
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2021

ENSEMBLE PROTEIN INFERENCE EVALUATION ENSEMBLE PROTEIN INFERENCE EVALUATION

Kyle Lee Lucke
University of Montana, Missoula

Follow this and additional works at: https://scholarworks.umt.edu/etd

 Part of the Applied Statistics Commons, Bioinformatics Commons, Biostatistics Commons,

Computational Biology Commons, Data Science Commons, Numerical Analysis and Scientific Computing

Commons, and the Other Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Lucke, Kyle Lee, "ENSEMBLE PROTEIN INFERENCE EVALUATION" (2021). Graduate Student Theses,
Dissertations, & Professional Papers. 11845.
https://scholarworks.umt.edu/etd/11845

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by
an authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F11845&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=scholarworks.umt.edu%2Fetd%2F11845&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=scholarworks.umt.edu%2Fetd%2F11845&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/210?utm_source=scholarworks.umt.edu%2Fetd%2F11845&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/28?utm_source=scholarworks.umt.edu%2Fetd%2F11845&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1429?utm_source=scholarworks.umt.edu%2Fetd%2F11845&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=scholarworks.umt.edu%2Fetd%2F11845&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=scholarworks.umt.edu%2Fetd%2F11845&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.umt.edu%2Fetd%2F11845&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/11845?utm_source=scholarworks.umt.edu%2Fetd%2F11845&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

ENSEMBLE PROTEIN INFERENCE EVALUATION

By

Kyle L. Lucke

Bachelor of Science, University of Montana, Missoula, MT, 2019

Thesis

presented in partial fulfillment of the requirements
for the degree of

Master of Science
in Computer Science

The University of Montana
Missoula, MT

Fall 2021

Approved by:

Ashby Kinch Ph.D., Dean
Graduate School

Dr. Oliver Serang Ph.D., Chair
Computer Science

Dr. Douglas Brinkerhoff Ph.D.
Comuter Science

Dr. Eric Chesebro Ph.D.
Mathematics

c© COPYRIGHT

by

Kyle L. Lucke

2021

All Rights Reserved

ii

Lucke, Kyle L., M.S., October 2021 Computer Science

Ensemble Protein inference evaluation

Chairperson: Dr. Oliver Serang

The Protein inference problem is becoming an increasingly important tool that aids
in the characterization of complex proteomes and analysis of complex protein samples.
In bottom-up shotgun proteomics experiments the metrics for evaluation (like AUC
and calibration error) are based on an often imperfect target-decoy database. These
metrics make the inherent assumption that all of the proteins in the target set are
present in the sample being analyzed. In general, this is not the case, they are
typically a mix of present and absent proteins. To objectively evaluate inference
methods, protein standard datasets are used. These datasets are special in that
they have been carefully prepared to contain only the proteins specified in the target
set. Though this helps, it is still unclear which metrics most adequately capture
all the important aspects of a good protein inference method. In this manuscript,
a novel protein standard dataset, an ensemble protein inference engine that utilizes
several metrics and protein standard datasets to evaluate the performance of inference
methods, and several novel protein inference methods are presented.

iii

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Oliver Serang for always being there to help

me see the light at the end of the tunnel. One could not ask for a better advisor,

mentor, or boss. Thank you for always being there to pick me up when I fell. I would

also like to thank my coworkers, Patrick Kreitzberg and Jake Pennington. Thank

you for always having my back and helping me through the day. Finally, I would

like to thank my family, my friends, and most of all, my significant other. To my

parents, thank you for instilling in me a love of learning and what it means to be a

hard worker. To my friends, thank you for always being there for me. Finally, to my

significant other, thank you for all your love and support through it all.

iv

TABLE OF CONTENTS

COPYRIGHT . ii

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF FIGURES . viii

LIST OF TABLES . xix

CHAPTER 1 INTRODUCTION . 1

1.1 State of the field . 2

1.2 Bottom up Proteomics . 2

1.3 Definitions and Notation . 4

1.4 Existing methods and evaluation challenges 5

1.4.1 Protein Inference . 6

1.4.1.1 Existing inference methods 8

1.4.2 Protein Inference Evaluation 11

1.4.2.1 Target-decoy . 11

1.4.2.2 Protein Inference Evaluation Challenges 13

1.4.2.3 The Hitchhiking Problem 15

1.5 Gold Standard data . 17

v

CHAPTER 2 METHODS AND WORK 19

2.1 ProteomeTools Hitchhiking Peptide Standard 19

2.1.1 Protein Sequence Design . 20

2.1.2 Sample Preparation . 22

2.1.2.1 Synthetic Peptides 22

2.1.2.2 Data Acquisition . 22

2.1.3 Data Processing . 23

2.2 Best In Show: ensemble evaluation of protein inference engines 23

2.2.1 Ranking . 25

2.2.2 Evaluation Engine . 26

2.2.3 Evaluation Metrics . 28

2.2.3.1 Data perturbance based stats 28

2.2.4 Benchmark Datasets . 34

2.3 New Methods . 36

2.3.1 N -peptide model variations 36

2.3.1.1 N -peptide (Expectation) and variants 37

2.3.2 Iterative Models . 37

2.3.3 Probabilistic Models . 38

2.3.4 Linear Programming methods 42

2.4 Semi-Supervised . 44

2.4.1 Protein Features . 45

2.4.1.1 Partitioning Schemes 47

2.4.2 Model . 49

CHAPTER 3 RESULTS . 56

3.1 ProteomeTools Hitchhiking Peptide Standard 56

vi

3.1.1 Analysis . 57

3.1.2 Peptide Coverage . 58

3.2 Best In Show . 58

3.3 Semi-Supervised Lysate Dataset Performance 60

CHAPTER 4 DISCUSSION . 66

4.1 ProteomeTools Hitchhiking Peptide Standard 66

4.2 Best In Show . 67

4.3 Semi-supervised . 68

4.3.1 Lysate Dataset Proteins . 70

CHAPTER 5 SOURCE CODE AVAILABILITY 74

BIBLIOGRAPHY . 75

vii

LIST OF FIGURES

1.1 Two different ways to visualize the relation between

proteins and peptides. Both panels represent the same

underlying data. The * denotes a degenerate peptide or spec-

tra, respectively. Degenerate peptides are peptides which may

have been emitted by multiple proteins, while degenerate spec-

tra are spectra which may have been emitted by multiple pep-

tides. (a) Graphical representation of a theoretical PPG. (b)

Graphical representation of an observed PPG. Notice that the

nodes in (a) which did not have a PSM are no longer included.

The values next to the peptides indicate peptide-level confi-

dence scores. 5

viii

1.2 Simple illustration of the PPG representation of a typ-

ical target-decoy database. Target proteins X1, X2, share

peptide Y2, which was identified by peptide search with an 80%

peptide-level confidence level. Decoy proteins X3, X4 share

peptide Y7, which was identified by peptide search with a 20%

peptide-level confidence score. Target protein X2 and decoy

protein X4 share peptide Y6, which was identified by peptide

search with a 70% peptide-level confidence score. Since Y6 is

adjacent to a target protein, we expect it to receive a higher

peptide-level confidence score than peptides like Y8, which are

adjacent to only decoy proteins. Blue nodes indicate target

proteins and target peptides. Red nodes indicate decoy pro-

teins and decoy peptides. 12

ix

1.3 An illustration showing a situation in which hitchhik-

ing may occur. The blue protein, X1, is a present target

and thus, is adjacent to many peptides which were identified

by peptide search with high peptide-level confidence. Peptides

Y1 and Y3 are identified by peptide search with a fairly high

(95% or above) peptide-level confidence score, despite being

adjacent to an absent target, the yellow protein X2. This is

due to the fact that these peptides are also adjacent to X1,

a present target. Since peptide Y5 is adjacent only to an ab-

sent target, it is identified by peptide-search with a fairly low

(20%) peptide-level confidence score. These shared high scor-

ing peptides may cause an inference method to erroneously

identify X2 as present. Since X2 and X3 are absent, we expect

this peptide to receive a fairly low peptide-level confidence

score. Blue nodes indicate present target proteins and present

target peptides. Yellow nodes indicate absent target proteins

and absent target peptides. Red nodes represent absent decoy

proteins and absent decoy peptides. 16

x

2.1 Graph relating proteins to one of the 5 protein classification

types: Semi-Simple, Subset, Driver, Hitchhiker, or Leftover.

While the majority of proteins are hitchhikers, the protein

sequences for this standard were deliberately designed to have

several proteins belonging to each different class, as depicted in

the figure. The intent of this is to mix the benefit and hazard

of shared peptides. The numbers next to the brackets indicate

what proteins are contained in this bracket, e.g. the second

protein in the X0 - X9 bracket is X1. Node colors indicate the

protein’s classification. Purple nodes indicate proteins which

are classified as Leftover, green nodes indicate proteins which

are classified as Subset, blue nodes indicate proteins which

are classified as Driver, red nodes indicate proteins which are

classified as Semi-Simple, black nodes indicate proteins which

are classified as Hitchhiker. 20

xi

2.2 Bipartite graph representation of a collection of target pro-

teins found in the PHPP dataset. An edge between nodes

indicates that the peptide is found in the protein sequence.

Blue nodes signify present proteins or peptides. Red nodes

signify present or absent peptides. Turquoise nodes represent

proteins which are presented in another sepset. The dashed

edges represent relations between peptides in this sepset and

proteins found in another sepset. These figures represent pro-

teins found in different sepsets of the dataset. (a) Proteins like

X0 are classified as Semi-Simple. We expect these proteins to

push inference methods towards a more parsimonious scheme

for handling shared peptides. (b) Proteins like X26 and X27

are classified as Hitchhiker proteins. We expect these proteins

to push inference methods towards a less parsimonious scheme

for handling shared peptides. 51

xii

2.3 Node coloring in this figure is the same as in Figure 2.2.

These figures represent proteins found in different sepsets of

the dataset. (a) Proteins like X14 are classified as Subset pro-

teins. We expect these proteins to push inference methods

towards a less parsimonious scheme for handling peptide shar-

ing. This is because both X14 and X6 should be identified;

however, because X6 has more pieces of evidence, a parsimo-

nious inference method would identify only X6 as present. (b)

Proteins like X43 are classified as a Driver. Proteins such as

this should push inference methods towards a more parsimo-

nious scheme for handling shared peptides since it is only this

protein which should be identified. 52

2.4 Node coloring in this figure is the same as in Figure 2.2. Pro-

teins in this graph represent a different sepset of the dataset

than all other figures. Proteins like X33 are classified as Left-

over. These proteins do not belong under any other classification. 53

2.5 An illustration of a situation on which a partial or-

dering on protein ranks is not possible. X1 and X2 are

two proteins with only unique peptide evidence. peptides Y1,

Y2, Y3 and Y4 were identified by peptide search and assigned

a peptide-level confidence score of 0.9, 0.2, 0.95 and 0.1, re-

spectively. Though both of these proteins have only unique

peptide evidence, since s1 < s3 and S2 > s4 it is unclear based

on this information alone which protein should receive a higher

rank. 54

xiii

2.6 An illustration of the Peptide-centric graph cuts model.

The blue protein, X2, and the blue peptide, Y3, are identified

as present. The red protein, X1, and the red peptides Y1, Y2

are identified as absent. The free parameters, α, β, and γ,

are fit using a golden search like parameter schedule. Edges

between peptide and protein nodes indicate that protein could

have emitted that peptide. The dashed line indicates the op-

timal cut. sj represents the peptide-level confidence score ob-

tained during the peptide search for the jth peptide. Blue

nodes indicate present, red nodes indicate absent. 54

2.7 An illustration of the matrix of features for an indi-

vidual protein. The blue and magenta blocks repre-

sent the convolutional filter before and after a stride.

The rows are indexed by the partitioning schemes and the ith

partitioning scheme is denoted by PSi, while the columns are

indexed by the p-norms. A convolution between these feature

values and the filter is performed, producing a single numeric

value that will be evaluated the activation function and then

fed forward to the next layer. The filter is then slid over by

the stride amount, which, in this case, is the same size as

the convolutional filter. Hence, the information in the feature

vector is essentially downsampled across the convolutional lay-

ers. Note that although in practice there are columns for each

value of τ paired with each value of p-norms, we only use the

p-norms for illustrative purposes. 55

xiv

3.1 Histogram of present peptide scores as a percentage

of all present peptides. There are 123 unique peptides with

scores ∈ [0.0, 1.0]. Scores in the 0.0 bin are ∈ [0.0, 0.1), scores

in the 0.1 bin are ∈ [0.1, 0.2) and so on. A majority (83%) of

the observed peptides received scores of 0.5 or greater. Actual

percentage values are displayed above each of the bars. . . . 57

3.2 Plot of q-value threshold vs number of targets found

for various models on a C. elegans dataset. The solid

green line is the intersection of the target sets found by Semi-supervised

and 1-peptide (with shared. Although their perfor-

mance appears somewhat similar, the target sets identified at

various thresholds are quite different. 61

3.3 Plot of q-value threshold vs number of targets found

for various models on a S. cerevisiae dataset. The

solid green line is the intersection of the target sets found by

Semi-supervised and 1-peptide (with shared). Al-

though their performance appears somewhat similar, the tar-

get sets identified at various thresholds are quite different. . 62

3.4 Plot of q-value threshold vs number of targets found

for various models on a dataset derived from a human

medulloblastoma tumor. The solid green line is the inter-

section of the target sets found by the Semi-supervised

model and the 1-peptide (with shared) model. Al-

though their performance appears somewhat similar, the tar-

get sets identified at various thresholds are quite different. . 63

xv

3.5 Plot of q-value threshold vs number of targets found

for various models on a dataset derived from a human

medulloblastoma tumor. The solid green line is the inter-

section of the target sets found by Semi-supervised and

1-peptide (with shared). Although their performance

appears somewhat similar, the target sets identified at various

thresholds are quite different. Note: Fido is not pictured as

was not able to find reasonable parameter values. 64

3.6 Plot of q-value threshold vs number of targets found

for various models on a dataset derived from a human

kidney cell. The solid green line is the intersection of the

target sets found by the Semi-supervised model and the

1-peptide (with shared) model. Although their per-

formance appears somewhat similar, the target sets identified

at various thresholds are quite different. 65

xvi

4.1 Bipartite representation of the subgraphs of three dif-

ferent target proteins that are likely absent. The pro-

teins which are likely absent were identified at a q-value of

0.0 (with the exception of protein ZK563.7, which was iden-

tified at a q-value of 0.2) by 1-peptide (with shared

peptides) but not by Semi-supervised. Proteins are

denoted as Xi, while peptides are denoted as Yj. An edge be-

tween a protein Xi and a peptide Yj indicates that protein Xi

could have emitted peptide Yj. The numbers next to the pep-

tides indicate their peptide-level confidence scores that were

produced by using Percolator to post-process a peptide search

conducted with Comet. Blue nodes represent present proteins

and peptides while red nodes indicate absent proteins and pep-

tides. (a) Subgraph representing proteins ZK563.7 (X1) and

F08C6.6 (X0) from the C. elegans lysate dataset. (b) Sub-

graph representing proteins YGR143W (X0) and YGR159W

(X1) from the S. cerevisiae lysate dataset. (c) Subgraph repre-

senting proteins ENSP00000346209 (X2), ENSP00000346037

(X1), and one other protein which is also in the same subgraph

from the HumanMD dataset. 71

xvii

4.2 Bipartite representation of subgraphs of two different

proteins which are likely absent. Notation, node coloring,

and edges in this figure have the same the meaning as in Fig-

ure 4.1. (a) Subgraph representing proteins tr|A0A7I2YQP1|A0A7I2YQP1_HUMAN

(X13), tr|A0A7I2YQV4|A0A7I2YQV4_HUMAN (X14), and

several other proteins which are also in the same subgraph

from the HumanMD dataset searched against the Trembl pro-

tein database. Proteins which had identical observed pep-

tide sets are represented by one protein (in bold): {X1, X9},

{X6, X11}, {X8, X10, X12}, and {X16, X20, X21, X23}. (b) Sub-

graph representing proteins tr|X5DP03|X5DP03_HUMAN (X4),

tr|X5D7P8|X5D7P8_HUMAN (X3), and several other pro-

teins which are also in the same subgraph from the HumanEKC

dataset, searched against the human proteome in the Trembl

protein database. 72

xviii

LIST OF TABLES

1.1 Table of definitions which are used throughout this

paper. 6

3.1 Table of results for various methods evaluated against

the ProteomeTools Hitchhiking Peptide Standard. All

methods, where applicable, were allowed to use the ground

truth target-decoy database to fit any parameters. To pro-

duce the metrics area under the receiver operator character-

istics curve (AUC) and calibration error (CE), the method

results were also evaluated against the ground truth target-

decoy database. Each metric was evaluated at a threshold

0.05 and the resulting values were rounded to 4 significant

digits. 56

xix

3.2 Table of results produced by the Best In Show pro-

tein inference evaluation engine. Presented results are

obtained by running each method with ten different obfus-

cated target-decoy databases, evaluating each of them under

the gold standard target-decoy database and averaging their

ranks. The value in the Method column represents the com-

mand issued to run the inference method. BIS has several

metrics it uses to evaluate protein inference performance, each

of which measures either how well calibrated the method is or

how well it is discriminating between TPs and FPs. The value

in the Cal. column represents the overall calibration rank

this method received. The value in the Disc. column rep-

resents the overall discrimination rank this method received.

