
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2021

OPTIMAL CONSTRUCTION OF A LAYER-ORDERED HEAP AND ITS OPTIMAL CONSTRUCTION OF A LAYER-ORDERED HEAP AND ITS

APPLICATIONS APPLICATIONS

Jake Pennington

Follow this and additional works at: https://scholarworks.umt.edu/etd

 Part of the Other Applied Mathematics Commons, and the Theory and Algorithms Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Pennington, Jake, "OPTIMAL CONSTRUCTION OF A LAYER-ORDERED HEAP AND ITS APPLICATIONS"
(2021). Graduate Student Theses, Dissertations, & Professional Papers. 11811.
https://scholarworks.umt.edu/etd/11811

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by
an authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F11811&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/122?utm_source=scholarworks.umt.edu%2Fetd%2F11811&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.umt.edu%2Fetd%2F11811&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/11811?utm_source=scholarworks.umt.edu%2Fetd%2F11811&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

OPTIMAL CONSTRUCTION OF A LAYER-ORDERED HEAP AND

ITS APPLICATIONS

By

Jake Rooster Pennington

Bachelor of Arts, University of Montana, Missoula, MT, 2019

Bachelor of Science, University of Montana, Missoula, MT, 2020

Thesis

presented in partial fulfillment of the requirements
for the degree of

Master of Arts
in Mathematics

The University of Montana
Missoula, MT

Autumn 2021

Approved by:

Ashby Kinch Ph.D., Dean
Graduate School

Oliver Serang Ph.D., Chair
Computer Science

Cory Palmer Ph.D.
Mathematical Sciences

Kelly McKinnie Ph.D.
Mathematical Sciences

© COPYRIGHT

by

Jake Rooster Pennington

2021

All Rights Reserved

ii

Pennington, Jake, M.A., October 2021 Mathematics

Optimal Construction of a Layer-Ordered Heap and its Applications

Chairperson: Oliver Serang

The layer-ordered heap (LOH) is a simple data structure used in algorithms that
perform optimal top-k on X + Y , algorithms with the best known runtime for top-
k on X1 + X2 + · · · + Xm, and the fastest method in practice for computing the
most abundant isotopologue peaks in a chemical compound. In the analysis of these
algorithms, the rank, α, has been treated as a constant and n, the size of the array, has
been treated as the sole parameter. Here, we explore the algorithmic complexity of
LOH construction with α as a parameter, introduce a few algorithms for constructing
LOHs, analyze their complexity in both n and α, and demonstrate that one algorithm
is optimal in both n and α for building a LOH of any rank. We then apply this to
improve performance in applications where they are employed, find an estimate for
the optimal α given an n and k for top-k on X + Y , and derive a novel algorithm for
top-k on a multinomial distribution. Finally, we show that the results of our LOH
analysis correspond with empirical experiments of runtimes when applying the LOH
construction algorithms to both a common task in machine learning and top-k on
X1 + X2 + · · · + Xm and that our estimate of the optimal α for top-k on X + Y
corresponds well with empirical data.

iii

ACKNOWLEDGMENTS

I would like to express my gratitude and appreciation to my committee for taking

the time to evaluate my defense. I thank my coauthors Patrick Kreitzberg and Kyle

Lucke for the time we spent working together to make new discoveries. I especially

thank my advisor Dr. Oliver Serang for all of his help with my academic and personal

growth. Finally, I would like to thank my parents, Joe and Carmen Pennington,

for cultivating my appreciation for learning, my brother, Pepper Pennington, for

motivating me to continue my education, and my sister, Jessica Riggin, for always

being there for me.

This work was supported by Grant No. 1845465 from the National Science Foun-

dation. The LOHification algorithms presented in this paper, implemented in C++17,

can be found freely at https://figshare.com/articles/software/Lohify/

16837213. The Cartesian product algorithms benchmarked in this paper, imple-

mented in C++17, can be found freely at

https://figshare.com/articles/software/cartesian_product_tree_

code/16837198.

iv

https://figshare.com/articles/software/Lohify/16837213
https://figshare.com/articles/software/Lohify/16837213
https://figshare.com/articles/software/cartesian_product_tree_code/16837198
https://figshare.com/articles/software/cartesian_product_tree_code/16837198

TABLE OF CONTENTS

COPYRIGHT . ii

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF FIGURES . vii

LIST OF TABLES . xi

CHAPTER 1 Introduction . 1

CHAPTER 2 Methods . 4

2.1 Optimal construction of a LOH in terms of n and α 4

2.1.1 A lower bound on LOHification 4

2.1.1.1 Bounds on variables 4

2.1.1.2 Lower bound of LOHification 7

2.1.2 Algorithms for LOHification 11

2.1.2.1 LOHification via sorting 11

2.1.2.2 LOHification via iterative selection 13

2.1.2.3 Selecting to divide remaining pivot indices in half . . 21

2.1.2.4 Partitioning on the pivot closest to the center of the

array . 23

v

2.1.3 The optimal runtime for the construction of a layer-ordered

heap of any rank . 31

2.1.4 Quick LOHify . 31

2.2 Optimal α for top-k on X + Y . 34

2.2.1 Overview of the algorithm . 35

2.2.2 Deriving the runtime in terms of n, k, and α 36

2.3 Top-k on a multinomial . 43

2.3.1 Convexity of a multinomial 44

2.3.2 An algorithm for top-k on a multinomial 48

2.3.3 A theoretical improvement to our existing algorithm 49

CHAPTER 3 Results . 52

3.1 Computing a False Discovery Rate Threshold with LOHs 52

3.2 Computing an m-dimensional Cartesian Product with LOHs 54

3.3 Selection on X + Y as a function of α 56

3.4 NeutronStar v. Isospec . 61

CHAPTER 4 Discussion . 63

BIBLIOGRAPHY . 65

vi

LIST OF FIGURES

1.1 A LOH of rank 2. Pivot indices are shaded in gray. Notice

that the last layer is not full. 3

2.1 The recursion tree for partitioning on the pivot closest

to the center of the array. The work at “Top” is ∈ O(n ·d∗)

and the work done at “Bottom” is ∈ O
(∑log(n)

d=d∗
∑tmax

t=1
n
2d

)
. d∗

is the greatest depth at which all branches have work and tmax

is a bound on the “furthest right” we go in the recursion tree. 25

2.2 A color coded depiction of X + Y . In this depiction, the

blue squares represent the elements in layer products associ-

ated that are in I. The light green squares represent elements

in layer products that are adjacent to I, and the red squares

represent elements in layer products that are diagonal to I.

All non-gray squares represent elements in layer products that

are in V . The layer products X(0) +Y (u0+2) and X(v0+2) +Y (0)

are not in V because |X(0)| = |Y (0)| = 1 hence (r1,u,0, 1, u, 0) <

(r0,u+1,0, 0, u+ 1, 0) and (r1,0,v, 1, 0, v) < (r0,0,v+1, 0, 0, v + 1). 40

vii

2.3 An alternate coloring of X + Y . With this recoloring (the

bottom left layer product is now red), it is easy to see that the

area of the green part is bounded by α times the area of the

blue part and the area of the red part is bounded by α times

the area of the blue and green parts combined. 41

2.4 First few multinomial proposals for the most abun-

dant isotopologues of K100 (a compound consisting of

100 potassium atoms). The figure shows index tuples in

the multinomial and the neighbors they propose, from top to

bottom, starting with the mode, (94, 6, 0) (94 copies of 39K,

6 copies of 41K, and no copies of 40K). Each index tuple pro-

poses its neighbors in lexicographical order where, if the ith

index has been incremented, it cannot propose any neighbors

by incrementing an index less than i (this same pattern is used

for decrementing an index). In the figure, the largest index to

be incremented is in blue and the largest to be decremented

is in red. In order to move away from the mode, any index

which has been incremented may not be decremented to create

a proposed tuple, and vice versa. Note that for clarity not all

proposed indices are included. 50

viii

3.1 Plot of runtime for selection on X + Y for n = k =

10, 000, 000. The plot captures the runtimes of selecting the

minimum 10,000,000 elements from two arrays of length 10,000,000.

The arrays are filled with 64-bit floating point numbers drawn

from the C++ rand() function. The values of α tested range

from 1.01 to 1.99 (inclusive) in increments of 0.01 with ten

trials for every value of α tested. Each trial used a different

random seed. The red line represents the optimal value of α

calculated using the formula derived in Theorem 2.2.1. The

orange line represents the average runtime for a given α. . . 57

3.2 Plot of runtime for selection on X+Y for n = 10, 000, 000; k =

20, 000, 000. All other aspects of its construction are identical

to Figure 3.1. 58

3.3 Plot of runtime for selection on X+Y for n = 10, 000, 000; k =

40, 000, 000. All other aspects of its construction are identical

to Figure 3.1. 58

3.4 Plot of runtime for selection on X+Y for n = 10, 000, 000; k =

80, 000, 000. All other aspects of its construction are identical

to Figure 3.1. 59

3.5 Plot of runtime for selection on X+Y for n = 10, 000, 000; k =

160, 000, 000. All other aspects of its construction are identical

to Figure 3.1. 59

3.6 Plot of runtime for selection on X+Y for n = 10, 000, 000; k =

320, 000, 000. All other aspects of its construction are identical

to Figure 3.1. 60

ix

3.7 Plot of runtime for selection on X+Y for n = 10, 000, 000; k =

640, 000, 000. All other aspects of its construction are identical

to Figure 3.1. 60

x

LIST OF TABLES

3.1 Runtimes (seconds) of different LOHification methods

for computing FDR cutoffs on data of various sizes.

Reported runtimes are averages over 10 iterations, α = 6.0

(where applicable). SORT is sorting, SLWGI is selecting the

layer with the greatest index, SDRPIH is selecting to divide

the remaining pivot indices in half, PPCCA is partitioning

on the pivot closest to the center of the array, and QUICK

is Quick-LOHify. Quick-LOHify generates its own partition

indices, which are not determined by an α parameter. 53

3.2 Runtimes (seconds) of different LOHification methods

for computing FDR cutoffs with various α. Reported

runtimes are averages over 10 iterations. The abbreviations

are the same as Table 3.1 53

xi

3.3 Runtimes (seconds) of generating the top billion val-

ues of the Cartesian product of 8 arrays of length 10

million using different LOHification methods with var-

ious α. Reported runtimes are averaged over 10 iterations.

Method abbreviations are the same as Table 3.1. The right

most column is the number of elements generated in the com-

plete product before the final selection. 55

3.4 Table of runtimes (seconds) for generating the k most

abundant isotopologues of several large compounds

using NeutronStar and Isospec. These times are an aver-

age of 10 runs. p is the fraction of the total abundance that

is represented by the top k most abundant configurations. –

indicates the program ran out of memory. 62

xii

1

CHAPTER 1 Introduction

Sorting is one of the oldest problems in computing. There are several types of

sorting algorithms, but we will focus on comparison based sorting because it requires

only that the objects to be sorted can be pairwise compared. It has been known for

a long time that the lower bound for comparison sort is in Ω(n · log(n)) where n is

the size of the list we are sorting [1]. Algorithms that achieve this bound have been

known since the 1940’s [2].

Because efficient sorting algorithms exist that achieve the lower bound in the worst

case, comparison based sorting is typically thought of as an area for little practical

and no theoretical improvement. However; many of the problems traditionally solved

using sorting do not actually require a total ordering. This gives rise to the use of

partial orderings to solve these problems.

Partial orderings have been used to replace sorting in algorithms where sorting is the

limiting factor. For example, soft heaps [3] made possible the algorithm with fastest

known worst-case runtime for computing the minimum spanning tree [4]. Soft heaps

work by bounding the number of “corrupt” elements in a tree, which will be moved

forward from their true position in the sorted order. They are of theoretical interest

because they can be constructed in linear time, can insert elements and find-min in

constant time, and they can delete-min in amortized constant time [3].

Soft heaps have also been used to perform optimal top-k, the problem of generating

2

the k smallest items in a collection, on X + Y [5]; however, that algorithm is slow

in practice due to the fragmented nature of soft heaps leading to more overhead and

poor cache performance [6].

The layer-ordered heap (LOH) was invented to perform practical and efficient top-k

on X + Y in a way that also achieves optimal theoretical performance [6]. The LOH

is qualitatively similar to a soft heap in that they both produce partial orderings, but

different in that LOHs are contiguous in memory and have a simple data structure.

