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ABSTRACT

The land surface freeze-thaw  (F/T) state plays a key role in the hydrological and carbon cycles and thus 
affects water and energy exchanges and vegetation productivity at the land surface. In this study, an F/T 
assimilation algorithm was developed for the NA SA G oddard E arth  Observing System, version 5 (GEOS-5), 
modeling and assimilation framework. The algorithm includes a newly developed observation operator that 
diagnoses the landscape F/T state in the GEOS-5 Catchment land surface model. The F/T analysis is a rule- 
based approach that adjusts Catchment m odel state variables in response to binary F/T observations, while 
also considering forecast and observation errors. A  regional observing system simulation experiment was 
conducted using synthetically generated F/T observations. The assimilation of perfect (error free) F/T ob­
servations reduced the root-mean-square errors (RMSEs) of surface tem perature and soil tem perature by 
0.206° and 0.061°C, respectively, when compared to m odel estimates (equivalent to a relative RM SE re­
duction of 6.7% and 3.1%, respectively). For a maximum classification error CE^jaxOf 10% in the synthetic F/T 
observations, the F/T assimilation reduced the RM SE of surface tem perature and soil tem perature by 0.178° 
and 0.036°C, respectively. For CEmax =  20%, the F/T assimilation still reduces the RM SE of m odel surface 
tem perature estimates by 0.149°C but yields no improvement over the m odel soil tem perature estimates. The 
F/T assimilation scheme is being developed to exploit planned F/T products from the NA SA Soil Moisture 
Active Passive (SM AP) mission.

1. Introduction to the timing and length of the vegetation growing season
(e.g., Black et al. 2000; Grippa et al. 2005; Kimball et al.

Over one-third of the global land area undergoes 
a seasonal transition between predominantly frozen and 
nonfrozen conditions each year (Kim et al. 2011). This 
land surface freeze-thaw (F/T) transition is closely linked

2006), the seasonal evolution of land-atmosphere carbon 
dioxide (CO2 ) exchange (Goulden et al. 1996), and the 
timing of seasonal snowmelt, soil thaw, and spring flood 
pulses (Kimball et al. 2001; Rawlins et al. 2005; Kane et al.

  2008). The land surface F/T state thus acts as a natural
on/off switch for hydrological and biospheric processes
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Studies show that the growing season, vegetation 
productivity, and land-atm osphere CO 2  exchange pat­
terns are shifting as a result of global warming (e.g., 
Randerson et al. 1999; Nemani et al. 2003). For example. 
Smith et al. (2004), M cDonald et al. (2004), Kimball 
et al. (2006), Kim et al. (2012), and Wang et al. (2013) 
found consistency between these patterns and changes in 
seasonal F/T dynamics observed by satellite microwave 
remote sensing. Thus, for more accurate modeling and 
prediction of land surface hydrological and biospheric 
processes, a good representation of the landscape F/T state 
in land surface schemes is needed. Recent efforts to en­
hance F/T modeling through improved and more expan­
sive representation of permafrost include work on the 
Variable Infiltration Capacity model (VIC; Cherkauer 
et al. 2003), the Community Land Model (CLM; Lawrence 
et al. 2008, 2012), O RCHIDEE (Koven et al. 2009), the 
Joint UK Land Environment Simulator (JULES; Bankers 
et al. 2011), and the pan-Arctic water balance model 
(Rawlins et al. 2013).

Surface air tem perature measurements from regional 
weather stations can provide an indication of the land­
scape F/T state. However, the limited coverage of global 
weather station networks, especially at higher latitudes 
and elevations, severely limits the capability for global 
monitoring and the ability to capture F/T spatial and 
temporal patterns (Kim et al. 2011). Satellite observa­
tions of passive and active microwaves are well suited 
for characterizing the landscape F/T state (Frolking 
et al. 1999; Bateni et al. 2013; Rautiainen et al. 2012, 
2014). Lower-frequency (<37 GHz) microwave obser­
vations vary significantly between frozen and thawed 
landscapes as a result of the strong sensitivity to con­
trasting dielectric properties.

A  number of algorithms have been developed to detect 
the landscape F/T state at 25-50-km resolution using 
brightness temperature measurements from the Advanced 
Microwave Scanning Radiometer for the Earth Observing 
System (Zhao et al. 2011), the Scanning Multichannel 
Microwave Radiometer (Zuemdorfer and England 1992), 
the Special Sensor Microwave Im ager (Zhang and 
Armstrong 2001), and the Soil Moisture and Ocean 
Salinity mission (Rautiainen et al. 2014). Similarly, radar 
backscatter data have been utilized in several studies for 
the detection of the land surface F/T state (Frolking et al. 
1999; Kimball et al. 2001; Bartsch et al. 2011; see also 
section 2). The L-band (1.4 GHz) radar observations 
from the Soil Moisture Active Passive (SMAP) mission 
(to be launched in early 2015) will provide a global 
classification of the F/T state at a 3-km spatial resolution 
and with a 3-day temporal fidelity (Entekhabi et al. 2010, 
2014). The lower sensitivity to snow and vegetation of 
the L-band measurements compared to higher-frequency

measurements should result in better detection of the 
landscape F/T signal. Moreover, the 3-km SMAP F/T 
product represents a considerable improvement in reso­
lution compared to current radiometer F/T products (e.g., 
Kim et al. 2012). See section 2 for more discussion.