The value in the NRS column represents the value of the

method’s rank sum (e.g. calibration rank + discrimination

rank), normalized by the size of the table. The value in the R

column represents the total time this method took to perform

inference on all data sets. 59

xx

1

CHAPTER 1 INTRODUCTION

2

1.1 State of the field

The genome gives us an incredible amount of information; however, it does not

give us as much information as one may think. For instance, the nucleus of each

cell in the human body contains the same genetic information, and yet, clearly, a

white blood cell performs different tasks than a muscle cell. The reason for this is the

different proteins expressed in individual cells. Since before the first human genome

was successfully sequenced, scientists have investigated proteomes, entire collections

of proteins that can be expressed by a tissue, cell, or organism.

1.2 Bottom up Proteomics

Bottom-up shotgun proteomics is a popular technique for the characterization of

complex protein mixtures [1]. In a typical bottom-up shotgun proteomics experiment,

proteins are first digested by an enzyme (typically trypsin) into their constituent set

of proteolytic peptides. These peptides are then separated by their hydrophobicity

via liquid chromatography and then analyzed by a mass spectrometer, producing

an MS1 spectrum containing the mass to charge (m/z) ratios of intact peptides.

Then, if data-dependent acquisition is being used,the most abundant peak in the

m/z window is selected and fragmented, often by collision-induced disassociation.

This is in contrast to data-independent acquisition [2], where a set of many smaller,

predefined windows are taken and everything in each of these smaller windows are

fragmented simultaneously. The resulting fragments are analyzed by a second round of

mass spectrometry, producing a tandem mass spectrum. This process is repeated for

every peptide that elutes out of the sample, producing many tandem mass spectra. To

determine which peptides emitted which spectra, a peptide search must be performed.

First, an in silico digestion is performed on the protein sequences in the target-

3

decoy database according to the enzyme used in the experiment, producing a set

of candidate peptides. Then, a theoretical spectrum for each candidate peptide is

generated. Each observed spectrum is scored against each theoretical spectrum using

a cross-correlation function, producing a set of peptide spectrum matches (PSMs).

In the case of multiple peptides matching a spectrum, the PSM with the maximum

score is typically retained.

These PSMs can then be post-processed with software, such as Percolator [3], to

produce peptide level probabilities. There are a few different ways to calculate these

probabilities, each with their own interpretation. One version is that this probability

represents the probability that this PSM is due to random chance, sometimes referred

to as the posterior error probability [4] (PEP). Another way to calculate this prob-

ability is as a likelihood: Pr(Dk|Yj = yj), yj ∈ {0, 1}, which represents the chances

of observing the data, Dk, given that it was emitted by peptide Yj. Note that the

latter can be recovered from the former using Bayes’ theorem [5]. The latter is more

desirable when computing peptide-level probabilities to be used in protein inference,

as it does not include a peptide-level prior (since it is a likelihood). This is important

when computing protein-level posteriors because the protein-level priors may conflict

with the peptide-level priors. Further, it is impossible to properly compute Pr(Yj),

the prior probability of peptide Yj being present in the sample, without some knowl-

edge of the relations between the proteins and peptides under consideration, as this

prior is informed by the detectability of the peptide, which is an intrinsic property of

both the peptide itself and the parent protein which the peptide resides in [6]. The

detectability of a peptide is defined as the probability that a peptide has of being

identified in an experiment [7]. In contrast to bottom-up experiments, top-down as-

says do not digest the protein but instead send the intact protein through the mass

spectrometry machine and then fragment the protein [8].

4

A common way to visualize the relationship between proteins the peptides they

may emit is a bipartite graph. The node partitions of the graph represent proteins

and peptides, with an edge between a protein and a peptide if that protein may

have emitted that peptide. This representation is typically referred to as a protein-

peptide graph (PPG). It should be noted that there is sometimes a distinction made

between the theoretical PPG and the observed PPG. A theoretical PPG, pictured in

Figure 1.1a, relates proteins to their theoretical peptide sets (and sometimes PSMs,

in which case it is then a tripartite graph), while an observed PPG, pictured in

Figure 1.1b, relates proteins to their observed peptide sets, that is, the set of peptides

in the PSMs.

An inference method then uses the observed PPG, along with the set of scored

peptides to produce protein-level confidence scores indicating how strongly the infer-

ence method believes each protein is present in the sample. These scores can then be

thresholded in some manner to produce a set of proteins the inference method believes

to be present and absent. For example, a naive thresholding method would be to iden-

tify all proteins with a protein-level confidence score above 0.9 as present; however, for

such a thresholding method to work well, it is required that the scores produced to be

∈ [0.0, 1.0] and are well calibrated (i.e. true probabilities). If the scores are discrimi-

native but not well calibrated, a global false discovery rate [9] (FDR) or q-value [10]

threshold can be utilized. This way, it is not necessarily required the method produce

true probabilities for the thresholding to work well.

1.3 Definitions and Notation

Several definitions that will be used throughout this manuscript are defined in

Table 1.1. Although it may not be immediately obvious, the terms present and

5

Proteins Peptides Spectra

X Y D

*

*

(a)

Proteins Peptides

X Y

*

1.0

0.8

0.9

0.1

(b)

Figure 1.1: Two different ways to visualize the relation between proteins
and peptides. Both panels represent the same underlying data. The * denotes a
degenerate peptide or spectra, respectively. Degenerate peptides are peptides which
may have been emitted by multiple proteins, while degenerate spectra are spectra
which may have been emitted by multiple peptides. (a) Graphical representation of
a theoretical PPG. (b) Graphical representation of an observed PPG. Notice that
the nodes in (a) which did not have a PSM are no longer included. The values next
to the peptides indicate peptide-level confidence scores.

absent are orthogonal to the notions target and decoy, respectively. Further, decoys

must be certainly be absent, they are used as false positives (FPs).

1.4 Existing methods and evaluation challenges

In this section, some existing protein inference methods are presented. Addition-

ally, current protein inference evaluation metrics and some existing challenges are

discussed.

6

Term or Notation Definition
Present protein A protein which is truly in the sample.
Absent protein A protein which is certainly not in the sample.
Target proteins Superset of proteins which are expected to be in the

sample.
Decoy proteins Set of proteins known to be absent from the sample.

Target-decoy-contaminant
database

Database relating protein accessions for the target,
decoy, and contaminant sets to their respective label.

Gold standard
target-decoy-contaminant

database

Target-decoy-contaminant database containing ground
truth labels.

Obfuscated
target-decoy-contaminant

database

Modified Gold standard target-decoy-contaminant
database where some of the decoy proteins have been
intentionally relabeled as targets.

Entrapment protein Ground truth decoy protein which has been relabeled
as a target.

Degenerate peptide A peptide which may be emitted by multiple proteins.
Present peptide A peptide that is truly in the sample.
Absent peptide A peptide that is not found in the sample.

X Set of indicator variables for presence of proteins in
the sample, indexed by i.

Y Set of indicator variables for presence of peptides in
the sample, indexed by j.

Protein-peptide graph Bipartite graph relating proteins to the peptides they
may have emitted.

Observed peptide A peptide which has been matched to a spectrum.
Adjacent A peptide, Yj is said to be adjacent to a protein Xi

(and vice-versa) if Yj is found in the sequence of Xi.

Table 1.1: Table of definitions which are used throughout this paper.

1.4.1 Protein Inference

The protein inference problem is canonically posed as a set cover problem. Let U

be the universe set, let S be a collection of subsets of U , and let C be any collection

of subsets of S whose union is equal to U be called a covering. In the set cover

problem, the objective is to find the smallest covering C. From a protein inference

perspective, U typically consists of the set of observed peptides; however, to help

reduce the number of FPs, these peptides are typically thresholded according to their

7

peptide-level confidence scores in some way first. The subsets in S consist of the set

of observed peptides for the proteins under consideration. Hence, the goal is to find a

minimal set of proteins which explain all of the (potentially filtered) observed peptides.

Note that set-cover, when posed as an optimization problem, is NP-hard [11]. Hence,

since protein inference can be solved with a set-cover routine, the protein inference

problem is itself also NP-hard.

As with any inverse problem, properly handling degeneracy is a difficult task. Here,

peptides are considered degenerate when they are found in the sequence of more than

one protein in the target-decoy-contaminant database. How a method handles these

degenerate peptides has a significant effect on how well an inference method performs

in general. The notion of one-hit wonders can also complicate things. One-hit wonders

are proteins with a single observed, typically high scoring, unique peptide. Such

proteins can result from a few different scenarios. One scenario is that the single

observed peptide was erroneously observed due to noise. In this case, the protein

which may have emitted this peptide is likely absent. The other possibility is that

the protein being investigated is small (i.e. does not consist of many peptides). It

could also be that although the protein itself is truly present in the sample, other

peptides for that protein are simply not observed. Unobserved peptides can result

from several things: proteins do not always cleave properly when being digested,

peptides with similar hydrophobicity may co-elute with one another in the liquid

chromatography phase thus producing a chimeric spectrum [12], or the peptide has

poor detectability. Peptides may have poor detectability due to the protein which

emitted that peptide as well as the peptides found next to it in the protein sequences.

These one-hit wonders pose a problem as they could easily be a FP (e.g. a protein

inference method may erroneously identify a truly absent target protein as present).

FUTURE WORK: incorporate the idea of chimeric spectra into semi-supervised

8

features as well (e.g. we observed this peptide with this confidence, but there’s x

percent chance it’s actually a chimeric spectra, etc.)

1.4.1.1 Existing inference methods

The following section briefly details models which are currently in use in the field.

They are presented in no particular order. Some of the models described in this

section have free parameters, and thus, require some form of parameter optimization.

One of the heavily utilized metrics in this paper is the result quality, a convex

combination of AUC and CE. Specifically, quality is computed as:

quality = (1− λ) · CE− λ · AUC.

Where λ = 0.15, which was determined empirically [5]. It should be noted that

pushing λ towards 0.0 will result in a model that favors calibration, while pushing λ

towards 1.0 will result in a model that favors discrimination.

N-peptide model The canonical 1-peptide model, sometimes called the 1-

peptide rule, identifies all proteins which are adjacent to at least one observed unique

peptide as present; however, this can lead to many FPs being identified as present.

Since the mass spectrometry process is not perfect, the single peptide could easily be

erroneously identified due to things such as noise in the mass spectrometry process or

contamination. To help mitigate this problem, the 2-peptide rule was invented. This

model works in the exact same way as the 1-peptide rule except that a protein must

now be adjacent to at least two observed unique peptides to be identified as present.

The proteins which are identified as present are then assigned the score of the lowest

ranking of the top N unique peptides. Proteins which are identified as absent are

given a score of 0. Of course, this idea can easily be extended to N -peptides; however,

9

there is a trade off: the larger N gets, the less FPs the model will identify as present,

but it will become increasingly unlikely the model will identify a large number of

proteins, simply because they will not be adjacent to have enough peptides.

ProteinProphet ProteinProphet [13] is an iterative model which computes

protein-level confidence scores and then uses these protein scores to determine how

degenerate peptide scores should be partitioned among the proteins which may have

emitted them. While there are a few sensible ways to partition this information,

ProteinProphet assigns weights proportional to the proteins peptide score, with the

additional constraint that all the weights for a peptide must sum to unity. When

the protein scores are first computed, the peptide scores are partitioned uniformly

among proteins. The protein score for a particular protein, Xi is computed accord-

ing to: 1 −
∏

j∈Yj :(i,j)∈E(1 − sj,k) · wi,j, where wi,j is the weight assigned to peptide

j for protein i. This iterative process continues until the protein-level confidence

scores produced iteration i are within a user specified tolerance of the protein-level

confidence scores produced at iteration i− 1. There are also additional pieces of in-

formation about a protein, such as the number of sibling proteins, that are taken into

account to further improve the performance of the model. Sibling proteins are defined

as the set of proteins which share peptides with this protein. One shortcoming of this

model is that, due to the way protein-level confidence scores are computed, a single

protein with many pieces of low scoring peptide evidence can receive a good score.

Results in this paper were obtained with the ProteinProphet version bundled with

Trans-proteomic pipeline [14] v5.2.0 Flammagenitus, Build 202011101623-

exported (Linux-x86_64).

10

Fido Fido [5] is a probabilistic model that produces posteriors on proteins

by computing the joint distribution over all proteins under consideration and then

marginalizing this joint distribution to obtain protein posteriors. It has three free

parameters: α, β, and γ, which are all the same for each protein and are ∈ [0.0, 1.0].

α represents the chance a protein emits a particular peptide, given that the protein

is truly present. β represents the chance a truly absent peptide is observed due to

noise. γ represents an independent and identically distributed (IID) prior on a protein

being present in the sample. These parameters are optimized via a golden search [15]

over quality. Results in this paper were obtained with an in-house implementation

which utilizes the EvergreenForest inference engine [16].

Epifany Epifany [17], like Fido, is a probabilistic model that produces true pos-

teriors on proteins. It also computes protein posteriors in a similar manner; however,

the generative model for Epifany differs from that of Fido in that there is an optional

regularizing prior on the number of proteins which may produce a peptide, and an op-

tional greedy post-processor. Epifany has a similar parameter set; however, Epifany

uses a grid search to optimize parameters, rather than a golden search. One advan-

tage of using a grid search over a golden search is that many instances of the model

with different parameter sets can be ran in parallel, as opposed to the 2V (where V is

the number of variables we are optimizing over) instances than can be ran at a time

when using golden search. While it is possible to parallelize a golden search routine

beyond this using branch and bound like techniques, it is still not as amenable to

parallelization since the results of the previous iteration affect the results of the next

iteration. Results in this manuscript were obtain with the Epifany executable pack-

aged with version 2.6.0 Sep 30 2020, 11:01:01, revision: c26f752 of the OpenMS [18]

software platform.

11

ProteinLP ProteinLP [19] is a protein inference model which uses a trans-

formation of the joint probability distribution to express the protein and peptide

probabilities in terms of linear combinations of one another. In this way, the authors

present the protein inference problem as an optimization problem. The objective of

this optimization problem is to produce a minimal set of proteins under the constraint

that the peptide probabilities calculated by the model are within some tolerance of

the peptide-level confidence score generated by the peptide search algorithm. The re-

sulting linear program was solved with CPLEX. Results reported in this manuscript

were obtained using an in-house python implementation.

1.4.2 Protein Inference Evaluation

Just as the protein inference problem is not yet solved, evaluation of protein infer-

ence methods is also still quite tricky.

1.4.2.1 Target-decoy

A necessary part of any protein inference experiment is the target-decoy-contaminant

database. A target-decoy-contaminant database relates protein accessions to their re-

spective labels. There are three disjoint sets in the database: targets, decoys, and

contaminants. The target set consists a superset of proteins we expect to find in the

sample. It is a superset because, in general, it is impossible to know a priori what

proteins are truly present in the sample. If it was already known what was in the

sample, there would be no need to perform the assay. Hence, it is typically the case

that some of the targets are absent from the sample. The decoy set consists of pro-

teins known to be absent from the sample. The contaminant set consists of proteins

that may or may not be in the sample and are the result of proteins foreign to the

proteome like keratin finding their way in to the sample. Though they are typically

12

0.2

0.7

0.99

0.9

0.95

0.80

1.0

X1

X2

Y1

Y2

Y3

Y4

Y5

Y6

Y7

X3

X4
0.65

0.1Y8

Y9

Proteins Peptides

Figure 1.2: Simple illustration of the PPG representation of a typical target-
decoy database. Target proteins X1, X2, share peptide Y2, which was identified by
peptide search with an 80% peptide-level confidence level. Decoy proteins X3, X4

share peptide Y7, which was identified by peptide search with a 20% peptide-level
confidence score. Target protein X2 and decoy protein X4 share peptide Y6, which
was identified by peptide search with a 70% peptide-level confidence score. Since Y6 is
adjacent to a target protein, we expect it to receive a higher peptide-level confidence
score than peptides like Y8, which are adjacent to only decoy proteins. Blue nodes
indicate target proteins and target peptides. Red nodes indicate decoy proteins and
decoy peptides.

of little biological interest, they can be thought of as another target in the sense that

they may more accurately “explain” some set of observed peptides better than any of

the proteins in the target set (likely because they are actually present in the sample).

Hence, if we disregard this contaminant altogether, we may erroneously identify an

absent target as present. A PPG representation of a typical target-decoy database is

shown in Figure 1.2.

While this paper focuses on database oriented techniques for performing a peptide

search, alternative techniques like de novo [20] are extremely powerful. Programs

such as MS-GF [21] can be used to recover the most probable peptide sequence

which would have resulted from the given spectra. De novo is particularly useful

13

when prior information about the contents of the sample is limited and so a target-

decoy-contaminant database would need to be prohibitively large to avoid excluding

potential present proteins [22]; however, if we are certain only a small subset of a small

set of a couple hundred proteins can be targets, or when strong prior information

about the sample contents is available, experiments can benefit from analysis via

database [23]. It is essentially a trade-off between speed and accuracy: this is the “no

free lunch” theorem from statistics [24].