LOHs are powerful in that they are simple to implement and are fast in practice.

In addition to optimal top-k on X+Y , layer-ordered heaps (LOHs) are used in the

algorithm with best known runtime for top-k on X1 +X2 + · · ·+Xm [7], practically

fast calculation of where a statistical threshold occurs on monotonic functions [8],

the fastest known method for computing the most abundant isotopologues of a com-

pound [9], and for approximating marginal distributions under sums and differences

of categorically distributed discrete random variables [10].

More specifically, a LOH of size n and rank α is an array of length n partitioned

into ` layers (denoted L0, L1, . . . , L`−1) where every element in Li is less than or equal

to every element in Lj for all i < j and the size of each layer, |Li|, is pi − pi−1 where

pi, the ith pivot index, is calculated as pi =
⌈∑i

j=0 α
j
⌉
(ensuring the ratio of the

layer sizes, |Li+1|
|Li| , tends to α as the index, i, tends to infinity). We stop computing

pivots when the next pivot would be greater than n and the size of the final layer

is the difference between the size of the array and the last pivot. Specifically: the

construction of a LOH takes an array of n pairwise comparable elements, partitions

it (in-place) into layers (that grow exponentially) based on α, and produces an array

of the pivot indices. Fig 1.1 depicts a LOH of rank α = 2.

Throughout this paper, the process of constructing a LOH of rank α from an array

of length n will be denoted “LOHification.” While LOHify with α = 1 is equivalent

3

1 3 2 7 6 4 5 9 10 8 11 13 12

L0 L1 L2 L3

Figure 1.1 A LOH of rank 2. Pivot indices are shaded in gray. Notice
that the last layer is not full.

to comparison sort and α ≥ 2 can be performed in O(n) operations [7], the optimal

runtime in terms of both n and α is unknown. Likewise, there is no known LOHify

algorithm that is optimal in both n and α.

In this paper, we will derive the optimal construction of a layer-ordered heap for

all of its parameters, use this to improve the performance of applications where it

is employed, and present a novel algorithm for performing top-k on a multinomial

distribution.

4

CHAPTER 2 Methods

2.1 Optimal construction of a LOH in terms of n and α

Here, we derive a lower bound runtime for LOHification, describe a few algorithms

for LOHification, prove their runtimes, and demonstrate optimality of one method in

both n and α. We later demonstrate the practical performance of these methods on

both a non-parametric statistical test and a top-k on X1+X2+ · · ·+Xm. Throughout

this section, let r(n, α) denote the runtime of LOHification of rank α on an array of

size n.

2.1.1 A lower bound on LOHification

Here we will prove an asymptotic lower bound on the complexity of constructing a

LOH in terms of n and α by first proving bounds on variables and then using those

to bound the process as a whole.

2.1.1.1 Bounds on variables

Lemma 2.1.0.1 (Upper bound on the number layers). An upper bound on the

number of layers, `, in a LOH of n elements is logα(n · (α− 1) + 1) + 1.

Proof. Because the final pivot, p`−2, can be no more than n, the size of our array, we

5

have the following inequality:

⌈
`−2∑
i=0

αi

⌉
≤ n

`−2∑
i=0

αi ≤ n

α`−1 − 1

α− 1
≤ n

α`−1 − 1 ≤ n · (α− 1)

α`−1 ≤ n · (α− 1) + 1

`− 1 ≤ logα(n · (α− 1) + 1)

` ≤ logα(n · (α− 1) + 1) + 1.

�

Lemma 2.1.0.2 (Lower bound on the number layers). A lower bound on the

number of layers, `, in a LOH of n elements is logα(n · (α− 1) + 1).

Proof. Because an additional pivot (after the final pivot) must be more than n, the

size of our array, we have the following inequality:

⌈
`−1∑
i=0

αi

⌉
> n

`−1∑
i=0

αi ≥ n, because n is an integer;

α` − 1

α− 1
≥ n

α` − 1 ≥ n · (α− 1)

α` ≥ n · (α− 1) + 1

` ≥ logα(n · (α− 1) + 1)

6

` > logα(n · (α− 1)).

�

Lemma 2.1.0.3 (Asypmtotic number of layers). For α > 1, the number of lay-

ers as n grows is asymptotic to logα(n · (α− 1) + 1).

Proof. We know logα(n · (α− 1) + 1) ≤ ` ≤ logα(n · (α− 1) + 1) + 1.

lim
n→∞

logα(n · (α− 1) + 1) + 1

logα(n · (α− 1) + 1)

= lim
n→∞

logα(n · (α− 1) + 1)

logα(n · (α− 1) + 1)
+

1

logα(n · (α− 1) + 1)

= 1 + 0

= 1.

�

Lemma 2.1.0.4 (Upper bound on the size of a layer). An upper bound on the

size of layer i is |Li| ≤ dαie.

Proof. The ith layer, |Li|, as defined above, can be calculated by:

|Li| = pi − pi−1

=

⌈
i∑

j=0

αj

⌉
−

⌈
i−1∑
j=0

αj

⌉

≤ dαie+

⌈
i−1∑
j=0

αj

⌉
−

⌈
i−1∑
j=0

αj

⌉
≤ dαie.

�

7

2.1.1.2 Lower bound of LOHification

Here we will show that for α > 1, the computational complexity of LOHification

is in Ω
(
n log(1

α−1) + n·α·log(α)
α−1

)
. To do this, we will first prove a few lemmas that we

will use in the proof of our theorem.

Lemma 2.1.0.5. For α > 1, dαie · log(dαie) ∼ αi · log(αi) as n→∞.

Proof.

αi · log(αi) ≤ dαie · log(dαie)

≤ (αi + 1) · log(αi + 1).

We can combine this with the fact that i goes to infinity as n goes to infinity to show

that the expressions are asymptotic as n goes to infinity.

lim
i→∞

(αi + 1) · log(αi + 1)

αi · log(αi)
= lim

i→∞

αi log(αi + 1)

αi log(αi)
+

log(αi + 1)

αi log(αi)

= lim
i→∞

log(αi + 1)

log(αi)
+

log(αi + 1)

αi log(αi)

which, by L’Hôpital’s rule;

= lim
i→∞

αi log(α)
αi+1

log(α)
+

αi·log(α)
αi+1

αi · log(α) · (log(αi) + 1)

= lim
i→∞

αi

αi + 1
+

1

(αi + 1) · (log(αi) + 1)

= lim
i→∞

1− 1

αi + 1

= 1.

�

8

Lemma 2.1.0.6. For α > 1, log(n·(α−1)+1)
α−1 ∈ o(n).

Proof.

lim
n→∞

log(n·(α−1)+1)
α−1

n
= lim

n→∞

log(n · (α− 1) + 1)

n · (α− 1)

= lim
n→∞

α− 1

(α− 1) · (n · (α− 1) + 1)
by L’Hôpital’s rule

= lim
n→∞

1

n · (α− 1) + 1

= 0.

�

Lemma 2.1.0.7. For α > 1, n log(n
n·(α−1)+1

) ∼ n log(1
α−1)

Proof.

lim
n→∞

n log
(

n
n·(α−1)+1

)
n log

(
1

α−1

) = lim
n→∞

log
(

n
n·(α−1)+1

)
log
(

1
α−1

)
=

1

log(1
α−1)

·
(

lim
n→∞

log

(
n

n · (α− 1) + 1

))
=

1

log(1
α−1)

·
(

log

(
lim
n→∞

n

n · (α− 1) + 1

))
=

1

log(1
α−1)

· log(
1

α− 1
) by L’Hôpital’s rule

= 1.

�

Theorem 2.1.1. For α > 1, LOHification is in Ω
(
n log(1

α−1) + n·α·log(α)
α−1

)
complex-

ity.

9

Proof. From n! possible unsorted arrays, LOHification produces one of |L0|! ·

|L1|! · · · |L`−1|! possible valid results; and so, using an optimal decision tree,

r(n, α) ∈ Ω
(

log2

((
n

|L0|,|L1|,...,|L`−1|

)))
; thus,

r(n, α) ∈ Ω

(
log

(
n!∏`−1

i=0(|Li|!)

))

= Ω

(
n log(n)−

`−1∑
i=0

log(|Li|!)

)

= Ω

(
n log(n)−

`−1∑
i=0

log(dαie!)

)
Lemma 2.1.0.4

= Ω

(
n log(n)−

`−1∑
i=0

dαie · log(dαie)

)
(since log(n!) ∈ Θ(n log(n)))

= Ω

(
n log(n)−

`−1∑
i=0

αi · log(αi)

)
Lemma 2.1.0.5

= Ω

(
n log(n)−

`−1∑
i=0

i · αi · log(α)

)

= Ω

(
n log(n)− log(α) ·

`−1∑
i=0

i · αi
)

= Ω

(
n log(n)− log(α) ·

(
α`+1 · (`− 1) + α− α` · `

(α− 1)2

))
= Ω (n log(n)− log(α)

·
(

(αlogα(n·(α−1)+1)+1 · logα(n · (α− 1) + 1)− 1)

(α− 1)2
+

α

(α− 1)2

− αlogα(n·(α−1)+1) · logα(n · (α− 1) + 1)

(α− 1)2

))
Lemma 2.1.0.3

= Ω (n log(n)− log(α)

·
(

(n · (α− 1) + 1) · α · (logα(n · (α− 1) + 1)− 1)

(α− 1)2
+

α

(α− 1)2

− (n · (α− 1) + 1) · logα(n · (α− 1) + 1)

(α− 1)2

))

10

= Ω

(
n log(n)−

(
(n · (α− 1) + 1) · α · (log(n · (α− 1) + 1)− log(α))

(α− 1)2

+
α log(α)

(α− 1)2
− (n · (α− 1) + 1) log(n · (α− 1) + 1)

(α− 1)2

))
= Ω

(
n log(n)−

(
(n · (α− 1) + 1) · α log(n · (α− 1) + 1)

(α− 1)2

− (n · (α− 1) + 1) · α log(α)

(α− 1)2
+
α log(α)

(α− 1)2

− (n · (α− 1) + 1) · log(n · (α− 1) + 1)

(α− 1)2

))
= Ω

(
n log(n)−

(
(n · (α− 1) + 1) · log(n · (α− 1) + 1) · (α− 1)

(α− 1)2

+
α log(α)

(α− 1)2
− (n · (α− 1) + 1) · α log(α)

(α− 1)2

))
= Ω

(
n log(n)− (n · (α− 1) + 1) · log(n · (α− 1) + 1)

α− 1
− α log(α)

(α− 1)2

+
(n · (α− 1) + 1) · α log(α)

(α− 1)2

)
= Ω

(
n log(n)− n · log(n · (α− 1) + 1)− log(n · (α− 1) + 1)

α− 1

− α log(α)

(α− 1)2
+
n · α log(α)

α− 1
+
α log(α)

(α− 1)2

)
= Ω

(
n log(n)− n · log(n · (α− 1) + 1)− log(n · (α− 1) + 1)

α− 1

+
n · α log(α)

α− 1

)
= Ω

(
n log

(
n

n · (α− 1) + 1

)
− log(n · (α− 1) + 1)

α− 1
+
n · α log(α)

α− 1

)
⊆ Ω

(
n log

(
n

n · (α− 1) + 1

)
+
n · α log(α)

α− 1

)
Lemma 2.1.0.6

= Ω

(
n log

(
1

α− 1

)
+
n · α log(α)

α− 1

)
Lemma 2.1.0.7.

�

It should be noted that the formulas with α = 1 behave as expected. We have now

established LOHification to be in Ω(n log(1
α−1) + n·α·log(α)

α−1) for any α > 1. Because

11

the log
(

1
α−1

)
term becomes zero at α = 2, we shall explore LOHification with α = 1,

1 < α < 2, and α ≥ 2.

Theorem 2.1.2. For α ∈ (1, 2), LOHification is in Ω(n log(α
α−1)) complexity.

Proof. From our proof in Theorem 2.1.1, we know that LOHification with α > 1 is

in Ω
(
n log(1

α−1) + n·α·log(α)
α−1

)
. Thus, for our interval, we have:

r(n, α) ∈ Ω

(
n log

(
1

α− 1

)
+
n · α log(α)

α− 1

)
∈ Ω

(
n log

(
1

α− 1

)
+ n log(α) · α

α− 1

)
because

α

α− 1
is trivially bounded below by 1 on the interval (1, 2),

⊆ Ω

(
n log

(
1

α− 1

)
+ n log(α)

)
∈ Ω

(
n log

(
α

α− 1

))
.