The assimilation of remotely sensed F/T retrievals 
into land surface models might improve the simulation 
of carbon and hydrological processes that are especially 
relevant during F/T transitions. Accurate estimates of 
soil tem perature and F/T conditions are critical in this 
context. A t northern latitudes, carbon source-sink ac­
tivity is strongly correlated with the length of the vege­
tation growing season, which, for the most part, 
coincides with the summer period of thawed conditions. 
Moreover, soil respiration strongly depends on soil 
tem perature conditions. Finally, hydrological conditions 
change dramatically between frozen and thawed soil 
conditions (Zhang et al. 2011; Kimball et al. 2004a).

In this study, the potential of the F /T  assimilation to 
improve estimates of land surface (skin) and soil temper­
ature is investigated. To this end, an algorithm was de­
veloped for the assimilation of binary F/ T observations into 
the NASA Catchment land surface model (Koster et al. 
2000) within the NASA Goddard Earth Observing System, 
version 5 (GEOS-5), modeling and assimilation frame­
work. The assimilation algorithm includes a newly de­
veloped observation operator that diagnoses the F /T  state 
of the Catchment model and is compatible with the in­
formation contained in the remotely sensed landscape F/T  
state at different microwave frequencies. H ie F/T  analysis 
consists of a rule-based approach that updates Catchment 
model prognostic variables for surface and soil temperature 
in response to binary F /T  observations and considers 
forecast and observation errors. To test the methodology, 
an observing system simulation experiment is conducted 
using synthetically generated F/T  observations. The ulti­
mate goal of this study is to provide a framework for the 
assimilation of F /T  retrievals from SMAP into the Catch­
ment model in the context of the SMAP level 4 surface and 
root-zone soil moisture (L4_SM) algorithm (Reichle 2012) 
and the SMAP level 4 carbon (L4_C) algorithm (Kimball 
et al. 2012). Future research will explore the direct assim­
ilation of brightness temperature or backscatter measure­
ments to analyze the landscape F /T  state.

2. F/T detection using remote sensing

A t microwave frequencies, the landscape dielectric 
constant and thus the radar backscatter and the emission 
of passive microwaves undergo large temporal changes 
associated with corresponding changes in the pre­
dominant landscape F/T state within the satellite foot­
print (Mironov et al. 2010), which makes spaceborne
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microwave measurements well suited for global F/T  
monitoring (Kim et al. 2011). In most studies, 0°C is con­
sidered the temperature threshold between the frozen and 
thawed states (Colliander et al. 2012). The temperature at 
which the F /T  transition occurs, however, varies with the 
water solute concentration and shows strong heterogeneity 
across different landscape elements and within the satellite 
field of view. Thus, the 0°C threshold is only an approxi­
mation of the landscape F/T  transition point.

The contribution of different land surface elements to 
the retrieved F /T  index depends on the microwave fre­
quency used for the F /T  classification. Colliander et al. 
(2012) used QuikSCAT Ku-band (13.4 GHz) backscatter 
measurements to investigate the relationship between in­
dividual land surface elements (e.g., soil, snow cover, and 
vegetation) and the aggregate landscape F /T  state in­
dicated by the surface backscatter. It was observed that the 
temperature of the soil and that of vegetation stems and 
branches are generally better indicators of Ku-band F/T 
dynamics than surface air temperature, with soil temper­
ature being a better indicator than vegetation temperature. 
Colliander et al. (2012) did not consider the effect of snow 
cover despite the fact that for their study domain the fro­
zen condition is dominated by a snow-covered landscape. 
The rationale for their approach is the fact that the land­
scape thawing can be detected even under snow-covered 
conditions, as demonstrated by Kimball et al. (2004a,b) 
using Ku-band measurements from the NASA Scatter- 
ometer. The freeze-thaw product for SMAP will be de­
rived using a time series analysis of the high-resolution 
L-band (1.4 GHz) radar backscatter (Entekhabi et al. 
2010). Because of their longer wavelength, L-band obser­
vations from SMAP should be less sensitive to snow and 
vegetation scattering effects under dry/frozen snow con­
ditions and penetrate more deeply into the soil than Ku- 
band measurements. This increases the sensitivity of the 
microwave signals to the F /T  state of the underlying sur­
face soil layer. However, for wet snow the penetration 
depth of microwaves is drastically reduced to a few centi­
meters or less (Matzler and Schanda 1984). Thus, sensi­
tivity to soil conditions is minimal under wet snow, 
regardless of the microwave frequency, and the satellite 
signal will largely refiect snow cover conditions when 
a significant amount of wet snow is present on the surface.

