SNB19 and SHSY5Y cells with atRA dose dependently modulated retinoid-responsive genes. 

DX308 potentiated the effects of a nanomolar concentration of atRA in SNB19 however, this 

effect was not confirmed in SHSY5Y. Follow up experiments involving SHSY5Y atRA/TPA 

dopaminergic differentiation displayed an altered dopamine receptor expression compared to 

SHSY5Y control cells.  
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1. Introduction & Background 

 Neurodegenerative diseases have long been a challenging area for both research scientists 

and healthcare professionals alike. Characterized by the progressive degeneration of a neuronal 

population, or group of neurons, the pathology progresses to affect cognitive and motor functions 

associated with the central and peripheral nervous system. Unfortunately, the prevalence of 

becoming diagnosed with a neurogenerative disease increases dramatically after the age of 65 

(Prince et. al., 2013).  Genetic and environmental factors contribute to the neurodegenerative 

pathophysiology with most diseases caused by protein misfolding and subsequent aggregation. 

Tauopathies, amyloidosis, α-synucleinopathies, and other misfolded proteins all contribute to 

neurodegenerative diseases such as dementia, Alzheimer’s, Huntington’s, and Parkinson’s 

disease (Dugger & Dickson, 2017). Adding insult to injury, traumatic brain injuries are 

associated with the pathogenesis of α-synuclein and amyloid-beta plaque formation, resulting in 

neurodegenerative diseases such as Alzheimer’s and Parkinson’s in later years of life. While the 

direct mechanisms are unknown associations between the biochemical cascade, cytotoxicity, and 

latent traumatic brain injury signaling sequalae all point to dysfunctional homeostatic process 

revolving around increased inflammatory signaling (Ladak et al., 2019).  

 Current treatments for neurodegenerative diseases often involve barbiturates and 

antipsychotics that target neurotransmitter signaling and transportation, often affecting quality of 

life for patients (Fox et al., 2011). Recently retinoid therapy has been proposed as retinoic acid 

signal transduction is induced after a traumatic brain injury and is reduced in Parkinson’s disease 

patients later on in life. All-trans retinoic acid signaling is shown to be associated with multiple 

genes involved in neurodegenerative pathogenesis and the inflammatory response (Goodman & 

Pardee, 2003). Additionally, endogenous regulation of retinoic acid in the adult brain supports 

neuronal protection, axonal growth, glial differentiation, and inflammatory modulation (Mey, 

2006). This research investigates the potential for a novel RAMBA, DX308, to target atRA 

metabolism in an effort to increase endogenous all-trans retinoic acid signaling. We hope that 

preliminary research for DX308’s use in the central nervous system will allow for future 

therapeutics to treat traumatic brain injuries and subsequent neurodegenerative diseases without 

affecting quality of life in patients.   
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1.1 Traumatic Brain Injury 

 Traumatic brain injuries (TBIs) are caused by blunt force trauma to the head or skull and 

can be classified as an open or closed injury based on the integrity of the skull and dura matter 

(Morrow & Pearson, 2010). The mechanical forces trigger vascular ruptures, glial/astrocyte 

activation, inflammation, and apoptosis resulting in neuronal tissue loss and cognitive 

impairment (Ladak, et al., 2019). TBIs were projected to be the third leading cause of death in 

2020, with 10 million occurring worldwide annually, and the United States accounting for 1.7 

million (W.H.O., 2002). The direct mechanical damage is defined as the primary

Figure 1.1: Traumatic Brain Injury Overview. A) Causation distribution in the United States. B) Ratio of severity. C) Primary and secondary pathophysiology 

and interplay.  

Source: El Hayek et al. (2020), with permissions from Elsevier (lic #: 5120960550404) 
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(1o) insult and is characterized as the physiologic cause of cell death. This 1o injury manifests 

itself as damage to neuronal tissue, blood vessels, and the initiation of the biochemical cascade 

which leads to the secondary (2o) insult, characterized by excitotoxic cell death (Mioni et al., 

2014). The 2o injury, initiated within minutes to hours after 1o insult, is characterized by the 

release of neurotransmitters (NT), cytokines, and transcription factors which form a biochemical 

signaling storm. This biochemical signaling cascade is the molecular basis for the 2o insult and 

causes widespread excitotoxity in the form of nitric oxide (NO), reactive oxygen species (ROS), 

and inflammation that in turn initiate apoptosis and necrosis (Abdul-Muneer et al., 2015) (Figure 

1.1). Traumatic brain injuries can be associated with Alzheimer’s and Parkinson’s disease, 

chronic traumatic encephalopathy, and epilepsy years to decades after the initial injury (Ladak, et 

al., 2019). Current treatments have a wide range of action due to the spectrum or intensity of 

injury. These treatments can range from raising the head and drug administration, to surgical 

intervention (Galgano et al., 2017). Interestingly, recent studies in the murine model show that 

treatment of TBI with all-trans-retinoic acid (atRA) can reduce lesion size, reactive astrogliosis, 

and axonal injury over seven days post injury (Hummel., et al 2020). Taken together, TBIs take 

on a wide spectrum of classifications and depending on the intensity of mechanical impact can 

produce a biochemical cascade which induces glial activation and astrogliosis resulting in cell 

death. Targeting the initiation and proliferation of the 2o insult is a primary target for drug 

intervention.  

1.1.1 Signaling Cascade 

 Following the 1o insult behind a TBI the blood brain barrier and neuronal cells are 

compromised, and excitotoxicity takes place as glutamate (Glu) levels are elevated in the 

extracellular space. Working in coordination with N-methyl-D-aspatic acid (NMDA) receptors, 

Glu and glycine bind to the receptors to cause Ca2+/Na+ influx and further downstream signaling 

that leads to cytotoxicity (Gao, 2016). Depolarization of neuronal populations also occurs after 

TBIs and can be a result of the glutamate storm from damaged vascular tissue (Hinzman et al., 

2016). Membrane depolarization, caused by Ca2+/Na+ influx can activate voltage gated calcium 

channels (VGCCs) that can increase intracellular Ca2+ concentrations and strengthen 

depolarization (Wolf et al., 2001). Continued depolarization leads to further neurotransmitter 

(NT) release and a cyclical process of cytotoxic signaling occurs triggering neuronal damage or 

death and subsequent inflammatory response. Increased calcium levels result in activated 
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calpains, a cystine protease, which is associated with cytoskeleton proteins, membrane proteins, 

cell adhesion molecules, and other protein kinases (Takahashi et al., 1990). Together, calpain in 

the presence of high Ca2+ concentrations compromises membrane integrity across the cell and 

influences signaling kinases for further downstream signaling. Sustained increased Ca2+ 

concentration further degrades the mitochondrion membrane by acting on mitochondrial 

permeability transition pore. Once active, this non-specific pore allows protons and Ca2+ to flow 

freely out of the mitochondria, effectively uncoupling oxidative transport chain and reducing 

adenosine triphosphate (ATP) synthesis. The reduction of ATP energy stores in the cell lead to 

further downstream signaling and necrosis (Halestrap, 2009). Once the mitochondrial membrane 

is compromised and ATP stores are depleted increased ROS and caspase-mediated apoptosis 

lead to cell death (Cheng et al., 2012). This signaling cascade begins minutes to hours after the 1o 

insult and is the primary therapeutic target for pharmacological intervention.  

1.1.2 Neuroinflammation & Gliosis 

 Neuroinflammation is considered to be an essential part of the 2o insult response. This 

process involves a response mediated by microglia, and astrocytes. The release of cytokines and 

damage to blood vessels due to 1o mechanical insult also allows for leukocytes to invade the 

central nervous system (CNS). This initial response is guided by a cytokine storm that can be 

detrimental to neuronal survival (Hernandez et al., 2013). Resting microglia become activated in 

minutes after the 1o insult. Active microglia cells take the form of non-phagocytic and 

phagocytic phenotypic states around the area of injury. Activated microglia become polarized 

into M1 and M2 “classifications” respectively. M1-non-phagocytotic microglia secret 

proinflammatory cytokines and neurotoxins such as: TNF-⍺, IL-1β, IL-6, NO, and ROS. These 

cytokines further damage the blood brain barrier (BBB) and signal additional inflammation 

downstream. M1 microglia also activate induced nitric oxide synthase (iNOS) and Nf-kB 

pathways which lead to neurodegeneration. In contrast, M2-phagocytotic microglia are 

considered to be the anti-inflammatory counterpart to M1 proinflammatory signaling. M2 

microglia macrophages act to clean cellular debris and secret anti-inflammatory cytokines: IL-4, 

IL-10, IL-13, and transforming growth factor β (TGF-β) (Tang, 2016). These anti-inflammatory 

cytokines can work to combat the initial M1 inflammatory signaling. Additionally, M2 microglia 

are identified by Arginase 1 (Arg1) which competes with iNOS to utilize arginine for 

downstream signaling. iNOS uses L-arginine to produce NO and citrulline. Arg1 metabolizes L-
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arginine into urea and ornithine which are precursors to hydroxyproline, proline, and polyamine. 

Hydroxyproline and proline are constituents of collagen synthesis and contribute to extracellular 

matrix and tissue repair; while some polyaimines are required for cell proliferation and 

differentiation (Jenkins et al., 2003; Thomas & Thomas, 2001). This M1/M2 signaling 

competition during neuroinflammation is a prime target for TBI intervention. (Figure 1.2)  

 Reactive astrocytes also play a role in the neuroinflammatory response. Astrocytes are 

primarily responsible for maintaining the blood brain barrier (BBB) but can also produce 

neurotrophic factors, regulate NT and ion concentrations, and protect against neurotoxins.  

Astrocytes are identified by their expression of glial fibrillary acidic protein (GFAP) and 

dramatically increase the expression during a TBI. Astrocytes are pivotal in the formation of a 

glial scar, which occurs during a severe TBI. The glial scar acts to protect the rest of the brain 

from the 1o insult and ensuing 2o inflammatory signaling cascade. Astrocytes also play an 

important role in NT reuptake, specifically glutamate and gamma-aminobutyric acid (GABA). 

Additionally, astrogliosis activates several signaling pathways including: JAK-STAT, Nf-kB, PI-

3K/AKT, MAPK, and many more. All of which play an intersecting role in neuroinflammation 

of the CNS (Sonfroniew, 2009). Modification of these pathways in addition to targeting Glu and 

Figure 1.2: Activated Microglia as Therapeutic Target In Neurodegenerative Diseases. Special interest on guiding differentiation toward 
activated-M2-phagocytotic microglia post injury. 

Source: Tang et al. (2016), with permission from Springer Nature (lic. #: 5117921504519) 
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GABA transporters is a primary focus of therapy surrounding astrogliosis (Kumar & Loane, 

2012).  

1.1.3 Oxidative Stress 

Oxidative stress is a major contributor to the biochemical cascade which leads to apoptosis and 

necrosis following the 1o insult. Superoxide (O2
-
) is the most common ROS following TBI and 

can form H2O2 and OH-, and other ROS. After the 1o insult M1 microglia invade the damaged 

tissue and upregulate nicotinamide adenine dinucleotide phosphate oxidase (NOX2), 

subsequently producing large amounts of ROS (Kumar et al., 2016). ROS can cause a wide range 

of cell signaling dysfunction mediated by: DNA oxidation, lipid peroxidation, protein 

carbonylation, and disruption of the mitochondrial electron transport chain. Disruption of the 

mitochondrial membrane and electron transport chain increases ROS production and reduces 

available energy supplies (Cornelius et al., 2013). Lipid peroxidation damages the mitochondrial 

membrane and produces 4-hydroxylnonenal, a biproduct that dampens astrocyte Glu receptors 

and Ca2+ ATPase activity. This effectively strengthens the 2o insult with increased extracellular 

Glu and intracellular Ca2+ concentrations aiding apoptosis and necrosis. Together, the BBB is 

further compromised and the 1o insult is exacerbated by increasing Glu excitotoxity and Ca2+ 

mediated enzymatic activity (Durmaz et al., 2003; Mustafa et al., 2010).  