�

In the following sections, we will explore different algorithms for LOHification, their

complexity, and for what values of α they are optimal.

2.1.2 Algorithms for LOHification

2.1.2.1 LOHification via sorting

Sorting, which can be done in O(n log(n)), trivially LOHifies an array. Hence,

LOHification is in O(n log(n)) (we will later show a tighter bound).

When sorting is optimal

If α = 1, each layer has |Li| = 1, meaning an ordering over all elements; so sorting

must be performed. Thus, for α = 1, sorting is optimal. Furthermore, we can find an

α∗ where sorting is optimal for all α ≤ α∗. Doing this, we find that, for any constant,

12

C > 0, sorting is optimal for α ≤ 1+ C
n
. It should be noted that, as with the previous

derivations, α is a free parameter. This section aims to highlight possible pitfalls that

may arise from making α a function of n.

To prove this, we will use the following lemma.

Lemma 2.1.0.8. For any constant, C > 0, (n2 + n) · log(1 + C
n

) ∈ o(n · log(n)).

Proof.

lim
n→∞

(n2 + n) · log(1 + C
n

)

n · log(n)

= lim
n→∞

(n+ 1) · log(1 + C
n

)

log(n)

= lim
n→∞

n · log(1 + C
n

)

log(n)
+

log(1 + C
n

)

log(n)

= lim
n→∞

n · log(1 + C
n

)

log(n)

= lim
n→∞

log(1 + C
n

)− C
n+C

(C
n

)
by L’Hôpital’s rule

= lim
n→∞

log(1 + C
n

)

(C
n

)
− n

n+ C

= lim
n→∞

−(C
n2+C·n)

−(C
n2)

− 1 by L’Hôpital’s rule

= lim
n→∞

n2

n2 + C · n
− 1

= lim
n→∞

n

n+ C
− 1 by L’Hôpital’s rule

= 1− 1 by L’Hôpital’s rule

= 0.

�

Theorem 2.1.3. For any constant, C > 0, sorting is optimal for α ≤
(
1 + C

n

)
:= α∗.

13

Proof. Because decreasing α can only increase the number of layers, therefore the

number of operations needed to LOHify, its suffices to show that sorting is optimal

at α∗ =
(
1 + C

n

)
.

r(n, α∗) ∈ Ω

(
n log

(
1

α∗ − 1

)
+
n · α∗ · log(α∗)

α∗ − 1

)
= Ω

(
n log

(
1(

1 + C
n

)
− 1

)
+
n ·
(
1 + C

n

)
· log(

(
1 + C

n

)
)(

1 + C
n

)
− 1

)

= Ω

(
n log

(n
C

)
+

(n+ C) · log
(
1 + C

n

)
C
n

)

= Ω

(
n log(n)− n log(C) +

(n2 + C · n) · log
(
1 + C

n

)
C

)

= Ω

(
n · log(n) + (n2 + n) · log

(
1 +

C

n

))
= Ω(n · log(n) + o(n · log(n))) Lemma 2.1.0.8

⊆ Ω(n · log(n))

Therefore,

LOHification ∈ Θ(n · log(n)) for α ≤
(

1 +
C

n

)
.

�

Because sorting is optimal for these values of α, we know that, for all α at most

α∗ =
(
1 + C

n

)
, LOHification is in Θ

(
n log(n

n·(α−1)+1
) + n·α·log(α)

α−1

)
. Next we will look

at LOHification methods that are based on selection.

2.1.2.2 LOHification via iterative selection

LOHs can be constructed using one-dimensional selection, which can be done in

linear time via median-of-medians [11]. The median-of-medians algorithm produces

14

the kth smallest element in an array of length n in O(n) time. From this we can

partition the array on that element in linear time for a linear time top-k on an array.

In this section, we will describe LOHification algorithms that select away layers

from the ends of the array, prove their complexity, and find the values of α for which

they are optimal.

Selecting away the layer with the greatest index

This algorithm repeatedly performs a linear-time one-dimensional selection on the

value at the first index (were the array in sorted order) in our last layer, L`−1. Then,

the array is partitioned about this value. This is repeated for L`−2, L`−3, and so

on until the array has been partitioned about the minimum value in each layer thus

LOHifying the array. We will prove that this algorithm is in Θ
(
α·n
α−1

)
using the

following lemmas.

Lemma 2.1.0.9. For α > 1,
(

(logα(n·(α−1)+1))2−logα(n·(α−1))
2

)
∈ o
(
α·n
α−1

)
.

Proof.

lim
n→∞

(
(logα(n·(α−1)+1))2−logα(n·(α−1))

2

)
(
α·n
α−1

)
= lim

n→∞

α−1
(log(α))2

· (log(n · (α− 1) + 1))2 − α−1
log(α)

· log(n · (α− 1) + 1)

2 · α · n

= lim
n→∞

2·(α−1)2
(log(α))2

· log(n·(α−1)+1)
n·(α−1)+1

− (α−1)2
log(α)

· 1
n·(α−1)+1

2 · α
by L’Hôpital’s rule

= lim
n→∞

2·(α−1)2
(log(α))2

· log(n·(α−1)+1)
n·(α−1)+1

−
��

���
���

�: 0
(α−1)2
log(α)

· 1
n·(α−1)+1

2 · α

= lim
n→∞

(α− 1)2

α · (log(α))2
· log(n · (α− 1) + 1)

n · (α− 1) + 1

=
(α− 1)2

α · (log(α))2
·
(

lim
n→∞

log(n · (α− 1) + 1)

n · (α− 1) + 1

)
=

(α− 1)2

α · (log(α))2
·
(

lim
n→∞

1

n · (α− 1) + 1

)
by L’Hôpital’s rule

15

= 0.

�

Lemma 2.1.0.10. For α > 1,
(

logα(n·(α−1))
α−1

)
∈ o
(
α·n
α−1

)
.

Proof.

lim
n→∞

(
logα(n·(α−1))

α−1

)
(
α·n
α−1

)
= lim

n→∞

logα(n · (α− 1))

α · n

= lim
n→∞

1

α · log(α)
· log(n · (α− 1))

n

=
1

α · log(α)
·
(

lim
n→∞

log(n · (α− 1))

n

)
=

1

α · log(α)
·
(

lim
n→∞

α

n · (α− 1)

)
by L’Hôpital’s rule

= 0.

�

Lemma 2.1.0.11. Selecting away the layer with the greatest index is in Ω
(
α·n
α−1

)
.

Proof. By using a linear time one-dimensional selection, we can see that the runtime

for selecting away the layer with the greatest index is:

r(n, α) ∈ Θ

(
n+ (n− |L`−1|) + · · ·+

(
n−

∑
j<`−1

|L`−j−1|

))

= Θ

(
`−1∑
i=0

(
n−

`−1∑
j=`−i

|Lj|

))

⊆ Ω

(
`−1∑
i=0

(
n−

`−1∑
j=`−i

dαje

))

16

⊆ Ω

(
`−1∑
i=0

(
n−

`−1∑
j=`−i

(αj + 1)

))

= Ω

(
`−1∑
i=0

(
n− i−

`−1∑
j=`−i

αj

))

= Ω

(
n · `− `2 − `

2
− 1

α− 1
·

(
`−1∑
i=0

(α` − α`−i)

))

= Ω

(
n · `− `2 − `

2
− 1

α− 1
· (`− 1)α`+1 − ` · α` + α

α− 1

)
= Ω

(
n · `− `2 − `

2
− 1

α− 1
· (α− 1) · ` · α` − α · (α` − 1)

α− 1

)
= Ω

(
n · `− `2 − `

2
− ` · α`

α− 1
+
α · (α` − 1)

(α− 1)2

)
= Ω

(
` ·
(
n− `− 1

2
− α`

α− 1

)
+
α · (α` − 1)

(α− 1)2

)
⊆ Ω

(
` ·
(
n− `− 1

2
− n · (α− 1) + 1

α− 1

)
+
α · n · (α− 1)

(α− 1)2

)
Lemma 2.1.0.2

= Ω

(
` ·
(
−`− 1

2
− 1

α− 1

)
+

α · n
α− 1

)
= Ω

(
α · n
α− 1

−
(
`2 − `

2
+

`

α− 1

))
⊆ Ω

(
α · n
α− 1

−
(

(logα(n · (α− 1) + 1))2 − logα(n · (α− 1))

2

)
−
(

logα(n · (α− 1))

α− 1

))
Lemma 2.1.0.1 and Lemma 2.1.0.2

⊆ Ω

(
α · n
α− 1

)
Lemma 2.1.0.9 and Lemma 2.1.0.10

hence;

r(n, α) ∈ Ω

(
α · n
α− 1

)
.

�

Theorem 2.1.4. Selecting away the layer with the greatest index is in Θ
(
α·n
α−1

)
.

Proof. Using a linear time one-dimensional selection, we can see that the runtime for

17

selecting away the layer with the greatest index is:

r(n, α) ∈ Θ

(
n+ (n− |L`−1|) + · · ·+

(
n−

∑
j<`−1

|L`−j−1|

))

= Θ

(
`−1∑
i=0

(
n−

`−1∑
j=`−i

|Lj|

))

⊆ O

(
`−1∑
i=0

(
n−

`−1∑
j=`−i

αj

))

= O

(
n · `− 1

α− 1
·

(
`−1∑
i=0

(α` − α`−i)

))

= O

(
n · `− 1

α− 1
· (`− 1)α`+1 − ` · α` + α

α− 1

)
= O

(
n · `− 1

α− 1
· (α− 1) · ` · α` − α · (α` − 1)

α− 1

)
= O

(
n · `− ` · α`

α− 1
+
α · (α` − 1)

(α− 1)2

)
= O

(
` ·
(
n− α`

α− 1

)
+
α · (α` − 1)

(α− 1)2

)
⊆ O

(
` ·
(
n− n · (α− 1) + 1

α− 1

)
+
α · n · (α− 1)

(α− 1)2

)
Lemma 2.1.0.2

= O

(
` ·
(
− 1

α− 1

)
+

α · n
α− 1

)
= O

(
α · n
α− 1

−
(

`

α− 1

))
⊆ O

(
α · n
α− 1

−
(

logα(n · (α− 1))

α− 1

))
Lemma 2.1.0.2

⊆ O

(
α · n
α− 1

)
Lemma 2.1.0.10

hence;

r(n, α) ∈ O

(
α · n
α− 1

)
;

therefore, by Lemma 2.1.0.11;

r(n, α) ∈ Θ

(
α · n
α− 1

)
.

18

�

Selecting away the layer with the least index

We can also select from the other side. We perform this algorithm by performing a

linear-time one-dimensional selection to select L0, then, from the remaining layers,

select L1 and so forth until the array is LOHified. It is simple to see via the following

proof that this method will never be better than selecting away the layer with the

largest index.

Theorem 2.1.5. Selecting away the layer with the least index is in Ω
(
α·n
α−1

)
.

Proof. Using a linear time one-dimensional selection, we can see that the runtime for

selecting away the layer with the least index is:

r(n, α) ∈ Θ

(
n+ (n− |L0|) + · · ·+

(
n−

∑
j<`−1

|Lj|

))

= Θ

(
`−1∑
i=0

(
n−

i−1∑
j=0

|Lj|

))

⊆ Ω

(
`−1∑
i=0

(
n−

i−1∑
j=0

dαje

))

⊆ Ω

(
`−1∑
i=0

(
n−

i−1∑
j=0

(αj + 1)

))

= Ω

(
`−1∑
i=0

(
n− i−

i−1∑
j=0

αj

))

⊆ Ω

(
`−1∑
i=0

(
n− i−

`−1∑
j=`−i

αj

))

⊆ Ω

(
α · n
α− 1

)
, Theorem 2.1.4

hence;

r(n, α) ∈ Ω

(
α · n
α− 1

)
.

19

�

When iterative selection is optimal

Because selecting away the layer with the greatest index is never worse than selecting

away the layer with the least index, we shall assume the iterative selection is selecting

away the layer with the greatest index. Again, we shall also assume that α > 1 as

sorting is optimal for α = 1. We will prove that this method is optimal in n for all

values of α ≥ C for any fixed constant C > 1, but not in α for α ∈ (1, 2).

This is similar to the notion that any terminating algorithm on a problem whose

size is bounded by a constant is done in constant time. We show this to highlight

some pitfalls that occur when α is treated like a constant instead of a parameter.