1.4.2.2 Protein Inference Evaluation Challenges

To evaluate the performance of a protein inference method, the list of protein scores

are evaluated under statistical metrics like area under the receiver operator charac-

teristic curve [25] (AUC) and calibration error [26] (CE). AUC is a statistical test

that measures how well an inference method is able to discriminate between true

positives (TPs) (targets) and FPs (decoys) and is typically computed at a predeter-

mined FDR or q-value threshold, while CE measures how closely the protein scores

produced by an inference method resemble true probabilities, measured at an FDR

threshold. More specifically, CE measures the squared error between the computed

FDR and the empirical FDR, up to a threshold.

One problem with current metrics is that they inherently assume all target proteins

are present in the sample; however, target-decoy-contaminant databases, in general,

are not perfect. The target set, in general, is almost certainly a mix of present and

absent proteins. A perfect target set would require prior knowledge on which proteins

are truly present, but then why perform an assay if you have a perfect target set.

Attempts have been made to help circumvent this problem altogether, like examining

the abundance of messenger RNA to determine what is in the sample; however, this

does not, in general, correlate well with whether or not a particular protein is found

14

in the sample [27]. Thus, since the labels in target-decoy-contaminant databases are

not perfect, under current evaluation metrics, an inference method can erroneously

identify an absent target protein as present and this will be seen as favorable. An

inference method can identify an absent target protein as present for many reasons,

one reason is that the method is utilizing the labels in the target-decoy-contaminant

database too heavily. For example, consider an “Idealist” method that simply assigns

the maximum possible protein score to any protein with a target label, while assigning

the minimum possible protein score to any protein with a decoy label. This would

cause the model to achieve maximum possible CE and AUC, but a method which

gives scores only based on labels is inherently flawed by the fact the target set is

flawed and thus, AUC and CE by themselves are not necessarily enough to determine

a good method.

Due to this fact, it is quite difficult to objectively evaluate an inference method.

Moreover, current metrics do not fully capture all the important qualities a good

inference method should have. For instance, AUC is merely one way of measuring

discrimination. Another way to measure discrimination is to separate the protein

scores by target and decoy label, and then measure the difference in median value of

these collections.

There has been significant research done to help compensate for the fact that targets

are truly a mix of present and absent proteins. One technique, initially pioneered by

Storey [28] involves estimating π0, which represents the portion of all hypothesis under

consideration that are truly null hypothesis. This method uses the assumption that

null hypotheses are uniformly distributed and that most observations above a certain

p-value threshold correspond to null hypotheses. The ratio of null hypothesis in this

interval can then be used to estimate the overall number of null hypotheses. In a

protein inference experiment, estimating π0 is akin to estimating the percentage of

15

absent targets in the sample. For example, if we estimate π0 to be 0.5, we expect

roughly half of our targets to be absent. The π0 estimate can then be used to estimate

the PEP associated with each protein. This metric can then be used to perform more

accurate inference. This idea is currently used in programs such as qvality [29] to

asses the probability that a particular PSM is correct.

The choice of decoy set also greatly affects how well an inference method performs.

In the best world, decoys and absent targets resemble one another; however, if the

model is optimized for discrimination between targets and decoys and absent targets

can clearly be distinguished from decoys, all target proteins, present and absent, can

be given scores ≥ decoy proteins. This results in the method identifying all targets as

present in the sample; a naive target-decoy approach would reward such a conclusion

as many target proteins would be identified at a FDR of 0.0 instead of at a correct,

much higher (e.g. 0.1) FDR. A Typical choice for generating the decoy database is

to use the reversed target protein sequences; however, shuffling the protein sequences

in the target set can also be used [30]. Another option is to use an entirely different

organism as the decoy database.

1.4.2.3 The Hitchhiking Problem

The fact that targets are a mixture of present and absent proteins leads to a problem

known as hitchhiking. Hitchhiking can occur when there is an absent target protein

that shares evidence with a present target protein; hence, the absent target protein

will be adjacent to a few pieces of high-scoring, degenerate peptide evidence. The

major challenge with hitchhiking is that it is easier to construct an inference method

which treats all shared peptide evidence as belonging to all proteins or does not

take in to account sharing of peptides at all (e.g. parsimony) instead of solving a

generalization of set-cover, which would allow different elements to be covered multiple

16

0.25

0.43

0.5

0.3

0.15
X3

X4

Y6

Y7

Y8

Y9

Y10

0.2

0.85

0.95

0.80

1.0

X1

X2

Y1

Y2

Y3

Y4

Y5

Proteins Peptides

Figure 1.3: An illustration showing a situation in which hitchhiking may
occur. The blue protein, X1, is a present target and thus, is adjacent to many
peptides which were identified by peptide search with high peptide-level confidence.
Peptides Y1 and Y3 are identified by peptide search with a fairly high (95% or above)
peptide-level confidence score, despite being adjacent to an absent target, the yellow
protein X2. This is due to the fact that these peptides are also adjacent to X1, a
present target. Since peptide Y5 is adjacent only to an absent target, it is identified by
peptide-search with a fairly low (20%) peptide-level confidence score. These shared
high scoring peptides may cause an inference method to erroneously identify X2 as
present. Since X2 and X3 are absent, we expect this peptide to receive a fairly
low peptide-level confidence score. Blue nodes indicate present target proteins and
present target peptides. Yellow nodes indicate absent target proteins and absent
target peptides. Red nodes represent absent decoy proteins and absent decoy peptides.

times (e.g. degenerate peptides could be handled on a case by case basis).

Eukaryote lysates, especially those from higher order organisms, are notorious for

hitchhiking due to homology. In cell lysis, a whole cell is split open and examined.

Hence, because in general it is not guaranteed the entire proteome is expressed in a

cell at a time, there are many target proteins which will be absent. Contaminants

may also cause hitchhiking; however, these are typically much less of an issue than

absent target proteins. It is also possible to have a situation where a target shares

evidence with a decoy, though this is less common, as is shown by Figure 1 in Elias

17

and Gygi’s paper “Target-decoy search strategy for increased confidence in large-scale

protein identifications by mass spectrometry” [31] where a plot of frequency of shared

tryptic peptides between the human proteome and the reversed protein sequences is

displayed. In this table, it is shown that there is little overlap between the tryptic

peptides found in the target and decoy protein sequence.

1.5 Gold Standard data

One way to evaluate an inference method under an accurate target-decoy-contaminant

database is to use a protein standard dataset for evaluation. The samples analyzed for

a protein standard dataset have been carefully prepared to contain only the proteins

in the standard. Thus, the labels in the target-decoy-contaminant database can be

considered ground truth and hence, any target proteins an inference method identifies

as present are correct. In this way, protein standards allow an inference method to

be objectively evaluated. Note that since all current evaluation metrics presented do

not consider contaminant proteins when computing evaluation metrics, the target-

decoy-contaminant database will be referred to as the target-decoy database for the

remainder of the manuscript.

Hence, datasets like the ISB 18 mix protein standard [32] and the Sigma-Aldrich 49

standard [33] (commonly referred to as the UPS1 protein standard) provide us with

a way to solve the circularity: we already know what is in the sample, thus, we can

objectively evaluate how well we do. A strong challenge of these protein standards

remains limited sequence similarity among target proteins. The protein standard used

in the iPRG 2016 [34] study is intended to help solve this problem. In this standard,

the present target proteins were engineered to deliberately share peptide evidence

with absent target proteins. The absent target proteins are denoted as entrapment

18

proteins.

One challenge that remains for protein standards is that most standards lack suffi-

cient complexity in terms of peptide degeneracy and difficulty. Having a sufficiently

complex protein standard is especially important for investigating how well an infer-

ence method solves the hitchhiking problem.

19

CHAPTER 2 METHODS AND WORK

In this chapter, novel work is presented. This work consists of a new protein

standard, an ensemble protein inference evaluation engine, and several novel protein

inference methods.

2.1 ProteomeTools Hitchhiking Peptide Standard

In this section, a novel peptide standard is presented: the ProteomeTools Hitch-

hiking Peptide Standard (PHPP). This standard is intended to compliment currently

existing standards by being deliberately complex in terms of shared peptides.

Properly solving the hitchhiking problem is something that any reliable protein

inference method will need to overcome. How to best solve this problem is still an

open question; however, it is impossible to answer this question without some way to

check the answer. This standard aims to do just this; although, in general, engineering

such a situation can be quite difficult. One must create a target set that contains

present and absent targets with the added criteria that the absent targets should

share some evidence with the present targets.

The target protein sequences in this dataset were deliberately designed to mix the

benefits and hazards of shared peptides. In this way, it is impossible for either methods

which disregard shared peptides altogether or methods which make parsimonious

assumptions about shared peptides to perform extremely well on this standard. The

20

X1

X2

X4

X5

X13

X16

X19

X20

X22

X26

X27

X28

X36

X37

X38

X39

X44

X45

X46

X47

X48

X50

X51

X52

X53

X40

X41

X42

X49

X0 - X9

X10 - X19

Hitchhiker

X20 - X26

X27 - X29

X30 - X39

X40 - X49

X50 - X54

Semi-simple

Driver

Subset

Leftover

Figure 2.1: Graph relating proteins to one of the 5 protein classification types: Semi-
Simple, Subset, Driver, Hitchhiker, or Leftover. While the majority of proteins are
hitchhikers, the protein sequences for this standard were deliberately designed to have
several proteins belonging to each different class, as depicted in the figure. The intent
of this is to mix the benefit and hazard of shared peptides. The numbers next to the
brackets indicate what proteins are contained in this bracket, e.g. the second protein
in the X0 - X9 bracket is X1. Node colors indicate the protein’s classification. Purple
nodes indicate proteins which are classified as Leftover, green nodes indicate proteins
which are classified as Subset, blue nodes indicate proteins which are classified as
Driver, red nodes indicate proteins which are classified as Semi-Simple, black nodes
indicate proteins which are classified as Hitchhiker.

motivation behind how sequences were chosen is described in greater detail below.

2.1.1 Protein Sequence Design

There are three types of present peptides. “Unique” present peptides are found only

in one protein. “Share” present peptides are found in two or more present proteins

and no absent proteins. These peptides will prefer a less parsimonious model, so that

both proteins can claim the evidence and be identified. “Choose” present peptides are

found in at least one present protein and also in at least one absent protein. These

peptides will prefer a more parsimonious model, so that only the present protein will

be identified (hopefully).

Based on what proportion of peptide types a protein has, we can use this to classify

21

the proteins. A protein is classified as “Simple” if it has only Unique peptide evidence.

A protein is classified as “Semi-Simple” if the majority of the peptide evidence is

Unique peptides. A protein is classified as “Subset” if it is a present protein which

does not have a majority of Unique peptide evidence and of the non-Unique peptide

evidence, the majority are Share peptides. It is likely that more parsimonious models

will tend to “explain away” this protein, as it is a subset of another protein. A protein

is classified as “Driver” if it is a present protein which does not have majority Unique

peptide evidence. Of the non-Unique peptide evidence, the majority are Choose

peptides. A protein is classified as “Hitchhiker” if it is an absent protein which does

not have majority Unique peptide evidence. Of the non-Unique peptide evidence, the

majority are Choose peptides. A protein is classified as “Leftover” if it is anything not

in the classes above. The proteins in this standard were deliberately designed to have

representatives from each class, with the exception of Simple proteins as this standard

is intended to complement other protein standards where these types of proteins are

sufficiently covered. A graph relation of proteins to their respective protein classes

is shown in Figure 2.1. The full theoretical PPG relations for the entire dataset can

be seen in Figure 2.2a, Figure 2.2b, Figure 2.3a, Figure 2.3b, and Figure 2.4. Note

that, because the dataset itself is one large connected component, the graphs were

broken into sepset like structures for illustrative purposes. That is, the graphs were

broken into clusters that contained as many nodes as possible while having as few

edges between other such clusters as possible.

22

2.1.2 Sample Preparation

2.1.2.1 Synthetic Peptides

Under the umbrella of the ProteomeTools project [35], 153 peptides were individu-

ally synthesized on cellulose membrane following the Fmoc-based solid phase synthe-

sis strategy using a purpose-built peptide synthesizer [36]. The crude peptides were

cleaved off the membrane in 21 predefined pools of peptides and dried. Dried peptide

pools were initially solubilized in 100% dimethyl sulfoxide (DMSO) to a concentration

of 10 pmol µl−1 by vortexing for 30 min at room temperature. The pools were then

diluted to 10% DMSO using 1% formic acid in liquid chromatography (HPLC)-grade

water to a stock solution concentration of 1 pmol µl−1 and stored at −20 ◦C until use.

2.1.2.2 Data Acquisition

The stock solution was transferred to a 96-well plate, diluted 10-fold with 0.1%

formic acid in in liquid chromatography (HPLC)-grade water, and an estimated

amount of 100 fmol of every peptide in a pool was subjected to liquid chromatography

using a Dionex 3000 HPLC system (Thermo Fisher Scientific) using in-house-packed

C18 columns. The setup consisted of a 75 µm × 2 cm trap column packed with 5-µm

particles of Reprosil Pur ODS-3 (Dr. Maisch) and a 75 µm× 40 cm analytical column

packed with 3-µm particles of C18 Reprosil Gold 120 (Dr. Maisch). Peptides were

loaded onto the trap column using 0.1% formic acid in water. We separated the pep-

tides by using a linear gradient from 4% to 35% acetonitrile with 5% DMSO [37], 0.1%

formic acid in water over 50 min followed by a washing step (60 min total method

length) at a flow rate of 300 nl min−1 and a column temperature of 50 ◦C. The HPLC

system was coupled online to an Orbitrap Fusion Lumos mass spectrometer (Thermo

Fisher Scientific). Each peptide pool was measured using a method triggering both an

23

HCD (NCE 28; Fourier transform mass spectrometry (FTMS)) and collision-induced

dissociation (CID;NCE 35, ion trap mass spectrometry (ITMS)) fragmentation event

on every detected precursor.

2.1.3 Data Processing

The Thermo RAW files were converted to mzML [38] using the ThermoRawFileParser [39]

(version 1.2.0) software. Decoy sequences were generated by reversing the target pro-

tein sequences. The target-decoy database was created by concatenating the target

fasta [40] file with the decoy fasta file. The mzML files were then searched against

this target-decoy database using Comet [41] (version 2018.01, rev. 0) as part of

the Crux [42] software package (version 3.2-0d57cff) to produce a pepXML [14]

file containing a set of scored PSMs. These PSMs were then post-processed with

Percolator (version 3.02.0, build Date May 30 2018 17:04:51), also a part of the

Crux software package, to produce a pepXML file containing peptide-level confidence

scores.

2.2 Best In Show: ensemble evaluation of protein inference

engines

The Best In Show protein inference evaluation engine accepts several different

protein inference methods and runs each method on a handful of protein standard

datasets. The results from each method are then evaluated under several different

metrics and ranked with respect to one another. Additionally, due to the fact that

gold standard datasets are not representative of a real life dataset, we perturb the

datasets in a special manner. Finally, the engine produces a ranking on all methods.

Clearly, discrimination and calibration are important metrics to measure: a good

24

model should accurately rank TPs above FPs and produce true probabilities; however,

it is not clear what single statistical test adequately captures how well an inference

method performs these tasks. An alternative to this is to use and ensemble of tests, all

of which measure discrimination or calibration in a slightly different manner. With

enough tests and enough datasets, it becomes impossible for a poorly performing

inference method, like the Idealist model, to do well on all datasets across all metrics.

The results of these metrics can be thought of as features of a particular method.

The question then becomes how to best aggregate these features into a single, easily

interpretable numeric value.

To get a better idea of how a method would perform on a general sample (e.g. a

sample which is not from a protein standard) the engine also measures the degree

to which a method utilizes the labels in the target-decoy database to make decisions

about the model. This is achieved by randomly selecting a percentage of decoys

in the gold standard target-decoy database, relabeling them as targets, and then

investigating how the results of the model change with respect to the gold standard

target-decoy database. The more drastically the results of a model change under

the same observed data (e.g. identical sets of scored peptides) when utilizing an

obfuscated target-decoy database, the more heavily a model utilized the target-decoy

labels to fit parameters of the model. This can be thought of as something akin to a

derivative: if we perturb the labels a small amount, how much does performance suffer.

The gold standard target-decoy database consists of ground truth target and decoy

sets, while this relabeled target-decoy database is referred to as the obfuscated target-

decoy database. The notion of an obfuscated target-decoy database is somewhat

reminiscent of the notion of entrapment-proteins used in the 2016 iPRG study [34],

as such the decoys which have been relabeled as targets in the obfuscated target-

decoy database will be referred to as entrapment proteins for the remainder of the

25

manuscript.