3. F/T diagnosis using the Catchment land surface 
model

This section first provides a brief description of the 
NASA GEOS-5 Catchment model (Koster et al. 2000; 
Ducharne et al. 2000; Reichle et al. 2011; Reichle 2012), 
a state-of-the-art global land surface model. Next, an 
observation operator is introduced for the diagnosis of

the landscape F /T  state in the model. This observation 
operator is needed for the F /T  analysis (section 4) and is 
designed to be compatible with the information con­
tained in remotely sensed F /T  observations at different 
microwave frequencies.

a. Catchment m odel overview

The Catchment model’s basic computational unit is the 
hydrological catchment (or watershed). In each catch­
ment, the vertical profile of soil moisture is determined by 
the equilibrium soil moisture profile from the surface to 
the water table and by two additional variables that de­
scribe deviations from the equilibrium profile in a 1-m 
root-zone layer and in a 2-cm surface layer, respectively. 
Based on soil moisture, each catchment is separated into 
three distinct and dynamically varying subareas: a satu­
rated region, an unsaturated region, and a wilting region. 
The Catchment model also includes a three-layer snow 
model that accounts for snow melting and refreezing, 
dynamic changes in snow density, snow insulating prop­
erties, and other physics relevant to the growth and ab­
lation of the snowpack (Lynch-Stieglitz 1994).

In the snow-free portion of the catchment, the surface 
energy balance is computed separately for the saturated, 
unsaturated, and wilting subareas of each catchment. In 
each of these three subareas, the land surface tem pera­
ture is modeled with surface temperature prognostic 
variables that are specific to the soil moisture regime (T q 
for the saturated region, Tc^ for the unsaturated region, 
and Tci for the wilting region). The effective soil depth 
associated with the T q , Tc^, and Tc^ variables is negli­
gible except for areas with broadleaf evergreen (typically 
tropical) land cover (Reichle 2012), which are of little 
importance for F /T  studies. The area-weighted average 
of the three prognostic surface temperature variables de­
termines the surface temperature in the absence of snow 
r™ ™°"', which is then averaged (again area weighted) 
with the surface snow temperature T™™, to provide the 
land surface temperature Tsurf of the entire catchment:

T'surf = (1 -  a sn o w )r™ f + ( a s n o w ) C 7 . (1)

The surface snow tem perature and the snow area frac­
tion asnow are themselves diagnosed from the model’s 
snow prognostic variables (snow water equivalent SWE, 
snow depth, and snow heat content).

Subsurface tem peratures are modeled using a soil 
heat diffusion model that consists of six layers. The 
thicknesses of the layers are about 10,20,40,75,150, and 
1000 cm starting from the topmost soil tem perature 
layer. The layer thicknesses are the same for all catch­
ments and each layer’s soil tem perature represents an 
average value over the entire catchment. The prognostic
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variables for the heat diffusion model are the ground 
heat contents ght in the six layers from which the soil 
tem peratures Tsoii in each layer are diagnosed. For the 
rem ainder of this paper, ght and Tsoii refer to the values 
in the topmost (10 cm thick) soil layer only.

b. Freeze-thaw  state in the Catchment m odel

asnow  { %

100

Frozen

The F /T  analysis (section 4) requires diagnosing the 
landscape F /T  state of the Catchment model based on its 
prognostic variables. As outlined in section 2, the land­
scape F /T  state observed by L-band microwave remote 
sensing is assumed to be primarily related to the near­
surface soil and vegetation canopy temperature under dry/ 
frozen snow condition. Under wet snow, however, the 
satellite F /T  signal will largely reflect snow cover condi­
tions. We therefore first define an effective temperature 
Tetf that vertically averages the (snow free) portion of the 
surface tem perature and the top-layer soil temperature:

~T '   /-I \  I T^no snow
^ e f f  -  ( 1  “  “ ) ^ s o i l  +  “ ^ s u r f  ■ (2)

CO

Thawed

T e f f .

0
Threshofd

T e f f  ( T )

Given the wavelengths used for F/T remote sensing, 
which typically range from 1 to 20 cm, and the resulting 
penetration depths, the contribution of the lower-layer 
soil temperatures to the microwave signal is small and 
neglected here. The parameter a  determines the relative 
contributions of the surface temperature and the soil 
temperature and can be adjusted according to the mi­
crowave frequency used for the F/T classification so that 
it better reflects sensor signal penetration depth. Besides 
the effective temperature, additional information on the 
landscape F/T state is contained in the modeled snow 
conditions. Ffere, asnow is most relevant. In the Catch­
ment model, the snow cover fraction increases linearly 
with the SWE during the accumulation phase and reaches 
full cover (asnow = 100%) when the total amount of 
SWE accumulated over the catchment reaches a model 
constant of SWEMIN = 26kgm ^^ (Reichle et al. 2011).

The landscape F/T state is then diagnosed from the 
Catchment model variables via the following observa­
tion operator, which is also illustrated in Fig. 1:

Thawed(F/T = 1) if

^ e f f  ^  ^ e f f .T h r e s h o id  ^nd asnow <  asnow^^^^^^^j^

Frozen(F/T = — 1) if

^ e f f  <  ^ e f f  T h re sh o ld  ^ s n o w  >  a s n o w ^ ^ ^ ^ ^ ^ ^ j^ .