Theorem 2.1.6. Given any constant: C > 1, iterative selection is optimal (in n)

for all α ≥ C.

Proof. LOHification is trivially in Ω(n), as that is the cost to load the data. As

α increases, the number of layers (and hence, the work) can only decrease, thus it

suffices to show iterative selection is optimal at α = C.

r(n,C) ∈ O

(
C · n
C − 1

)
Theorem 2.1.4

∈ O(n)

therefore;

LOHification ∈ Θ(n) for all α ≥ some fixed constant C > 1.

�

Lemma 2.1.0.12. Iterative selection is sub-optimal (in n) for α = α∗ = 1 + C
n
for

any constant C > 0.

20

Proof.

r(n, α∗) ∈ Θ

(
α∗ · n
α∗ − 1

)
Theorem 2.1.4

= Θ

((
1 + C

n

)
· n(

1 + C
n

)
− 1

)

= Θ

(
n+ C(

C
n

))

= Θ

(
n2 + C · n

C

)
⊆ Θ(n2).

This does not achieve our lower bound.

Theorem 2.1.7. Iterative selection does not achieve the lower bound for α ∈ (1, 2)

that was demonstrated in Theorem 2.1.2.

Proof.

r(n, α) ∈ Θ

(
α · n
α− 1

)
, Theorem 2.1.4

∈ Θ

(
n · α

α− 1

)
∈ ω

(
n log

(
α

α− 1

))
.

�

We will later show in Lemma 2.1.0.19 that the lower bound for α ∈ (1, 2) demon-

strated in Theorem 2.1.2 can be achieved, thus making iterative selection sub-optimal.

21

2.1.2.3 Selecting to divide remaining pivot indices in half

For this algorithm, we first calculate the pivot indices in O(n). Then, we perform

a linear-time one-dimensional selection for the median pivot, partition on that pivot,

and then recurse on the sub-problems until the array is LOHified.

Runtime

One-dimensional selection is in Θ(n), thus the cost of every layer in the recursion is

in Θ(n). Because splitting at the median pivot creates a balanced-binary recursion

tree, the cost of the algorithm is in Θ(n · d) where d is the depth of the recursion

tree. The number of pivots in each recursive call is one less than half of the number

of pivots in the parent call, so we have d = log2(`). Hence:

r(n, α) ∈ Θ(n · log(`))

= Θ(n · log(logα(n · (α− 1) + 1)))

= Θ

(
n · log

(
log(n · (α− 1) + 1)

log(α)

))
.

When selecting to divide remaining pivot indices in half is optimal

Here we will show that this method is optimal for the values of α where sorting is

optimal: 1 ≤ α ≤ α∗ = 1 + C
n
for any constant, C > 0. We will then show that it is

sub-optimal for α = some fixed constant C > 1.

Lemma 2.1.0.13. n · log

(
log(C)

log(1+C
n)

)
∈ Θ(n · log(n)) for any constant, C > 0.

Proof.

lim
n→∞

n · log

(
log(C)

log(1+C
n)

)
n · log(n)

22

= lim
n→∞

log

(
log(C)

log(1+C
n)

)
log(n)

= lim
n→∞

(
C

n·(n+C)·log(1+C
n)

)
(
1
n

) by L’Hôpital’s rule

= lim
n→∞

1

(n+ C) · log
(
1 + C

n

)
= lim

n→∞

(
1

n+C

)
log
(
1 + C

n

)
= lim

n→∞

(−1
n2+2·C·n+C2

)(−C
n2+C·n

) by L’Hôpital’s rule

= lim
n→∞

n2 + C · n
C · n2 + 2 · C2 · n+ C3

=
1

C
by L’Hôpital’s rule.

�

Lemma 2.1.0.14. Selecting to divide remaining pivot indices in half is optimal for

α = α∗ = 1 + C
n
for any constant, C > 0.

Proof.

r(n, α∗) ∈ Θ

(
n · log

(
log(n · (α∗ − 1) + 1)

log(α∗)

))
= Θ

(
n · log

(
log
(
n ·
((

1 + C
n

)
− 1
)

+ 1
)

log
(
1 + C

n

)))

= Θ

(
n · log

(
log(C))

log
(
1 + C

n

)))
= Θ(n · log(n)) Lemma 2.1.0.13.

�

23

Lemma 2.1.0.15. Selecting to divide remaining pivot indices in half is sub-optimal

for α = some fixed constant C > 1.

Proof. Because Theorem 2.1.6 shows that LOHification can be done in linear time

under these conditions, it only remains to show that this method is ∈ ω(n).

r(n,C) ∈ Θ

(
n · log

(
log(n · (C − 1) + 1)

log(C)

))
= Θ(n · log(log(n)))

⊆ ω(n).

�

2.1.2.4 Partitioning on the pivot closest to the center of the array

For this algorithm, we start by computing the pivots and then performing a linear-

time selection algorithm on the pivot closest to the true median of the array to

partition the array into two parts. We then recurse on the parts until all layers are

generated. In this section, we will describe the runtime recurrence in detail, and then

prove that this method has optimal performance at any α.

The Runtime Recurrence

Let ns be the starting index of our (sub)array. Let ne be the ending index or our

(sub)array. Let m(ns, ne, α) be the number of pivots between ns and ne (exclusive).

Let x(ns, ne, α) be the index of the pivot closest to the middle of the (sub)array

starting at ns and ending at ne. Then the runtime of our algorithm, r(n, α), is equal

to s(0, n, α) where

24

s(ns, ne, α) =

0, ns ≥ ne

0, m(ns, ne, α) = 0

ne − ns + r(ns, x(ns, ne, α)− 1, α) + r(x(ns, ne, α) + 1, ne, α), else

Describing the asymptotic bounds of a recurrence has been an area of interest

in computer science for a long time and many methods have been found to calculate

these bounds. Due to the fact that the recursive calls differ in both size and number of

pivots, however, the recurrence for this algorithm does not fit the form of the ‘Master

Theorem’ [12], nor can it be solved with the more general Akra-Bazzi method [13].

Instead, we will bound the recursion tree by bounding how far right we go in the

recursion tree, tmax, and use this to find the deepest layer, d∗ for which all branches

have work. Because performing two selections is ∈ O(n), we will bound the size of

the recursions by half of the parent by selecting on the pivots on both sides of the

true median (if the true median is a pivot we just pay for it twice). From there, the

bound on the runtime can be computed as O(d∗ · n) + O
(∑log(n)

d=d∗
∑tmax

t=1
n
2d

)
. This

scheme is depicted in Fig 2.1.

25

tmax

d*

Recursion Tree

log(n)

Top

Bottom

No work done

Figure 2.1 The recursion tree for partitioning on the pivot closest

to the center of the array. The work at “Top” is ∈ O(n · d∗)

and the work done at “Bottom” is ∈ O
(∑log(n)

d=d∗
∑tmax

t=1
n
2d

)
. d∗ is

the greatest depth at which all branches have work and tmax is

a bound on the “furthest right” we go in the recursion tree.

Bounds on variables

Lemma 2.1.0.16. For α > 1, the number of pivots between any two points is

m(ns, ne, α) ≤ logα

(
ne·(α−1)+1

(ns−1)·(α−1)+1

)
.

Proof. By our definition, the ith pivot, pi, occurs at pi =
⌈∑i

j=0 α
j
⌉

=
⌈
αi+1−1
α−1

⌉
. Let

ns be the start of our (sub)array and ne be the end of our (sub)array. Then the

number of pivots, pe, occurring before ne is bound by the inequality:

ne ≥
⌈
αpe+1 − 1

α− 1

⌉

26

ne ≥
αpe+1 − 1

α− 1

ne · (α− 1) ≥ αpe+1 − 1

ne · (α− 1) + 1 ≥ αpe+1

logα(ne · (α− 1) + 1) ≥ pe + 1

logα(ne · (α− 1) + 1)− 1 ≥ pe.

Similarly, the number of pivots, ps, occurring before ns is bound by the inequality:

ns ≤
⌈
αps+1 − 1

α− 1

⌉
ns ≤

αps+1 − 1

α− 1
+ 1

ns − 1 ≤ αps+1 − 1

α− 1

(ns − 1) · (α− 1) ≤ αps+1 − 1

(ns − 1) · (α− 1) + 1 ≤ αps+1

logα((ns − 1) · (α− 1) + 1) ≤ ps + 1

logα((ns − 1) · (α− 1) + 1)− 1 ≤ ps.

By combining these two inequalities, we can find an upper bound on the number of

pivots in the (sub)array, m(ns, ne, α):

m(ns, ne, α) ≤ (logα(ne · (α− 1) + 1)− 1)− (logα((ns − 1) · (α− 1) + 1)− 1)

≤ logα(ne · (α− 1) + 1)− logα((ns − 1) · (α− 1) + 1)

≤ logα

(
ne · (α− 1) + 1

(ns − 1) · (α− 1) + 1

)
.

�

27

A bound on the runtime recurrence

For the following bounds, we will assume that α > 1. Let d be the depth of our

current recursion (indexed at 0) and t be how far right in the tree we are at our

current recursion (indexed at 1). To get an upper bound on the recurrence, we will

compute the cost of selecting for both the first index before the true middle and the

first index after the true median. We will then treat the true middle as x(ns, ne, α)

for our recursive calls. Under these restrictions, ns = n·(t−1)
2d

and ne = n·t
2d

for a given

t and d. Knowing this, we can calculate bounds for m(ns, ne, α) in terms of t and d.

Lemma 2.1.0.17. For α > 1, m(ns, ne, α) ≤ logα

(
n·t·(α−1)+2d

(n·(t−1)−2d)·(α−1)+2d

)
.

Proof.

m(ns, ne, α) ≤ logα

(
ne · (α− 1) + 1

(ns − 1) · (α− 1) + 1

)
Lemma 2.1.0.16

≤ logα

(
n·t
2d
· (α− 1) + 1

(n·(t−1)
2d
− 1) · (α− 1) + 1

)

≤ logα

(
n · t · (α− 1) + 2d

(n · (t− 1)− 2d) · (α− 1) + 2d

)
.

�

We can then use this to calculate t, in terms of α, n and d for whichm(ns, ne, α) < 1.

This will give us a bound on how far right we go in the recursion tree.

Lemma 2.1.0.18. tmax = α
α−1 + 1.

Proof. By Lemma 2.1.0.17, we have m(ns, ne, α) ≤ logα

(
n·t·(α−1)+2d

(n·(t−1)−2d)·(α−1)+2d

)
. Thus,

we need only find the least value of t for which this expression is less than 1.

logα

(
n · t · (α− 1) + 2d

(n · (t− 1)− 2d) · (α− 1) + 2d

)
< 1

28

(
n · t · (α− 1) + 2d

(n · (t− 1)− 2d) · (α− 1) + 2d

)
< α

n · t · (α− 1) + 2d < α · (n · (t− 1)− 2d) · (α− 1) + α · 2d

n · t · (α− 1) < α · (n · (t− 1)− 2d) · (α− 1) + (α− 1) · 2d

n · t < α · (n · (t− 1)− 2d) + 2d

n · t < α · n · t− α · n− α · 2d + 2d

t < α · t− α− (α− 1) · 2d

n

t− α · t < −α− (α− 1) · 2d

n

t · (α− 1) > α +
(α− 1) · 2d

n

t >
α

α− 1
+

2d

n
.

Because 2d ≤ n at any layer of the recursion, tmax = α
α−1 + 1.

�

Using this, we can define s∗, an upper bound on our runtime recurrence where

s(0, n, α) ≤ s∗(1, 0, n, α) and

s∗(t, d, n, α) =

0 t > tmax

0 2d > n

n
2d

+ s∗(2 · t− 1, d+ 1, n, α) + s∗(2 · t, d+ 1, n, α) otherwise.

The runtime of partitioning on the pivot closest to the center of the

array

Theorem 2.1.8. For α > 1, partitioning on the pivot closest to the center of the

array is ∈ O
(
n log

(
α
α−1

))
.