1.1.4 Current Treatments 

 Therapeutic intervention for TBIs takes into account several aspects and characteristics of 

the injury. Mild TBI, or concussions, can be treated with something as simple as rest and sleep. 

Most TBIs are diagnosed with magnetic resonance imaging technique. Moderate to severe TBIs 

may require immediate surgical intervention and can use biomarkers to better understand the 2o 

biochemical cascade that is occurring. TBI markers can be found in the blood or cerebral spinal 

fluid and include: GFAP, S100B protein, caspase-3, brain derived neurotrophic factor (BDNF), 

neuron-specific enolase, tau, glutamate, lactate, and others (Lorente, 2017). Current drug 

interventions such as barbiturates or prophylactics aim to lower the metabolic demand of the 

brain and decrease seizure events during early TBIs respectively (Galgano et al., 2017). Further 

interventions try and combat the biochemical cascade that occurs after the 1o insult which can 

have lasting effects for years. N-type calcium channel blockers such as, ziconotide, can improve 

mitochondrial function; while hyperosmolar drugs like mannitol work to decrease intercranial 
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pressure. Amantadine is a NMDA receptor antagonist and combats Glu mediated excitotoxicity 

by halting the flow of ions into the neuron. Interestingly, stem cell therapy could be an option for 

TBI. Grafting stem and progenitor cells to the damaged areas of CNS result in improved 

neuronal recovery (Galgano et al., 2017). Other novel drugs like anti-inflammatory molecule 

MW-151 are being tested in the murine model to alter cytokine signaling and microglia/astrocyte 

activation (Bachstetter et al., 2012). Novel drugs include NOX2 inhibitors which seem to favor 

M2 differentiation and proliferation in the mouse model by combating the production of ROS via 

M1 microglia activation (Kumar et al., 2016). Retinoid therapy has also been proposed for TBI 

intervention, with particular interest on attenuating the 2o insult.  Retinoic acid (RA) signal 

transduction has been shown to be activated when contusions, compressions, and lacerations 

occur in the nervous system (Mey, 2006). Recent studies show that endogenous RA in the brain 

supports neuronal protection, reduces axonal injury, and attenuates inflammatory signaling 

(Hummel et al., 2020). Targeting atRA metabolism by administering a small molecule 

CYP26A1/B1 inhibitor can endogenously increase atRA concentration, and possibly induce 

neuroprotective pathways.  

1.2 Parkinson’s Disease 

 Parkinson’s disease (PD) was first discovered by James Parkinson in 1817 and was later 

diagnosed by the hallmark “shaking palsy” (Obeso et al., 2017). PD is known to be caused by the 

death of dopaminergic neurons in the substantia nigra pars compacta (SNpc) within the basal 

ganglia. Genetic factors are thought to underlie familial PD while sporadic PD is less understood 

and may have environmental underpinnings. Dopaminergic neurons of the SNpc project onto the 

striatum and release dopamine in order to regulate smooth motor movement. Because of cell 

death in the SNpc dopamine signaling is disrupted and PD patients present with motor 

dysfunction such as: tremors, rigidity, bradykinesia, swallowing, and speech difficulties 

(Armstrong & Okun, 2020). Other non-motor dysfunctions such as insomnia, depression, REM 

sleep disorder, and constipation can predate the onset of motor issues as far back as ten years 

(Goldman & Guerra, 2020). Age is a prevalent factor with frequency increasing almost 

exponentially over time, peaking at 80 years old (Driver et al., 2009). Environmental factors such 

as pesticide exposure, TBI, rural living and agricultural occupation, β-blocker use, and well-

water drinking all increase the risk of PD. Interestingly; tobacco smoking, coffee drinking, non-

steroidal anti-inflammatory drug use, calcium channel blocker use, and alcohol consumption all 
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reduce the risk of PD (Noyce et al., 2012). Genetics play a major role in contributing to the 

prevalence of PD. The first gene discovered to be associated with familial inherited PD encodes 

⍺-synuclein (SNCA) (Polymeropoulos, 1997). Leucine rich repeat kinase 2 (LRRK2) is the most 

common cause of dominantly inherited PD while parkin (PARK2) is the most common cause 

behind recessive familial inheritance. (Corti et al., 2011) β-glucocerebrosidase (GBA) was found 

to be the highest genetic risk factor associated with the development of PD (Sidransky & Lopez, 

2012). Taken together, genome wide association studies (GWAS) found single-nucleotide 

polymorphisms within 24 loci, including the genes mentioned above, to be associated with 

developing PD (IPDGC et al, 2014). More than 10 million people are living with PD globally, 

and nearly 1 million Americans are living with PD while 60,000 cases occur annually in the 

USA (Marras et al., 2018).  

1.2.1 Pathology: Lewy Body Formation/Braak Staging 

 Lewy body 

formation within 

the SNpc has been 

the historical 

hallmark of PD 

diagnosis. Lewy 

bodies consist of 

the abnormal 

formation of ⍺-

synuclein (SNCA) 

aggregates, either 

in the cell body 

(Lewy bodies) or 

neurite (Lewy neurites). Missense mutations of the SNCA gene are associated with autosomal 

PD. Missense mutations can cause a substitution of an amino acid resulting in altered protein 

functions. Additionally, multiplications of the gene locus can result in over transcription. In 

either case the result is SNCA aggregation and the eventual formation of Lewy bodies (Devine et 

al., 2011). Over time, Lewy body formation follows Braak stageing hypothesis. In a caudal-

rostral direction starting in the peripheral nervous system and olfactory nuclei (Stage 1), Lewy 

Figure 1.3: Braak Staging Progression in PD. ⍺-synuclein (SNCA) aggregates into Lewy bodies/neurites beginning in the 

peripheral nervous system (Stage 1), ending in complete innervation of the cerebral cortex (Stage 6). 

Source: Braak et al. (2002), with permission from Spring Nature (lic #: 5118931386497) 
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bodies begin to aggregate and progressively affect the CNS. Next, innervating the pons and 

spinal cord gray matter (Stage 2), and affecting the midbrain, limbic system, and basal forebrain 

(Stage 3). After the limbic system, Lewy bodies can be found within the thalamus and temporal 

cortex (Stage 4), with other aggregates forming across the cortical regions in the final stage 

(Stage 5) (Braak et al., 2003) (Figure 1.3). SNCA aggregation and resulting Lewy body 

formation is thought to cause cell death by mitochondrial and nuclear degradation (Power et al., 

2017). Additionally, Lewy neurites have been attributed to synaptic dysfunction and NT 

deprivation (Schulz-Schaeffer, 2010). Interestingly, SNCA is expressed in the enteric nervous 

system with levels increasing with age. Elevated levels of misfolded SNCA is also observed in 

the intestines of PD patients (Bottner et al., 2012). This may be a factor of the preliminary non-

motor dysfunction surrounding constipation and supports the emerging importance of the gut 

brain axis for PD pathology.  

1.2.2 Prominent Genes 

 While SNCA mutation in PD is considered rare, the identification of Lewy bodies led to 

the discovery of other genes associated with monogenic PD (Corti et al., 2011). The most 

common gene associated with autosomal dominate inherited PD, LRRK2, predominately 

undergoes missense mutation, Gly2019Ser, which causes an increase in kinase activity (Ozelius 

et al., 2006). LRRK2 belongs to the leucine-rich repeat kinase family and is involved in multiple 

cellular processes ranging from neurite outgrowth and membrane trafficking to autophagy and 

protein synthesis (Cookson, 2012; Sanna et al., 2012). Gly2019Ser mutations of LRRK2 gene in 

Drosophila reveal pathogenic effects resulting in targeted dopaminergic neuronal cell loss and 

motor locomotion dysfunction (Liu et al., 2008). Other genes that are associated with autosomal 

recessive PD have been identified as well. Autosomal recessive inherited Parkinsonism is 

associated with early onset PD, before 40 years old (Schrag & Schott, 2006). PARK2 is an E3 

ubiquitin ligase that works in coordination with PTEN-induced putative kinase 1 (PINK1) to 

break down and dispose of damaged or polarized mitochondria. Mutations to these proteins 

causes mitochondrial damage and impaired clearance, oxidative stress, and inappropriate Ca2+ 

signaling. All of these factors contribute to neuronal dysfunction and the cell death leading to PD 

pathology (McCoy & Cookson, 2012). Taken together, the genetic constituents that underlay the 

pathogenesis of PD revolve around protein aggregation, membrane trafficking, 

mitophagy/autophagy systems, and mitochondrial health. Observing genetic and molecular 
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mechanisms involving PD pathogenesis also lead to the use of 6-hydoxyl-dopamine 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP) as a model for mitochondrial dysfunction (Smeyne & 

Lewis, 2005).  

1.2.3 Inflammation 

 PD is marked by cell death in the SNpc with additional dopamine (DA) signaling 

dysfunction to the striatum. Genetic mutations and environmental factors cause 

neurodegeneration and Lewy body formation with neuroinflammation playing a central role in 

PD pathology. Innate and adaptive immune systems are active in the CNS inflammatory 

response. Although the brain has a “privileged” immune system, CD4+ and CD8+ T-lymphocytes 

are observed in the SNpc of PD patients in addition to MPTP treated mice (Brochard et al., 

2008). Neurodegeneration activates microglia, gliosis, which allows for active signaling of 

neurotrophic factors and cytokines. Important neurotrophic factors such as: BDNF, and glial-

derived neurotrophic factor (GDNF) are released from activated microglia (Batchelor, 2002). 

BNDF and GDNF are well known to be essential for DA neuronal survival. In vivo and in vitro 

models of PD support the neuroprotective effect of these neurotropic factors on DA neurons of 

the SNpc, mediated by activated microglia (Kirschner et al., 1996; Tomac et al., 1995). In stark 

contrast to the beneficial effects of activated microglia, gliosis often results in the release of 

neurotoxins such as: reactive oxygen/nitrogen species (ROS/RNS), tumor necrosis factor-alpha 

(TNF-⍺), and interlukin-1-beta (IL-1β) (Long-Smith et al., 2009). Incorporating 

neuroinflammation into PD pathology is an important aspect when considering treatment and 

therapeutic targets. Targeting the SNpc with neurotropic signaling constituents could save DA 

neurons and the downstream effect on motor control in the nigrostriatal pathway. 

1.2.4 Nigrostriatal Pathway: Parkinsonian Dysfunction 

 The complete understanding of genetic and environmental factors associated with PD are 

still lacking in many areas; however, the pathogenesis of PD does rely on the death of 

dopaminergic neurons in the SNpc and subsequent loss of dopaminergic signaling to the 

striatum. The nigrostriatal pathway is dependent on the homeostasis of the dopaminergic neurons 

within the SNpc and dysregulation of DA signaling can result in loss of motor control. Within 

the basal ganglia the SNpc projects dopaminergic neurons towards the caudate nucleus and 

caudate putamen, together called the striatum. While input to the striatum originates from the 

SNpc and cortex, output from the basal ganglia is directed toward the thalamus via GABAergic 
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neurons from the globus pallidus interna (GPI). The thalamus directs nigrostriatal signaling 

towards the cortex for smooth movement muscle coordination. The cortex projects glutaminergic 

neurons to the striatum, while the striatum projects GABAergic neurons to the GPI and globus 

pallidus externa (GPE). The GPE then projects GABAergic neurons onto the subthalamic 

nucleus, which in turn projects glutaminergic neurons back onto the GPE and GPI. It is 

important to note that the striatal GABAergic neurons which project to the GPI express 

dopamine-1 receptors (DRD1) while striatal neuronal projections to the GPE express dopamine-

2 receptors (DRD2). These striatal 

projections are considered the direct and 

indirect sequence for the nigrostriatal 

pathway, respectively (Figure 1.4). DRD1 

are excitatory receptors while DRD2 

receptors are considered inhibitory. When 

normal DA is present within the striatum, 

the direct pathway takes control of 

inhibitory projection to the GPI, causing 

active signaling through the thalamo-

cortical spinal pathway. PD pathogenesis 

arises when DA neurons of SNpc die due to 

genetic and environmental reasons 

discussed above. Once DA signaling is reduced or absent the excitatory/inhibitory projections 

from the striatum, mediated by DRD1/DRD2 receptors, becomes dysfunctional. Specifically, the 

indirect pathway takes precedence and causes glutaminergic projections from the subthalamic 

nucleus to become active, thus exciting GABAergic projections from GPI onto the Thalamus. 