(3)

The effective temperature that determines the transition 
between frozen and thawed conditions is Tetf Threshold = 0°C.

F ig . 1. Schematic representation of the m odel diagnosis of the 
land surface F/T state as a function of effective tem perature and the 
snow cover fraction.

The snow cover threshold value asnowThreshoid de­
term ines the maximum modeled snow cover fraction 
that is still compatible with a thawed condition. The 
penetration depth at C band (5.6 GHz) can be as large 
as several meters in dry snow conditions (Bingham and 
D rinkw ater 2000; Dali et al. 2001) and is likely even 
larger at L band (1.27 GHz; Rignot et al. 2001). For wet 
snow, however, the penetration depth of microwaves 
is drastically reduced to a few centim eters or less 
(Matzler and Schanda 1984). The value for asnowThreshoid 
is fixed at 10% in this study and depends on the micro­
wave frequency and the associated penetration depth 
through snow.

4. F /T  data assimilation module (F/T analysis)

The assimilation of F/T observations is conceptually 
similar to the assimilation of snow cover observations. 
In both cases, the observed variable is, at least at the 
satellite footprint scale, essentially a binary observa­
tion. [Note that the daily SMAP F/T product provides 
categorical inform ation including frozen, thawed, 
transitional, and inverse transitional F/T states, with 
the la tter two occurring when the F/T observations 
for the morning and evening overpasses indicate op­
posing conditions (M cDonald et al. 2012)]. Binary ob­
servations cannot be assimilated with a Kalman filter, 
because this requires continuous variables. For the 
assimilation of F/T observations, we propose a rule- 
based assimilation approach, similar to the rule-based 
assimilation of binary snow cover observations (Rodell 
and H ouser 2004). In short, if the model forecast and
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asnow

100

Completely Thawed(F/T = 1) if

cci

0

and asnow <  LB„

Completely
Frozen

Undetermined

Completely  
Thawed

Completely Frozen(F/T = — 1) if 

r^ ff< L B y  or asnow
eff

U ndeterm ined(F/T = 0) otherwise. (4)

LB_Teff 0  UB T,eff Teff (°C)

Fig. 2. Schematic representation of three distinct F/T state re­
gimes defined by upper and lower uncertainty bounds on the ef­
fective tem perature and snow cover thresholds for the purpose of 
the F/T analysis. The upper bound for the snow cover threshold is 
set to U B a s n o w  = 100%.

the corresponding SMAP observations disagree on 
the F /T  state, that is, if the model indicates frozen 
conditions and observation indicates thawed condi­
tions (or vice versa), the model prognostic variables 
related to the soil tem perature and the snow-free sur­
face tem perature are adjusted to match the observed 
F /T  condition more closely. To account for model and 
observation errors, the delineation between frozen and 
thawed regimes is defined with some uncertainty in 
the assimilation algorithm, as will be detailed below 
(section 4a).

In this study, UBj-^g and LBj- ĵj are fixed at 1°C and 
— 1°C, and LBasnow is set to 5%. A  value of 100% was 
chosen for UBasnow- This assigns an “undeterm ined” F/T 
regime to situations with considerable snow cover on 
soil that is thawed or close to thawing. U nder these 
circumstances, it is difficult to determine whether the 
model F/T state should be thawed or frozen in a manner 
that would be fully consistent with the retrieval algo­
rithm that was used to determine the value of the F/T 
observation.

The “ undeterm ined” regim e impacts the com puta­
tion of the increm ents in two ways. First, if the model 
forecast F/T state is “ undeterm ined,” no increm ents 
will be applied. W ith increasingly uncertain forecast 
or retrieval F/T  estim ates, the undeterm ined regime 
should expand and fewer observations will im pact the 
data assimilation results. Second, the upper and lower 
bounds for the effective tem perature threshold 
(UBj-rf;; LBrrfj) will be used to form ulate the rule- 
based increm ents that result from the F/T  analysis 
(section 4b). In either case, the “ undeterm ined” re ­
gime implicitly assigns weight to the model forecast 
in the analysis update and thus assumes im perfect 
observations.

a. Uncertainty in F /T  sim ulations and observations b. Update rules

The perhaps simplest F/T analysis could use the ob­
servation operator defined in Eq. (3) to determ ine the 
F/T state of the model forecast and then apply in­
crements to switch the m odel’s F/T state whenever the 
m odel’s F/T state differs from that of the observations. 
However, such an analysis would ignore any un­
certainty (representativeness error) associated with the 
form ulation of the observation operator [Eq. (3)]. It 
would also ignore any errors in the observations 
themselves.