29

Proof. Let d∗ be the largest d for which all branches at layer d have work. Because

tmax = α
α−1 + 1 (Lemma 2.1.0.18), d∗ = log2(

α
α−1 + 1). This yields:

r(n, α) = s(0, n, α)

≤ s∗(1, 0, n, α)

∈ O

log(n)∑
d=d∗

tmax∑
t=1

n

2d

+O(n · d∗)

∈ O

log(n)∑
d=d∗

α

α− 1
· n

2d

+O

(
n · log

(
α

α− 1
+ 1

))

∈ O

 n · α
α− 1

·
log(n)∑
d=d∗

1

2d

+O

(
n · log

(
α

α− 1

))

∈ O

(
n · α
α− 1

·
(
21−d∗ − 2− log(n)

))
+O

(
n · log

(
α

α− 1

))
∈ O

(
n · α
α− 1

·
(

2 · α− 1

2 · α− 1
− 1

n

))
+O

(
n · log

(
α

α− 1

))
∈ O

(
2 · n · α
2 · α− 1

− α

α− 1

)
+O

(
n · log

(
α

α− 1

))
∈ O(n) +O

(
n · log

(
α

α− 1

))
∈ O

(
n · log

(
α

α− 1

))
.

�

Theorem 2.1.9. For α = 1, partitioning on the pivot closest to the center of the

array is optimal.

Proof. Because we are sorting in this case, it suffices to show that this method is

∈ O(n log(n)). Let d∗ be the largest d for which all branches at that layer have work.

30

Because α = 1, all branches have work. Thus d∗ = log2(n). This yields:

r(n, 1) ∈ O(n · d∗)

∈ O(n log(n)).

�

Lemma 2.1.0.19. Partitioning on the pivot closest to the center of the array is op-

timal for α ∈ (1, 2).

Proof.

r(n, α) ∈ O

(
n · log

(
α

α− 1

))
by Theorem 2.1.8.

Because Theorem 2.1.2 puts LOHification in Ω
(
n · log

(
α
α−1

))
, this algorithm is opti-

mal on these bounds. �

Lemma 2.1.0.20. Partitioning on the pivot closest to the center of the array is op-

timal for α ≥ 2.

Proof. Because increasing α decreases the number of layers, and thus the work, it

suffices to show that the algorithm is optimal at α = 2.

r(n, 2) ∈ O

(
n · log

(
2

2− 1

))
= O(n)

Because loading the data puts r(n) ∈ Ω(n),

r(n) ∈ Θ(n).

�

31

Theorem 2.1.10. Partitioning on the pivot closest to the center of the array is op-

timal for all α ≥ 1.

Proof.

By Theorem 2.1.9, Lemma 2.1.0.19, and Lemma 2.1.0.20, partitioning on the pivot

closest to the center of the array is optimal for α ≥ 1

�

2.1.3 The optimal runtime for the construction of a layer-ordered heap

of any rank

Partitioning on the pivot closest to the center of the array is optimal for all α ≥ 1

by Theorem 2.1.10. We can combine this with Theorem 2.1.1 to determine that

LOHification (for α > 1) is in:

Θ

(
n log

(
n

n · (α− 1) + 1

)
+
n · α · log(α)

α− 1

)
.

2.1.4 Quick LOHify

For this implementation of the algorithm, we partition on a random element, record

the index of this element in an auxiliary array and then recurse on the left side until

the minimum element is selected. While this method is probabilistic with a worst

case construction in O(n2), it performs well in practice and has a linear expected

construction time.

Expected Runtime of Quick LOHify

Quick LOHify can be thought of as a Quick-Selection with k = 1 and a constant

number of operations per recursion for the auxiliary array. From this, we know the

expected runtime to be in Θ(n). A direct proof is also provided.

32

Theorem 2.1.11. The expected runtime for Quick LOHify is in Θ(n).

Proof. The runtime is proportional to the number of comparisons. Suppose xi is the

ith element in the sorted array and assume without loss of generality that i < j. We

compare xi and xj only when one of these values is the pivot element.

Let Wi,j be the probability that xi is compared to xj. Because we only recurse on

the left, the smallest possible window that contains both xi and xj has j elements

(both elements must be on the correct side of the previous pivot). Hence Wi,j ≤ 2
j
.

Since loading the data is in Ω(n), it only remains to show that our expected number

of comparisons, E[c], is in O(n).

The expected number of comparisons can be found by summing the probability

over all pairs of elements. This yields:

E[c] =
n−2∑
i=0

n−1∑
j=i+1

Wi,j

E[c] ≤
n−2∑
i=0

n−1∑
j=i+1

2

j

= 2 ·
n−2∑
i=0

n−1∑
j=i+1

1

j

= 2 ·

1 + 1
2

+ 1
3

+ · · · + 1
n−1

+ 1
2

+ 1
3

+ · · · + 1
n−1

+ 1
3

+ · · · + 1
n−1

+ .. . + 1
n−1

+ 1
n−1

= 2 · (n− 1)

= 2 · n− 2

∈ O(n).

33

�

Expected α of Quick LOHify

Unlike other constructions of a LOH, an α is not specified when performing Quick

LOHify nor is it guaranteed to be the same across different runs. We can, however,

determine that the expected value of α is in Θ(log(n)).

Theorem 2.1.12. The expected α for Quick LOHify is ∈ Θ(log(n)).

Proof.

The average α, E[α], can be computed as the average ratio of the last two layers.

This can be found by dividing the sum of all ratios by the number of ways to choose

the pivots. This yields:

E[α] =
1(
n
2

) · n−2∑
i=0

n−1∑
j=i+1

n− j
j − i

=
2

n2 − n
·
n−2∑
i=0

n−1∑
j=i+1

n− j
j − i

=
2

n2 − n
·
n−2∑
i=0

n−i−1∑
k=1

n− i− k
k

=
2

n2 − n
·
n−2∑
i=0

(
n−i−1∑
k=1

n− i
k
− 1

)

=
2

n2 − n
·
n−2∑
i=0

((
n−i−1∑
k=1

n− i
k

)
− (n− i− 2)

)

=
2

n2 − n
·
n−2∑
i=0

(
(n− i) ·

(
n−i−1∑
k=1

1

k

)
− n+ i+ 2

)

=
2

n2 − n
·
n−2∑
i=0

((n− i) ·Hn−i−1 − n+ i+ 2)

=
2

n2 − n
·
n−2∑
i=0

(n ·Hn−i−1 − i ·Hn−i−1 − n+ i+ 2)

34

=
2

n2 − n
·

((
n ·

n−2∑
i=0

(Hn−i−1)

)
−

(
n−2∑
i=0

(i ·Hn−i−1)

)

−(n2 − 2 · n) +

(
n−2∑
i=0

i

)
+ (2 · n− 4)

)

=
2

n2 − n
·

((
n ·

n−1∑
k=1

Hk

)
−

(
n−1∑
k=1

(n− k − 1) ·Hk

)

−(n2 − 2 · n) +
n2 − 3 · n+ 2

2
+ (2 · n− 4)

)
=

2

n2 − n
·

((
n−1∑
k=1

(k + 1) ·Hk

)
+
−n2 + 5n− 6

2

)
which we simplify with Wolfram Mathematica to:

=
2

n2 − n
·
(

(n2 + n) ·Hn

2
− n2

4
− 3 · n

4
+
−n2 + 5 · n− 6

2

)
=

2

n2 − n
· 2 · n2 ·Hn + 2 · n ·Hn − 3 · n2 + 7 · n− 12

4

=
2 · n2 ·Hn + 2 · n ·Hn − 3 · n2 + 7 · n− 12

2 · n2 − 2 · n
∈ Θ(log(n)).

�

2.2 Optimal α for top-k on X + Y

Now that we have an optimal LOHification algorithm for any α, we can estimate

the optimal α for performing a top-k onX+Y via Serang’s method [6] whereX and Y

are arrays of length n. Because LOHification with α ≥ 2 is in Θ(n) (Lemma 2.1.0.19),

and increasing α only improves the speed of LOHification itself; we will focus on the

interval α ∈ (1, 2].

35

2.2.1 Overview of the algorithm

Serang’s algorithm is divided into four phases.

Phase 0

X and Y are both LOHified using the optimal LOHification algorithm.

Phase 1

Layer products of the form X(u) + Y (v) (where X(u) and Y (v) are layers in their

respective LOHs) are considered. For this phase and the next, only the minimum

and maximum values in the layer products are generated. We also note whether the

value is a minimum or maximum. We represent these as tuples of the form (r, b, u, v)

where r represents the extreme value in X(u) + Y (v), b is 0 if the extreme value is a

minimum and 1 if the extreme value is a maximum (we have two tuples for every layer

product), and u and v represent the indices in the X-LOH and Y -LOH respectively.

The tuples associated with minimal values in layer products will be referred to as

min-corners and the tuples associated with maximal values in layer products will be

referred to as max-corners.

These tuples are then put into a priority queue and popped in sorted order until

we are guaranteed the popped max-corners are associated with layer products that

have a total area at least k. The contents of layer products associated with popped

max-corners are now generated and put into a vector.

Phase 2

The values associated with all max values that remain in our queue are now gen-

erated and put into the vector. This is because their min corners have been popped,

36

and therefore those layer products may contain some values at most the maximum

max corner currently popped from the priority queue. Now the vector contains all

values that may be less than the worst max corner that has been popped from the

priority queue. Since the kth best value is the minimal value with at least k values

less than or equal to it, then we have at least k values, which represent all values at

most the worst max corner that has been popped from the priority queue; therefore,

that worst max corner popped is an upper bound for the kth smallest value.

Phase 3

A 1-dimensional k-selection is done on the vector. This runs in linear time using

median-of-medians [11]. Serang shows that the vector contains Θ(k) values because of

a geometric series that appears in the sizes of the layer products, which until the final

max corner was popped from the priority queue, must have had less than k values in

the vector [6].

2.2.2 Deriving the runtime in terms of n, k, and α

When deriving the runtime for this algorithm, the important things to consider are

the cost of LOHification, the cost of generating the layer products, the cost of the

partial sorting of the layer products, and the size of the final vector that we perform

the top-k on.

We know from Lemma 2.1.0.19 that the cost of LOHification (using the optimal

method on the bounds we are considering) is in Θ(n log(α
α−1)). Next, we will derive a

bound on the total number of layer products to help analyze the runtime of generating

and performing a partial sort on the layer products.

Lemma 2.2.0.1 (There are o(n1/2) layer products as n grows for α > 1).

37

Proof. By Lemma 2.1.0.3, the asymptotic number of layers in a LOH is logα(n · (α−

1) + 1). Because X and Y both have length n and are LOHified using the same α,

the total number of layer products in X + Y is (logα(n · (α− 1) + 1))2.

lim
n→∞

(logα(n · (α− 1) + 1))2

n1/2

= lim
n→∞

(
log(n·(α−1)+1)

log(α)

)2
n1/2

= lim
n→∞

(log(n · (α− 1) + 1))2

n1/2 · (log(α))2

= lim
n→∞

(
2·(α−1)·log(n·(α−1)+1)

n·(α−1)+1

)
(

(log(α))2

2n1/2

) by L’Hôpital’s rule

= lim
n→∞

4n1/1 · (α− 1) · log(n · (α− 1) + 1)

n · (α− 1) · (log(α))2 + (log(α))2

= lim
n→∞

(
4

(log(α))2

)
·

(
(α− 1) · log(n · (α− 1) + 1)

n1/2 · (α− 1) + 1
n1/2

)

= lim
n→∞

(
4

(log(α))2

)
·
(

log(n · (α− 1) + 1

n1/2

)

= lim
n→∞

(
4

(log(α))2

)
·

(

α−1
n·(α−1)+1

)
(

1
2n1/2

)
 by L’Hôpital’s rule

= lim
n→∞

(
4

(log(α))2

)
·
(

2n1/2 · (α− 1)

n · (α− 1) + 1

)
= lim

n→∞

(
4

(log(α))2

)
·

((
α−1
n1/2

)
α− 1

)
by L’Hôpital’s rule

= lim
n→∞

(
4

(log(α))2

)
·
(

1

n1/2

)
= 0

�

Generating a tuple associated with layer product X(u) +Y (v) only requires the min

38

and max elements of X(u) and Y (v). Getting the min and max values of an array is

trivially done in O(n). Because the layers of a LOH partition the original array, the

total time to get all mins and maxes in a LOH is in O(n) which is in O(Phase0).

Once we have these values, every tuple can be generated in O(1) time. Thus the

time it takes to generate all tuples needed is in o(n1/2) by Lemma 2.2.0.1; which, is

in dwarfed by the cost of Phase 0. By using a binary heap as our priority queue, the

partial sort on the tuples can take no longer than a heap-sort on all the tuples, which

puts the partial sort in O(n1/2 log(n)) which is in O(Phase0).