To ensure the end user has access to as little information about how the obfuscated

target-decoy database is created as possible (with the intention of preventing them

from using this information to somehow easily recover the gold standard target-decoy

database), the percentage of decoys to be relabeled as targets is sampled from a

uniform distribution over some interval [min,max], min ∈ [0.0, 1.0], max ∈ [0.0, 1.0],

where min is the user specified minimum percentage and max is the user specified

maximum percentage (e.g. if the user specifies 0.1 as the minimum percentage and 0.2

as the maximum percentage, some random percentage ∈ [10%, 20%] will be selected).

Additionally, to prevent the inference method from examining the relabeled protein

accessions in the obfuscated target-decoy database and using those to recover the

gold standard labels, all the accessions in the dataset are renamed with randomly

generated unique identifiers.

2.2.1 Ranking

The ranking scheme used in this engine is slightly different than typical ranking

schemes like those found in packages such as NumPy. The ranks start at zero and ties

are given equal weight for a rank. The next rank is then incremented by the number

of items that tied for the previous rank. Say we have five students who took a test.

Their scores are as follows: Student A, 95; student B, 60; student C 80; student D

80, student E 80. The rankings would be as follows: Student A, 0.0; student C 1.33;

student D 1.33; student E 1.33, student B 4.0. In this way, the ranks can essentially

be interpreted as the number of students that performed better than the student in

question. Ties are not penalized as aggressively as they would be under other ranking

schemes. For example, under SciPy’s rankdata function, using the dense method

the rankings are as follows: A: 0.0, B: 4.0 , C: 2.0 , D: 2.0, E: 2.0. So, we see that

26

the ranks for B, C, and D are higher under the ordinal scheme than they would be

under our scheme, specifically due to the way ties are handled.

The result of some metrics are not a single numeric value, but instead are a tuple

of numeric values. This is the case for metrics like the Kolmogorov-Smirnov[43] (K-S)

test which reports a p-value as well as a test statistic. In this case, the metrics are

first ranked by p-value and any ties are broken according to the value of the statistic.

Additionally, to simplify ranking and interpretation of raw metric results, we ensure

that for all metrics higher values are better by negating the result of any metric where

lower valued indicate better performance (for instance, the lower CE a model has,

the better, so it is negated when reported by the engine).

2.2.2 Evaluation Engine

The engine accepts a list of protein inference methods to be ran in the form of

commands. By accepting the command to run the method, the engine can be agnostic

of what language the method is written in. This also allows users to easily write

wrappers for existing inference methods if they do not adhere to the interface specified

by the engine. The only assumption made about these inference methods is that they

accept the following arguments in this order: pepXML file [14], target-decoy database,

and fasta file. Note that this does not imply the method need use all this information

(some methods, like the 1-peptide rule, do not look at target-decoy labels or the fasta

file), but is merely a way to establish an easy interface for the engine. The pepXML

file contains the post-processed output of the peptide-search. The target-decoy file

is a simple XML file that relates each protein accession under consideration in this

experiment to exactly one of the labels definitely present (targets), maybe present

(contaminants), or definitely absent (decoys). These labels were deliberately chosen

to be representative of the fact that the engine is intended to utilize only protein

27

standard datasets. The fasta file is a plain text file that relates protein accessions to

their amino-acid sequences.

The engine then runs each of the provided methods on each of the benchmark

datasets, which are discussed in greater detail in 2.2.4. Once all the methods have

been ran, they are then evaluated on several different metrics, discussed in greater

detail in the following section. The results of these metrics are then all ranked against

one another on a per dataset basis. These individual ranks are then accumulated on

a per category basis for each dataset into a rank sum. Each method is then re-

ranked by their rank sum on a per category basis, according to discrimination and

calibration. These category ranks are then accumulated across all benchmark datasets

for each method into a final cumulative rank sum. These cumulative rank sums

are then ranked to produce the final table of rank based on cumulative rank sums.

Additionally, the cumulative rank sum for each method is normalized by dividing the

rank sum by the product of the number of models being evaluated and the number of

categories being utilized (e.g. if there are 5 methods and 2 categories we would divide

the cumulative rank sums by 10). The model with the lowest cumulative rank sum is

deemed the winner. The lower this value is, the more performant the model is. This

normalized cumulative rank sum can be thought of as the expected value that this

model would perform worse than another randomly selected model, on a randomly

selected metric, on a randomly selected protein standard dataset.

Note that although contaminants are reported in the inference results, even on

the gold standard datasets, they are not assumed to be present nor absent. So any

metrics which compute results based upon whether a protein is truly present or absent

will ignore contaminants. This is because, although contaminants can be thought of

as another type of target, and are important for ensuring higher quality peptide-

search results, they are typically of little biological interest for most applications and

28

experiments.

2.2.3 Evaluation Metrics

In this section, the novel evaluation metrics utilized in the engine are described in

greater detail. Note that there are a few metrics which are qualitatively similar in

nature. When this is the case, the average of the ranks of these metrics are used in the

results. Where applicable, version 1.5.4 of SciPy [44], version 1.19.4 of NumPy [45],

and lmxl [46] version 4.6.1 were used.

2.2.3.1 Data perturbance based stats

Ideally, Best In Show would evaluate real-life performance on a real dataset

(e.g. a sample of pond water); however, this is impossible as we do not have any way

to truly know what is in the sample. Hence, we would like a way to examine how

imperfect data affects the results of a method while still having some way to access

the ground truth data. This is achieved by slightly perturbing the ground truth data

in some way, and then examining how drastically the ranks of the results change.

One way to do this would be to simply use the raw rank differential between the gold

standard results and the obfuscated results; however, this is not terribly robust. A

more robust alternative to this would be to use the rank differentials in some sort of

statistical test. Since the metrics can be thought of as trials, a natural choice is to

use a binomial test [47]. The binomial test has three parameters k, n, and p, which

represent the probability that we would observe k successes out of n trails, where each

trial has a hypothesized probability p of succeeding. For this test, n is the number

of methods. This is because we interpret this method beating each other method as

a trail (e.g. you have n chances to “win” against the other models). The parameter

k is calculated as the number of wins this method had when using the obfuscated

29

target-decoy database. The parameter p is computed as g
n+1

where g is the number

of wins this method has when using the gold standard target-decoy. The value n+ 1

is used to ensure p 6= 1.

These metrics, like others, are not perfect. Since they are inherently rank based,

the result of the metric is heavily dependent on the performance of all of the other

models being evaluated; however, there are enough published models which are known

to perform well under current evaluation metrics on most inference standards that

finding other well performing models to evaluate against should not be difficult.

Label Perturbation Response To investigate how heavily a method utilizes

the labels in the target-decoy database, we measure the change in ranks of the eval-

uation metrics when using different target-decoy databases to fit the model. Specifi-

cally, the change in ranks of the evaluation metrics under the obfuscated target-decoy

database with respect to the gold standard target-decoy database is measured. The

larger the change in ranks, the more the model is penalized for it. For example, recall

our Idealist model. Such a model would perform perfectly when utilizing the gold

standard target-decoy database; however, when utilizing the obfuscated target-decoy

database, all of the entrapment proteins receive the same score as all of the ground

truth target proteins, and hence, would have poor discrimination and calibration,

thereby leading to a large p-value.

Peptide score perturbation We also measure the degree to which slightly

modifying the peptide scores affects how well the method performs. This represents

a situation in which the results of the peptide-search are slightly corrupted by noise

or imperfections in the mass spectrometry process. This peptide score perturbation

is done in addition to the label obfuscation. Hence, for this metric, the result is

30

calculated between the model using the obfuscated target-decoy database and the

model which utilized the perturbed peptide scores. The peptide scores are perturbed

via rejection sampling with samples drawn from a Gaussian distribution with mean

0.0 and standard-deviation 0.05. If the given sample would perturb the score such that

sj > 1.0 or sj < 0.0, the sample is rejected. Further, the Gaussian is parameterized

in such a way that 95% of the samples are within ±0.1.

Graph perturbation Another complexity seen in datasets created from general

samples that are not typical of protein standard datasets is an imperfect target-decoy

database. To simulate this situation (and subsequently evaluate how well a method

would do when faced with this additional complexity) the adjacencies in the observed

protein-peptide graph representing the target-decoy database are randomly added

and removed with user specified probabilities. As with the peptide score perturbation

metric, these graph perturbations are performed on the dataset with the obfuscated

target-decoy database and compared to the results of the model under the obfuscated

target-decoy database.

Shared Only Metrics Since proteins which have degenerate peptides are of

particular interest, we also evaluate models under all metrics by solely examining

how well the model scored the proteins with only shared peptides. This is to say

that when evaluating results we disregard proteins which have any observed unique

peptides. These metrics are denoted with a parenthetical “shared only” in the results

tables. Since most of these tests are statistical in nature, care must be taken to avoid

a small sample size. If a dataset has less than 10 target proteins or less than 10 decoy

proteins which do not meet the aforementioned criteria, evaluation of these metrics

is skipped for this dataset.

31

Entrapment Gain (Average and Maximum) This metric measures the

change in ranks of the entrapment proteins when using the obfuscated target-decoy

database as opposed to the gold standard target-decoy database. For example, say a

method gives an entrapment protein a rank of 100 when utilizing the gold standard

target-decoy database and a rank of 50 when utilizing the obfuscated target-decoy

database. Then, it is clear that the model is heavily utilizing the target-decoy labels

and therefore should be penalized for it since this is an indicator that the model relies

too heavily on the often imperfect target-decoy database. The rank differential is

calculated for each of the relabeled decoy proteins and the average difference in ranks

as well as the maximum difference in ranks is recorded. Note that each both the

average and maximum entrapment gain are recorded and ranked. These ranks are

then averaged together to produce one final rank.

Two-Sample Kolmogorov-Smirnov test The two-sample K-S test is a non-

parametric statistical test which measures discrimination. It determines whether or

not two samples are drawn from the same distribution. A one-sided, two-sample K-S

test is performed between the empirical cumulative density functions (CDFs) of the

target protein-level confidence scores and decoy protein-level confidence scores. This

test reports a p-value and a statistic, D, which represents the supremum of the set of

distances between the CDFs.

Mann-Whitney U The Mann-Whitney U [48] (MWU) is a non-parametric sta-

tistical test which measures discrimination. Specifically, this test determines whether

randomly selected samples from two different distributions are greater than one an-

other. In this case, the empirical posterior distribution on target proteins is compared

to the empirical posterior distribution on decoy proteins. That is, whether a randomly

32

selected target is expected to receive a higher score than a randomly selected decoy.

Hence, empirical distributions representing the protein scores of target proteins and

decoy proteins are built and used as input to the test.

L1 Calibration Error Measures the maximum squared deviation from the the

y = x axis in the calibration curve. The calibration curve is created by computing

the empirical and computed FDR at various thresholds.

Non-parametric Cutout Index Th Non-parametric Cutout Index (npCI) is

a non-parametric test that computes the likelihood that the given set of identified

proteins are correctly identified. This is done by creating two distributions, referred

to as “absent only” and the “leftover” distribution. The “absent only” distribution is

an empirical probability density function (PDF) consisting of peptide-level confidence

scores of peptides adjacent to only decoys (and hence, is static). The “leftover”

distribution consists of the set of peptides adjacent to the set of proteins which the

inference method identifies as absent. The two distributions are then smoothed using

a Gaussian Kernel Density Estimator [49] (GKDE) and normalized. Finally, the

similarity between the distributions is computed at various protein score thresholds

and the metrics for the threshold at which these distributions are most similar is

reported. There are a few choices for the similarity metric; however, in this paper,

we use symmetric Kullback-Leibler (KL) divergence [50] and a two-sided, two-sample

K-S test. We use a symmetric KL divergence and a two-sided K-S test because we

are concerned only with the overall similarity between distributions, as opposed to

how similar one distribution is to the other. The ranks of these test are then averaged

together to produce one final rank for this test.

33

Sensitivity at Global FDR This metric measures the number of targets iden-

tified at a specified Global FDR threshold, a measure of discrimination. In this

implementation of the engine, the default threshold is 0.05.

Local FDR Local FDR [51] measures the probability that next protein we

accept as present is a decoy. Local FDR is a measure of discrimination. This is

calculated by creating empirical PDFs for the target and decoy protein posteriors,

smoothing them using a GKDE, and then taking the ratio between the densities at

the given FDR threshold.

Incorrect Protein Differential The incorrect protein differential measures

the difference in magnitude between the lowest scoring target and the highest scoring

decoy. This is a measure of discrimination. A model which discriminates well should

not score a decoy above a target, the larger this differential the worse the method is

at discriminating.

Area Under Receiver Operating Curve The AUC measures how well a

model is discriminating at a threshold. Note that while there is no good way to choose

the evaluation threshold for this test, for most experiments, a threshold of 0.05 or less

is typically sufficient (which is the default value used in this implementation of the

engine). The numeric result of this test represents the probability that the classifier

being evaluated will rank a randomly chosen TP instance higher than a randomly

chosen FP one.

Compare Medians This metric measures the difference in median values of

the empirical target distribution on posteriors and the empirical decoy distribution

on posteriors. This is a measure of discrimination. A model which discriminates

34

well will score TPs and FPs such that the median of the distributions of their scores

should be far from one another. By comparing the medians, this test is less sensitive

to the tails of the distributions, as opposed to a metric which measures the difference

in the average of the distributions.

Picked Metrics (AUC, CE) In addition to the typical FDR and q-value based

metrics, there is an alternative metric, the Picked FDR [52]. The main difference

between the Picked FDR and a typical FDR calculation is that under a picked FDR,

where applicable, targets and their reversed decoy counterpart are treated as a single

entity. Hence, when computing the picked FDR, if the target protein scores higher

than it’s decoy counterpart, it is counted as a target hit, otherwise it is counted as

a decoy hit. This is in contrast to a typical FDR calculation which treats targets

and decoys as their own independent entities. This idea is easily applied to the AUC

and CE metrics, as they both depend on an FDR calculation. Hence, we can simply

replace the typical FDR calculation with a Picked FDR calculation.

2.2.4 Benchmark Datasets

All datasets were reproduced from their respective RAW files. The Thermo RAW

files were converted to mzML [38] files using version 1.2.0 of the ThermoRawFileParser [39].

The peptide search was then ran with version 2018.01, rev. 0 of Comet as part of

version 3.2-0d57cff of the Crux [42] software package to produce a pepXML file which

was then post-processed with version 3.02.0 of Percolator, also a part of Crux.

This resulted in a final pepXML file which serves as the input to all inference models.

For the peptide search performed on each dataset, a list comprising contaminants

commonly found in other proteomics experiments was included in the target set [53].

35

18 Mix The ISB 18 mix dataset [32] is a protein standard containing 18 target

proteins from various organisms such as bovines, rabbits, and horses. The data was

searched against a target-decoy database containing the 18 proteins pipetted into the

sample as well as the 15 contaminants proteins that were manually identified with

high confidence as targets while the proteome of H. influenzae was used as decoys.

iPRG 2016 The protein standard used in the iPRG 2016 [34] study was de-

signed to be intentionally complex in terms of degenerate peptides. This was accom-

plished by selecting and expressing a set of partially overlapping oligopeptides in the

sample. The data was searched against a target-decoy database containing the fasta

files in the PRIDE [54] repository as the target set, with the reversed target sequences

serving as the decoy set. Additionally, the proteome of E. coli was included in the

set of contaminants.

Yeast Part of a so called gold standard of protein expression in Yeast [55].

The data was searched against a target-decoy database containing the S. cerevisiae

proteome as the target set, with the reversed target sequences utilized as the decoy

set.

ProteomeTools Hitchhiking Peptide Standard The ProteomeTools Hitch-

hiking Peptide Standard is a peptide standard designed to deliberately mix the hazard

and benefit of shared peptides. In this way, it is intended to compliment existing pro-

tein standards, most of which lack sufficient complexity in terms of shared peptides.

It is deemed a peptide standard rather than a protein standard because the pro-

teins represented in the standard are never actually synthesized, just the peptides.

The data was searched against a target-decoy database containing the target proteins

specified in the paper as targets, with the reversed target set serving as the decoy set.

36

Peptide-Shaker The peptide-shaker protein standard [56] was created to con-

tain many proteins, be intentionally complex in terms of degenerate peptides, and be

as biologically representative of a typical human sample as possible. The data was

searched against a target-decoy database containing the proteome of P. furiosus as

the target set, with the reversed target sequences serving as the decoy set.

UPS1 The target-decoy database consists of the 48 proteins specified by the

Sigma-Aldrich 49 standard [33] as the target set, with the reversed target set utilized

as decoy proteins.

2.3 New Methods

In this section, several novel protein inference methods are described. They are in

no particular order and have been split into the following subcategories: N -peptide

like models, set-cover like models, iterative models, probabilistic models, and linear

Program (LP) models. Note that, as before, some models described in this section

have free parameters, and thus, require some form of parameter optimization.

2.3.1 N-peptide model variations

As described in the previous chapter, the canonical 1-peptide model identifies pro-

teins with at least one unique peptide as present. Present proteins are assigned the

peptide-level confidence score of their lowest scoring unique N peptide.