For the purpose of the F/T analysis, we therefore 
refine the observation operator by introducing a regime 
of undeterm ined F/T status, which is defined by upper 
and lower bounds for the effective tem perature and 
snow cover thresholds, as illustrated in Fig. 2. Specifi­
cally, the model F/T state for the purpose of the F/T 
analysis is

The assim ilation of F /T  observations is based 
on a num ber of rules. No updates are perform ed 
(i) if bo th  the m odel and the observations agree 
on the F /T  sta te  or (ii) if the m odel F /T  sta te  is u n ­
determ ined  per Eq. (4). W hen the observations 
and sim ulations indicate a contrasting  F/T  state, then  
the m odel prognostic variables associated w ith Tetf 
are updated  (i.e., Tci, Tcj, Tct, and ght; section 3). 
Specifically, if the  observations indicate a thaw ed 
condition  (F/T  = 1) w hereas the m odel is in a frozen 
regim e, then  Teff is increased to  LBj-rfj. Conversely, 
if the  observations indicate freezing (F/T  = —1) 
and the m odel is in a thaw ed regim e, then  Tetf is d e ­
creased  to UBj-^jj. The updates can be summarized 
as follows:

eff (5)
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where

A r  = min(UB ̂  -  T-^^, 0) <  0 if 

obs(F/T) = -l,m o d e l(F /T ) = +1,
A r  = max(LB ̂  0) >  0 if

eff

obs(F/T) = +1, model(F/T) = -1 ,  and 
AT = 0 otherwise.

In this equation, T~^ represents the priori estimate and 
represents the analysis. The same increment AT is 

applied to the prognostic temperature variables Tct, Tc2, 
and Tc, (the weighted average of which determines 

and the soil temperature Tsoii- For the latter, the 
ght (the model prognostic variable that determines the 
soil temperature) is adjusted accordingly to match 
the updated soil temperature Note that the updates 
to Tcj, Tc2 , and Tc^ also adjust Tsuct following Eq. (1). In 
this study, we are only updating the surface temperature 
and the soil temperature (and ground heat content) of the 
topmost soil layer. For future studies, updating the tem­
perature of lower soil layers can also be considered.

The update rules [Eq. (5)] intentionally do not ad­
just the snow variables directly. As m entioned in sec­
tion 4a, UBasnow = 100% has been selected to avoid 
uncertainties related to the role of snow in determining 
the F/T state. This choice is supported by several ex­
periments that were performed with smaller threshold 
values for UBasnow aud in which a portion of the snow 
was removed if the observed F/T state indicated thawed 
conditions. These additional experiments (not shown) 
indicated that (error prone) F/T observations sometimes 
mistakenly removed the model snow, which resulted in 
large subsequent forecast errors. It is difficult to recover 
from such errors, because once the model snow has been 
removed, the missing snow cannot easily be redeposited 
at future analysis times because of the lack of quanti­
tative information about snow mass in the F/T obser­
vations. Consequently, in the following, the snow 
prognostic variables are not adjusted as part of the F/T 
analysis update. Nevertheless, at later time steps the 
model’s snow conditions will respond to the adjusted soil 
tem peratures and corresponding updated hydrological 
fluxes.

5. Synthetic twin experiment

The twin experiment consists of several components. 
A  Catchment land surface model integration serves as 
the “ tru th” and is used (i) to generate synthetic F/T 
observations and (ii) to validate the analysis results. The 
data assimilation experiment is performed with imper­
fect simulations and observations. The synthetic ob­
served F/T state is obtained by adding classification

6 0  N

5 0  N

4 0  N

3 0  N

1 2 0  W  1 0 0  W

F ig . 3. Map of study domain.

8 0  W

error CE to the true F/T state (section 5b). The imper­
fect Catchment land surface model integration is pro­
duced with a different forcing dataset to mimic forcing 
errors. This imperfect model simulation without data 
assimilation is referred to as the open loop (OL; see 
discussion in section 5b). The F/T analysis is performed 
by assimilating the synthetic F/T observations into the 
imperfect model simulation using erroneous forcing 
data and is referred to as the data assimilation (DA) 
integration. The OL and D A  results are compared 
against the truth and the relative importance of assimi­
lating observed F/T data is investigated (section 6).

a. Study dom ain and time period

The study domain is a region in North America be­
tween 45° and 55°N and 90° and 110°W (Fig. 3). The 
simulations are performed on a 36-km Equal-Area 
Scalable Earth Grid (EASE-Grid), covering 1137 grid 
cells in the study domain. The Catchment model in­
tegration is conducted using the GEOS-5 land data as­
similation system (Reichle et al. 2014) with a time step of 
20min. The selected period of investigation is 8 years 
(from 1 January 2002 to 1 January 2010), and the tem ­
poral resolution of the model output is 3 hourly. The 
model was spun up by cycling 10 times through the 1-yr 
period from 1 January 2001 to 1 January 2002.

b. Synthetic truth, synthetic observations, and open  
loop

The synthetic truth is based on a Catchment model 
simulation that uses surface meteorological forcing data 
from the Modern-Era Retrospective Analysis for R e­
search and Applications (MERRA; Rieneckeret al. 2011). 
The M ERRA data product is provided at an hourly tem­
poral resolution and a V2 ° X %° (latitude-longitude)
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spatial resolution. The resulting 8 years of synthetic true 
hydrological state variables and fluxes are used for the 
validation of the F/T analysis (DA). The synthetic true 
F/T state is obtained by applying the observation oper­
ator [Eq. (3)] using a = 0.5, asnowThreshoid = 10%, and 
C eff Threshold  — 0 C.