Because top-k on an array of length n can be done in O(n) [11], we now need only

a bound on the size of the final vector.

Lemma 2.2.0.2 (The size of the final vector is at most k · (α2 + α + 1)).

Proof. Let I be the set of all layer products associated with max-corners that have

been popped from our priority queue immediately before the final max-corner popped

in Phase 1. Let u∗ be the greatest integer, z, such that X(z) + Y (0) ∈ I. Let v∗ be

the greatest integer, z, such that X(0) + Y (z) ∈ I. Let vx for any v ≤ v∗ be the

greatest integer, z, such that X(z) + Y (v) ∈ I. Let uv for any u ≤ u∗ be the greatest

integer, z, such that X(u) + Y (z) ∈ I. It should be noted that X(u) + Y (v) ∈ I implies

X(i) + Y (j) ∈ I for all 0 ≤ i ≤ u and 0 ≤ j ≤ v. This is because a minimal element

in X(i) cannot be greater than a minimal element in X(i+1) by our layer ordering.

Let |I| represent the number of elements in X+Y that are in the union of all layer

products in I.

By this construction,

|I| =
u∗∑
i=0

|X(i)| ·

(
ui∑
j=0

|Y (j)|

)
=

v∗∑
j=0

|Y (j)| ·

(
vj∑
i=0

|X(i)|

)

39

Let V be the set of all layer products associated with max-corners that have ever

been pushed into our priority queue. Because a max-corner in the priority queue

implies that the associated min-corner has been popped, V is bounded by the min-

corners that have ever been in our priority queue. Because (r0,u,v, 0, u, v) proposes

(r1,u,v, 1, u, v), (r0,u+1,v, 0, u + 1, v), and (r0,u,v+1, 0, u, v + 1); and (r1,u,v, 1, u, v) <

(r0,u+1,v+1, 0, u + 1, v + 1) the the number of elements in X + Y that are in the

union of all layer products in V , |V | (the size of the final vector) can be bounded by:

|V | ≤
u∗+1∑
i=0

|X(i)| ·

(
ui+1∑
j=0

|Y (j)|

)

Because layers in both X and Y grow by a factor of α,

|V | ≤
u∗∑
i=0

|X(i)| ·

(
ui∑
j=0

|Y (j)|

)
+ α ·

(
u∗∑
i=0

|X(i)| ·

(
ui∑
j=0

|Y (j)|

))

+ α2 ·

(
u∗∑
i=0

|X(i)| ·

(
ui∑
j=0

|Y (j)|

))
≤ |I|+ α · |I|+ α2 · |I|

≤ |I| · (α2 + α + 1)

By definition, |I| < k, so the size of the final vector is bounded by k · (α2 + α+ 1) in

the worst case. �

Fig 2.2 and Fig 2.3 provide a visual aid to the previous theorem.

40

Figure 2.2 A color coded depiction of X + Y . In this depic-

tion, the blue squares represent the elements in layer prod-

ucts associated that are in I. The light green squares rep-

resent elements in layer products that are adjacent to I,

and the red squares represent elements in layer products

that are diagonal to I. All non-gray squares represent el-

ements in layer products that are in V . The layer prod-

ucts X(0) + Y (u0+2) and X(v0+2) + Y (0) are not in V because

|X(0)| = |Y (0)| = 1 hence (r1,u,0, 1, u, 0) < (r0,u+1,0, 0, u + 1, 0)

and (r1,0,v, 1, 0, v) < (r0,0,v+1, 0, 0, v + 1).

41

Figure 2.3 An alternate coloring of X + Y . With this recoloring (the

bottom left layer product is now red), it is easy to see that the

area of the green part is bounded by α times the area of the blue

part and the area of the red part is bounded by α times the area

of the blue and green parts combined.

Theorem 2.2.1 (An estimate of the optimal α for top-k on X + Y). Using

the bounds found earlier, we can determine that the optimal α for top-k on X + Y is

approximately

7k

3·22/3·
3

√
20k3+ 432k2·n

ln(2)
+

√(
20k3+ 432k2·n

ln(2)

)2
−1372k6

+

3

√
20k3+ 432k2·n

ln(2)
+

√(
20k3+ 432k2·n

ln(2)

)2
−1372k6

6· 3
√
2·k

+ 1
6

42

Proof. By the construction of our algorithm, we perform at most two selections per

layer in our recursion tree for LOHification. Because of this, the total cost of LOHi-

fication for X and Y will be approximately c · 4 · log2(
α
α−1) in the worst case where c

is the runtime constant of our 1-D selection algorithm. Likewise, the cost of our final

selection will be approximately c · k · (α2 +α+ 1) in the worst case. Because the cost

of all other operations is in o(n), our total runtime for large n and k is approximately

f(α) = c · 4 · log2(
α
α−1) + c · k · (α2 + α + 1).

We can use the first derivative test to find the optimal α in terms of n and k.

∂

∂α
f(α) =

−c · 4n · 1
ln(2)

α2 − α
+ c · (2k · α + k)

Now, solving for 0 we get:

−c · 4n · 1
ln(2)

α2 − α
+ c · (2 · k · α + k) = 0

−4
ln(2)
· n

α2 − α
+ 2 · k · α + k = 0

2k · α3 + k · α2 − 2k · α2 − k · α− 4

ln(2)
· n = 0

2k · α3 − k · α2 − k · α− 4

ln(2)
· n = 0

Simplifying this with Wolfram Mathematica 1 yields:

α =
7k

3 · 22/3 · 3

√
20k3 + 432k2·n

ln(2)
+

√(
20k3 + 432k2·n

ln(2)

)2
− 1372k6

+

3

√
20k3 + 432k2·n

ln(2)
+

√(
20k3 + 432k2·n

ln(2)

)2
− 1372k6

6 · 3
√

2 · k
+

1

6

1Solve[2*k*a^3-k*a^2-k*a-(4/log(2))*n==0,a]

43

As the only real solution for non-zero real values of n and k. We will denote this as

A(n, k).

Using the second derivative test, we can show that this value is, in fact, a minimum.

∂2

∂α2
f(α) =

c·4n
ln(2)
· (2α− 1)

(α− 1)2 · α2
+ c · 2k

We can see that this value is greater than 0 for n > 0, k > 0, c > 0, and α ∈

(1, 2]. Because LOHification with α ≥ 2 ∈ O(n), the optimal α in the worst case is

approximately min(A(n, k), 2).

�

We evaluate our estimate against empirical data in the Results chapter.

2.3 Top-k on a multinomial

The multinomial distribution is the generalization of the binomial distribution for

k > 2 possible outcomes per trial. This can be used to model the distribution of

isotopologues in chemicals, biological phenomena, election polling, and other things.

The application of an online top-k algorithm for multinomials is used in the isotope

calculator NeutronStar [9]. This works by creating LOHs out of the top-k from the

multinomial ‘leaves’ in an online manner that are fed to a Cartesian product tree [14]

to compute the top-k isotopes of a compound.

The depth of a Cartesian product tree is log2(m), thus the accumulated overshoot-

ing when using the Serang X + Y method to combine each pair in the tree will be

m(log2(α
2+α+1) which favors an α near 1. The LOHification process favors a large α,

so this becomes another balancing act to minimize the overall work.

Let there be k mutually exclusive events: e1, . . . , ek, with probabilities: p1, . . . , pk

44

such that
∑k

i=1 pi = 1. For n independent trials where exactly one of the k

events happens per trial, the event that we observe x1, . . . , xk instances of events

e1, . . . , ek respectively will be labeled (x1, . . . , xk). The probability of a configuration

is P (x1, . . . , xk) = n! ·
∏k

i=1
p
xi
i

xi!
.

The multinomial can be thought of as a polynomial to a power. The elements

with the k largest coefficients is a type of approximation. It is an especially useful

approximation when there are a lot of terms and most coefficients are near zero such

as the isotopic distribution of a large homo-elemental compound like C60. For hetero-

elemental compounds, the distribution is the coefficients of the product of constituent

multinomials.

2.3.1 Convexity of a multinomial

Here we will show that the multinomial distribution has a type of convexity that

we can use to both find its mode(s) (a term with a maximal coefficient) and perform

a top-k on it. We will start with a simple lemma. Note that [m] is the set of all

integers between 1 and m including 1 and m.

Lemma 2.3.0.1 (Directional Convexity). Let (x1, x2, . . . , xm) be a mode in our

distribution. Then for j, k ∈ [m],
pj ·xk

pk·(xj+1)
≤ 1

Proof.

P (x1, x2, . . . , xm) = n! ·
m∏
i=1

pxii
xi!

because P (x1, x2, . . . , xm) is a mode, we have:

P (x1, x2, . . . , xm) ≥ P (. . . , xj + 1, . . . , xk − 1, . . .)

n! ·
m∏
i=1

pxii
xi!

≥ n! ·
p
xj+1
j · pxk−1k

(xj + 1)! · (xk − 1)!
·

∏
i∈[m]\{j,k}

pxii
xi!

45

p
xj
j · p

xk
k

xj! · xk!
≥

p
xj+1
j · pxk−1k

(xj + 1)! · (xk − 1)!

p
xj
j · p

xk
k · (xj + 1) ≥ p

xj+1
j · pxk−1k · xk

pk · (xj + 1) ≥ pj · xk

1 ≥ pj · xk
pk · (xj + 1)

.

�

Using this, we will demonstrate in the following theorems that every time the ith

entry in the index tuple, (a tuple that describes how many of each event is represented

in the element), is increased and the jth entry is decreased, thus moving further from

the mode in L1 (or Manhattan) distance, the probability never increases.

Theorem 2.3.1 (Pure Case). Let (x1, x2, . . . , xm) be a mode in our distribution.

Then for j, k ∈ [m], and b ∈ [min(xj, xk)];P (. . . , xj + b, . . . , xk− b, . . .) ≥ P (. . . , xj +

(b+ 1), . . . , xk − (b+ 1), . . .)

Proof.

P (. . . , xj + b, . . . , xk − b, . . .) = n! ·
p
xj+b
j · pxk−bk

(xj + b)! · (xk − b)!
·

∏
i∈[m]\{j,k}

pxii
xi!

P (. . . , xj + b, . . . , xk − b, . . .) = P (. . . , xj + (b+ 1), . . . , xk − (b+ 1), . . .)

· pj · (xk − b)
pk(xj + (b+ 1))

because
pj · xk

pk · (xj + 1)
≥ pj · (xk − b)

pk(xj + (b+ 1))

and

1 ≥ pj · xk
pk · (xj + 1)

Lemma 2.3.0.1

we have

46

1 ≥ pj · (xk − b)
pk(xj + (b+ 1))

hence;

P (. . . , xj + b, . . . , xk − b, . . .) ≥ P (. . . , xj + (b+ 1), . . . , xk − (b+ 1), . . .).

�

Theorem 2.3.2 (Mixed Case). Let (x1, x2, . . . , xm) be a mode in our distribution.

Then for i, j, k ∈ [m], P (. . . , xi+1, . . . , xj−1, . . .) ≥ P (. . . , xi+2, . . . , xj−1, . . . , xk−

1, . . .)

Proof.

P (. . . , xi + 1, . . . , xj − 1, . . .) = P (. . . , xi + 2, . . . , xj − 1, . . . , xk − 1, . . .)

· pi · (xk)
pk(xi + 2)

because
pi · xk

pk · (xi + 1)
≥ pi · (xk)

pk(xi + 2)

and

1 ≥ pi · xk
pk · (xi + 1)

Lemma 2.3.0.1

we have

1 ≥ pi · (xk)
pk(xi + 2)

hence;

P (. . . , xi + 1, . . . , xj − 1, . . .) ≥ P (. . . , xi + 2, . . . , xj − 1, . . . , xk − 1, . . .).

�

Theorem 2.3.3 (Heterogeneous Case). Let (x1, x2, . . . , xm) be a mode in our dis-

tribution. Then for i, j, k, ` ∈ [m], P (. . . , xi+1, . . . , xj−1, . . .) ≥ P (. . . , xi+1, . . . , xj−

47

1, . . . , xk + 1, . . . , x` − 1, . . .)

Proof.