This dysfunctional excitation of the GPI causes inhibition of thalamic output to the cortex, 

phenotypically observed as dysfunctional smooth muscle movement or “shaking palsy” (Harris 

et al., 2020).  

1.2.5 Current treatments  

 Current interventions for PD are targeted toward treatment of symptoms with the aim of 

improving quality of life. These therapies often target the DA system including receptors and 

transporters. Levodopa, a BBB permeable dopamine precursor is used for severe symptoms of 

Figure 1.4: Nigrostriatal Pathway. The direct pathway is favored during normal 

dopamine release from substantia nigra pars compacta to facilitate smooth muscle 

movement. The indirect pathway is favored during PD pathogenesis due to lack of 

dopamine signaling.  
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bradykinesia. Since dopamine cannot cross the BBB levodopa is administered in coordination 

with carbidopa, a deoxy-carboxylase inhibitor, in order to prevent the peripheral conversion of 

levodopa to its active metabolite, dopamine, before crossing the BBB. Anti-cholinergic drugs 

such as clozapine can be used to treat tremors.  Unfortunately, these drugs have adverse 

reactions. Dopamine agonists and anticholinergic drugs can cause nausea, daytime sleepiness, 

hallucinations, and compulsive behaviors. Long term treatment seeks to balance dopamine 

concentration fluctuations over time by using monoamine oxidase-β inhibitors in coordination 

with other pharmaceuticals (Fox et al., 2011). Treatment of non-motor symptoms associated with 

PD often target depression. Venlafaxine is a serotonin and norepinephrine reuptake inhibitor and 

pramipexole, a dopamine agonist, seem to be effective in treating depression in PD patients 

(Richard et al., 2012; Barone et al., 2010). Interestingly, aged mice have decreased mRNA levels 

of genes necessary for atRA synthesis and metabolism: Lrat, Reh, RALDH2, CYP26A1. 

Treatment of Vitamin A also resorted memory performance and hippocampal neuronal 

morphology, suggesting that all-trans retinoic acid (atRA) signaling is diminished with age 

(Dumetz et al., 2020). Furthermore, studies using retinoic acid receptor (RAR⍺/β) agonists show 

protection of midbrain dopaminergic neurons following lipopolysaccharide (LPS) induced 

toxicity studies. Oral administration of tamibarotene (Am80), an RAR⍺/β agonist, also prevented 

dopaminergic cell loss in the substantia nigra (Katsuki et al., 2009). Together this research points 

toward atRA therapy as a possible mediator of PD pathogenesis. Small molecule CYP26A1/B1 

inhibitors can raise the endogenous levels of atRA in the cell and mitigate the loss of retinoid 

signaling observed in ageing individuals or patients with PD. Additionally, atRA signaling could 

rescue dopaminergic neurons in the SNpc 

from apoptosis and prevent neuronal loss in 

PD patients.  

1.3 All-trans Retinoic Acid 

  1.3.1 Biosynthesis, Transport, & 

Metabolism of Endogenous Retinoids  

 All-trans retinoic acid is an active 

metabolite of Vitamin A (retinol). Retinol is 

a fat-soluble retinoid derived from a diet 

containing provitamin A carotenoids, 

Figure 1.5: Retinoic Acid Biosynthesis Schematic. Vegetables and meats contain the 

source of carotenoids and retinyl esters respectively. Both are used for the biosynthesis 

of retinoic acid. Retinoids are stored as retinyl esters, predominantly in the liver.   

Source: Libein et al. (2017), with permission from Elsevier (lic. #: 5120971023697)  
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primarily β-carotene (D’Ambrosio et al., 2011) (Figure 1.5). Bioconversion of β-carotene into 

retinal primarily occurs in the small intestine enterocyte and is also thought to occur in the liver 

(Tang et al., 2003). Initially β-carotene undergoes symmetric oxidative cleavage at the 15,15’ 

double bond via beta-carotene oxygenase 1 (BCMO1) to form two molecules of retinal. Further 

reduction by retinal reductase (Rrd) forms retinol, the predominate transport retinoid for blood 

circulation (Tang et al., 2003). Due to its hydrophobic nature retinol forms a trimer with retinol-

binding protein 4 (RBP4) and transthyretin (TTR) in a 1:1:1 ratio in order to halt filtration in the 

kidneys (Raghu & Sivakumar, 2004). 

Storage occurs primarily in the liver 

with active conversion of retinol into 

retinyl esters via lecithin:retinol acyl 

transferase (LRAT). Two 

transmembrane receptors, signaling 

receptor and transporter of retinol 

(STRA6) and retinol binding receptor 

protein (RBPR2), can uptake and 

convey extracellular retinol to cellular 

retinol binding protein type 1 

(CRBP1), the intracellular retinol 

carrier protein. At this point 

intracellularly, two separate oxidation 

reactions occur in order to form atRA. 

Starting with holo-CRBP1, retinol is 

oxidized by retinol dehydrogenase 

(RDH) in a protein-protein 

interaction to form retinal, still bound to holo-CRBP1. Depending on RDH subtype this can 

occur in a microsome (RDH1) or lipid droplet (RDH10) within the cell. From there the 

irreversible conversion of retinal into atRA is carried out by retinal dehydrogenase (RALDH1,2,3), 

again in a protein-protein interaction (Napoli, 2020) (Figure 1.6). Once atRA is formed the 

cellular retinoic acid binding protein (CRABP2) transports atRA into the nucleus for atRA 

directed signaling with subsequent retinoic acid receptors (RARs) located on retinoic acid 

Figure 1.6: atRA Biosynthesis, Signaling, & Storage Pathway. Retinol enters cell and is oxidized 

twice to form atRA. RALDH is irreversible oxidation step in atRA synthesis. 
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receptor elements (RAREs) (Napoli, 2017) (Figure 1.7). Degradation of atRA occurs between 

CRABP1 and cytochrome P450 (CYP26A1/B1) enzymes at the surface of the endoplasmic 

reticulum and creates hydroxyl retinoic acid metabolites (Figure 1.6). 

 Several factors influence this system; either driving the pathway forward toward 

biosynthesis of atRA, or in reverse; ending with retinyl ester storage. CRBP1-apo/holo ratio has 

significant control over the activation of LRAT. Where apo-CRBP1 at ~2uM causes LRAT 

inhibition, driving RDH mediated formation of retinal via protein-protein interaction with 

retinol-holo-CRBP1.  A high concentration of apo-CRBP1 drives the atRA biosynthesis pathway 

forward by making retinal available for the irreversible oxidation by RALDH into atRA, while 

also halting the storage of retinol into retinyl esters. In contrast, atRA self regulates its 

intracellular concentration by inducing CYP26s (CYP26A1/B1/C1) and Lrat transcription, 

effectively directing the pathway toward atRA metabolism and retinyl easter storage, 

respectively (Napoli, 2020). Interestingly, retinol and atRA are considered teratogenic and 

exhibit hormesis. Hormesis is characterized by a beneficially effective dosage following an 

upside down “J” curve, where increasing low dosage enters a “goldilocks” zone before additional 

dose increases cause toxicity at high concentrations (Hayes, 2007). For healthy adults atRA 

plasma concentrations are around 2nM with 1uM being the peak concentration for therapeutic 

doses (Jing et al., 2016: Adamson et al., 1995). The biosynthesis, transport, and metabolism of 

retinoids must be highly regulated in order for proper transcription of gene targets.  

1.3.2 atRA Regulation & Canonical Signaling  

After biosynthesis of atRA is 

completed in the cytosol, holo-CRABP2 

moves into the nucleus and directs atRA 

to retinoic acid receptors RAR⍺,β,𝛾 

(RARs) via protein-protein interaction. 

In contrast, CRABP1 does not associate 

with RARs in the nucleus, but instead 

transfers atRA through diffusion 

(Napoli, 2017). atRA signaling takes 

place in the nucleus and is mediated 

through RAR/RXR dimer signaling. 

Figure 1.7: Canonical Retinoic Acid signaling Pathway. 

Source: Pohl & Tomlinson (2020), with permission from Elsevier (lic #: 5132001432519 

)  
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RARs and RXRs belong to the nuclear receptor superfamily and form functional heterodimers 

between each other when atRA is present (Figure 1.7). Additionally, RXR/RXR homodimers can 

form when 9-cis-RA is present. The RAR-RXR nuclear receptors, found at retinoic acid response 

elements (RAREs) on the DNA, undergo conformational change when bound to atRA causing the 

RAR/RXR heterodimer complex to form, releasing the co-repressors, and recruiting co-activators 

(Germain et al., 2006a: Germain et al., 2006b). Classical RAREs are defined by a combination of 

hexametric motifs [(A/G)-G-(G/T)-T-C-A] designated “direct repeats 1-5” (DR1-DR5). These 

repeats are separated by 1, 2, or 5 base pairs (Bastien et al., 2004). Other non-canonical RAREs 

contain sequences with different spacing (DR0, DR8) or inverted repeats (IR0) (Moutier et al., 

2012). This research utilized a GWAS study analyzing RARβ transcriptional target sites in order 

to better understand downstream targets of atRA signaling in neurodegenerative diseases 

(Niewiadomska-Cimicka et al., 2017; 

Supplemental Data, Gene List 1-3). 

Structurally, RAR/RXRs have a 

variable N-terminal domain (AF-1), a 

conserved DNA-binding domain 

(DBD), and a C-terminal ligand-

binding domain (LBD). The LBD 

contains the ligand-dependent 

activation function (AF-2), which 

allows for coregulator interaction. Not 

surprisingly, the LBD also binds to 

atRA for dimerization to occur. The 

AF-1 contains phosphorylation sites 

that can interact with Src-homology-3 

and tryptophan-tryptophan (WW) 

domains (Gronemeyer et al., 2004). 

The DBD contains two zinc binding 

motifs: an N-terminal recognition 

helix, and a DNA stabilizing helix. 

The LBD is organized in an “anti-

Figure 1.8: Crystal Structure RARβ-RXR⍺ Heterodimer. Nuclear receptors bound to DNA, 

ligand (RA), and coactivators. Ligands (yellow spheres), RAR-RXR co-activator binding surface 

(cyan, Helix 12) and dimerization surface (orange), Co-activator peptides (magenta) (PBD, 5UAN).  
Source: Maire et al. (2020), with permission from Elsevier (lic. #:5113781026721) 
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parallel ⍺-helical sandwich,” which is comprised of 12 helices (H1-H12). The H12 C-terminal 

helix modulates the binding of transcriptional coactivators in a ligand dependent manner (Chandra 

et al., 2017) (Figure 1.8). 

RAR/RXR heterodimers act as transcriptional activators or repressors depending on the 

presence of atRA. Additionally, inverse agonists can act on RAR/RXR complex to become 

associated with co-repressors. Functionally, co-activators bind to RAR/RXR nuclear receptor 

interacting domains (NRIDs) when atRA is present in the receptor. NRIDs are comprised of three 

to four repeats of LxxLL motifs. Hydrophobic interactions between leucine residues and hydrogen 

bonds formed with RAR/RXR H3/H12 helices account for protein-protein interaction (Figure 1.8). 

