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which suggests there are likely local-scale factors that may influence the association
between grazing and vegetation dynamics. Further, there was considerable variability in
vegetation trends across allotments. Regions such as the Northern Great Plains have
experienced increases in perennial herbaceous biomass, while portions of the arid
southwest have experienced declines (Figure 1.5). However, these changes in vegetation
have not always resulted in changes in grazing management, in terms of billed AUMs
(e.g., Figure 1.9). Static stocking rates could result in rangelands being over or
understocked, depending on stochastic abiotic and economic factors that vary annually
(Briske et al. 2011). In 2018, BLM began to implement “Outcome-Based Grazing
Authorizations” at a few demonstration sites, which would provide livestock operators
more flexibility to manage grazing operations based on changing rangeland conditions
(Bureau of Land Management 2017). The efficacy of this new strategy is currently
unclear; however, flexible, proactive management, paired with better monitoring of
grazing allotments across spatial and temporal scales, may be necessary to maximize
profitability and sustainability of rangelands (Hart and Ashby 1998).

Monitoring of rangelands could be facilitated using the RAP and RAS datasets,
resulting in more informed, expeditious management decisions. The RAP dataset
provides the opportunity to monitor rangelands at multiple spatial and temporal scales
and allows managers to address risks to rangelands more proactively (Jones et al. 2020).
The RAS dataset facilitates evaluation of grazing management at allotment-level and
greater scales for the past 30-36 years. However, complications associated with grazing
data on BLM-administered lands, similar to those identified by (Veblen et al. 2011),

made a rangewide analysis of grazing associations with vegetation change a challenge.
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For example, many BLM grazing allotments encompass unfenced private lands. The
BLM only bills for grazing on BLM-administered portions of grazing allotments, so the
intensity of grazing on unfenced private portions of allotments was not always clear.
BLM attempts to monitor grazing on unfenced private portions of allotments (so BLM
portions are not overgrazed) and this information can be extracted from the RAS dataset,
but it is largely unknown how well private landowners adhere to stated grazing intensities
(W. Lutjens, personal communication). Further, allotment polygons boundaries were not
always accurate and some allotments had multiple polygons, making it unclear where
grazing occurred on an allotment. Combining the RAS dataset with allotment polygons
could help reduce uncertainty in allotment boundaries and the AUMs associated with
those allotments. These complications could also be avoided if evaluations of grazing and
vegetation were completed at smaller scales. Using vegetation data from the RAP and
grazing data from the RAS, managers could evaluate changes in vegetation within
allotments where allotment management is well-known (e.qg., allotment boundaries and
size, number and distribution of cattle, etc.). These small-scale studies could elucidate
local patterns of grazing and other factors (e.g., climate) on vegetation change, which
may facilitate local-level management.

Conclusion

Grasslands and shrublands in the United States face many threats, including land use
conversion to row crop agriculture (Lark et al. 2020), energy development (e.g., Allred et
al. 2015), urban development (Theobald et al. 1997, Reeves et al. 2018), climate change
(Joyce and Marshall 2017), woody expansion (Van Auken 2009), exotic annual grass

invasion (Bradley et al. 2018, Nagy et al. 2021), and riparian/meadow degradation
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(Natural Resources Conservation Service 2021a, Natural Resources Conservation Service
2021b). The concept of “working lands conservation” (i.e., systems that sustainably
produce fuel, fiber, food, and water, while maintaining the natural biodiversity and
function of the ecosystem) has been identified as an important strategy to battle land use
conversion of rangelands (Kremen and Merenlender 2018, Natural Resources
Conservation Service 2021a, Natural Resources Conservation Service 2021b) because
many of the most productive lands are owned by private entities (Robinson et al. 2019),
and socio-ecological sustainability may not be possible if conservation efforts only
consider the “islands” of protected areas. Our results support the concept that cattle
grazing, as a “working lands” activity on BLM grazing allotments, has been a sustainable
land use over the last few decades, given we did not identify strong associations between
grazing and long-term vegetation trends; although, local-scale effects should be
considered, as responses to grazing varied across the landscape. While it is well-known
that overgrazing can have many negative consequences on rangelands (Briske et al. 2011,
Schieltz and Rubenstein 2016), we did not find cattle grazing to be a large threat to
rangeland production at current stocking rates, particularly when compared to other
threats like climate change. Management actions geared towards monitoring and
maintaining productive rangelands in the face of climate change, invasion of exotic
grasses, and the many other threats to rangelands should continue to be a priority.
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Figure 1.7. Factors associated with annual change (a., c., e.) and 36-year trends (b., d., f.)
in annual forb/grass biomass (kg/ha) on Bureau of Land Management grazing allotments

in the western contiguous United States from 1984 — 2020. Plots show population-level
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predictions for changes in biomass, with 95% prediction intervals (gray ribbons) that
incorporate variation from both fixed and random effects in the model. Black dots
represent real observations to demonstrate how well the predicted effect fits real data.
Plots a. and b. demonstrate the association between the annual change in grazing intensity
(AUM/ha) and annual change in biomass (a.), as well as mean grazing intensity
associations with 36-year trends in biomass (b.) on allotments with low (99 mm), average
(334 mm), and high (569 mm) annual precipitation. Plots c. and d. demonstrate the
association between annual changes (c.) and 36-year trends (d.) in annual precipitation
(mm) on annual changes and 36-year trends in biomass, respectively. Plots e. and f.
demonstrate the association between annual changes (e.) and 36-year trends (f.) in annual

temperature (°C) on annual changes and 36-year trends in biomass, respectively.
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Figure 1.8. Factors associated with annual change (a., c., e.) and 36-year trends (b., d., f.)
in bare ground cover (%) on Bureau of Land Management grazing allotments in the

western contiguous United States from 1984 — 2020. Plots show population-level

52



— Herbaceous Biomass — Biomass Allocated to Cattle - - Precipitation
= 1500 1450
=
= -
0 e
@ c.
= 3
.© 1000 3008
m =
g =
: S
3 2
£ 500 1150
juw
0 0
1988 1992 1996 2000 2004 2008 2012 2016 2020
Year
b.
— Herbaceous Biomass — Biomass Allocated to Cattle -- Precipitation
900+ 1600
=)
=
< -~
7 .
£ 600 {4002
2 =
/M )
: :
3 =
2 2
-2 3001 1200
)
jum
01 0
1988 1992 1996 2000 2004 2008 2012 2016 2020
Year

Figure 1.9. Examples of herbaceous biomass (kg/ha; black line), biomass allocated to
cattle (i.e., billed Animal Unit Months [AUM] converted to kg/ha forage; red line), and
precipitation (blue dashed line) in 2 Bureau of Land Management grazing allotments in

the western contiguous United States from 1986 — 2020. Plot a. shows an example of an
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