The synthetic observed F/T indices are obtained by 
corrupting the true F/T dataset with spatially un­
correlated synthetic classification error. Specifically, the 
classification error is defined by the probability of mis- 
classiflcation. The SMAP mission requirements call for 
an F/T product with no more than 20% mean spatial 
classification error (McDonald et al. 2012). Ffere, we 
assume that the classification error is greatest near 0°C, 
where it reaches CEmax, linearly tapers off toward colder 
and warmer temperatures, and vanishes below —10° and 
above +10°C. That is, this physically based classification 
error model is given by the following piecewise linear 
function of the land surface temperature:

CE =

CE

CE

0

T^surf +10
m ax

1 0 - r

-10°^7'^urf^0°C

m ax 10
^  0° < < io°c

7 ' s u r f > 1 0 °  or r ^ , r i< - io ° c .

(6)

This parameterization of the classification error is il­
lustrated in Fig. 4.

The synthetic F/T observations are generated at each 
time and for each location (or grid cell) by obtaining the 
probability of misclassiflcation based on the land surface 
tem perature from Eq. (6). We then randomly select 
a number from a uniform distribution between 0 and 1. 
If the selected random number is less than the specified 
classification error for that land surface temperature.

then the observed F/T index is obtained by changing the 
sign of true F/T classification. Otherwise, the observed 
F/T index is equal to the true F/T state. The sensitivity of 
the data assimilation experiments to different levels of 
observation classification errors will be investigated 
below.

The open-loop dataset is obtained from an integration 
of the Catchment model with forcing data that differ 
from those used for the truth. Forcing errors were im­
posed by replacing the M ER R A  surface meteorological 
forcing fields with data from the Global Land D ata 
Assimilation System (GLDAS; Rodell et al. 2004) as 
used in a former version of the NASA GM AO seasonal 
prediction system at 3-hourly tem poral resolution and at 
2.0° X 2.5° (latitude-longitude) spatial resolution. The 
hydrological response associated with the differences 
between M ER R A  and GLDAS in precipitation and 
radiation timing and intensity results in considerable 
differences in the diagnosed F/T state at the grid scale.

c. F /T  assimilation setup

The F/T assimilation experiment uses the same model 
settings as described for the open-loop model, that is, it 
uses GLDAS forcings to mimic forcing errors relative to 
the M ER R A  truth. No additional perturbations are 
imposed and a single deterministic integration is per­
formed for a period of 8 years (from 1 January 2002 to 1 
January 2010). In this study, the synthetic observed F/T 
index is assimilated into the imperfect model integration 
at 0600 and 1800 local time (LT; F/T analysis update). 
The proposed assimilation time steps are compatible 
with the planned overpass times of SMAP.

The various tunable param eters in the diagnosis of the 
(uncertain) F/T state and the update rules are as follows. 
The param eter a  [which determines the weight of the 
components of the effective tem perature; Eq. (2)] is set 
to 0.5 for the generation of F/T observations. This pa­
ram eter is tunable and the sensitivity of data assimila­
tion experiments to this param eter in the observation 
operator [Eq. (3)] will be explored in section 6b. The 
values for the lower and upper bounds on the snow 
cover threshold (LBasnow; UBasnow) are 5% and 100%, 
respectively. The uncertainty range for asnow accounts 
for the combined uncertainty associated with the di­
agnosis of the modeled F/T state and the classification of 
the F/T observations in the presence of snow. To account 
for the uncertainty of the 0°C threshold value across dif­
ferent landscape elements within the satellite held of view, 
the upper and lower bounds for the effective temperature 
thresholds are +1° and — 1°C, respectively. This range in 
the Tetf Threshold also accounts for variability (or subgrid 
heterogeneity) in a number of factors, including soil ex­
posure (vegetation cover), topography, mineral/organic
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T a b le  1. M etrics for OL vs tru th  estim ates for a period of 
8 years (2002-10) and at 0600 and 1800 LT. The RM SE for Tjurf 
and Tair is com puted excluding times and locations where Tair >  
7°C or T a i r  <  -7 °c .

Variables Metric Value

7’surf
7’soil
F/T

RM SE
RM SE
Classification error

T a b le  2. RM SE improvement (ARMSE = R M S E q l ^  
RMS E d a ; °C) for T^ari and T’sou, for different CEmax, excluding 
times and locations where Tair >  7°C or Tat <  —7°C, for a period of 
8 years (2002-10) and at 0600 and 1800 LT.

3.08°C
1.97°C
4.85%

ARMSE

Taurf (°C) 
Taoil (°C)

0 %

0.206
0.061

CEma;
5% 10%

0.192
0.049

0.178
0.036

20%

0.149
0.006

layer characteristics, and water solute concentration. The 
F/T analysis may benefit from adjusting these uncertainty 
bounds in response to the F/T classification error in the 
synthetic observations or in the model F/T state, but in 
the present paper we keep the bounds fixed.

d. Validation o f  temperature estimates

By design, the analysis update [Eq. (5)] does not alter 
the F/T state of the model forecast, but the update rules 
will alter the tem perature variables whenever the model 
forecast F/T state differs from the observed F/T index. It 
is expected that the differences in surface and soil tem ­
peratures (with respect to the truth) are smaller in the 
assimilation estimates than in the open-loop estimates. 
We therefore focus the validation on the computation of 
root-mean-square errors (RMSEs) of surface and soil 
tem peratures versus the truth dataset.