P (. . . , xi + 1, . . . , xj − 1, . . .) = P (. . . , xi + 1, . . . , xj − 1, . . . , xk + 1, . . . ,

x` − 1, . . .) · pk · (x`)
p`(xk + 1)

1 ≥ pk · (x`)
p`(xk + 1)

Lemma 2.3.0.1

hence;

P (. . . , xi + 1, . . . , xj − 1, . . .) ≥ P (. . . , xi + 1, . . . , xj − 1, . . . , xk + 1, . . . ,

x` − 1, . . .).

�

By the previous theorems, the relationship between the L1 distance from the mode

and the probability still holds when other index tuple entries have been perturbed

away from the mode. This means that if there is a shortest path from the mode to

element z that contains element y, then y ≥ z.

Since the probability never decreases as we move closer to a mode, then we can

reach a mode by hill-climbing using any element in the multinomial as a starting

point. Once we are at a location which can not increase in probability, we have

reached the mode. Because the distribution is discrete and we move by the smallest

possible amount (incrementing and decrementing a pair of indices by one), we will

never overshoot a mode. Consequently, if there are multiple modes, they must be

adjacent (increasing exactly one entry in the tuple and decreasing exactly one other

entry yields the other tuple).

It should be noted that these facts about the mode of a multinomial have been

discovered earlier [15]; however, their application to top-k is novel.

48

2.3.2 An algorithm for top-k on a multinomial

Top-k on a multinomial begins with a mode of the distribution. This starting

position is found by using the modes of each the binomial marginals and correcting

if the sum is not n, although any starting position will lead to a mode because there

are no local maxima.

We will begin with a max-priority queue, Q, that initially contains only the mode.

In the software, Q is implemented as a binary max-heap. Then we keep popping the

next best element until we have the k-best elements.

In order to populate Q with the best possible element that has not been popped,

any element in Q must have all elements between itself and the mode already in Q

(or have been popped from Q); this ensures that the L1 distance of proposed index

tuples is always increasing and thus index tuples are visited in descending order of

probability. This is accomplished by pushing all neighbors of the element that has

been popped from the heap. These neighbors are found as with the search for the

mode: from some starting point, one index is increased and one index is decreased,

thereby holding the sum constant; however, unlike the search for the mode, here we

must guarantee that the L1 distance from the mode always increases, and so proposed

neighbors that would move closer to the mode on any axis are discarded.

Subsequent elements are generated in descending order of likelihood using Q, where

keys are the probabilities of each element.

It is necessary to prevent duplicates from being inserted into Q. For example,

index tuple (30, 4, 3) has neighbors (29, 5, 3), (29, 4, 4), (31, 3, 3), (31, 4, 2), (30, 5, 2),

(30, 3, 4). Of these, (29, 5, 3) and (30, 5, 2) both have neighbor (29, 6, 2). One way

to prevent these duplicates from being reinserted into Q is to store a set of the Q’s

contents; however, that requires additional memory and time. Although it is asymp-

49

totically comparable to the cost of pushing to and popping from Q, it significantly

harms performance in practice.

For this reason, we use a proposal scheme that can reach all elements in increasing

L1 order from the mode, but without duplicates. When an element is popped from

the heap, it proposes new elements to enter the heap based on their index tuple.

A proposal can be characterized by the two axes, i, j that are perturbed (with-

out loss of generality, let index i increase and index j decrease). If two chains of

neighbors, (i1, j1), (i2, j2), . . . and (i′1, j
′
1), (i

′
2, j
′
2), . . ., collide thenmultiset(i1, i2, . . .) =

multiset(i′1, i
′
2, . . .), multiset(j1, j2, . . .) = multiset(j′1, j

′
2, . . .). Multisets are unique

when their contents are sorted, and thus chains whose i and j are both in lexico-

graphic order (by the index of the largest entry that has been perturbed as i and j

respectively) will visit each index tuple only once. This proposal scheme means any

index tuple may be proposed by only one unique neighboring index tuple.

As mentioned earlier, a multinomial distribution can be used to model the abun-

dance of isotopologues of one-element compounds. For example, the first few pro-

posals for the most abundant isotopologues of K100, (a compound consisting of 100

potassium atoms), may be seen in (Figure 2.4). A version of this algorithm is im-

plemented in the open-source isotopologue calculator NeutronStar [9] that can

be found at https://figshare.com/articles/software/NeutronStar_

version_1/16837387.

2.3.3 A theoretical improvement to our existing algorithm

While the existing algorithm is practically efficient for it’s use in generating the

top k isotopologues of a compound, the fact that we get the elements in sorted order

from a binary heap puts our complexity in Ω(k · log(k)). Because every element in a

multinomial distribution can propose 2 ·
(
m
2

)
neighbors in the worst case, our lower

https://figshare.com/articles/software/NeutronStar_version_1/16837387
https://figshare.com/articles/software/NeutronStar_version_1/16837387

50

(94, 6, 0)

(93,7,0) (93,6,1) (95,5,0)(94,5,1)

(X,8,X) (X,7,X)

(X,X,0) (91,7,2)(91,8,1) (X,6,X) (93,X,X)

(92,8,0) (92,7,1) (92,6,2) (93,5,2) (94,X,X) (95,X,X) (96,4,0)

Figure 2.4 First few multinomial proposals for the most abundant
isotopologues of K100 (a compound consisting of 100
potassium atoms). The figure shows index tuples in the multi-
nomial and the neighbors they propose, from top to bottom,
starting with the mode, (94, 6, 0) (94 copies of 39K, 6 copies of
41K, and no copies of 40K). Each index tuple proposes its neigh-
bors in lexicographical order where, if the ith index has been
incremented, it cannot propose any neighbors by incrementing
an index less than i (this same pattern is used for decrementing
an index). In the figure, the largest index to be incremented is
in blue and the largest to be decremented is in red. In order
to move away from the mode, any index which has been in-
cremented may not be decremented to create a proposed tuple,
and vice versa. Note that for clarity not all proposed indices are
included.

bound becomes Ω(k ·m2 · log(k ·m)). When we account for the fact that computing

the weight of a term (i.e. its probability) is linear in m, our final floor, with getting

the k elements in sorted order, becomes Ω(k ·m3 · log(k ·m)).

This can be improved by using the Frederickson algorithm for selection in a min-

heap [16]. Because the elements can only propose inferior neighbors and every element

has at most 2 ·
(
m
2

)
, we can represent our data as a d-ary heap where d = 2 ·

(
m
2

)
and elements are only generated as they are needed. Using this, we can adapt the

Frederickson algorithm to perform a top-k on a multinomial in O(km3) plus the time

it takes to compute the mode.

The mode can be computed by calculating the modes of the binomial cross-sections

of our multinomial and considering the two possible values for each of the m terms

in our multinomial. From the Finucan derivation [15], one of these 2m configurations

51

is a mode. Because the mode necessarily satisfies the multinomial support (i.e. the

terms sum to n), we only need to check at most
(
m
2

)
of these configurations. Because

the time it takes to check one configuration is in O(m), we can compute the mode in

O(m3). Thus, we can compute the top k elements of a multinomial in O(km3).

We can improve this even further by reusing work done to compute weights of

elements. We can compute the weight of element, E1, by multiplying the weight of

an adjacent element, Eo, by
pj ·(xi−1)
pi·(xj+2)

where substituting the ith and jth term in E0

with its ith term −1 and jth term +1 (respectively) yields element E1 (this can be

seen in Theorem 2.3.1). Since we necessarily have the weight of the proposing term

at the point any element is proposed in our heap, we need only compute the weight

of a single term in O(m). This holds for the mode as well due to the fact that all

candidates are adjacent to another candidate. Thus, we can reduce our complexity to

O(km2). The ordering we have on the elements of a multinomial distribution make

this possible.

52

CHAPTER 3 Results

All tests were performed on a machine with an AMD Ryzen 9 3900x processor and

64GB of RAM running Ubuntu 18.04 LTS and were all compiled using GCC Version

7.5.0 with the following flags: -std=c++17 -g -O3 -Wall -march=native

-mtune=native .

3.1 Computing a False Discovery Rate Threshold with LOHs

We will first compare the runtimes of various LOHify algorithms used to compute

the most permissive score threshold at which a given false discovery rate (FDR) [17] τ

occurs. This is traditionally accomplished by sorting the scored hypotheses (which are

labeled as TP, for true positive, or FP, for false positive) in descending order and then

advancing one element at a time, updating the FDR to the current FDR = #FP
#FP+#TP

at the threshold, finding the worst score at which FDR ≤ τ occurs.

The LOH-based methods for this behave similarly, but they compute bounds on

the FDRs in each layer. When these bounds may include τ , the layer is recursed

on until the size of the layer is ∈ O(1) or the bounds may no longer contain τ . It

continues checking candidate layers until the location of the threshold is determined.

Table 3.1 demonstrates the performance benefit of using LOHs over sorting and the

practical performance of Quick-LOHify, which handedly wins overall. It especially

demonstrates the scale advantage that LOHs have over sorting. Table 3.2 provides a

53

n SORT SLWGI SDRPIH PPCCA QUICK
228 27.1712 3.60989 6.64702 3.55166 1.20981
227 13.4568 2.67432 2.98285 2.74130 0.840145
226 6.44227 1.03872 1.86184 1.05260 0.596104
225 3.06724 0.58973 0.890603 0.58956 0.266691

Table 3.1 Runtimes (seconds) of different LOHification methods
for computing FDR cutoffs on data of various sizes. Re-
ported runtimes are averages over 10 iterations, α = 6.0 (where
applicable). SORT is sorting, SLWGI is selecting the layer with
the greatest index, SDRPIH is selecting to divide the remain-
ing pivot indices in half, PPCCA is partitioning on the pivot
closest to the center of the array, and QUICK is Quick-LOHify.
Quick-LOHify generates its own partition indices, which are not
determined by an α parameter.

Size = 228

α SLWGI SDRPIH PPCCA
1.05 29.9283 16.8750 14.4878
1.1 19.3675 14.8553 12.9062
1.5 8.92916 11.0468 8.12265
2.0 8.24106 9.24010 8.21261
3.0 5.73344 7.94349 5.60023
4.0 3.83187 6.35753 3.84014
6.0 3.60989 6.64702 3.55166
8.0 4.62627 6.90307 4.5759

Table 3.2 Runtimes (seconds) of different LOHification methods
for computing FDR cutoffs with various α. Reported run-
times are averages over 10 iterations. The abbreviations are the
same as Table 3.1

demonstration of the influence α has on practical performance.

From Table 3.1, we see that computing FDR cutoffs can be done efficiently with

a large α. This is in part due to the fact that we recurse on layers when more

detail is needed and that we can only overshoot in one dimension. In cases like

this, performance does not suffer from using a naive LOHification algorithm over

the optimal one. Such applications can also benefit from Quick-LOHify which has a

massive expected α (the expected α for n = 228 is approximately 19.985).

54

3.2 Computing an m-dimensional Cartesian Product with

LOHs

There are other problems, such as selecting the top k values of a Cartesian prod-

uct of m arrays that each contain n values, that require α to be much closer to one

for both theoretical and practical performance. Assuming the cost of LOHification

is linear in n, the fastest algorithm for this to date is in O
(
n ·m+ k ·mlog2(α

2)
)

[7]. Using the optimal method of LOHification puts the real complexity in

O
(
n ·m · log(α

α−1) + k ·mlog2(α
2)
)
(assuming 1 < α ≤ 2). From this, we can see that

the LOHification algorithm can have a major theoretical impact on the performance

of this algorithm. As can be seen in Table 3.3, this translates to real performance as

well.

Finding the best α for this algorithm given the values of the other parameters is

a difficult problem. The choice of α affects not only the cost to LOHify the leaves,

but also the upper bound on the total number of elements that will be generated

before the final selection. It should be noted that α affects the pessimal amount

of ‘overshooting’ that the algorithm can experience, not the optimal. This fact is

highlighted in Table 3.3 where the top-k with α = 1.9 has over 10 times the overshoot

of α = 2.0. It should be stressed; however, that using α = 2.0 will have more

overshoot, on average, than using α = 1.9.