N-peptide model (with shared peptides) This model assigns protein-level

confidence scores in the same manner as the canonical 1-peptide model, except the

requirement that the peptides be unique is removed. Hence, this model considers

shared peptides when identifying proteins and assigning protein scores. This leads to

37

results that are quite liberal in comparison to canonical 1-peptide model. Proteins

are assigned scores in the same manner as the canonical 1-peptide model.

2.3.1.1 N-peptide (Expectation) and variants

The canonical 1-peptide model identifies all proteins with at least one unique pep-

tide as present; however, the manner in which the protein-level confidence scores are

assigned in this case are quite optimistic and somewhat more pessimistic in the 2-

peptide case. An alternative to this is to assign present proteins the average of the

top N peptide-level confidence scores. If the protein in question has less than the

specified N unique peptides, it is considered absent and assigned a score of 0.

With sharing This model removes the requirement that the protein must be

adjacent to unique peptides. Hence, this model considers shared peptides when iden-

tifying proteins and assigning protein scores.

2.3.2 Iterative Models

These models iteratively update their protein scores in a manner similar to expectation-

maximization [57] (EM). That is, they typically start with random parameter values,

use these to produce protein-level confidence scores, and then from these scores, re-

estimate parameters.

ProteinProphet (simplified) This simplified ProteinProphet model only per-

forms the iterative partitioning of peptide scores among proteins until the resulting

protein-level confidence scores are within a user specified tolerance of the previous

scores. This is to say that this model does not utilize information about things such as

38

the number of sibling proteins. Results in this paper were obtained with an in-house

python implementation.

p-norm This model calculates the probability of protein presence based on the

peptide score vector under various p-norms. The model can also optionally punish

a protein for having a peptide below a given score threshold, τ . If the model does

punish the protein, then the score of this peptide will be ignored when calculating

the p-norm of this protein. The optimal τ value is found by doing a line search over

quality.

p-norm (Dynamic Punishment) This model is similar to the previous model

in that it also uses the peptide score vector under various p-norms to calculate the

probability of protein presence. In contrast to the previous model, the model punishes

shared peptides below a threshold, τ . The optimal τ value is found by doing a line

search over quality.

p-norm (Iterative) This model operates in a manner very similar to Protein-

Prophet, except p-norms are used to compute protein scores rather than the product

of peptide scores. This model can also optionally punish proteins based on peptide

with scores below some threshold τ . The optimal τ is found using a line search over

quality.

2.3.3 Probabilistic Models

Probabilistic models are ones which use Bayes rule to produce true posterior prob-

abilities on proteins. Since they produce true probabilities, these models tend to be

quite well calibrated.

39

Fido-EM An alternative to using golden search for parameter optimization is

to use an EM like optimization routine. The Fido-EM model does just this: it

uses an EM like routine to optimize the free parameters for the Fido model. This

method begins by randomly initializing α, β, and γ according to samples drawn from a

uniform distribution. These parameters are then used to produce posteriors according

to the Fido model, which are then used to re-estimate new parameters. These re-

estimated parameters are then used to produce new posteriors. This proceeds in the

same manner for a user specified number of iterations or until the difference in the

approximated log-likelihoods of the joint distributions between iterations is within a

user specified tolerance.

The parameter α represents the probability that a protein emits a peptide, given

that protein was present. So, for each Yj, the sum of Pr(Xi = 1) is computed and

product of this and the peptide-level confidence score is taken. Then, we sum this

value over all Yj. This value is finally divided by the sum of the protein scores

(allowing each Xi to be counted multiple times). Let G[N] be the set of nodes

adjacent to node N in G. The parameters are re-estimated as follows:

αr =

∑
∀j
∑

i:G[Yj]
Pr(Xi = 1) · sj,k∑

∀j
∑

i:G[Yj]
Pr(Xi = 1)

βr =

∑
∀j
∑

i:G[Yj]
Pr(Xi = 0) · sj,k∑

∀j
∑

i:G[Yj]
Pr(Xi = 0)

γr =

∑
∀i Pr(Xi = 1)

|Xi|

Generalized Cardinal Model The Generalized Cardinal Model is built on

a set of beliefs any sane inference model should obey. These beliefs are primarily

concerned with the cardinality of proteins and peptides. Pr(Xi|Mi) represents the

40

probability of protein Xi being present given M peptides. It is required to be a

monotonic increasing function because the more pieces of supporting evidence we

accept, the more strongly we should believe our hypothesis. Pr(Yj|Nj) represents

the probability of peptide Yj being present given N proteins. It is required to be

a monotonic increasing function because the greater the number of present proteins

which may have emitted this peptide, the more likely it should be that this peptide is

observed. Pr(Nj) represents the prior on peptide sharing. It should be a monotonic

decreasing function because as more hypotheses are supported by the same amount of

evidence, we become more skeptical. Pr(Yj) represents the prior on a peptide. Pr(Xi)

represents a prior on proteins. Note that Pr(Xi) and Pr(Yj) do not have restrictions

on functions, due to the fact that these variables are binary.

The implementation in this paper is realized in a manner similar to Fido. There

are six free parameters: α, β, γ, ζ, ι, and λ. α, β, and γ all have the same in-

terpretation as Fido. A noisy-OR [58] function is used to parameterize Pr(Yj|Nj)

and Pr(Xi|Mi), while an exponential is used to parameterize Pr(Nj = n), and the

peptide-level confidence score, sj is used as the prior probability of peptide Yj being

present. Specifically:

Pr(Yj = 1|Nj = n) = 1− ((1− β) · (1− αn))

Pr(Xi = 1|Mi = m) = 1− ((1− ζ) · (1− ιm))

Pr(Nj = n) = λe−λn

Pr(Yj = 1) = sj

The six free parameters are then optimized via an EM like optimization procedure,

similar to the one used to optimize the Fido-EM model.

41

α, β, γ are all re-estimated in the exact same manner as the EM routine for Fido,

described above. The closed form equations for re-estimating ι, ζ, and λ are:

ιr =

∑
∀i(
∑

j:G[Xi]
Pr(Yj = 1)) · Pr(Xi = 1)∑

∀i
∑

j:G[Xi]
Pr(Yj = 1)

ζr =

∑
∀i(
∑

j:G[Xi]
Pr(Yj = 0)) · Pr(Xi = 1)∑

∀i
∑

j:G[Xi]
Pr(Yj = 0)

λr =

∑
∀j Pr(Nj = 1)

|Nj|

Measure Model The Measure Model is loosely based upon the idea of a protein

algebra. With this algebra, it is possible to create a partial ordering on proteins. It

should be noted that the following does not readily take into account other factors

such as detectability of a peptide, prior probability of observing a particular protein in

the sample, etc; however, even without this information, it should be possible to put

a partial ordering on proteins. Further, for the purposes of creating this ordering, we

are primarily concerned with immediate protein information, that is, for a particular

protein, we only investigate: the protein in question, it’s adjacent peptides, and any

proteins adjacent to these peptides (which is necessary to determine shared peptides).

We define three classes of protein evidence: “Unique”, “Shared”, and “Unique and

Shared”. Proteins which have only unique peptides are typically trivial, the more

peptide evidence there is, the more likely a protein is to be present. Hence, a protein

with three pieces of unique peptide evidence would be ranked above a protein which

only has two pieces of peptide evidence. Proteins which have only shared peptides

are a bit more complicated. Resolution of a partial ordering in this case essentially

comes down to the partition function used for peptide ownership: how much does the

protein in question own each of it’s shared peptides. This then reduces to the “only

42

unique peptides” case with fractional peptide counts. The final case is that a protein

has unique and shared peptides. This case then reduces to a question of which protein

has more peptide evidence.

While it may be questionable, from a biological perspective, to allow proteins to

own part of a peptide, what we are trying to accomplish with this partial ordering

is essentially the prior likelihood of the protein being present. This is to say that

just because we allow the peptide evidence to be partitioned among the proteins does

not in any way mean our model is explicitly entertaining the idea that a peptide was

actually emitted from multiple proteins, though this is certainly possible.

Note that, in general, it will not be possible to create a total ordering on proteins

based on this algebra. For instance, in Figure 2.5 since s1 < s3 and s2 > s4 it is

unclear whether we should score X1 ≥ X2 or X2 ≥ X3. In this case, a measure

function is used to decide which should be ranked higher.

2.3.4 Linear Programming methods

In this section, we detail models which frame protein inference as a LP. All LPs

are solved using CPLEX version 12.10.0 [59]

Minimum Set-cover LP The minimum set-cover model is a protein inference

model that attempts to explain all peptides in the dataset using as few proteins as

possible. Two different implementations of this model are presented. In both models,

a free parameter, τ is introduced. In the first version, τ represents a threshold at

which all peptides whose peptide score is below this threshold are discarded and thus

do not need to be covered. In the second version of this model, τ is interpreted as

a minimum peptide score sum that must be achieved for a protein to be considered

present. These are then formulated as an LP and solved using CPLEX. Results in this

43

paper were obtained using an in-house python implementation of both models.

To assign protein scores, the model is ran several times according to a golden

search like parameter schedule. The results of each of these parameterisations are

then ranked by quality. If a protein is identified as present in the set of results

with the best quality metric, it is assigned the value of it’s top scoring peptide.

This peptide is then removed from consideration, this process can be thought of as

a protein “claiming” ownership over this peptide. In the event that two proteins

which are identified as present in the same parameterisation of the model attempt

claim the same peptide, whichever protein is seen first gets the peptide. This routine

proceeds down the list of results. If a protein is never identified as present in any

parameterisation of the model, or if all of the peptides adjacent to this protein have

been previously claimed, the protein is assigned a score of 0.0.

Peptide-centric graph cuts This model re-formulates the protein inference

problem as a graph cut problem. The source is represented as present while the sink

is represented as absent. The edge weights between the nodes are decided according to

a parameterisation similar to that of Fido. There are three free parameters: α, β and

γ each of which have a similar interpretation as they do in Fido. The resulting LPs

are sent to CPLEX and solved as a max-flow problem which is used to find the graph

cut [60]. It should be noted since this model is solving a graph cut LP, the initial

results are a collection of binary indicator variables. Protein scores are assigned in

the same manner as the Minimum Set-cover LP. Results in this paper were obtained

using an in-house python implementation. A small example illustrating this model

is shown in Figure 2.6.

44

2.4 Semi-Supervised

In this section, a novel protein inference method Semi-supervised is presented,

and specified in detail.

Semi-supervised is an iterative method. Each iteration consists of two steps.

The first step involves using a model to generate protein-level confidence scores, which

are then used to create a set of positive and negative examples for training that ma-

chine learner. In the initial iteration, we use protein-level confidence scores produced

by an external model. In subsequent iterations, we use a machine learner trained on

the positive and negative examples. The set of positive examples are referred to as

the high-confidence target (HCT) set and are a subset of the target proteins. Since

they are known to be absent, the negative examples consist of the entire decoy set.

The machine learner is then trained on the features of these positive and negative

examples. Finally, the trained machine learner is used to produce protein-level con-

fidence scores on the entire dataset. These scores are then used as input to the next

iteration. This continues for a user specified number of iterations. Ideally, the scores

produced by the machine learner should become more accurate as the process iterates;

however, this may not be the case if the features used to represent the examples are

not discriminatory.

Semi-supervised learning is not a novel idea; however, as far as we are aware,

the application to protein inference in this manner is. Similar software, such as

Percolator [3], solves the same problem, but at the peptide level rather than the

protein level. The initial scores for Percolator come from the peptide search program

used, typically the cross-correlation score which represents how well the theoretical

spectrum matched the observed spectrum. These scores are then used to compute

the q-value for each peptide. The target peptides below a given q-value threshold are

45

considered the positive examples for training the machine learner, a support vector

machine [61] (SVM), while decoys are used as negative examples.

We use the protein-level confidence scores produced by the p-norm model as the

initial scores for computing the HCT set. Just as Percolator does, the HCT set is

created by computing q-values for all the target proteins and retaining those below

a user specified threshold. In practice, it was found that a threshold of 0.05 tends

to work well. We then use the HCT set as the positive examples for training a

Convolutional Neural Network (CNN). A CNN was chosen specifically due to it’s

ability to aggregate information in a spatial manner, allowing greater utilization of

information.

2.4.1 Protein Features

Creating feature vectors for individual proteins is one of the most important parts

of this process. This is not a trivial task, especially since a protein’s relation to the

peptides it may have emitted is typically realized as a bipartite graph. Since graphs

do not have an ordering on the adjacencies it becomes nearly impossible to come

up with an ordered vector of features that represent that particular protein. The

peptides are assumed to have scores associated with them, so it is possible to sort the

peptides adjacent to a particular protein, but not all proteins have the same number

of peptides adjacent to them. The feature vector could be padded with zeros or some

other symbol but it then becomes unclear how this will be rectified by a machine

learner. For instance, the network may learn to discriminate simply by counting the

non-zero entries in the feature vector). Ideally, we would like some set of one or more

functions, F0, F1, . . ., Fm that takes some unordered set V and maps it to a numeric

value such that for any ordering of V the value of Fj is the same.

A perhaps non-obvious choice for a such a function would be the p-norm function.

46

Let p be a real number, then the p-norm of a vector ~x = (x0, x1, . . . , xn) is defined as:

||~x||p =

(
n∑
i=0

|xi|p
)1/p

.

Since p-norms are equivalent to moments of a distribution, they provide a great

deal of information about the distribution of peptide scores. For instance, the 0-norm

counts the number of non-zero elements in the vector, while the ∞-norm gives the

maximum value of the vector. It is known that with enough moments of a distribution,

it is possible to recover the distribution itself [62]. Hence, from this perspective, p-

norms seem like a good candidate for F0. Since it has been shown that expectations

on the top k scores in a peptide score vector are also quite informative [63], it is

utilized as the second function in the set, F2.

In addition to utilizing the peptide score vector under various p-norms as features,

we also look at the peptide score vector at various τ thresholds. This modifies the

peptide score vector to only consist of peptides whose peptide-level confidence score is

≥ τ (note that by setting τ = 0 we also include the unmodified peptide score vector).

Since the overall performance of a method can depend heavily on how degenerate

peptides are handled, the partitioning scheme the model uses greatly effects the final

results of the method; however it is not trivial to decide which partitioning scheme

is the best for each particular dataset, or even a particular protein. It is almost

certainly the case that in order to correctly solve multiple different datasets, multiple

different partitioning schemes will be needed. One could try to train several machine

learners at once, each of which uses a different peptide partitioning scheme to solve

the inference problem; however, it is then unclear how to best intelligently aggregate

the results of these networks. An obvious alternative to this would be to modify

47

the feature vector in such a way that it can utilize multiple partitioning schemes at

once, and potentially even disregard schemes it deems uninformative. The answer

to this is to create a 2D feature matrix for each protein, where the rows represent

different partitioning schemes and the columns represent the p-norm of the protein’s

peptide score vector under that partitioning scheme. This feature matrix, along with

a visualization of the first two convolutions that will be on it, is pictured in Figure 2.7.

By using a CNN, it should learn the optimal subset of partitioning schemes for each

dataset.

The set of features for all proteins then forms a 3D cube with proteins on one axis,

p-norms on the second axis, and partitioning schemes the third axis.

2.4.1.1 Partitioning Schemes

Here, a handful of partitioning schemes used in the feature matrix for Semi-supervised

are presented. While this is not an exhaustive list of all possible partitioning schemes,

these are believed to be the most sensible and informative, from a protein inference

perspective. Each of these partitioning schemes can be viewed as different possi-

ble solutions to the peptide degeneracy problem. Hence, from this perspective it

makes sense that utilizing several different schemes in an intelligent manner would be

beneficial. Note that the “all peptides”, “vertex cover” and “only unique” partition-

ing schemes are static (that is, they do not change throughout inference) while the

“greedy” and “ProteinProphet-like” partitioning schemes are updated each iteration

according to the protein-level confidence scores computed in the previous iteration.

All peptides Under this partitioning scheme, proteins are assigned the peptide

score vector consisting of the scores associated with all the observed peptides adjacent

to this protein. This is the most permissive of all of the partitioning schemes and is

48

essentially equivalent to ignoring the peptide degeneracy problem altogether.

ProteinProphet-like The peptide score vector for this partitioning scheme is

based on a weighted assignment scheme exactly like the one used in ProteinProphet.

That is, peptide scores are partitioned among proteins in proportion to their protein-

level confidence score. The higher the score of protein Xi relative to other proteins

which may emitted this peptide, the larger proportion of the peptide score this pro-

tein will receive. This scheme is slightly less permissive. It attempts to solve the

degeneracy problem in a more intelligent manner, essentially allowing multiple dif-

ferent proteins to emit the same peptide (which is indeed possible); however, this is

predicated upon the model producing the scores being discriminative (which is not

necessarily true).

Vertex cover Assigns peptide score vector according to our in-house vertex-

cover algorithm. It takes all peptides with a score ≥ τ as present and attempts to

explain these peptides using as few proteins as possible. Hence, proteins which are

considered present are assigned their adjacent peptides and proteins which are absent

are assigned any of their remaining adjacent peptides. This scheme is less permissive

than the previous two in the respect that this scheme no longer entertains the idea

that multiple proteins may have emitted the same peptide.