The F/T data assimilation is expected to be most rel­
evant when tem peratures are near 0°C because it is 
straightforward to estimate the F/T state accurately 
during clearly warm or cold conditions. We thus limit the 
validation to time steps where the air tem perature is 
above —7° and below +7°C (as indicated by the 
M ER R A  surface air temperatures). Furtherm ore, we 
restrict the validation to 0600 and 1800 LT only, com­
patible with the time of the SMAP overpasses.

6. Results and discussion

a. O L  and D A  with standard settings

To assess the impact of the imperfect forcing on the 
diagnosis of the F/T state without data assimilation, we 
first examine the OL results. As mentioned in section 5, 
the OL utilizes GLDAS forcings and the “ tru th” utilizes 
M ER R A  forcings. W hen compared to the truth, the OL 
has an F/T classification error of 4.85% (Table 1). The 
table also shows that the RM SE value for the OL surface 
tem perature is 3.08°C and that of the first soil layer 
tem perature is 1.97°C.

Again, by design the F/T analysis update does not 
alter the F/T state of the model forecast, and conse­
quently the F/T classification error of the assimilation 
estimates is nearly the same as that of the OL. But

through the assimilation of the F/T observations, we 
hope to reduce the OL tem perature errors. The F/T 
analysis involves adjusting the land surface effective 
tem perature, and subsequently T“  and Tsoii, if the 
observed and simulated F/T states do not agree. Table 2 
summarizes the reduction in RM SE (ARMSE = 
RM SLql “  RM SLda) by assimilating synthetic F/T 
observations with four different levels of classification 
error (CLmax), and assuming default values for the 
tunable parameters, as introduced in section 5c.

Assimilating observed F/T indices without classifica­
tion error results in an RM SE improvement of 0.206°C 
for the land surface tem perature and an RM SE im­
provement of 0.061°C for the first layer soil temperature. 
W hen compared to the OL results for these two vari­
ables, the F/T analysis results in relative RM SE im­
provements of 6.7% and 3.1% for Tsurf and Tsoii, 
respectively. The skill improvement decreases mono- 
tonically with increasing classification error in the ob­
servations. For a CEjnax = 20% the assimilation of F/T 
observations still reduces the surface tem perature 
RM SE by 0.149°C, but it no longer improves the soil 
tem perature estimates.

Figure 5 shows the Tsmt and Tsoii skill improvements in 
the study domain for the assimilation of F/T observa­
tions with CEjnax = 0%, 5%, and 20%. Figures 5a and 5b 
show that as a result of assimilating perfect F/T obser­
vations, the skill of Tsurf and Tsoii improves for almost all 
grid cells within the study domain. However, the effi­
ciency of the F/T analysis deteriorates as the classifica­
tion error is increased (Figs. 5c-d). For CEmax = 20%, 
many grid cells in the study domain have negative or no 
improvement in Tsoii skill. As mentioned above, the F/T 
analysis may benefit from adjusting the uncertainty 
bounds in response to the classification error of the 
synthetic F/T observations, but the above results in­
dicate that using a single set of uncertainty bounds al­
ready provides reasonable assimilation estimates.

Figure 6 shows the skill improvement for each grid cell 
binned as a function of the num ber of analysis updates 
per grid cell (i.e., the skill improvement is spatially av­
eraged across grid cells experiencing a similar num ber of 
analysis updates in time within the study domain). The
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data points are assigned to six bins with equal numbers of 
grid cells. Each bin center is assigned the average number 
of analysis updates for the grid cells in that particular bin. 
When more error-free observations (Figs. 6a,b) or obser­
vations with modest classification errors (Figs. 6c,d) are 
assimilated, the average skill improves with the number of

analysis updates for both the temperatures, Tsmt and Tsoii. 
Ffowever, as the maximum classification error is increased 
to 20% (Figs. 6e,f), the average skill in the temperature 
variables does not improve with the number of analyses. 
This is due to the negative effect of assimilating mis- 
classified observed F/T indices into the model.
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b. Sensitivity o f  assimilation results to the form ulation  
o f  the effective temperature

The effective tem perature, which is an important 
variable in diagnosing the F/T state, is a weighted av­
erage of the surface tem perature in the absence of snow

and the soil tem perature [Eq. (2)]. The weight should 
be a function of the microwave penetration depth. An 
increase (decrease) in penetration depth results in a de­
crease (increase) in param eter a  and hence an increase 
(decrease) in the weight of the soil tem perature 
component of effective temperature. In this study, the
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A  positive ARMSE indicates a skill improvement in the assimilation results.

synthetic true F/T state was obtained based on the as­
sumption that the param eter a  equals 0.5. Thus, T™ 
and Tsoii have similar weights in determining the effec­
tive tem perature and thus the F /T  state of the soil.