NCoA1(steroid receptor co-activator-1) is a well-known co-activator with seven LxxL motifs 

(Spencer at al., 1997). Co-repressor recruitment occurs when atRA is not present and is similar to 

co-activator recruitment with the motif and helices changed. Importantly the H12 helix is not 

involved in co-repressor binding. SMRT and N-Cor (Silencing mediator of retinoic and thyroid 

hormone repressor, Nuclear co-repressor) are well known co-repressors that contain three 

functional LxxI/HIxxxI/L receptor box motifs (CoRNR 1-3). RAR/RXR H3/H4 helices form a 

hydrophobic surface which allows for CoRNR docking.  After docking, confirmational changes 

create an antiparallel β-sheet between the proteins at the N-terminus further strengthening the co-

repressor interaction. (le Maire et al., 2010) In general, coactivators acetylate histones while 

corepressors recruit histone deacetylases (HDACs) (Heinzel et al., 1997: Nagy et al., 1997). In 

effect, co-activators and repressors act to relax or condense chromatin allowing for transcription 

or repression of regulated genes downstream. Once atRA is bound to the RAR/RXR/RARE 

complex co-repressors are released and co-activators are recruited followed by histone acetylation 

which relaxes the chromatin while RNA polymerase II is recruited for transcription of target genes. 

After transcription signaling is achieved RAR/RXR is ubiquitinated for degradation via a 

proteasome (Kopf et al., 2000). This dynamic system allows for atRA to act as signaling molecule 

for downstream regulation of target genes.  

1.3.3 Non-Canonical atRA signaling 

 Past research has uncovered ~15,000 potential RAREs through RAR chromatin 

immunoprecipitation coupled sequencing (Delacroix et al., 2010; Mahony et al., 2011; Marten et 

al., 2010; Mendoza et al., 2011; Ross-Innes et al., 2010). Other genome-wide association studies 

(GWAS) identified RAR/RXR regulated genes (Al Tanoury et al., 2014; Fang et al., 2013; 
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Penvose et al., 2019; Niewiadomska-Cimicka et al., 2017). These sites should follow canonical 

gene regulation by atRA as mentioned in section above. In contrast, the non-canonical gene 

regulation by atRA is not mediated by RAR/RXR guided transcription but instead utilizes the 

CRABP1 carrier protein to modulate mitogen-activated protein kinase (MAPK) signaling (Park 

et al.,2019a).  

 In the presence of growth factors MAPK signaling pathway utilizes RAF-MEK-ERK 

cascade for cell growth and proliferation. In the absence of growth factor stimulation holo-

CRABP1 interacts directly with rapidly accelerated fibrosarcoma kinase (RAF) to serve as a 

signal scaffold, conveying RAF to MEK and ERK, resulting in ERK1/2 phosphorylation. 

Interestingly, this also occurs under a rapid time dependent manner, peak 15 minutes, in a non-

genomic fashion. Conversely, holo-CRABP1 in the presence of growth factors can act as a 

competitive agonist compared to RAS binding with RAF. Taken together, holo-CRABP1 can act 

as a modulator of MAPK 

signaling in a growth factor 

dependent manner (Park et al., 

2019a) (Figure 1.9). CRABP1 

also plays a non-canonical 

regulatory role in 

cardiomyocytes when bound 

to atRA. In the presence 

elevated intracellular calcium 

or isoproterenol stimulation 

Ca2+/calmodulin (CaM) binds 

to CaMKII causing 

autophosphorylation of T287 and autonomous kinase activity. CaMKII then goes onto 

phosphorylate ryanodine receptor (RyR2) on the sarcoplasmic reticulum for endogenous Ca2+ 

release. Holo-CRABP1 inhibits CaM autophosphorylation and therefore dampens the Ca2+ 

release response when atRA is present. This in turn protects against overexcitation in 

cardiomyocytes (Park et al., 2019b). These non-canonical atRA signaling pathways provide new 

therapeutic models for retinoid therapy and may be applied to the excitotoxity following TBI. 

 

Figure 1.9: MAPK Signaling Pathway Under Retinoic Acid & Growth Factor Stimulation. Canonical 

MAPK signaling in the presence of growth factor (Left). Non-canonical MAPK signaling directed by retinoic 

acid when growth factor is absent (Center). RA mediated dampening of MAPK signaling as competitive agonist 

to Ras binding domain (Right).  

Source: Park et al. (2019a), Springer Nature Open Access.  
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1.3.4 Retinoic acid in the Adult Brain 

 Identification of RALDH expression found that stable RA synthesis in the postnatal brain 

mainly occurs in the basal ganglia, hippocampus and auditory afferents in the adult brain 

(Wagner et al., 2002). Additionally, RALDH1 is expressed throughout blood vessels in the brain 

while RALDH2 is found primarily in the olfactory bulb, where adult neurogenesis can occur. In 

coordination with possible RA synthesis in these areas, RAREs were identified in limbic 

structures, dorsal horn of spinal cord, and periglomerular layers of the olfactory bulb (Thompson 

et al., 2002). RAR receptor expression is diverse across the adult brain with RAR⍺ being 

relatively highly expressed within the hippocampus and cortex. Interestingly, RARβ is fairly 

localized to the caudate putamen and nucleus accumbens and is more highly expressed than 

RAR𝛾 (Krezel et al., 1999). RARβ and RARβ/𝛾 knock out mice show a loss of CA1 region in 

the hippocampus and have reduced long-term potentiation (LTP) and long-term depression 

(LTD) (Chiang et al., 1998). atRA can act as a natural regulator of DRD2 receptors in 

developing primary striatal neurons in rats through RARE directed signaling (Valdenaire et al., 

2002). This is important because DRD2 null mutation mice present with Parkinson-like motor-

locomotion phenotype (Fowler et al., 2002). Additionally, RALDH1 is specifically expressed in 

substantia nigra neurons which synapse on the striatum (McCaffery & Drager, 1994). This is 

interesting because RA signaling and RALDH expression decreases with age, supporting a 

possible role for RA signaling in memory (Dumetz et al., 2020). Taken together the expression 

of atRA synthesis machinery with RARs/RAREs suggest that atRA signaling is an important 

factor in the regulation of neurogenesis, locomotion, memory, and learning in the adult brain. 

The possibility of atRA signaling rescuing dopaminergic neurons and DRD2 signaling between 

the substantia nigra and striatum is a primary target for PD drug interventions.  
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2. CYP26A1/B1 & DX308 Modeling Investigations 

  2.1 Cytochrome P450: CYP26A1/B1 

 CYP26A1 and CYP26B1 belong to the cytochrome P450 superfamily of heme-

containing enzymes. Cytochrome P450 

enzymes are primarily located in the 

membrane of the endoplasmic reticulum 

within liver, intestine, lung, kidney, and 

brain tissue (Ding & Kaminsky, 2003). 

Fifty-seven P450 enzymes within 

humans are responsible for the oxidation 

and reduction of most drugs used today, 

with the predominate isoforms identified 

to be: CYP1A1/A2, 

CYP2B6/C8/C9/C19/D6/E1, and 

CYP3A4/A5 (Guengrich, 2005). Other isoforms involved in homeostatic maintenance involve: 

CYP4B1/F2/F12. CYP17A1, CYP19A1, CYP26A1/B1/C1. Catalytic activity requires electron 

donations from NADPH with additional redox constituents, cytochrome P450 reductase and 

cytochrome b5, to aid in the electron transfer (Schenkman & Jansson, 1999). Because of 

cytochrome P450 extensive mediation of drug metabolism and homeostatic functions, these 

enzymes are a primary target for therapeutic drug intervention. Retinoic acid metabolizing 

blocking agents (RAMBAs) inhibit cytochrome P450s through type II interaction which involves 

an sp2 hybridized nitrogen for heme iron coordination (Schenknman & Jansson, 2006).  

 CYP26A1/B1/C1 are the predominate cytochrome P450 enzymes responsible for the 

oxidative metabolism of atRA. CYP26A1/B1 are expressed at low levels in most tissues of the 

adult human brain with the highest levels of expression observed in the pons and cerebellum 

(White et al., 2000). A more recent study involving the rat brain has found CYP26B1 expression 

within the striatum (Stoney et al., 2016). Together, the general expression of atRA metabolizing 

CYP26 enzymes throughout the brain with specialization occurring in the pons, cerebellum, and 

possibly striatum supports the homeostatic function of retinoid signaling in the brain. Targeted 

inhibition of CYP26A1/B1 enzymes with the specific purpose of increasing endogenous atRA 

concentration is the primary focus of this research. Modeling began with the comparisons of both 

Table 2.1: Novel RAMBA Library. CYP26A1/B1 IC50 values for comparison of selective 

inhibitor. Special interest for structure DX308 (2) for having equal inhibition of 

CYP26A1(IC50=0.05 uM) and CYP26B1 (IC50=0.05uM). 

 

CdId Structure MW Formula ID_Struc CYP26A1 IC50 uM CYP26B1 IC50 uM A1/B1

1 398.50 C27H26O3 CD437

0.04 0.03 1.34

2 405.54 C26H31NO3 DX0308

0.05 0.05 1

3 412.53 C28H28O3 CD271

0.12 0.17 0.68

4 391.51 C25H29NO3 DX0314

1.75 0.11 16.22

5 398.50 C27H26O3 CD1530

0.53 0.8 0.65
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atRA and major metabolites with a known RAMBA (R116010) and previously modeled 

xenobiotic substrate, tazarotenic acid. Previous research carried out in the Diaz lab positively 

identified CYPP26A1/B1 inhibitors with repeated IC50 assays (*data unpublished). IC50 assays 

were carried out by expressing CYP26A1/B1 in SF9 cells and preparing microsomal fractions. 

100nM 9-cis-RA was used as the substrate and formation of the metabolite 9-cis-OH-RA was 

measured by HPLC. Following positive identification of CYP26 inhibitors further examination 

of a novel Diaz compound, DX308, was used in parallel comparison to previously known 

RAMBAs (Table 2.1). 

2.2 Experimental Approach: Docking of DX308 in CYP26A1/B1 Homology 

Models 

 DX308 has been shown to inhibit CYP26A1/B1 but no experiments have been performed 

to show that DX308 binds to the active site of CYP26A1/B1. Our hypothesis is that DX308 bind 

in a similar way to natural or synthetic retinoids such as atRA and tazarotenic acid. We decided 

to use CYP26A1 and B1 homology models based on previous published work (Foti et al., 2016) 

to demonstrate that DX308 is a competitive CYP26 inhibitor mimicking retinoid structure 

binding modes.  

 Since neither CYP26A1 nor CYP26B1 has been isolated for Xray-crystallography, 

homologs were used from previous research carried out by Foti et al., 2016 and Foti, Diaz & 

Douguet 2016. In 2016, the homology models of CYP26A1/B1 were constructed using Prime 

(Schrödinger LLC, New York, NY). Both amino acid sequences of human CYP26A1/B1 were 

sourced from NCBI protein server (Gene ID: 1592/56603). The crystalized structure of CYP120 

(pdb: 2VE3) was used as a template to create both homology models. CYP26A1/B1 had 

33%/34% sequence identity and 53%/54% positive sequence coverage respectively. The heme 

prosthetic group was ligated to Cys 442 and Cys 441 of CYP26A1 and CYP26B1 respectively. 