Greedy The peptide score vector for this partitioning scheme is based on the

protein scores from the previous iteration. The highest ranking protein is assigned all

of it’s peptides. These peptides are then removed from the set of peptides which may

be assigned. Hence, the second highest ranking protein is assigned all of it’s peptides

which were not assigned to the previous protein. This proceeds down the ranks until

each protein is assigned it’s remaining unclaimed peptides. In the event the protein

49

in question has no peptides to claim, it receives a value of zero for this feature. This

is equally as permissive as the “vertex cover” scheme due to the fact that it also does

not entertain the idea that multiple proteins may have emitted the same peptide, but

the routine governing how the peptides are partitioned is drastically different.

Only Unique Under this partitioning scheme, protein are assigned the peptide

score vector consisting of the scores associated with all the unique observed peptides

adjacent to this protein. This is the least permissive of all of the partitioning schemes,

as it does not even entertain the idea of shared peptides.

2.4.2 Model

The model architecture is as follows: convolutional layer with 1x3 filter, 1x3 stride

and 12 output channels; convolutional layer with 1x2 filter, 1x2 stride with 24 output

channels; fully connected layer with 120 output nodes; fully connected layer with 84

input nodes and 1 output node. The output activation function is a sigmoid, while

all other activation functions are rectified linear units (ReLUs). ReLUs were chosen

due to the fact that they work quite well in practice [64]. Binary cross entropy (BCE)

is used as the loss function and was chosen as it tends to work well for classification.

For the convolutional layers, padding was turned off as it is unclear what effect this

would have on the results. Further, it is not clear what the interpretation of artificially

padding the feature would be. For instance, if zeros are chosen for the fill value in

the padding, it is unclear what this is indicative of.

The values of p that are used to generate the feature matrices in this implementation

are: 0, 1, 2, 3, 5, 10, 40, and inf. The values of τ that are used to generate the feature

matrices in this implementation are: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95,

0.99, 0.995, and 0.999. The last four τ values are intentionally close to one another

50

in value due to the fact that, for present target proteins, many of the peptide scores

tend to be in this range.

The optimal number of epochs is fit using k-fold cross-validation with 10% of the

training set held out for validation and 100 epochs being the maximum number epochs

possible. Specifically, the accuracy on the validation dataset is monitored throughout

training, and when the validation accuracy begins to drop, the training is stopped.

This process is then repeated k times with k different training and validation sets,

and the minimal number of epochs is taken. In this case, the minimum observed

number of epochs is taken rather than the average, as this helps prevent overfitting.

It should also be noted that, in general, the quality of training instances varies (e.g.

it is typically the case that not all decoys are created equal). A mini-batch size of 32

is used to train the network, while a mini-batch of size 16 is used when evaluating

the validation set. For training the network, an initial learning rate of 0.001 with the

Adam optimizer [65] is used.

A CNN was chosen because we believe the fact that the weights are shared adds

additional discriminatory power, as it is allowed to “see” the peptide score vector from

multiple views at once. It was also shown to perform better in general than a DNN

using similar parameters and the same features (in this case, the feature matrix was

simply flattened before being used as input to the network).

51

X0

X2

Y122

Y118

Y66

Y127

Y121

Y107

Y79

Y20

Y117

Y85

X1

X3

X17

Y74

X18

X15

X22

Y27

Y123

X19

Y17

Y1

(a)

X17

Y27

Y74

Y123

X22

Y128

Y38

Y70

Y76

Y88

X29

X21

X23

X24

X25

X28

X19

X18

Y18

Y43

Y39

X26

X27

Y3

Y46

Y113

Y101

X30

Y7

Y19

Y33

X31

Y67

Y116

Y132

Y93

Y125

Y60

Y126

Y48

Y72

Y36

Y103

X33

X32

(b)

Figure 2.2: Bipartite graph representation of a collection of target proteins found in
the PHPP dataset. An edge between nodes indicates that the peptide is found in the
protein sequence. Blue nodes signify present proteins or peptides. Red nodes signify
present or absent peptides. Turquoise nodes represent proteins which are presented
in another sepset. The dashed edges represent relations between peptides in this
sepset and proteins found in another sepset. These figures represent proteins found
in different sepsets of the dataset. (a) Proteins like X0 are classified as Semi-Simple.
We expect these proteins to push inference methods towards a more parsimonious
scheme for handling shared peptides. (b) Proteins like X26 and X27 are classified as
Hitchhiker proteins. We expect these proteins to push inference methods towards a
less parsimonious scheme for handling shared peptides.

52

X3

Y17

Y44

Y42

Y75

Y129

Y35

Y136

Y25

X4

X6

X5

X9

Y53

Y8

Y15

Y21

Y131X20

X11

X10 Y109

Y13

Y50

X15

Y123

Y97

Y23

Y95

Y79

Y99

X16

X17

X22

X0

X7

Y54X8

Y26

Y56

Y111

Y71

X14

Y55

Y31

X12

Y137X13

Y80

Y44

(a)

X34

Y2

X43

X44

Y63

Y49

Y58

Y10

Y119

Y110

Y62

Y83

Y52

Y41

Y68

Y77

Y124

Y45

Y90

Y16

Y112

Y100

Y73

Y0

Y65

Y115

Y30

Y114

X47

X49

X46

X48

X51

X52

X53

X45

X50

Y47

Y78

Y11

Y134

(b)

Figure 2.3: Node coloring in this figure is the same as in Figure 2.2. These figures
represent proteins found in different sepsets of the dataset. (a) Proteins like X14

are classified as Subset proteins. We expect these proteins to push inference methods
towards a less parsimonious scheme for handling peptide sharing. This is because both
X14 and X6 should be identified; however, because X6 has more pieces of evidence, a
parsimonious inference method would identify only X6 as present. (b) Proteins like
X43 are classified as a Driver. Proteins such as this should push inference methods
towards a more parsimonious scheme for handling shared peptides since it is only this
protein which should be identified.

53

Y92

Y96

Y84

Y135

Y105
X40

X41

X32

X33 Y91

Y94

Y87

Y120

Y133

Y22

Y12

Y103

Y102

Y5

X35

X36

X34

X39

X28

Y51

Y6

Y106

Y61

Y86

Y89

Y64

Y104

Y37

Y2

Y14

Y59

X42

X37

X43

X44

Y62

Y68

X38

Y29

Y4

Y130

Y9

Y69

Y34

Y24

Y57

Y82

Y108

Y98

Y40

Y32

Y81

Y32

Figure 2.4: Node coloring in this figure is the same as in Figure 2.2. Proteins in
this graph represent a different sepset of the dataset than all other figures. Proteins
like X33 are classified as Leftover. These proteins do not belong under any other
classification.

54

X1

Y1

Y2

X2

Y3

Y4

0.9

0.2

0.95

0.1

Proteins Peptides

Figure 2.5: An illustration of a situation on which a partial ordering on
protein ranks is not possible. X1 and X2 are two proteins with only unique
peptide evidence. peptides Y1, Y2, Y3 and Y4 were identified by peptide search and
assigned a peptide-level confidence score of 0.9, 0.2, 0.95 and 0.1, respectively. Though
both of these proteins have only unique peptide evidence, since s1 < s3 and S2 > s4
it is unclear based on this information alone which protein should receive a higher
rank.

Present

X1 X2

Y1 Y2 Y3

-log(β)

-log(α)

-log(1-γ)

-log((1-β) + (1.0 - sj))

Absent

Figure 2.6: An illustration of the Peptide-centric graph cuts model. The blue
protein, X2, and the blue peptide, Y3, are identified as present. The red protein, X1,
and the red peptides Y1, Y2 are identified as absent. The free parameters, α, β, and
γ, are fit using a golden search like parameter schedule. Edges between peptide and
protein nodes indicate that protein could have emitted that peptide. The dashed line
indicates the optimal cut. sj represents the peptide-level confidence score obtained
during the peptide search for the jth peptide. Blue nodes indicate present, red nodes
indicate absent.

55

PS1

PS2

PS3

PS4

PS5

p=0 p=1 p=2 p=3 p=5 p=10 p=40 p=inf

Figure 2.7: An illustration of the matrix of features for an individual pro-
tein. The blue and magenta blocks represent the convolutional filter before
and after a stride. The rows are indexed by the partitioning schemes and the ith
partitioning scheme is denoted by PSi, while the columns are indexed by the p-norms.
A convolution between these feature values and the filter is performed, producing a
single numeric value that will be evaluated the activation function and then fed for-
ward to the next layer. The filter is then slid over by the stride amount, which, in
this case, is the same size as the convolutional filter. Hence, the information in the
feature vector is essentially downsampled across the convolutional layers. Note that
although in practice there are columns for each value of τ paired with each value of
p-norms, we only use the p-norms for illustrative purposes.

56

CHAPTER 3 RESULTS

In this chapter, some results are presented, including results of several models ran

on the PTHPP and results from BIS on several models.

3.1 ProteomeTools Hitchhiking Peptide Standard

Fido, ProteinProphet, and several variations of the 1-peptide and 2-peptide models

were all ran on the PHPP dataset and evaluated against the gold standard target-

decoy database under the AUC and CE metrics. The results of these methods are

shown in Table 3.1.

Method AUC CE
Fido, p = 1 0.29 0.001292

ProteinProphet 0.0005357 6.25e-05
1-peptide (with sharing) 0.002976 6.25e-05

1-peptide (without sharing) 0.1431 5.487e-05
2-peptide (with sharing) 0.29 5.544e-05

2-peptide (without sharing) 0.1429 4.072e-05

Table 3.1: Table of results for various methods evaluated against the Pro-
teomeTools Hitchhiking Peptide Standard. All methods, where applicable,
were allowed to use the ground truth target-decoy database to fit any parameters.
To produce the metrics area under the receiver operator characteristics curve (AUC)
and calibration error (CE), the method results were also evaluated against the ground
truth target-decoy database. Each metric was evaluated at a threshold 0.05 and the
resulting values were rounded to 4 significant digits.

57

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Peptide scores

0.0%

10.0%

20.0%

30.0%

40.0%

Pe
rc

en
t o

f p
ep

tid
es

 w
ith

 th
is

sc
or

e

8.13%

0.81%
4.07%

1.63% 2.44%

7.32%

13.82% 13.01% 11.38%

37.40%

Histogram of present peptide scores

Figure 3.1: Histogram of present peptide scores as a percentage of all
present peptides. There are 123 unique peptides with scores ∈ [0.0, 1.0]. Scores in
the 0.0 bin are ∈ [0.0, 0.1), scores in the 0.1 bin are ∈ [0.1, 0.2) and so on. A majority
(83%) of the observed peptides received scores of 0.5 or greater. Actual percentage
values are displayed above each of the bars.

3.1.1 Analysis

While it is clear from Table 3.1 that none of the methods performed very well,

2-peptide (with sharing) and Fido, p = 1 achieved the best AUC over-

all, while the 2-peptide (without sharing) achieved the best CE overall.

In contrast, ProteinProphet received the worst AUC and Fido received the worst

CE. The fact that the models 2-peptide (with sharing) and the 2-peptide

(without sharing) did so well (relative to other models) in different categories

further underscores the fact that, in order to perform well on this particular dataset,

a method cannot simply disregard shared peptides, nor treat them in a parsimonious

manner: doing so results in poor performance in one or more metrics.

The fact that none of the methods were able to achieve perfect (or near perfect)

AUC and CE scores, even when using the ground truth target-decoy database, is

indicative of the complexity and difficulty of the dataset.

58

3.1.2 Peptide Coverage

An important metric to look at when evaluating the quality of results for a protein

or peptide standard dataset is to look at the quality of scores on the present peptides.

Ideally, the peptide-level confidence scores of the present peptides will be quite high

for all of these peptides. Of course, this will not always be the case due to things

like contamination and imperfections in the mass spectrometry process. As shown

in Figure 3.1, this dataset has decent coverage with more than 37% of the peptides

in the dataset having a peptide-level confidence score ≥ 0.9. Further, about 83% or

so of the peptides have a peptide-level confidence score of ≥ 0.5. Though there are

10 or so peptides that have a peptide-level confidence score of 0.0, this is somewhat

expected, as the mass spectrometry process is not perfect.

3.2 Best In Show

The results shown in Table 3.2. All presented results were produced on a machine

with two Epyc 7351 processors with 32 threads each (64 threads in total) and 256GB

of ram. Where applicable, version 1.5.4 of SciPy [44], version 1.19.4 of NumPy [45],

and lmxl [46] version 4.6.1 were used.

Semi-supervised and the p-norm model tie for first place overall; however,

Semi-supervised outperforms the p-norm model in terms of discrimination (0.0),

taking first place while the p-norm model takes second place in discrimination. The

p-norm model does slightly better in terms of calibration, coming in 4th place, while

Semi-supervised takes 5th in calibration. The fact that they tie is likely indica-

tive of some of the datasets not being difficult enough to properly utilize the different

partitioning schemes for Semi-supervised. It should also be noted that with an

NRS of 0.07692, Semi-supervised and p-norm significantly outperform the next

59

Methods Cal. Disc. NRS R
semi_supervised.py 4.0 0.0 0.07692 15m 14.988s

p_norm_model.py parallel 3.0 1.0 0.07692 1m 2.0731s
n_peptide.py 2 –consider-shared –expectation 5.0 2.0 0.1346 22.5422s

peptide_centric_em_graphcuts.py 0.5 7.0 0.1442 11m 19.1174s
n_peptide.py 2 –consider-shared –n-peptide 6.0 6.0 0.2308 22.5503s

fido_golden_search.py 1.0 13.0 5.0 0.3462 30m 51.2819s
n_peptide.py 2 –classic –expectation 2.0 17.0 0.3654 22.6914s

epifany.sh 11.0 9.0 0.3846 14m 13.5538s
measure_model.py 9.0 12.0 0.4038 27.7418s

fido_golden_search.py inf 17.0 4.0 0.4038 38m 37.0536s
p_norm_dynamic_punishment.py true 14.0 8.0 0.4231 12m 45.0867s

n_peptide.py 2 –classic –n-peptide 0.5 22.5 0.4423 22.5596s
n_peptide.py 1 –consider-shared –expectation 15.5 10.5 0.5 22.4593s
n_peptide.py 1 –consider-shared –n-peptide 15.5 10.5 0.5 22.575s

n_peptide.py 1 –classic –expectation 7.5 19.5 0.5192 22.6837s
n_peptide.py 1 –classic –n-peptide 7.5 19.5 0.5192 22.6501s

new_model_em_random_starts.py 3 1.0 25.0 3.0 0.5385 8m 46.6753s
p_norm_iterative.py 12.0 18.0 0.5769 17m 36.5389s

min_set_cover.py 0.001 IncludeAllPeptidesAboveTau 10.0 24.0 0.6538 9m 51.8765s
protein_prophet_simplified.py 0.001 22.0 15.0 0.7115 14m 14.4738s

fido_em_random_starts.py 5 inf 21.0 16.0 0.7115 15m 36.9453s
fido_em_random_starts.py 6 1.0 24.0 13.0 0.7115 11m 19.7434s

new_model_em_random_starts.py 3 inf 23.0 14.0 0.7115 9m 52.1816s
min_set_cover.py 0.01 ConstrainSum 18.0 21.0 0.75 6m 25.8321s

protein_prophet_wrapper_from_evaluator.sh 20.0 22.5 0.8173 1m 18.2413s
protein_lp.py 19.0 25.0 0.8462 2m 8.7807s

Table 3.2: Table of results produced by the Best In Show protein inference
evaluation engine. Presented results are obtained by running each method with
ten different obfuscated target-decoy databases, evaluating each of them under the
gold standard target-decoy database and averaging their ranks. The value in the
Method column represents the command issued to run the inference method. BIS
has several metrics it uses to evaluate protein inference performance, each of which
measures either how well calibrated the method is or how well it is discriminating
between TPs and FPs. The value in the Cal. column represents the overall
calibration rank this method received. The value in the Disc. column represents
the overall discrimination rank this method received. The value in the NRS column
represents the value of the method’s rank sum (e.g. calibration rank + discrimination
rank), normalized by the size of the table. The value in the R column represents the
total time this method took to perform inference on all data sets.

best model, N-peptide (expectation, with shared peptides) model

which has an NRS of 0.1346. Hence, Semi-supervised and p-norm perform ≈ 1.8

times better than N-peptide (expectation, with shared peptides).

While the current parameter re-estimation scheme for the EMmodels does not seem

to optimize the parameters to performant values, a better parameter re-estimation

scheme could certainly be devised that should work better. An alternative optimiza-

60

tion method, such as golden search could be used; however, a naive version of this may

be prohibitively computationally expensive for the GCM as it has six free parameters

and golden search scales exponentially with the number of variables to be fit.