55

α SLWGI SDRPIH PPCCA Elements Generated

1.001 241.392 21.7816 21.6659 1,000,581,716

1.005 61.7801 19.6801 19.4993 1,001,518,376

1.01 41.1727 20.3318 20.1373 1,001,441,269

1.05 24.1046 21.414 20.8471 1,032,606,487

1.1 22.3487 21.7075 21.3163 1,071,965,768

1.2 22.4767 21.5742 21.3030 1,030,388,107

1.3 26.0196 25.7922 24.4722 1,171,197,582

1.4 23.3544 23.9249 23.2303 1,045,909,512

1.5 30.4798 29.3044 29.7394 1,275,242,999

1.6 36.8700 38.1468 35.5288 1,596,349,521

1.7 33.4038 34.8689 34.4841 1,388,065,287

1.8 29.5818 30.4977 29.0531 1,075,097,102

1.9 55.6099 46.5149 54.8003 1,756,411,702

2.0 29.8097 31.5725 29.6259 1,073,741,823

Table 3.3 Runtimes (seconds) of generating the top billion values

of the Cartesian product of 8 arrays of length 10 mil-

lion using different LOHification methods with various

α. Reported runtimes are averaged over 10 iterations. Method

abbreviations are the same as Table 3.1. The right most column is

the number of elements generated in the complete product before

the final selection.

As can be seen in Table 3.3, there can be a massive penalty from using a naive

implementation over the optimal one. This highlights the importance of not treating

parameters as constants in the algorithmic analysis.

56

3.3 Selection on X + Y as a function of α

Here, we present the runtime results of selection on X + Y using Serang’s method

[6], but using the optimal algorithm for the LOHification step. For all of our plots

|X| = |Y | = 10, 000, 000. These plots show that the α computed using the formula

derived in Theorem 2.2.1 is a fair estimate of the optimal α and performs much better

than α = 2 in many cases.

The “fan-out” as α gets larger is an effect of the overshoot. A larger α means larger

layer products which means a faster runtime if the overshoot is near optimal, but a

larger penalty if the overshoot is near pessimal.

In Figure 3.1, where n = k, there does not seem to be much of a benefit for using a

small α, but looking at Figures 3.2, 3.3, 3.4, 3.5, 3.6, and 3.7; we can see that as the

ratio of k to n grows, the optimal α approaches 1.0 both theoretically and empirically.

57

Figure 3.1 Plot of runtime for selection on X + Y for
n = k = 10, 000, 000. The plot captures the runtimes of
selecting the minimum 10,000,000 elements from two arrays of
length 10,000,000. The arrays are filled with 64-bit floating
point numbers drawn from the C++ rand() function. The
values of α tested range from 1.01 to 1.99 (inclusive) in
increments of 0.01 with ten trials for every value of α tested.
Each trial used a different random seed. The red line represents
the optimal value of α calculated using the formula derived in
Theorem 2.2.1. The orange line represents the average runtime
for a given α.

58

Figure 3.2 Plot of runtime for selection on X + Y for
n = 10, 000, 000; k = 20, 000, 000. All other aspects of its
construction are identical to Figure 3.1.

Figure 3.3 Plot of runtime for selection on X + Y for
n = 10, 000, 000; k = 40, 000, 000. All other aspects of its
construction are identical to Figure 3.1.

59

Figure 3.4 Plot of runtime for selection on X + Y for
n = 10, 000, 000; k = 80, 000, 000. All other aspects of its
construction are identical to Figure 3.1.

Figure 3.5 Plot of runtime for selection on X + Y for
n = 10, 000, 000; k = 160, 000, 000. All other aspects of
its construction are identical to Figure 3.1.

60

Figure 3.6 Plot of runtime for selection on X + Y for
n = 10, 000, 000; k = 320, 000, 000. All other aspects of
its construction are identical to Figure 3.1.

Figure 3.7 Plot of runtime for selection on X + Y for
n = 10, 000, 000; k = 640, 000, 000. All other aspects of
its construction are identical to Figure 3.1.

61

3.4 NeutronStar v. Isospec

The sort-based algorithm for top-k on a multinomial described in Methods is imple-

mented in the open-source isotopologue calculator, NeutronStar [9]. Particularly,

it is used to calculate the most likely configurations of sub-isotopologues, or the parts

of a compound consisting of the same element (e.g. the sub-isotopologues of fructose,

C6H12O6, are C6, H12, and O6). These sub-isotopologue configurations are generated

in layers that are sent to a cartesian product tree that the top k elements are selected

from using the Kreitzberg algorithm for top-k on X1 +X2 + · · ·+Xm [7].

Isospec is a different open-source isotopologue calculator [18]. It uses an approxi-

mation based on the Central Limit Theorem to compute probablistic bounds on which

parts of a multinomial are the most abundant in the top p where p is a fraction of the

total aubundance. This differs from NeutronStar in several ways. Isospec has no

option to generate the top k configurations, but NeutronStar includes an option

to generate the top p as well as the top k. NeutronStar does not rely on Central

Limit Theorem and thus does not overshoot values generated in the multinomial,

wheras Isospec does not sort the values generated in the multinomial and thus is

not bound by the complexity of sorting.

In Table 3.4, we compare the runtimes of both NeutronStar and Isospec. From

this, we can see that, NeutronStar performs well in practice, even with the com-

plexity bound on sorting the elements in the multinomial.

62

Compound p k IsoSpec NeutronStar NeutronStar

α=1.01 α=1.1

Averagine 0.1 698,668 0.0821208 0.0290156 0.026539

0.3 3958,459 0.132122 0.114437 0.105707

0.5 11,442,227 0.965732 0.285948 0.272625

0.7 30,264,581 1.40907 0.682967 0.608624

0.9 110,437,547 3.96185 2.33534 1.99549

Ostalloy 0.1 6719,141 1.64834 0.121507 0.118957

0.3 65,366,950 3.18777 0.936333 1.03014

0.5 279,712,408 5.89366 3.86705 4.15506

Palladium 0.1 9,134 0.0094108 0.0023928 0.0018632

alloy Pgc 0.3 52,855 0.0110916 0.0070442 0.0076462

0.5 162,857 0.0483886 0.0142928 0.0158198

0.7 473,917 0.076751 0.0309766 0.030281

0.9 2,074,266 0.177315 0.0877584 0.0938606

0.99 13,466,926 0.399824 0.40483 0.372335

0.999 47,409,787 1.84854 1.13571 1.09194

Sn20Xe20Nd20Dy20 1e-12 1 0.0001034 9.34e-05 8.88e-05

1e-11 5 17.7561 0.0001052 0.0001

1e-10 50 16.2101 0.000154 0.0001682

1e-9 554 – 0.000473 0.0003332

1e-7 72,222 – 0.0088738 0.0034802

1e-5 13,415,245 – 0.240625 0.264156

Table 3.4 Table of runtimes (seconds) for generating the k most

abundant isotopologues of several large compounds us-

ing NeutronStar and Isospec. These times are an average of

10 runs. p is the fraction of the total abundance that is repre-

sented by the top k most abundant configurations. – indicates

the program ran out of memory.

63

CHAPTER 4 Discussion

Due to the Ω(n log(n)) bound on comparison-based sorting, ordering values using

only pairwise comparison is generally considered to be an area for little practical

performance benefit; however, LOHs have provided significant performance benefits,

both theoretically and empirically, when replacing sorting in applications where sort-

ing is a limiting factor. Optimal LOHify for any α has been used to replace sorting in

applications such as finding the most abundant isotopologue peaks of a compound [9]

and generating the top k elements in a Cartesian product of two [6] or more [7] ar-

rays (fast in practice with 1 < α � 2). Quick-LOHify has improved performance in

finding the score at which a desired FDR threshold occurs [8].

For the algorithms that perform a top-k on a Cartesian product using LOHs, the α

parameter has a deeper impact on more than just the LOHification step. Specifically,

it affects the upper bound on how far we can “overshoot” the actual k which affects the

time it takes to perform a one-dimensional selection. The effect this “overshooting”

has on the runtime can be seen in Table 3.3, specifically at α = 1.9 where the actual

number of elements generated is closer to the pessimal. Now, we can to dynamically

choose a good α at runtime for top-k on X + Y . The optimal α for top-k on a

Cartesian product tree is difficult to compute, but the runtime of optimal LOHify is

needed to solve for it.

The theoretic algorithm presented for top-k on a multinomial demonstrates that an

O(km2) complexity can be achieved. While it is unlikely to be efficient in practice, it

64

should help pave the way for an efficient, LOH-based algorithm that achieves similar

bounds. We should be able to do this by selecting elements from the multinomial in

layers. In the future, we should also be able to dynamically choose a good α for every

extant algorithm that uses LOHs, and we should be able to apply LOHs to problems

where sorting is a significant part of the runtime and/or theoretical complexity.

65

BIBLIOGRAPHY

[1] L.R. Ford Jr. and Selmer M. Johnson. A tournament problem. The American

Mathematical Monthly, 66(5):387–389, 1959.

[2] D. Knuth. The Art of Computer Programming. Addison-Wesley, 1968–.

[3] B. Chazelle. The soft heap: an approximate priority queue with optimal error

rate. Journal of the ACM (JACM), 47(6):1012–1027, 2000.

[4] B. Chazelle. A minimum spanning tree algorithm with inverse-ackermann type

complexity. Journal of the ACM (JACM), 47(6):1028–1047, 2000.

[5] H. Kaplan, L. Kozma, O. Zamir, and U. Zwick. Selection from heaps, row-sorted

matrices and X + Y using soft heaps. Symposium on Simplicity in Algorithms,

pages 5:1–5:21, 2019.

[6] O Serang. Optimally selecting the top k values from X + Y with layer-ordered

heaps. PeerJ Computer Science, 7:e501, 2021.

[7] P. Kreitzberg, K. Lucke, J. Pennington, and O. Serang. Selection on X1 +X2 +

· · ·+Xm via Cartesian product trees. PeerJ Computer Science, 7:e483, 2021.

[8] K. Lucke, J. Pennington, P. Kreitzberg, L. Käll, and O. Serang. Performing

selection on a monotonic function in lieu of sorting using layer-ordered heaps.

Journal of Proteome Research, 20(4):1849–1854, 2021.

66

[9] P. Kreitzberg, J. Pennington, K. Lucke, and O. Serang. Fast exact computa-

tion of the k most abundant isotope peaks with layer-ordered heaps. Analytical

Chemistry, 92(15):10613–10619, 2020.

[10] P. Kreitzberg and O. Serang. On solving probabilistic linear Diophantine equa-

tions. jmlr, 2021.

[11] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds

for selection. Journal of Computer and System Sciences, 7(4):448–461, 1973.

[12] J. L. Bentley, D. Haken, and J. B. Saxe. A general method for solving divide-

and-conquer recurrences. SIGACT News, 12(3):36–44, Semptember 1980.

[13] M. Akra and L. Bazzi. On the solution of linear recurrence equations. Compu-

tational Optimization and Applications, 10(2):195–210, May 1998.

[14] P. Kreitzberg, K. Lucke, and O. Serang. Selection on X1 +X2 + · · ·+Xm with

layer-ordered heaps. arXiv preprint arXiv:1910.11993, 2020.

[15] H. M. Finucan. The mode of a multinomial distribution. Biometrika,

51(3/4):513–517, 1964.

[16] G. N. Frederickson. An optimal algorithm for selection in a min-heap. Informa-

tion and Computation, 104(2):197–214, 1993.

[17] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practi-

cal and powerful approach to multiple testing. Journal of the Royal Statistical

Society B, 57:289–300, 1995.

[18] M. K. Łącki, M. Startek, D. Valkenborg, and A. Gambin. Isospec: Hyperfast

fine structure calculator. Analytical Chemistry, 89(6):3272–3277, 2017.

	OPTIMAL CONSTRUCTION OF A LAYER-ORDERED HEAP AND ITS APPLICATIONS
	Let us know how access to this document benefits you.
	Recommended Citation

	COPYRIGHT
	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Methods
	Optimal construction of a LOH in terms of n and
	A lower bound on LOHification
	Bounds on variables
	Lower bound of LOHification

	Algorithms for LOHification
	LOHification via sorting
	LOHification via iterative selection
	Selecting to divide remaining pivot indices in half
	Partitioning on the pivot closest to the center of the array

	The optimal runtime for the construction of a layer-ordered heap of any rank
	Quick LOHify

	Optimal for top-k on X+Y
	Overview of the algorithm
	Deriving the runtime in terms of n, k, and

	Top-k on a multinomial
	Convexity of a multinomial
	An algorithm for top-k on a multinomial
	A theoretical improvement to our existing algorithm

	Results
	Computing a False Discovery Rate Threshold with LOHs
	Computing an m-dimensional Cartesian Product with LOHs
	Selection on X+Y as a function of
	NeutronStar v. Isospec

	Discussion
	BIBLIOGRAPHY