Energy minimalization was carried out with OPLS_2005 and force-field constraints were defined 

within the MacroModel algorithm (Schrödinger). The homology model was structurally 

rationalized by evaluating Ramachandran plots and odd bond lengths and angles via PSIPRED 

(university College London, UK). SSPro (Schrödinger) software allowed for comparison of 

helical loop motifs and two-degrees-of-freedom structure characteristics to determine model 

flexibility. Once the homology models were created, the protein data bank (.pdb) files were used 

in the Foti et al., 2016a publication to identify Tazarotenic acid as a xenobiotic substrate of 
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CYP26A1/B1. Additionally, the .pdb files were used in the Foti, Diaz & Douguet 2016 

publication to model ketoconazole and R115866. For the purposes of the current 2020-2021 

research project the .pdb files were again used to compare novel CYP26A1/B1 inhibitor, DX308, 

against known CYP26 inhibitors; R116010, and the previous xenobiotic substrate, tazarotenic 

acid (Supp. Data, CYP26A1, CYP26B1 .pdb files). Both .pdb files underwent a BLAST 

sequence search in NCBI to confirm that we were working with 100% human CYP26A1/B1 

enzymes. After confirmation, the .pdb files were used in Flare V3.0 modeling software for all 

ligand comparisons. All ligands were created in Flare V3.0 modeling software in addition to 

energy minimalization and ligand-protein docking. The docking grid was set up in an identical 

fashion to Foti et al., 2016a paper; where the center of the grid was placed 2-3 Å above the heme 

iron, with a 12 x 12 x 12 Å grid constructed around the center. Initial docking of atRA and major 

metabolites, 4-OH-RA and 16-OH-RA, compared active residues with previous modeling carried 

out by Foti et al., 2016. Further docking of Tazarotenic acid, R116010, and DX308 was 

performed in order to observe and compare active residues between the different modeling 

software. These modeling investigations indented to support DX308 as a novel RAMBA by 

showing similarities to the binding conformations of tazarotenic acid, R116010, and atRA 

metabolites with respect to the heme iron and active residues.  
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2.3 atRA substrate & Metabolite Comparison Results 

 Initial modeling investigations with the Flare V3.0 software overwhelmingly supported 

previous model docking poses observed with GlideScore and eModel (Schrödinger; Foti et al., 

2016a). The primary residues involved with protein ligand interaction for atRA, 4-, and 16-OH 

metabolites had almost identical overlap. Trp 112, Phe 222, Phe 299, Arg 90 residues were 

active in the CYP26A1 binding pocket. This corresponds to Trp 117, Phe 222, Phe 295, Arg 95, 

Trp 65 within CYP26B1. With respect to previous modeling; Arg 90 (CYP26A1) and Arg 95, 

Trp 65, and Tyr 372 (CYP26B1), are all overlapping active residues that orient the carboxylic 

tail of atRA and the major metabolites within the 3.0 Å distance previously observed. This is also 

further supported by residues that orient hydrophobic the β-ionone ring toward the heme; Trp 

112, Phe 222, Phe 299 (CYP26A1) and Trp117, Phe 222, Phe 295 (CYP26B1). Foti et al., 2016 

also reported that 4-OH metabolite is metabolically unfavorable compared to 16-OH. This was 

proposed due to the measurements made between the hydrogens at 4-, 16- position of atRA 

relative to heme iron. Our research found similar results with 4-OH-RA to be 5.6 Å (CYP26A1) 

and 6.5 Å (CYP26B1) compared to 5.59 Å and 4.06 Å observed by Foti et al; while 16-OH-RA 

is closer to the heme iron at 3.9 Å for both CYP26A1/B1, supporting Foti et al., observations of 

3.9 Å/2.9 Å for CYP26A1/B1 respectively. (Table 2.2, Figure 2.1) Taken together, these 

measurements support the previously observed ligand orientation relative to the active residues 

Figure 2.1: Molecular Modeling of CYP26A1/B1-atRA/Metabolites. CYP26A1/B1 ARG90/95 <3 Å away from carboxylic moiety. atRA 

metabolite favors 16-OH-RA with respect to distance from heme to active carbon (4-OH-RA: 5.6/6.5 Å vs. 16-OH-RA 3.9 Å). Distances 

consistent with Foti et al. (2016a). A) CYP26A1 bound atRA vs. 4-OH-RA metabolite. B) CYP26A1bound atRA vs. 16-OH-RA metabolite. 
C) CYP26B1 bound atRA vs. 4-OH-RA metabolite. D) CYP26B1bound atRA vs. 16-OH-RA metabolite.  
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within the binding pocket. Further support is warranted due to overlapping distances between 

specific target residues controlling carboxylic and β-ionone/heme ring orientation. These results 

are relatively significant since the docking software was different between both experiments, 

only sharing the original .pdb files and docking grid constraints. Further docking of previously 

investigated tazarotenic acid, a RAMBA, and DX308 should continue to support the viability of 

synthetic retinoid docking with CYP26A1/B1 enzymes.  

2.4 Tazarotenic Acid, R116010, & DX308 Comparison Results 

 Modeling of Tazarotenic acid in comparison to Foti et al., 2016a further supported ligand 

docking orientation with respect to CYP26A1/B1 binding pocket described above. Overlap of 

active residues between both investigations include: Arg 90, Trp 112, Phe 222, Thr 304, Gly 372, 

and Pro 478 for CYP26A1; while active residues for CYP26B1 include: Arg 95, Trp 117, Phe 

222, Phe 295, Tyr 372, and Trp 65. Relative distance from the sulfur atom of the 

benzothiopyranyl ring and the heme iron were found to be 5.5/5.9 Å compared to previously 

reported 4.21/4.07-4.11 Å for CYP26A1/B1 respectively. While these distances are >1 Å both 

models report hydrogen bonding interactions between the carboxylic moiety and pyridinyl 

nitrogen with Arg 90 and Gly 372 of CYP26A1 respectively. (Figure 2.2, Table 2.2) Together 

this docking orientation overlap supports using the homology model as a rough assessment for 

RAMBA docking.  

Figure 2.2: Molecular Modeling CYP26A1/B1-Tazarotenic Acid. Tazarotenic bound to CYP26A1/B1 in similar fashion to Foti et al (2016a) 

with carboxylic moiety <3 Å from ARG90/95 residue and benzothiopyranyl ring oriented toward heme iron for formation of tazarotenic acid 
sulfoxide. A) CYP26A1 bound to tazarotenic acid. B) CYP26B1 bound to tazarotenic acid. 
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 R116010 was used 

by Armstrong et al., 2007 

for targeting retinoic acid 

metabolism in SHSY5Y 

neuroblastoma cell line. Our 

research intended to mimic 

the cell culturing experiment 

with a novel RAMBA, 

DX308. For this reason, 

R116010 compound was 

used in CYP26A1/B1 

docking investigations to 

further support ligand 

orientation for the homology 

models. Specific interest 

was taken to observe similar 

active residues found to be 

necessary for Tazarotenic 

acid orientation. In 

coordination with active 

CYP26A1 residues we 

observed Pi- interactions 

between Trp 112/Phe 222 

and the aromatic moieties of 

both ligands, R116010 and 

Tazarotenic acid. 

Corresponding CYP26B1 

residues include: Trp 117, Phe 222, and Trp 65. Additionally, work carried out by Foti, Diaz & 

Douget 2016b docking ketoconazole and R115866 places the sp2 hybridized nitrogen within the 

imidazole ring < 3 Å away from the heme iron. Our modeling observations of R116010 docking 

also shows imidazole orientation toward the heme iron at < 3 Å, supporting an active type II 

Figure 2.3: Molecular Modeling CYP26A1/B1-R116010. RAMBA used in SHSY5Y atRA response experiments 
carried out by Armstrong et al. (2007) JML_135 modeled same cell line with different RAMBA, DX308. Ligand 

has loss of carboxylic orientation, gain of type II azole-heme interaction with 3-N-Heme distance <3 Å.  A) 

CYP26A1 bound to R116010. B) CYP26B1 bound to R116010.  
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binding interactions previously observed. (Figure 2.3, Table 2.2) Comparisons of active residue 

location with ligand orientation supports a heme-oriented imidazole with aromatic interactions 

stabilizing the rest of the molecule. Comparisons with DX308 were intended to further support 

this orientation and add information on the heme interactions which could possibly take place on 

the sp2 hybridized oxygen within the attached methoxy.  

 DX308, our novel CYP26A1/B1 inhibitor, had similar binding orientation with respect to 

all other molecules observed. 

Interestingly DX308 incorporated a 

diverse set of residues compared to 

atRA, Tazarotenic acid, and R116010 

alone. Active residues include: Thr 

304, Trp 112, Phe 222, Pro 478, and 

Arg 90 for CYP26A1. Corresponding 

residues in CYP26B1 include: Arg 95, 

Trp 65, Tyr 372, and Ser 369 with Phe 

295 and Trp 117 coordinating the 

hydrophobic adamantly group. DX308 

utilizes Arg 90/ Arg 95 hydrogen 

interactions with the carboxylic moiety 

similar to atRA, metabolites, and 

R116010. Additionally, Pi- interactions 

between aromatic moieties with Phe 

222, Trp 112, Trp 117 all support bulk 

hydrophobic orientation toward the 

heme group. Finally, measurements 

between the heme iron and sp2 

hybridized oxygen attached to 

benzo/adamantyl moiety is 4.0 Å/4.4 Å 

for CYP26A1/B1 enzymes 

respectively. While this is > 3 Å 

reported by Foti, Diaz & Douget 

Figure 2.4: Molecular Modeling CYP26A1/B1-DX308. DX308 bound to CYP26A1/B1 contains 

multiple interactions with active residues found across previous ligands. Carboxylic moiety orients 

toward ARG90/95 with a distance < 3 Å, hydrophobic benzo-adamantyl moiety oriented toward 

heme, with heme-methoxy distance 4.0/4.4 Å. A) DX308 bound to CYP26A1. B) DX308 bound to 
CYP26B1.  
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(2016) it does allow the possibility for type II binding interactions previously modeled and 

reported. Together DX308 is a viable candidate for inhibition of CYP26A1/B1 enzymes; 

furthermore, particular interest has been noted for specific analogs which allow for previously 

reported orientation. These include the attached adamantyl, methoxy, and butyric acid analogs 

needed for hydrophobic/heme orientation and carboxylic acid interactions. Generally, modeling 

investigations supported previous research and these homology models are an initial step in 

understanding the feasibility for current and future selective CYP26A1/B1 RAMBAs.  

 Our modeling experiments demonstrate that DX308 binds to the active site of CYP26A1 

and CYP26B1 and has a similar binding mode to Tazarotenic acid and atRA forming interaction 

between the carboxylic acid of DX308 and residues Arg95, TYR372 and TRP65 in CYP26B1 

and ARG90 in CYP26A1. These interactions are not found for R116010. Hence DX308 

represents a substrate-based CYP26 inhibitor not interacting with retinoic acid receptors. 
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Substrate Residue Distance Residue Distance CYP26A1 CYP26B1

atRA ARG 90 2-5 A ̊ ARG 95 2.4-4.9 A ̊ < 3.0  A ̊ < 3.0  A ̊

4-OH-RA ARG 90 2-5 A ̊ ARG 95 2.4-4.9 A ̊

HEME-Fe 5.6 A ̊ HEME-Fe 6.5 A ̊ 5.59 A ̊ 4.06 A ̊

16-OH-RA ARG 90 2-5 A ̊ ARG 95 2.4-3.4 A ̊

HEME-Fe 3.9 A ̊ HEME-Fe 3.9 A ̊ 3.9 A ̊ 2.99  A ̊

Tazarotenic Acid PHE 299 4.4 A ̊ PHE 295 3.0 A ̊

PHE 222 3.5 A ̊ PHE 222 4.9 A ̊

ARG 90 2.4-4.8 A ̊ ARG 95 2.7-3.7 A ̊

TRP 112 3.2 A ̊ TRP 117 (4.4) A ̊

GLY 372 2.7 A ̊ TYR 372 2.0 A ̊

HEME-Fe 5.5 A ̊ TRP 65 1.9-3.7 A ̊

HEME-Fe 5.9 A ̊ 4.21  A ̊ 4.07-4.11  A ̊

R116010 PHE 299 4.8 A ̊ PHE 295 3.5 A ̊

PHE 222 3.6-9 A ̊ PHE 222 4.4 A ̊

TRP 112 4.8 A ̊ TRP 117 3.1 A ̊

GLY 372 3.9 A ̊ THR 372 2.9 A ̊

HEME-Fe 2.3 A ̊ TRP 65 2.7 A ̊

HEME-Fe 2.3 A ̊

DX308 PHE 299 (4) A ̊ PHE 295 3.4 A ̊

PHE 222 3.4 A ̊ PHE 222 4.3 A ̊

ARG 90 1.8-3.7 A ̊ ARG 95 2.1-4.1 A ̊

TRP 112 (4.1) A ̊ TRP 117 (3.4-5) A ̊

THR 304 3.0 A ̊ TRP 65 1.8 A ̊

HEME-Fe 4.0 A ̊ SER 369 2.8 A ̊

TYR 372 2.2 A ̊

HEME-Fe 4.4 A ̊

CYP26A1 CYP26B1 Foti/Diaz Model

Table 2.2: CYP26A1/B1 Modeling Measurements. Modeling software Flare compared to previous work with GlideScore and 

eModel software (Schrödinger). Respective distances for active residues used to support DX308 active binding and inhibition of 