There are several models present in the results which are slight variations on the

1-peptide model, all of which are ran via the n_peptide.py script. The canon-

ical 1-peptide model identifies all proteins with at least 1 unique piece of peptide

evidence as present, and all other proteins as absent. This model is represented by:

n_peptide.py 1 -classic -n-peptide. The 1 indicates how many pieces

of peptide evidence should be considered, the -classic flag indicates that shared

peptides should not be considered, while the -n-peptide flag indicates that the

peptide-level confidence score of the N th highest scoring peptide should be assigned

to the protein if it is identified as present. The -consider-shared flag is mutually

exclusive to the -classic flag and indicates that shared peptide evidence should

be considered. The -expectation flag is mutually exclusive to the -n-peptide

flag and indicates the protein-level confidence score assigned by this model will be

the mean of the top the top k peptide scores.

3.3 Semi-Supervised Lysate Dataset Performance

In this section, the performance of Semi-supervised on several real world

datasets, against several other models, is presented. All of these datasets were de-

rived from a lysate. This means the the entire cell or organism was digested and

ran through the mass spectrometer. Since the entire proteome of the organism is

not likely to be expressed at the same time, it is likely the case that at least some

proteins under consideration are absent. Each dataset was searched against a target-

decoy database consisting of proteome of the species as the target set with the decoy

61

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
q-value

0

1000

2000

3000

4000

5000

Ta
rg

et
s f

ou
nd

1-peptide (with shared)
semi-supervised
fido (p=1)
1-pepitde (without shared)
|1-pep (shared) & semi-supervised|

Figure 3.2: Plot of q-value threshold vs number of targets found for var-
ious models on a C. elegans dataset. The solid green line is the intersection
of the target sets found by Semi-supervised and 1-peptide (with shared.
Although their performance appears somewhat similar, the target sets identified at
various thresholds are quite different.

set consisting of the reversed target sequences. The receiver operator characteristic

(ROC) curves are shown in Figures 3.2, 3.3, 3.4, 3.5, and 3.6.

C. elegans The C. elegans dataset [3] is a dataset derived from the lysate of

a C. elegans. The data was searched against the target database included with the

data, with the decoy database being composed of the reversed target sequences.

S. cerevisiae The S. cerevisiae dataset [3] is a dataset derived from the lysate

of a S. cerevisiae. The data was searched against the target database included with

the data, with the decoy database being composed of the reversed target sequences.

62

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
q-value

0

500

1000

1500

2000

2500

3000

3500
Ta

rg
et

s f
ou

nd

1-peptide (with shared)
semi-supervised
fido (p=1)
1-pepitde (without shared)
|1-pep (shared) & semi-supervised|

Figure 3.3: Plot of q-value threshold vs number of targets found for various
models on a S. cerevisiae dataset. The solid green line is the intersection of
the target sets found by Semi-supervised and 1-peptide (with shared).
Although their performance appears somewhat similar, the target sets identified at
various thresholds are quite different.

HumanMD The HumanMD dataset [55] is a dataset derived from the lysate of

a dataset derived from Human Medulloblastoma daoy cells. The data was searched

against the provided target-decoy database. The target set consisted of the longest

transcription of the human proteome, retrieved from [66].

HumanMD (Trembl) The HumanMD (Trembl) dataset contains the same

data as the HumanMD; however, for this dataset, the Trembl [67] protein database

was used as the target set, with the reversed target sequences serving as the decoys.

63

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
q-value

0

200

400

600

800

1000

1200

Ta
rg

et
s f

ou
nd

1-peptide (with shared)
semi-supervised
fido (p=1)
1-pepitde (without shared)
|1-pep (shared) & semi-supervised|

Figure 3.4: Plot of q-value threshold vs number of targets found for various
models on a dataset derived from a human medulloblastoma tumor. The
solid green line is the intersection of the target sets found by the Semi-supervised
model and the 1-peptide (with shared) model. Although their performance
appears somewhat similar, the target sets identified at various thresholds are quite
different.

HumanEKC The HumanEKC dataset [68] is a dataset derived from the lysate

of a human embryonic kidney cell T293. This data was searched against a target-

decoy database with the Trembl protein database composing the target set and the

reversed target sequences composing the decoy set.

Though Semi-supervised and 1-peptide (with shared) appear to per-

form similarly, the receiver operator characteristic curve composing their intersection

shows that the target set they identify is different, especially at extremely low q-

values. Further, Fido and 1-peptide (without shared) perform much more

conservatively. Note that Fido is not pictured in Figure 3.5 because it did not produce

64

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
q-value

0

2000

4000

6000

8000

10000

12000

Ta
rg

et
s f

ou
nd

1-peptide (with shared)
semi-supervised
1-pepitde (without shared)
|1-pep (shared) & semi-supervised|

Figure 3.5: Plot of q-value threshold vs number of targets found for various
models on a dataset derived from a human medulloblastoma tumor. The
solid green line is the intersection of the target sets found by Semi-supervised
and 1-peptide (with shared). Although their performance appears somewhat
similar, the target sets identified at various thresholds are quite different. Note: Fido
is not pictured as was not able to find reasonable parameter values.

an output due to unreasonable parameter values.

65

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
q-value

0

10000

20000

30000

40000

Ta
rg

et
s f

ou
nd

1-peptide (with shared)
semi-supervised
fido (p=1)
1-pepitde (without shared)
|1-pep (shared) & semi-supervised|

Figure 3.6: Plot of q-value threshold vs number of targets found for various
models on a dataset derived from a human kidney cell. The solid green
line is the intersection of the target sets found by the Semi-supervised model
and the 1-peptide (with shared) model. Although their performance appears
somewhat similar, the target sets identified at various thresholds are quite different.

66

CHAPTER 4 DISCUSSION

Protein inference is an important but difficult problem. This is largely due the fact

that current evaluation metrics rely on an imperfect target-decoy database. This im-

perfection results from the fact that the current evaluation metrics assume the target

set of proteins are all present in the sample, when in fact they are typically a mix of

present and absent proteins. Moreover, there are many ways of measuring discrimina-

tion and calibration and metrics like AUC and CE do not adequately capture all the

quantitative properties we believe a good inference method should have. Moreover,

AUC and CE can easily be cheated by assigning target proteins a score of 1.0 and

decoy proteins a score of 0.0.

One way around these often imperfect target-decoy databases is to use a protein

standard dataset. Since these samples are carefully prepared to contain exactly the

proteins specified in the target set, we can be significantly more confident in the

quality of the target-decoy database.

4.1 ProteomeTools Hitchhiking Peptide Standard

While all of the currently existing protein standards are important for validating

and sanity checking models, not all such datasets have so many shared peptides nor

chances for hitchhiking to occur as they would in lysates of higher order eukaryotes.

The PHPP aims to address this problem by being intentionally complex by balancing

67

shared peptides and chances for hitchhiking. Further, the target protein set was

chosen in such a way that a method cannot use parsimony or disregard shared peptides

altogether (e.g. this dataset is not setup to always penalize nor reward hitchhiking).

In this way, this dataset incentives algorithms to solve the set-cover like generalization

that exists in proteomics at the protein level. It is clear from the results that the

PHPP has sufficient complexity to trick even the current, best inference methods

under current metrics.

4.2 Best In Show

Though the results for BIS are quite robust, there are of course shortcomings to this

methodology. How well a model appears to perform overall is inherently dependent

upon the performance of the other models it is competing against, hence, a user could

intentionally make their model look good by including a lot of poorly performing

methods; however, such a model is not likely to stand up to the scrutiny of the

community. Further, by evaluating the methods in this manner, it is nonparametric.

Hence, there is no chance of a circular ’rock-paper-scissors’ situation happening (e.g.

we will always be able to impose a total ordering in this manner).

There is also an interesting phenomena that occurs when a handful of similar meth-

ods are evaluated together: the qualitatively similar models appear to perform worse.

This is likely due to the increased number of ties that occur, thereby overinflating the

rank sum of the qualitatively similar methods.

While Epifany loses to Fido in terms of discrimination, this not due to the fact

that Epifany performs worse in terms of AUC. Rather, it is a result of Epifany losing

out to Fido in other discrimination metrics. This indicates that AUC alone is not a

robust representative of how well a model discriminates in general.

68

Even though we go to significant lengths to disallow protein inference methods

from gaining access to any useful information about the ground truth data, there is

a possibility that a user could cleverly run a method many times in an attempt to

effectively scam the obfuscated target-decoy database and recover the set of ground-

truth targets. While this is certainly a possibility, it would be prohibitively time

consuming for all but the smallest datasets.

Though the notion of using an obfuscated target-decoy database for inference eval-

uation is cheap, effective, and seemingly robust, an alternative methodology to this

would be to augment the target-decoy databases with different types of proteins (like

those detailed in 2.1) before performing the peptide search. In this way, ground truth

datasets could be augmented with absent target proteins to more closely emulate a

real-world biology experiment. To do this locally in an online manner would be a bit

tricky as the user would need access to the RAW files, and the peptide-search would

have to be performed on the fly; however, with disk space becoming increasingly

cheap, processors becoming more powerful, and peptide-search and post-processing

algorithms becoming increasingly efficient, doing this is not out of the question.

Another interesting metric that could be incorporated into BIS would be to examine

how the method performs with respect to different levels of obfuscation. For example,

two different obfuscated target-decoy databases could be constructed: one with 20%

of the decoys relabeled and one with 40% of the decoys relabeled.

4.3 Semi-supervised

The fact that Semi-supervised performs better in terms of discrimination than

the p-norm model overall indicates that different partitioning schemes are beneficial

for properly solving different datasets in terms of discrimination. While this method

69

only utilizes a small handful of partitioning methods, the model can easily be extended

to include any novel partitioning schemes. The tie for first place overall between p-

norm and Semi-supervised could be due, at least in part, to Semi-supervised

overfitting. This overfitting could likely be solved by reducing the number of epochs

used during training, though the best way to do this is still unclear. Further, it should

also be possible to use software such as qvality to produce well-calibrated scores

for Semi-supervised, thereby causing giving it a significant win over p-norm in

terms of both discrimination and calibration.

The design of the features for Semi-supervised makes them easily extensible:

new features could either be appended to the end of the feature matrix, or they could

occupy a new axis in the features. For instance, additional peptide level information

such as the mass difference between the observed and theoretical peptides, the charge

state of the spectra in the PSMs, hydrophobicity information, detectability of the

peptides [6], etc. could be easily incorporated.

Another feature that could be easily incorporated is rank based information about

other proteins. This information is not currently utilized in any meaningful manner.

For example, information about the current protein-level confidence score, as well as

the rank of the protein in question could be useful, as this protein would then have an

idea of how good it is overall. Further, information about the protein-level confidence

score and rank of the next few proteins that are better and worse than this protein

would also be beneficial, as this would signify how much better or worse this protein is

relative to other proteins. An alternative way to incorporate this information would

be have two networks, one that uses the feature tensor from the previous iteration,

and one that uses the feature tensor for the current iteration. These results could

then be reconciled by a final node.

Note that while this method currently uses a CNN as the machine learner, this

70

could also be done with Graph Neural networks [69] (GNNs), a subset of Geometric

deep learning models [70]. GNNS attempt to perform learning on data that can be

represented as a graph, while Geometric deep learning attempts to perform learn-

ing on data that is in any non-euclidean space (something that is typically required

for ANNs). Further, when using a GNN, p-norms are not required to transform the

graphical data into features vectors, as a GNN us able to learn the graph structure

via message passing between neighboring vertices. Another avenue of improvement

could be to use the PEPs calculated by the software qvality (or the q-values com-

puted when creating the HCT set) to weight the training examples when training the

machine learner.

A perhaps more robust alternative to using one machine learner is to use an ensem-

ble of machine learners. It is not clear what kind of machine learners would be best,

nor it is clear what the best way to reconcile the results from the different learners

would be; however, ensemble machine learners have seen good success in the past [71].

Further, model selection could be performed by some sort of “meta-learner” to select

beneficial machine learners while ignoring detrimental ones. Such learners could be

entirely different classifiers (e.g. there could be an SVM, a neural network, and a

CNN). A perhaps more clever alternative to this would be to use several CNNS, each

of which utilize different norm spaces (e.g. different sets of p-norms).

4.3.1 Lysate Dataset Proteins

In this section, several proteins which were found by the 1-peptide (with

shared) model at a low q-value, but not by the Semi-supervised model are

examined. One example of such a protein from each of the lysate datasets is presented.

Here, several target proteins identified at a very low q-value by 1-peptide (with

shared peptides), but not Semi-supervised are examined. The blue nodes

71

X1

X0

Y12 0.104

Y11 0.109

Y10 0.0236

Y9 0.098

Y8 0.072

Y7 0.205

Y6 0.0367

Y5 0.0474

Y4 0.983

Y3 0.124

Y2 1.0

Y1 1.0

Y14 0.031

Y13 0.844

Y0 0.315

(a)

X0

X1

Y8 1.0

Y7 0.999

Y6 1.0

Y5 0.212

Y4 1.0

Y3 0.0335

Y2 0.00542

Y1 0.484

Y0 0.134

(b)

X2

X0

Y6 0.976

Y5 1.0

Y4 0.0424

Y3 0.0988

Y2 1.0

Y1 1.0

Y0 1.0

X1

(c)

Figure 4.1: Bipartite representation of the subgraphs of three different
target proteins that are likely absent. The proteins which are likely absent
were identified at a q-value of 0.0 (with the exception of protein ZK563.7, which
was identified at a q-value of 0.2) by 1-peptide (with shared peptides)
but not by Semi-supervised. Proteins are denoted as Xi, while peptides are
denoted as Yj. An edge between a protein Xi and a peptide Yj indicates that protein
Xi could have emitted peptide Yj. The numbers next to the peptides indicate
their peptide-level confidence scores that were produced by using Percolator to
post-process a peptide search conducted with Comet. Blue nodes represent present
proteins and peptides while red nodes indicate absent proteins and peptides. (a)
Subgraph representing proteins ZK563.7 (X1) and F08C6.6 (X0) from the C. elegans
lysate dataset. (b) Subgraph representing proteins YGR143W (X0) and YGR159W
(X1) from the S. cerevisiae lysate dataset. (c) Subgraph representing proteins
ENSP00000346209 (X2), ENSP00000346037 (X1), and one other protein which is
also in the same subgraph from the HumanMD dataset.

represent proteins and peptides believed to be present, while the red nodes represent

proteins and peptides which are believed to be absent. In Figure 4.1a, proteins X1

and X0 share a few pieces of peptide evidence, Y7 and Y13. Notice that Y13 is the high-

est scoring peptide adjacent to X1. Similarly, in Figure 4.1b, the shared peptide, Y8,

is the highest scoring piece of peptide evidence for X0. This is also the case for Fig-

ures 4.1c, 4.2a, and 4.2b. Moreover, each of the proteins which are likely present have

at least one piece of unique high scoring evidence (and most have several). Hence, it

72

X5

Y7

Y8

Y0

Y4

Y6

Y3

Y2

X6

X7

Y15

Y12

Y10

Y11

X14

X15

X18

X17

X16

Y9

Y5

X8

Y14

X13

Y1

X0

X1

X4

X19

X22

Y16

0.0

0.58

0.0

0.363

0.0

0.0

0.0296

0.232

1.0

0.503

0.0

0.343

0.0271

0.998

0.812

0.997

Y13

X2

X3

0.0

(a)

X4

X0

Y4 0.0848

Y3 0.437

Y2 0.16

Y1 0.0786

Y0 1.0

X2

X1

X3

Y5 0.146

(b)

Figure 4.2: Bipartite representation of subgraphs of two differ-
ent proteins which are likely absent. Notation, node coloring, and
edges in this figure have the same the meaning as in Figure 4.1. (a) Sub-
graph representing proteins tr|A0A7I2YQP1|A0A7I2YQP1_HUMAN (X13),
tr|A0A7I2YQV4|A0A7I2YQV4_HUMAN (X14), and several other proteins
which are also in the same subgraph from the HumanMD dataset searched
against the Trembl protein database. Proteins which had identical observed
peptide sets are represented by one protein (in bold): {X1, X9}, {X6, X11},
{X8, X10, X12}, and {X16, X20, X21, X23}. (b) Subgraph representing proteins
tr|X5DP03|X5DP03_HUMAN (X4), tr|X5D7P8|X5D7P8_HUMAN (X3), and
several other proteins which are also in the same subgraph from the HumanEKC
dataset, searched against the human proteome in the Trembl protein database.

73

is much more likely the case that the proteins with unique, high scoring evidence are

actually present, while the other proteins are absent.

74

CHAPTER 5 SOURCE CODE AVAILABILITY

Source code for the inference engine presented in this manuscript can be found

here.

https://figshare.com/articles/software/protein-and-species-inference_zip/16840651

75

BIBLIOGRAPHY

[1] Y. F. Li and P. Radivojac. Computational approaches to protein inference in

shotgun proteomics. BMC bioinformatics, 13(Suppl 16):S4, 2012.

[2] A. Doerr. Dia mass spectrometry. Nature Methods, 12(1):35–35, 2015.

[3] L. Käll, J. Canterbury, J. Weston, W. S. Noble, and M. J. MacCoss. A semi-

supervised machine learning technique for peptide identification from shotgun

proteomics datasets. Nature Methods, 4:923–25, 2007.

[4] A. Keller, A. I. Nesvizhskii, E. Kolker, and R. Aebersold. Empirical statistical

model to estimate the accuracy of peptide identification made by MS/MS and

database search. Analytical Chemistry, 74:5383–5392, 2002.