Ffowever, when determining the F/T index from (real) 
remote sensing observations, the relative effect of 
and Tsoii in those observations is not known a priori. Ffere, 
we investigate the sensitivity of the D A  performance to the 
choice of this factor in the observation operator. A  phys­
ically meaningful range of a  between 0.25 and 1 was se­
lected. This means that the weight of soil temperature Tsoi 
ranges between 0.75 and 0 in the model.

The sensitivity of the assimilation results to the value of 
a  in the forecast F /T  state is illustrated Fig. 7. The skill 
improvements (ARMSE) are shown for the case where no 
classification error (CEmax = 0%) is associated with the 
assimilated F /T  indices. As expected, the maximum skill 
improvement for both Tsmt and Tsoii occurs when the pa­
rameter a  is 0.5, that is, when the a  value that is used in the 
observation operator of the assimilation system matches 
the a  value that was used to generate the synthetic F/T  
observations. The figure shows that the sensitivity of Tsuct 
to the parameter a  seems to be higher than that of Tsoii- 
The skill of Tsurf is reduced by up to 50% when a  is not 
selected correctly, while the skill is reduced by at most 8% 
for Tsoii. It is thus important to understand how different 
land surface variables contribute to the observed F /T  and 
to mimic this relationship adequately in the F /T  observa­
tion operator used in the data assimilation scheme.

7. Conclusions

In this study an algorithm for the diagnosis of the F/T 
state in the NASA Catchment land surface model was

developed. The algorithm is compatible with the in­
formation contained in remotely sensed retrievals of 
landscape F/T state at different microwave frequencies. 
The GEOS-5 land data assimilation system in offline 
mode was updated with the newly designed F/T assim­
ilation module. The ultimate goal of this research is to 
provide a framework for the assimilation of SMAP F/T 
observations into the Catchment model.

The performance of the method for a synthetic ex­
periment showed encouraging improvements in the skill 
of soil tem perature and land surface tem perature esti­
mates. However, the average skill improvement de­
pends on the classification error in the F/T observations. 
In our synthetic study, the open-loop simulation has 
a modeled F/T classification error of 4.85% error com­
pared to the truth. W hen assimilating perfect (error 
free) F/T observations, the RM SE for land surface 
tem perature (Tsmt) and soil tem perature (Tsoii) im­
proves by 6.7% and 3.1%, respectively. Yet, the skill 
improvement decreases monotonically with increasing 
classification error in the assimilated F/T observations. 
No more improvements in soil tem perature were found 
with maximum classification errors of CEj^ax = 20% and 
fixed uncertainty bounds on the snow cover threshold 
and effective tem perature. The assimilation estimates 
can perhaps be improved further by adjusting the un­
certainty bounds in the rule-based update. For example, 
increased uncertainty bounds will prevent adverse ef­
fects from assimilating retrievals with increased classi­
fication errors. However, refinements of the algorithm 
calibration are left for future work.

The results also discuss the sensitivity of the data as­
similation (DA) to the a  param eter in the observation 
operator. This parameter controls the relative contribution
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of the snow-free surface tem perature and the top-layer 
soil tem perature to the F/T state in the modeling system 
and impacts the tem perature increments applied during 
the F/T analysis. The maximum skill improvement can 
only be expected if the observation operator in the 
modeling system closely mimics the relative importance 
of various landscape components, including the surface 
and soil temperatures, in the determ ination of the sat­
ellite F/T observations. Therefore, the observation op­
erator could also benefit from further tuning to improve 
the linkage between the modeled snow cover and the 
expected F/T index retrieved from the microwave signal. 
Moreover, the limitations of the present study could 
perhaps be overcome in the future by directly assimi­
lating backscatter or brightness tem perature observa­
tions (instead of F/T retrievals).

The regional domain of the experiment investigated in 
this research represents a relatively flat terrain area of 
central North America. In this region, the model with­
out assimilation (open loop) produced an F/T classifi­
cation error of only 4.85%. This modeling error is 
a direct result of the assumption that all F/T classifica­
tion errors are solely due to errors in the forcing data (as 
reflected in the difference between the GLDAS and 
M ER R A  data). W hen the F/T assimilation method is 
applied with high-resolution satellite observations (in­
stead of synthetic retrievals), we expect relatively larger 
errors in the simulated F/T state, especially over regions 
with more complex topography (e.g., regions in western 
North America) where global forcing fields do not re­
solve the considerable heterogeneity of the surface 
conditions. The benefit of assimilating high-resolution 
(3 km) SMAP F/T retrievals is therefore expected to be 
greater for specific applications such as improving the 
simulation of ecohydrological processes. Additional 
benefits might be derived from combining the F/T 
analysis presented here with established data assimila­
tion algorithms that use satellite observations of land 
surface tem perature, snow cover, or snow water equiv­
alent (e.g., Reichle et al. 2010; De Lannoy et al. 2012).
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