CYP26A1/B1 enzymes via type II interaction.  
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3. Novel CYP26 Inhibition of Retinoic Acid Clearance via DX308 

 

 

3.1 Introduction 

 These studies are intended to be preliminary investigations into the effects of DX308 as a 

novel RAMBA, primarily targeting CYP26A1/B1 atRA metabolism within the central nervous 

system. Previous research had selected the compound from a library of positively identified 

CYP26-inhbitors (Table 2.1). Further in vivo studies looked at DX308 active reduction of TBI 

pathology in a murine model. The purpose of this research is to test DX308 potentiation of an 

atRA response in order to mimic current retinoid-based therapies. This study defines an atRA 

response as a significant increase in gene transcription of CYP26A1 as a factor of endogenous 

atRA signaling (Zolfaghari, et al., 2020). RAR⍺,β,𝛾 are also used as a positive identification for 

active RARE signaling of prospective genetic targets (Pohl et al., 2020). Our hypothesis is that 

DX308 will competitively inhibit the degradation of atRA at endogenous concentration by 

CYP26A1/B1 in neuronal and glial cell line models.  The Aim were 1) to assess the expression 

of CYP26A1 and CYP26B1 in SNB19 and SHSY5Y cells; 2) to characterize the effect of 

retinoic acid signaling activation on these two CYP26s; 3) to demonstrate that cotreatment of 

these cell lines with DX308 and a nanomolar concentration of RA similar to endogenous 

concentration will result in an increase of atRA signaling activation using CYP26A1 as a marker 

of direct RAR activation and CYP26B1 indirect activation; 4) to assess the effect of DX308 on 

the differentiation of SHSY5Y cells, 

  Effective potentiation of atRA via DX308 is defined within the context of an active 

RAMBA. In order for a RAMBA to be considered active; co-treatments of DX308 with low 

doses of atRA (1nM)   create the same, or increased, atRA response as a high dose atRA 

treatment (1uM) alone compared to control. Observations of identical atRA doses will result in 

increased atRA response in the presence of a RAMBA. Additionally, RAMBA treatments alone 

Table 3.1: Experimental Summary. SHSY5YDiff undergoes 10uM atRA treatment day 0-3, followed by 80nM TPA treatment from day 3-6 (atRA/TPA regiment). 

SHSY5YDiffDX undergoes the same atRA/TPA differentiation regiment (reg.) with additional 1uM DX308 24hr treatment for a total of 7 days before harvest. 

 

Experiment # Type Of Cell Used Tretments Genes Panel

jml_101 SNB-19 0.1% DMSO: 1uM atRA: 1nM atRA 36B4, CYP26A1, CYP26B1, RARa, RARb, RARg

jml_111 SNB-19 0.1% DMSO: 1uM atRA: 1nM atRA: 100nM DX308: 1nM atRA + 100nM DX308: 10nM atRA: 10nM atRA + 10nM DX308 36B4, CYP26A1, CYP26B1, RARa, RARb, RARg

jml_127 SHSY5Y 0.1% DMSO: 100nM atRA: 10nM atRA: 1uM DX308: 100nM atRA + 1uM DX308: 10nM atRA + 1uM DX308 36B4, CYP26A1, CYP26B1, CRABP2, RARb, DRD2

jml_135 SHSY5Y+ SHSYDiff 0.1% DMSO: 10uM atRA + 80nM TPA (regiment) 36B4, CYP26A1, CYP26B1, DRD1, DRD2, DRD3

jml_141 SHSY5Y + SHSYDiff + SHSYDiffDX 0.1% DMSO: atRA/TPA: atRA/TPA + 1uM DX308 36B4, CYP26A1, CYP26B1, DRD1, DRD2, DRD3
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will not have an effect on atRA response. Taken together, a RAMBA treatment alone will not 

activate the atRA response, but under co-treatment with atRA exhibit an increase in active atRA 

response, indicating effective RAMBA inhibition of atRA metabolism.  

This study used two human derived cell lines; neuroblastoma (SHSY5Y), and dendritic 

glioblastoma (SNB19). Additionally, a differentiated dopaminergic neuroblastoma 

(SHSY5YDiff); defined by significant increase in dopamine receptor expression relative to 

control, was treated. In total “three” cell lines were treated in this experiment in order to roughly 

model in vivo neuronal and glial populations. Special investigations into differentiation of the 

dopaminergic neuroblastoma cell line are intended to generally model dopaminergic neurons, 

with respect to the Parkinson’s model (Hong-Rong et al., 2010). These cell lines were used for a 

preliminary investigation of DX308 as a selective CYP26A1/B1 inhibitor within the central 

nervous system. One overall study with five independent cell culturing experiments using two 

cell lines was carried out culminating in the gene expression analysis of atRA response across 

various DX308 and atRA treatments (Table 3.1).  

3.2 Methods 

  3.2.1 SNB19-Human Glioblastoma 

 SNB19 (ATCC® CDL-2219™) is a malignant glioblastoma cell line, sourced from a 47-

year-old male’s left parieto-occipital glioblastoma multiforme tumor in 1980. This cell line 

expresses glial fibrillary acidic protein (GFAP) which acts as positive glial marker. DNA 

profiling studies have shown the cell line to be a derivative of U-373 cell line (ATCC® HTB-

17™) which also shares derivative chromosomes with U-373 MG.  

  3.2.1.1 SNB19-Cell Culture 

  The cell line was received when split during passage 19 (P19) from the Bridges Lab, 

University of Montana. The initial cell culture was grown to confluence of ~60% and seven 

cryovials, with 1.5 million cells/vial, were stored in liquid nitrogen for future experiments. All 

cell culture experiments were plated at P20 or higher. All culture media (cDMEM) contained: 

DMEM/F-12 (1:1) +2.50mM L-Glutamine -HEPES (HyClone™, SH30271.01), 10% heat 

inactivated fetal bovine serum (HyClone™, AD1811280), 1% penicillin/streptomycin (Pen/Strep 

Corning™, 30.00CL).  Cells were taken out of cryo-storage and seeded in 75cm2 (T75) culture 

flask at 50,000 cells/mL, 15mL total. cDMEM media was changed every 3-4 days until 60-70% 

confluent. After respective confluency was reached cells were trypsinized (0.025% 
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trypsin/0.01%EDTA, Gibco®, R-001-100), neutralized (Trypsin Neutralizer Solution 1x, Gibco®, 

R-002-100), and counted with Countess® II Automated Cell Counter. Cells are then plated on 12-

well plate (Cellstar®, 665-180) at 200,000 cells/mL with 1mL/well. After 24-48hrs cells were 

~70% confluent and received 24hr treatments for each well in biological triplicates. All 

treatments, including controls, last 24hrs with 0.1%DMSO acting as vehicle control throughout 

all experiments (Table 3.1, Figure 3.2, Figure 3.3). Preparation of atRA and other photosensitive 

compounds were made the day of treatments, with a 20mM working stock saved in a -40oC 

freezer. 

3.2.2 SHSY5Y-Neuroblastoma 

 SHSY5Y (ATCC® CRL-2266™) is a neuroblastoma cell line sourced from a four-year-

old female’s bone marrow. The original metastatic bone tumor biopsy comprised of SK-N-SH 

(ATCC® HTB-11™) cells and was subcloned three times: initially to SH-SY, followed by SH-

SY5, and finally to SH-SY5Y in 1970. Importantly SHSY5Y cell cultures contain adherent and 

non-adherent cells and can be differentiated under specific treatment regiments into mature 

neuron-like phenotypes (Kovalevich & Langford, 2013).  

       3.2.2.1 SHSY5Y-Cell Culture 

 The cell line was thawed from cryo-storage in liquid nitrogen after previous studies 

conducted by Dr. Joachim Veit in January 2018 at passage 8 (P8). The Cryovial was thawed in 

cDMEM media, DMEM/F-12 (1:1) +2.50mM L-Glutamine -HEPES (HyClone™, SH30271.01), 

10% heat inactivated fetal bovine serum (H.I. FBS) (HyClone™, AD1811280), 1% 

penicillin/streptomycin (Pen/Strep Corning™, 30.00CL), and grown to ~70% confluency in a 

T75 flask before freezing multiple vials for storage and future experiments. Freezing media 

contained: 90% H.I. FBS (HyClone™, AD1811280), 10% DMSO (Fisher BioReagents™, 

BP231-100).  

 After growing to ~70% confluency in T75 flask adherent and non-adherent cells are 

trypsinized, neutralized, and plated in 12-well plate. An initial experiment with undifferentiated 

SHSY5Y cells (SHSY5Y) was seeded at 200,000 cell/mL with 1mL/well. After 24-48hrs cells 

were ~70% confluent and received 24hr treatments for each well in biological triplicates. 

Treatments last 24hrs with 0.1%DMSO acting as vehicle control throughout all experiments 

(Table 3.1, Figure 3.4). 
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 Following the initial 

investigations of SHSY5Y cell line; a 

differentiation protocol following 

Presgraves et al., 2004 was followed 

in order for “SHSY5YDiff cells to 

exhibit characteristics consistent with 

cultured dopaminergic neurons”. 

After growing to ~70% confluency in 

T75 flask adherent and non-adherent 

cells were trypsinized, neutralized, 

and plated in 12-well plate at 100,000 

cells/ml with 1ml/well. The control 

treatment group was plated in 0.1% 

DMSO cDMEM media for 7 days, with fresh media changed on day 3. SHSY5YDiff cells were 

plated in 10uM atRA cDMEM media, this media was changed to 80nM 12-O-tetradecanoyl-

phorbol-13-acetate (TPA) on day 3. All cells were harvested on day 7 for RNA extraction and 

qPCR analysis, with special interest on increased dopamine receptor (DRD1,2,3) expression with 

multiple comparisons (Table 3.1, Figure 3.1-Exp. 1, Figure 3.5).  

 The final investigation using SHSY5Y cells involved comparisons between SHSY5Y 

cells and SHSY5YDiff cells with respect to atRA response and DRD1,2,3 expression. Following 

the initial experiment, cells were grown to confluency and plated in a 12-well plate at 20,000 

cells/well with 1mL/well. Control and SHSY5YDiff cells were treated over a 6-day period as 

previously mentioned, with an additional media change on day 6, 24hrs before harvest. A third 

treatment group was grown in the same respect as SHSY5YDiff cells with an additional 24hr 

1uM DX308 cDMEM media treatment (Table 3.1, Figure 3.1, Exp. 2, Figure 3.6). It should be 

noted that this media only contained 1uM DX308 cDMEM media without TPA.  