[5] O. Serang, M. J. MacCoss, and W. S. Noble. Efficient marginalization to compute

protein posterior probabilities from shotgun mass spectrometry data. Journal of

Proteome Research, 9(10):5346–5357, 2010.

[6] H. Tang, R. J. Arnold, P. Alves, Z. Xun, D. E. Clemmer, M. V. Novotny, J. P.

Reilly, and P. Radivojac. A computational approach toward label-free protein

quantification using predicted peptide detectability. Bioinformatics, 22:e481–

e488, 2006.

76

[7] Y. F. Li, R. J. Arnold, H. Tang, and P. Radivojac. The importance of peptide

detectability for protein identification, quantification, and experiment design in

ms/ms proteomics. Journal of proteome research, 9(12):6288–6297, 2010.

[8] A. D. Catherman, O. S. Skinner, and N. L. Kelleher. Top down proteomics:

Facts and perspectives. Biochemical and Biophysical Research Communications,

445(4):683–693, 2014. Advances in OMICs-based disciplines.

[9] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practi-

cal and powerful approach to multiple testing. Journal of the Royal Statistical

Society B, 57:289–300, 1995.

[10] J. D. Storey. The positive false discovery rate: A bayesian interpretation and

the q-value. The Annals of Statistics, 31(6):2013–2035, 2003.

[11] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM

(JACM), 45(4):634–652, 1998.

[12] S. Houel, R. Abernathy, K. Renganathan, K. Meyer-Arendt, N. G. Ahn, and

W. M. Old. Quantifying the impact of chimera MS/MS spectra on peptide

identification in large-scale proteomics studies. Journal of Proteome Research,

9(8):4152–4160, 2010.

[13] A. I. Nesvizhskii, A. Keller, E. Kolker, and R. Aebersold. A statistical model

for identifying proteins by tandem mass spectrometry. Analytical Chemistry,

75:4646–4658, 2003.

[14] A. Keller, J. Eng, N. Zhang, X. Li, and R. Aebersold. A uniform proteomics

ms/ms analysis platform utilizing open xml file formats. Molecular systems bi-

ology, 1(1):2005–0017, 2005.

77

[15] T. L. Thompson and R. M. Peart. Useful search techniques to save research

time. Transactions of the ASAE, 11(4):461–0467, 1968.

[16] O. Serang. The probabilistic convolution tree: Efficient exact Bayesian inference

for faster LC-MS/MS protein inference. PloS one, 9(3):e91507, 2014.

[17] J. Pfeuffer, T. Sachsenberg, T.M.H. jeerd T. Dijkstra, O. Serang, K. Reinert,

and O. Kohlbacher. Epifany: A method for efficient high-confidence protein

inference. Journal of proteome research, 19(3):1060–1072, 2020.

[18] H. L. Röst, T. Sachsenberg, S. Aiche, C. Bielow, H. Weisser, F. Aicheler, S. An-

dreotti, H. Ehrlich, P. Gutenbrunner, E. Kenar, et al. Openms: a flexible open-

source software platform for mass spectrometry data analysis. Nature methods,

13(9):741–748, 2016.

[19] T. Huang and Zengyou Z. He. A linear programming model for protein inference

problem in shotgun proteomics. Bioinformatics, 28(22):2956–2962, 09 2012.

[20] V. Dancik, T.A. Addona, K.R. Clauser, J.E. Vath, and P.A. Pevzner. De novo

peptide sequencing via tandem mass spectrometry. Journal of Computational

Biology, 6(3-4):327–342, 1999.

[21] S. Kim, N. Gupta, and P. A. Pevzner. Spectral probabilities and generating

functions of tandem mass spectra: a strike against decoy databases. Journal of

Proteome Research, 7:3354–3363, 2008.

[22] E. R. Schroeter, C. J. DeHart, T.P. Cleland, W. Zheng, P.M. Thomas, Neil L

N. L. Kelleher, Marshall Bern, and Mary H Schweitzer. Expansion for the brachy-

lophosaurus canadensis collagen i sequence and additional evidence of the preser-

vation of cretaceous protein. Journal of proteome research, 16(2):920–932, 2017.

78

[23] W. S. Noble. Mass spectrometrists should search only for peptides they care

about. Nature methods, 12(7):605–608, 2015.

[24] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.

IEEE transactions on evolutionary computation, 1(1):67–82, 1997.

[25] Andrew P. Bradley. The use of the area under the roc curve in the evaluation of

machine learning algorithms. Pattern Recognition, 30(7):1145–1159, 1997.

[26] A. Niculescu-Mizil and R. Caruana. Predicting good probabilities with super-

vised learning. In Proceedings of the 22nd international conference on Machine

learning, pages 625–632, 2005.

[27] M. Wilhelm, J. Schlegl, H. Hahne, A. M. Gholami, M. Lieberenz, M. M. Savitski,

E. Ziegler, L. Butzmann, S. Gessulat, H. Marx, et al. Mass-spectrometry-based

draft of the human proteome. Nature, 509(7502):582–587, 2014.

[28] J. D. Storey. A direct approach to false discovery rates. Journal of the Royal

Statistical Society, 64:479–498, 2002.

[29] L. Käll, J. D. Storey, and W. S. Noble. qvality: Nonparametric estimation of

q values and posterior error probabilities. Bioinformatics, 25(7):964–966, 2009.

[30] J. E. Elias and S. P. Gygi. Target-decoy search strategy for mass spectrometry-

based proteomics. Proteome bioinformatics, pages 55–71, 2010.

[31] J. E. Elias and S. P. Gygi. Target-decoy search strategy for increased confidence

in large-scale protein identifications by mass spectrometry. Nature Methods,

4(3):207–214, 2007.

79

[32] J. Klimek, J. S. Eddes, L. Hohmann, J. Jackson, A. Peterson, S. Letarte, P. R.

Gafken, J. E. Katz, P. Mallick, H. Lee, A. Schmidt, R. Ossola, J. K. Eng, R. Ae-

bersold, and D. B. Martin. The standard protein mix database: a diverse data

set to assist in the production of improved peptide and protein identification

software tools. Journal of Proteome Research, 7(1):96–103, 2008.

[33] B. Zhang, M. C. Chambers, and D. L. Tabb. Proteomic parsimony through bi-

partite graph analysis improves accuracy and transparency. Journal of Proteome

Research, 6(9):3549–3557, 2007.

[34] J. Lee, H. Choi, C. M. Colangelo, D. Davis, M.R. Hoopmann, L. Käll, H. Lam,

S.H. Payne, Y. Perez-Riverol, M. The, et al. Abrf proteome informatics research

group (iprg) 2016 study: Inferring proteoforms from bottom-up proteomics data.

Journal of biomolecular techniques: JBT, 29(2):39, 2018.

[35] D. P. Zolg, M. Wilhelm, K. Schnatbaum, J. Zerweck, T. Knaute, B. Delanghe,

D. J. Bailey, S. Gessulat, H. Ehrlich, M. Weininger Maximilian, et al. Building

proteometools based on a complete synthetic human proteome. Nature methods,

14(3):259–262, 2017.

[36] H. Wenschuh, R. Volkmer-Engert, M. Schmidt, M. Schulz, J. Schneider-

Mergener, and U. Reineke. Coherent membrane supports for parallel microsyn-

thesis and screening of bioactive peptides. Peptide Science, 55(3):188–206, 2000.

[37] H. Hahne, F. Pachl, B. Ruprecht, S. K. Maier, S. Klaeger, D. Helm, G. Médard,

M. Wilm, S. Lemeer, and B. Kuster. Dmso enhances electrospray response,

boosting sensitivity of proteomic experiments. Nature methods, 10(10):989–991,

2013.

80

[38] Eric W Deutsch. Mass spectrometer output file format mzml. In Proteome

bioinformatics, pages 319–331. Springer, 2010.

[39] N. Hulstaert, J. Shofstahl, T. Sachsenberg, M. Walzer, H. Barsnes, L. Martens,

and Y. Perez-Riverol. Thermorawfileparser: modular, scalable, and cross-

platform raw file conversion. Journal of proteome research, 19(1):537–542, 2019.

[40] S. A. Leonard, T. G. Littlejohn, and A. D. Baxevanis. Common file formats.

Current protocols in bioinformatics, 16(1):A–1B, 2006.

[41] J. K. Eng, T. A. Jahan, and M. R. Hoopman. Comet: An open-source ms/ms

sequence database search tool. PROTEOMICS, 13:22–24, 2013.

[42] C. Y. Park, A. A. Klammer, L. Käll, M. P. MacCoss, and W. S. Noble. Rapid and

accurate peptide identification from tandem mass spectra. Journal of Proteome

Research, 7(7):3022–3027, 2008.

[43] Indra M Chakravarty, JD Roy, and Radha Govind Laha. Handbook of methods

of applied statistics. pages 392–394, 1967.

[44] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-

napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt,

M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones,

R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas,

D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C.R. Harris,

A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0

Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in

Python. Nature Methods, 17:261–272, 2020.

81

[45] C.R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,

D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Pi-

cus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane Allan, J. Fernández

del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy,

W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant. Array programming

with NumPy. Nature, 585:357–362, 2020.

[46] S. Behnel, M. Faassen, and I. Bicking. lxml: Xml and html with python, 2005.

[47] U. Kaempf. The binomial test: a simple tool to identify process problems. IEEE

Transactions on Semiconductor Manufacturing, 8(2):160–166, 1995.

[48] H. B. Mann and D. R. Whitney. On a test of whether one of two random

variables is stochastically larger than the other. The annals of mathematical

statistics, pages 50–60, 1947.

[49] E. Parzen. On estimation of a probability density function and mode. The annals

of mathematical statistics, 33(3):1065–1076, 1962.

[50] S. Kullback and R. A. Leibler. On information and sufficiency. Annals of Math-

ematical Statistics, 22:49–86, 1951.

[51] B. Efron, R. Tibshirani, J.D. Storey, and V. Tusher. Empirical Bayes analysis

of a microarray experiment. Journal of the American Statistical Association,

96(456):1151–1161, 2001.

[52] M. M. Savitski, M. Wilhelm, H. Hahne, B. Kuster, and M. Bantscheff. A scalable

approach for protein false discovery rate estimation in large proteomic data sets.

Molecular & Cellular Proteomics, 14(9):2394–2404, 2015.

82

[53] Dattatreya Mellacheruvu, Zachary Wright, Amber L Couzens, Jean-Philippe

Lambert, Nicole A St-Denis, Tuo Li, Yana V Miteva, Simon Hauri, Mihaela E

Sardiu, Teck Yew Low, et al. The crapome: a contaminant repository for affinity

purification–mass spectrometry data. Nature methods, 10(8):730–736, 2013.

[54] P. Jones, R. G. Côté, L. Martens, A. F. Quinn, C. F. Taylor, W. Derache,

H. Hermjakob, and R. Apweiler. Pride: a public repository of protein and

peptide identifications for the proteomics community. Nucleic acids research,

34(suppl_1):D659–D663, 2006.

[55] S.R. Ramakrishnan, C. Vogel, J.T. Prince, R. Wang, Z. Li, L.O. Penalva,

M. Myers, E.M. Marcotte, and D.P. Miranker. Integrating shotgun proteomics

and mrna expression data to improve protein identification. Bioinformatics,

25(11):1397–1403, 2009.

[56] M .Vaudel, J. M. Burkhart, D. Breiter, R. P. Zahedi, A. Sickmann, and

L. Martens. A complex standard for protein identification, designed by evo-

lution. Journal of proteome research, 11(10):5065–5071, 2012.

[57] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society.

Series B (Methodological), 39:1–22, 1977.

[58] J. Pearl. Probabilistic Reasoning in Intelligent Systems : Networks of Plausible

Inference. Morgan Kaufmann, 1998.

[59] IBM ILOG. Ibm ilog cplex.

[60] L.R. Ford Jr. and D.R. Fulkerson. Maximal flow through a network. Canadian

Journal of Mathematics, 8:399–404, 1956.

83

[61] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal

margin classifiers. In D. Haussler, editor, 5th Annual ACM Workshop on COLT,

pages 144–152, Pittsburgh, PA, 1992. ACM Press.

[62] J. John, I. Angelov, A. A. Öncül, and D. Thévenin. Techniques for the re-

construction of a distribution from a finite number of its moments. Chemical

Engineering Science, 62(11):2890–2904, 2007.

[63] K. Lucke, J. Pennington, P. Kreitzberg, B. Kuster, M. Wilhelm, and O. Serang.

Best in show: ensemble evaluation of protein inference engines. bioarvix, 2021.

[64] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In

Geoffrey Gordon, David Dunson, and Miroslav Dudík, editors, Proceedings of

the Fourteenth International Conference on Artificial Intelligence and Statistics,

volume 15 of Proceedings of Machine Learning Research, pages 315–323, Fort

Lauderdale, FL, USA, 11–13 Apr 2011. PMLR.

[65] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[66] K. L. Howe, P. Achuthan, J. Allen, J. Allen, J. Alvarez-Jarreta andM. R. Amode,

I. M. Armean, A. G. Azov, R. Bennett, J. Bhai, K. Billis, S. Boddu,

M. Charkhchi, C. Cummins, L .Da Rin Fioretto, C. Davidson, K. Dodiya,

B. El Houdaigui, R. Fatima, A. Gall, C. Garcia Giron, T. Grego, C. Guijarro-

Clarke, L Haggerty, A. Hemrom, T. Hourlier, O. G. Izuogu, T. Juettemann,

V. Kaikala, M. Kay, I. Lavidas, T. Le, D. Lemos, J. Gonzalez Martinez Jose,

J. C. Marugán, T. Maurel, A. C. McMahon, S. Mohanan, B. Moore, M. Muffato,

D. N. Oheh, D. Paraschas, A. Parker, A. Parton, I. Prosovetskaia, M. P. Sak-

thivel, A. I. A. Salam, B. M. Schmitt, H. Schuilenburg, D. Sheppard, E. Steed,

84

M. Szpak, M. Szuba, K. Taylor, A. Thormann, G. Threadgold, B. Walts, A. Win-

terbottom, M. Chakiachvili, A. Chaubal, N. De Silva, B. Flint, A. Frankish, S. E.

Hunt, G. R. IIsley, N. Langridge, J. E. Loveland, F. J. Martin, J. M. Mudge,

J. Morales, E. Perry, M. Ruffier, J. Tate, D. Thybert, S. J. Trevanion, F. Cun-

ningham, A. D. Yates, D. R. Zerbino, and P. Flicek. Ensembl 2021. Nucleic

Acids Research, 49(D1):D884–D891, 11 2020.

[67] Amos Bairoch and Rolf Apweiler. The swiss-prot protein sequence data bank

and its supplement trembl. Nucleic acids research, 25(1):31–36, 1997.

[68] Smriti R Ramakrishnan, Christine Vogel, Taejoon Kwon, Luiz O Penalva,

Edward M Marcotte, and Daniel P Miranker. Mining gene functional net-

works to improve mass-spectrometry-based protein identification. Bioinformat-

ics, 25(22):2955–2961, 2009.

[69] F. Scarselli, M. Gori, A. H. Tsoi, M. Hagenbuchner, and G. Monfardini. The

graph neural network model. IEEE transactions on neural networks, 20(1):61–80,

2008.

[70] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Ge-

ometric deep learning: going beyond euclidean data. IEEE Signal Processing

Magazine, 34(4):18–42, 2017.

[71] Eric Bauer and Ron Kohavi. An empirical comparison of voting classification

algorithms: Bagging, boosting, and variants. Machine learning, 36(1):105–139,

1999.

	ENSEMBLE PROTEIN INFERENCE EVALUATION
	Let us know how access to this document benefits you.
	Recommended Citation

	COPYRIGHT
	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	State of the field
	Bottom up Proteomics
	Definitions and Notation
	Existing methods and evaluation challenges
	Protein Inference
	Existing inference methods

	Protein Inference Evaluation
	Target-decoy
	Protein Inference Evaluation Challenges
	The Hitchhiking Problem

	Gold Standard data

	METHODS AND WORK
	ProteomeTools Hitchhiking Peptide Standard
	Protein Sequence Design
	Sample Preparation
	Synthetic Peptides
	Data Acquisition

	Data Processing

	Best In Show: ensemble evaluation of protein inference engines
	Ranking
	Evaluation Engine
	Evaluation Metrics
	Data perturbance based stats

	Benchmark Datasets

	New Methods
	N-peptide model variations
	N-peptide (Expectation) and variants

	Iterative Models
	Probabilistic Models
	Linear Programming methods

	Semi-Supervised
	Protein Features
	Partitioning Schemes

	Model

	RESULTS
	ProteomeTools Hitchhiking Peptide Standard
	Analysis
	Peptide Coverage

	Best In Show
	Semi-Supervised Lysate Dataset Performance

	DISCUSSION
	ProteomeTools Hitchhiking Peptide Standard
	Best In Show
	Semi-supervised
	Lysate Dataset Proteins

	SOURCE CODE AVAILABILITY
	BIBLIOGRAPHY