3.2.3 Differential Gene Expression 

   3.2.3.1 RNA Isolation 

 After respective treatment times cells were harvested using the Qiagen RNeasy® Mini Kit 

(Qiagen, 74106). Supernatant was collected and centrifuged for later investigations. Cells were 

lysed using 600uL of RLT lysis buffer (Qiagen, 1015762) in their 12-well plates for 5 minutes 

Figure 3.1: SHSY5Y Differentiation Regiment. A) Experiment 1, only atRA/TPA regiment. B) 
Experiment 2, follows atRA/TPA regiment with additional solo-DX308 treatment (red star) or solo 

TPA treatment 24hrs before harvest.  
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on a plate shaker. Cell lysate was then mixed with equal part 70% EtOH/ 30% DEPC H2O 

(Ethanol: Deacon Labs, 3961EA) (DEPC H2O: Fisher BioReagents, BP561-1). The lysate 

ethanol cell mix was then loaded and washed on a RNeasy spin column (Qiagen, 1112543) with 

RW1 (Qiagen, 1015763) and RPE (Qiagen, 1018013) wash buffers used respectively. Finally, 

the column was eluted with 40uL of DEPC H2O in a clean collection tube (Qiagen, 1017981). 

Purified RNA was stored in -20oC freezer until reverse transcription can be performed.  

   3.2.3.2 RT-qPCR 

 Purity and concentration of isolated RNA was measured using NanoDrop 2000c (Thermo 

Scientific). cDNA microtubes (Thermo Scientific, AB-0784) were loaded with DEPC H2O 

(Fisher BioReagents, BP561-1), purified RNA, and an iScript cDNA Synthesis Kit (Bio-Rad, 

1708891). The iScript Kit mix comprised of 5x iScript reaction mix (1708889) and iScript 

Reverse Transcriptase (LOO7877B), with 4uL and 1uL per cDNA microtube respectively. RNA 

concentration was normalized to 25ng/uL with Vf=20uL prior to reverse transcription, 500ng 

total. After loading, cDNA tubes were moved into a thermocycler (Bio-Rad, MyCycler ™ 

Version 1.065) for reverse transcription. Following an iScript protocol (activation: 5min/25oC, 

20min/46 oC, 1min/95 oC, hold/4 oC) for reverse transcription. After reverse transcription cDNA 

was kept at -20oC in a freezer until qPCR can be performed.  

For qPCR the cDNA was diluted 1:2 with DEPC H2O for a final concentration of 

12.5ng/uL. A total of 2uL of cDNA, 25ng/well, was pipetted into the respective well following 

biological treatment group. 8uL of a SYBR Green master mix was then pipetted into respective 

target wells, according to the target gene of interest. SYBR Green master mix comprised of 5uL 

PerfeCTa® SYBR® GreenFastMix® (QuantaBio, 84069), 1uL target primer (Table 3.2), and 2uL 

DEPC H2O per reaction well. All qPCR experiments used 36B4 (RPLP0) as reference gene and 

were plated on a 384 well qPCR plate (Bio-Rad, HSP3805) in technical duplicates. When all 

wells were loaded the plate was centrifuged and placed in CFX384™ Real-Time System C1000 

Table 3.2: Primer List. Target genes of interest used for all cell culture experiments.  
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Touch™ ThemalCycler (Bio-Rad, 1855484) for qPCR analysis. SYBR Green qPCR analysis 

protocol, labeled SYBER BioRad (activation: 2min/95oC, 40 cycles: 5sec/95oC, 30sec/60oC, plate 

read; 31sec/65oC, 5sec/65oC) was performed for all experiments.  

qPCR data was analyzed using Bio-Rad CFX Maestro for Mac 1.0 (Bio-Rad, Version 

4.0.2325.0418). Wells were excluded if their melt curves show a primer dimer formation 

observed as a double peak within the melt curve, or if Cq value was not available due to faulty 

loading. Wells were grouped by biological treatments and target gene, with expression change 

normalized to the reference gene and relative to control, ΔΔCq and 36B4 respectively. Statistical 

significance of expression for biological group vs multiple groups analysis was done by a one-

way ANOVA with Tukey corrections for multiple comparisons. Raw Cq values were extracted 

from CFX Maestro software and analyzed in GraphPad Prism 8.  

3.3 Results 

   3.3.1 atRA response in SNB19 & 

SHSY5Y cells 

 Preliminary experiments with both cell 

lines investigated expression of genes 

associated with atRA metabolism 

(CYP26A1/B1, CRABP2, RAR⍺,β,𝛾), and the 

effect of atRA treatments with comparisons of 

atRA/RAMBA (DX308) co-treatments. These 

experiments had the intended purpose of 

observing an atRA response previously 

mentioned in section 3.1 across both cell lines 

with a comparable increased response upon 

DX308 co-treatment.  

The first experiment revealed that all 

genes of interest were expressed in SNB19 

cells. An atRA response was observed as 

significant increase in CYP26A1 expression. 

Our results show a dose dependent increase in 

atRA response as seen by the significantly 

Figure 3.2: JML_101-SNB19 atRA Treatment. Gene expression of CYP26A1/B1 

and RARs in presence of 1uM atRA, and 1nM atRA. 0.1% DMSO used as control. 

A/B) CYP26A1/B1 gene expression. C/D/E) Target RARs gene expression alone for 

scale. Cell culture treatments run in biological triplicates, qPCR carried out in technical 
duplicates. Significance determined through ΔΔCq one-way ANOVA with Tukey 

corrections for multiple comparisons. (* vs Control, # vs 1nM atRA) (***p<0.001.)  
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increased expression between 1nM and 1uM atRA. All retinoic acid receptors do not show a 

significant increase in expression relative to control under 1nM or 1uM atRA treatment. The 

standard error of mean was relatively large across all target groups due to varied double peaks in 

melt curves. The initial pipetting technique was faulty for <4% of the wells during qPCR plating 

(Figure 3.2). 

In the follow up SNB19 experiment we can see transcription of CYP26A1 again have 

significant increase in expression when compared to lower doses and the control (10nM: 1uM). 

There was also significant increase in atRA signaling when lower doses of atRA were combined 

with low doses of DX308 CYP26A1/B1 inhibitor. We can see this by comparing 10nM 

atRA/100nM DX308 co-treatment with 1uM atRA solo treatment. The increased expression of 

CYP26A1 and CYP26B1 as a factor of atRA response is similar between these combined and 

solo treatments. Because there is a significant difference between the solo atRA and co-DX308 

treatments DX308 exhibits the necessary response for a viable RAMBA. Taken together this 

Figure 3.3: JML_111-SNB19-atRA/DX308. Repeated SNB19 atRA response treatments with added DX308 solo and co-atRA treatments. A) CYP26A1 gene expression. 

B) CYP26B1 gene expression. Cell culture treatments run in biological triplicates; qPCR carried out in technical duplicates. Significance determined through ΔΔCq one-

way ANOVA with Tukey corrections for multiple comparisons. (* vs control, @ vs 1nM atRA, ~ vs 10nM atRA, $ vs 100nM DX308) (*p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001). 
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supports inhibition of atRA metabolism via DX308’s action on CYP26A1/B1 enzyme, observed 

as an increased atRA response under lower atRA concentrations. Additionally we observed 

direct expression of RAR⍺,β,𝛾 in the SNB19 cells; while not significant this does allow for atRA 

directed transcription of RARE (Figure 3.3). 

In the initial experiment with the SHSY5Y cell 

line all genes of interest were expressed in  the 

neuroblastoma immature undifferentiated state. 

Additionally, we observed a dose dependent atRA 

response with 100nM and 10nM atRA treatment. 

Combined treatments of respective atRA 

concentrations with 1uM DX308 do not have 

significant expression of CYP26A1 relative to the solo 

atRA treatment. This indicates that DX308 is not 

potentiating the atRA response. Data also supports 

previous investigations by Armstrong et al. 2007 

where atRA treatments produce an increased atRA 

response relative to control. Importantly SHSY5Y 

cells express CYP26A1, and the respective gene can 

act as atRA response marker in this cell line. In 

addition to atRA response, RARβ is also expressed 

within the cell line. This is important as future 

investigations will target genes associated with Parkinson’s and RARβ promotor sights 

(Niewiadomska-Cimicka et al., 2017). DRD2 and CRABP2 is expressed at low levels for all 

treatment groups (Supplemental Data). It is hypothesized that differentiated SHSY5Y cells will 

have significant increase in DRD expression relative to immature “control” SHSY5Y cells. Note 

that column 2 control wells in RT-qPCR are excluded due to Cq values >2 cycles off biological 

group. This was caused by problems with low cDNA concentration prior to pipetting in the 384 

well plate, the corresponding cDNA tube was incorrectly loaded for reverse transcription 

(jFigure 3.4).  

 

 

Figure 3.4: JML_127-SHSY5Y-atRA/DX308. Initial SHSY5Y cell culture 

investigation for atRA response. CYP26A1 gene expression. Cell culture 
treatments run in biological triplicates; qPCR carried out in technical 

duplicates. Significance determined through ΔΔCq one-way ANOVA with 

Tukey corrections for multiple comparisons.) (* vs control, # vs 1uM DX308, 

@ vs 10nM atRA) (**p<0.01, ***p<0.001.) 
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3.3.2 atRA/TPA Differentiation of SHSY5Y Cells Effect on Dopamine Receptor 

 The specific purpose of the dopaminergic differentiated SHSY5Y experiments was: first, 

to observe SHSY5Y cells increase expression of DRD receptors relative to immature (control) 

SHSY5Y cells, and second; that we can use the differentiated SHSY5Y cells as a dopaminergic 

neuronal model for future DX308 treatments (Figure 3.1).  

 In the first experiment we observe a significant 

increase in CYP26A1 transcription in the atRA/TPA 

treatment group. This suggests that atRA could still be in 

the system at time of harvest, or we are observing 

prolonged 72hr atRA signaling from the initial 10uM 

atRA treatment (Day 0-3). The follow up experiment, 

jml_141, reveals a possible TPA induced CYP26A1 

transcription. While DRD2 receptor does not have 

significant increase in transcription under atRA/TPA 

treatment we do observe a slight increase in expression. 

This is also observed in RARβ expression and allows the 

possibility for atRA targeted transcription of RARE 

described above. Overall, we see atRA signaling on day 7 

of atRA/TPA differentiated SHSY5Y cells; however, the 

means of induction cannot be precisely attributed to the 

presence of atRA. Additionally, the atRA/TPA 

treatment group expressed DRD receptors slightly 

higher than control suggesting that some differentiation 

was taking place. It should be noted that all column 2 control wells were excluded due to 

problems in the culture well where over confluency lead to apoptosis of the entire well 

population and resulted in faulty mRNA at time of harvest. The second study avoided this over 

confluency issue by seeding the plates at 20,000 cells/well instead of 100,000 cells/well. At the 

time of harvest the wells were 70-80% confluent in jml_141.  

 The second experiment with SHSY5YDiff cells supported jml_135, where we again see 

an increase in CYP26A1 expression. Interestingly, DRD1 expression is significantly increased 

while the DRD2 expression is significantly decreased within the atRA/TPA treatment group. 

Figure 3.5: JML_135-SHSY5Y/SHSY5YDiff-atRA/TPA Regiment. 

Secondary SHSY5Y cell culture experiment with interest on atRA/TPA 

induced dopaminergic differentiation. A) CYP26A1 gene expression. B) 

RARb gene expression. C) DRD2 gene expression. Cell culture treatments 

run in biological triplicates, qPCR carried out in technical duplicates. 
Significance determined through ΔΔCq one-way ANOVA with Tukey 

corrections for multiple comparisons.) (* vs control) (***p<0.001) 
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This expression profile is lost within the additional 24hr DX308 treatment group (Figure 3.6). 

This indicates there is possible differentiation in 

treatment group 2 under terminal TPA stimulation, 

but seems to be lost with DX308 24hr treatment. A 

possible explanation for this is TPA induction of DRD 

receptor expression in addition to CYP26A1/B1. This 

is inferred due to the lack of TPA in the 

SHSY5YDiff_DX308 treatment group 24hrs prior to 

harvest. Future experiments will have a TPA only 

treatment group to compare to current atRA/TPA 

differentiation model.  

 This data supports the previous experiment by 

having an atRA response in differentiated SHSY5Y 

cells; while being unable to shed light on the 

additional DX308 treatment within the context of an 

observable atRA response and DRD expression. DRD 

expression profile in atRA/TPA treatment group calls 

for further investigations on TPA directed 

differentiation. Future studies are needed to repeat this 

experiment. Taking special consideration for TPA 

differentiation, and additional DX308 treatments 

(Figure 3.6). 

 

3.4 Discussion 
 The overarching goal of these experiments centered around preliminary in vitro modeling 

of gliosis after TBI and the death of dopaminergic neurons found in PD patients with the explicit 

purpose of guided atRA signaling as a mediator of pathogenesis. Importantly we used cost 

effective cell lines; either previously used in the Diaz lab, SHSY5Y, or donated by the Bridges 

lab, SNB19.  SNB19 cells were selected with the intention of modeling a brain injury in a dish 

due to their ability to express GFAP as a marker of reactive gliosis (McMillian et al., 1994). 

SHSY5Y cells were selected due to their diverse ability of differentiation and substantial history 

as a model for PD (Xicoy et al., 2017).  

Figure 3.6: JML_141-SHSY5Y/SHSY5YDiff/SHSY5YDiffDX308. 

Repeated atRA/TPA SHSY5Y cell culture experiment with additional 

24hr DX308 biological treatment group(red star). A) CYP26A1 gene 

expression. B, C) Dopamine receptors gene expression. Cell culture 
treatments run in biological triplicates; qPCR carried out in technical 

duplicates. Significance determined through ΔΔCq one-way ANOVA 

with Tukey corrections for multiple comparisons)  (* vs control, # vs 

1uM DX308) (***p<0.001) 
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 The initial purpose of the experiments needed to prove that both cell lines expressed the 

primary target of novel RAMBA DX308, CYP26A1/B1. Additionally, for the rough models to 

be viable the cell lines also needed to express transport machinery, CRABP2, and atRA directed 

nuclear receptors, RAR⍺,β,𝛾. Observations of these genes expressed in the cell line would 

therefore allow for theoretical atRA guided transcription and subsequent metabolism for 

homeostatic signaling. We intended to induce targeted inhibition of CYP26A1/B1 in order to 

increase the endogenous levels of atRA and subsequent signaling.  Overall our experiments were 

a success in this context. SNB19, SHSY5Y, and SHSY5YDiff all expressed the genes of interest 

pertaining to atRA metabolism and guided transcription. Unfortunately, SNB19 experiments did 

not successfully investigate CRABP2 expression; however, due to the presence of RARs atRA 

directed signaling is still supported in the cell line (Table 3.1, Figure 3.2, 3.3). The secondary 

purpose for all experiments needed to show an atRA response under atRA treatment and DX308 

co-treatment. Successful inhibition of atRA clearance via DX308 would potentiate the atRA 

response under low doses of atRA co-treatment compared to same dose atRA solo treatment. 

With the acceptation of SHSY5YDiff_DX308 treatment group (Figure 3.6, Group 3-red star) we 

observed a dose dependent atRA response across SNB19, SHSY5Y cell lines; and an atRA 

response within the SHSY5YDiff cell line. It should be noted that SHSY5YDiff cell line could 

have CYP26A1 expression mediated by terminal TPA treatment, and future experiments will 

investigate this possibility (Figure 3.5, Group 2). We suspect this due to the observed atRA 

response in jml_135 in SHSY5YDiff, but the loss of this expression profile once DX308 is 

administered post differentiation regiment for 24hrs before harvest (Table 3.1, Figure 3.1-Exp.2). 

Importantly we observed a DX308 potentiated atRA response in the SNB19 cell lines with 

respect to solo atRA treatments (Figure 3.2, 3.3). This is important indicator for future studies 

surrounding gliosis and PD induced stress models as atRA could reduce the pathogenesis of both 

diseases.  

 Finally, this research attempted to differentiate SHSY5Y cell line into a dopaminergic 

neuronal culture following Presgraves et al., 2004 protocol. With respects to DRD expression, 

the atRA/TPA differentiation regiment exhibited an interesting expression profile that was not 

consistent across experiments. DRD1 had significant increase in expression only in one 

experiment while DRD2 had significant decrease in expression in only one experiment. Under an 

atRA/TPA regiment CYP26A1 expression seems to be increased, this effect is lost when the 
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final 24hr treatment is replaced with DX308 alone. Follow up experiments report an altered 

DRD expression between DRD1 and DRD2 when compared to the first experiment. Although 

these expression profiles suggest the possibility for differentiation under atRA/TPA regiment 

repeated SHSY5Y differentiation experiments must be preformed in order to draw more valid 

conclusions. (Figure 3.1, 3.4, 3.5). In vitro dopaminergic neurons are a closer model to PD and 

future studies will utilize the differentiation protocol in coordination with MPTP/MPP+ 

cytotoxicity experiments to assess the viability of atRA mediated cell survival. These 

experiments are only preliminary investigations surrounding DX308’s ability to inhibit atRA 

clearance for neuronal cell lines. Taken together this research has shown a rough model of glial, 

neuronal, and dopaminergic cell lines that can utilize atRA as a homeostatic signaling factor. At 

its basic level we can use this knowledge to investigate DX308 as a therapeutic drug in the CNS 

with the intention of increasing endogenous atRA following TBI or PD diagnosis.    

4. Conclusion & Future Directions 

  4.1 Conclusion 

 These experiments establish a rough in vitro model for investigations surrounding atRA 

signaling and the pharmacological applications of RAMBAs. DX308 inhibition of atRA 

metabolism via CYP26A1/B1 unlocks the possibility for therapeutic intervention in TBI and PD. 

The role of RA signaling following CNS injury is emerging as a primary target for mediation of 

important neuronal genes needed to attenuate TBI and PD. Focusing on particular genes of 

interest under RAR guided transcription is a great place to expand in this area. For example: 

FGF9, BCL-x, NF-KB1, and CAMK2⍺ all have RARβ binding sites and are expressed in either 

SNB19 or SHSY5Y cells (Hodges et al., 2006; Niewiadomska-Cimicka et al., 2017; Rouillard et 

al., 2016). This research was limited to specific cell line expression of atRA synthesis and 

transcription machinery in the CNS and provides the possibility for DX308 application as an 

atRA signaling activator. Activation of atRA signaling pathway following TBI is a major 

contributor to this ideology. The cytotoxicity surrounding the Ca2+/Glu cascade may be 

attenuated by non-canonical atRA signaling through dampening of MAPK activation. 

Significantly lowering Ca2+ stress may halt mitochondrial and cell membrane mediated 

destruction, leading to neuronal survival. As we have seen in these experiments and reported in 

previous literature atRA also retains the ability to control differentiation of some neuronal 

populations. Altering active microglia states to favor M2 phagocytotic differentiation may be 
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under the influence of atRA signaling following TBI. Administration of atRA following TBI in 

mice show a neuroprotective effect and reduction in astrogliosis seven days after the injury. RA 

also has pervasive applications in altering PD pathology. Research previously found oral 

administration of RAR agonist prevented dopaminergic cell loss in the substantia nigra 

supporting the role of RA directed neuronal survival (Katsuki et al., 2009). Further evidence 

surrounds the role RA plays in dopaminergic differentiation and mediated expression of 

dopamine receptors. When considering the beneficial effects of atRA signaling in 

neurodegenerative diseases the therapeutic goal would be to endogenously control the 

intracellular concentrations. One way of increasing intracellular RA is to inhibit CYP26A1/B1 

metabolism. Since DX308 is permeable to the BBB this drug could be administered 

intravenously to combat both TBI and PD. In this work we confirm our hypothesis that DX308 is 

a substrate-based CYP26A1 and B1 inhibitor which inhibit the degradation of atRA in CNS cell 

model and that this degradation is modulated by CYP26A1 and B1 which are expressed in these 

cells and have their expression increase after atRA treatment. Additional work is needed to fully 

demonstrate the therapeutic utility of DX308 on the treatment of neurodegenerative diseases but 

based on our preliminary experiments it represents a promising candidate for further in vitro and 

in vivo studies. 

 4.2 Future Directions 

 In the immediate realm of this research repeated RT-qPCR should be performed for all 

experiments in order to support these preliminary findings. Additionally, the intracellular carrier 

protein for retinoic acid directed transcription, CRABP2, should be added to the gene target list 

for the repeated experiments. Other target genes for SNB19 include: GFAP, FGF9, BCL-X, and 

EAAT1 (SLC1A3). These genes have either been found to be expressed in the specific cell line 

or have RARβ binding sites for RA guided transcription (Rouillard et al., 2016; Niewiadomaska-

Cimicka, 2017). GFAP is an important gene target as it can be considered a marker for gliosis in 

most astroglia cell lines (Verkhratsky et al., 2014). Another gene of interest for the SHSY5Y cell 

line is CAMK2⍺ which is expressed in the cell line and has RARβ binding sites. NfKB1 also has 

RARβ binding sites and should be added to the list of target genes for future investigations. 

These genes are useful as canonical and non-canonical signaling may lend supporting evidence 

for RA mediation of inflammation and excitotoxicity in TBI and PD pathology. Cell cultures 

would undergo similar protocols for RAMBA co-treatments with special interest on the 
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expression relationship relative to an observed atRA response. Other cell culture experiments 

that can end in RT-qPCR would revolve around cytotoxicity models and how they affect target 

gene transcription relative to atRA and DX308 co-treatments. SNB19 can be treated with LPS, 

ROS, and TNF⍺ in tandem with atRA or DX308 co-treatments to model TBIs and therapeutic 

intervention with respect to the effects of atRA directed signaling. Special interest would 

consider the relationship between activated gliosis and atRA response by monitoring the 

expression of GFAP and CYP26A1/B1 respectively. SHSY5Y cells can undergo MPTP/MPP+ 

treatments to model neurodegeneration similar to PD. The goal would be to observe how 

modeling PD in vitro with SHSY5YDiff would affect the atRA response and target genes 

associated with neuroinflammation and protection. In coordination with these RT-qPCR 

experiments ELISA assays would need to be performed in tandem with cell culture constraints. 

Under the same cytotoxicity/PD model and atRA/DX308 co-treatments ELISA antibodies would 

look for TNF⍺, IL-1β, and IL-6 as indicators of inflammation following cell culture treatments. 

Anti-inflammatory cytokines under investigation would include: IL-4, IL-10, BDNF⍺, and TGF-

β. Understanding the inflammatory signaling after modeling the neurovegetative disease in 

coordination with atRA/DX308 treatments would give tremendous insight on the possible 

neuroprotective effects of both atRA and the novel RAMBA, DX308. Together this research 

could be published as the discovery of a new RAMBA that can be used to diminish the 2o insult 

of TBIs or combat the pathogenesis of PD by alleviating the death of dopaminergic neurons. 

atRA has an important regulatory role in the central nervous system, unlocking the signaling 

effects of increased endogenous atRA as it pertains to TBI and PD could be the fundamental step 

in treating these neurodegenerative diseases. 
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6. Appendices 

6.1 Supplemental Data-Link- https://umt.box.com/s/fckcgdp4swz3qpy24nei01y0enw2h284 

• qPCR graphs: All Experiments 

• Foti et al., (2016) CYP26A1, CYP26B1 Homology Models (.pdb file) 

• Niewiadomska-Cimicka et al., (2017) GWAS Lists- Analysis of 

RARβ Binding Sites in Neurodegenerative Diseases  

• Signaling Pathways of Interest 
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