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Frakes, Jameson, M.S., Spring 2022      Organismal Biology 

Abstract 

In many freshwater ecosystems, communities of aquatic insects are facing the combined stresses 

of warmer waters due to climate change and increased exposure to heavy metal toxicants. 

Although each stressor may threaten aquatic insects independently, they also likely interact in 

important ways to affect insect physiology and performance. Here we investigate this potential 

interaction using two populations of aquatic nymphs of the giant salmonfly, Pteronarcys 

californica, collected from adjacent rivers in Montana: naïve individuals from Rock Creek, a 

relatively pristine stream, and individuals from the Upper Clark Fork River, which has a history 

of heavy metal pollution and higher temperatures. We used a factorial design that exposed 

nymphs from the two rivers to one of two varying concentrations of metals (copper or lead) in 

combination with one of two temperatures (12 or 18 °C). We measured survival, growth, and 

upper critical temperature (CTMAX), as well as individual heavy metal concentration. Nymphs 

from both rivers exposed to the highest amounts of copper showed reduced survival and growth 

rates, and their CTMAX were reduced by up to 10 °C. By contrast, lead had little effect on 

survival, growth, or CTMAX of either population. These results suggest that acute exposure to 

heavy metals may reduce the ability of aquatic insects to withstand exposure to climate-induced 

warming. 

 

Keywords  

Heavy metals, CTMAX, acclimation, Pteronarcys californica, Upper Clark Fork River, climate 

change, aquatic insect, copper, lead  
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Introduction 

Key threats to aquatic habitats include the multifaceted effects that stem from hotter, more 

variable climates (IPCC 2020). In Montana, many streams and rivers are warming rapidly 

compared to similar bodies of water around the globe (Whitlock et al. 2017). This warming 

poses a challenge to native aquatic taxa, which consist primarily of small ectotherms whose body 

temperatures are tied closely to their thermal environments (Willmer et al. 2000). Rising 

temperatures are predicted to exceed the thermal tolerance limits of some native aquatic 

organisms, which can cause rapid die-offs (Till et al. 2019). Furthermore, sublethal side-effects 

from changing temperatures may misalign the emergence of aquatic insects with the phenologies 

of other aspects of their biotic and abiotic environments (Hering et al. 2009, Conti et al. 2014), 

reduce dispersal distances (Jourdan et al. 2019), decrease the amount of suitable habitat 

(Taubmann et al. 2011), increase the prevalence of diseases (Marcos‐López et al. 2010), and 

promote the upstream movement of invasive species (Rahel & Olden 2008).  

 

Temperature also interacts with other potential stressors arising from climate change (Birrell et 

al. 2020) and anthropogenic chemical disturbances, including nutrient loading, agricultural 

pollutants, and heavy metal toxicity. Although most research studies these stressors 

independently, to predict the fate of aquatic communities it is critical to assess how warming 

temperatures interact with other sources of stress (Moe et al. 2013) Understanding interactive 

effects is especially important in the context of aquatic insects, an abundant group that plays key 

ecological roles in aquatic ecosystems and often supports higher trophic levels (Canfield et al. 
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1994, Merritt et al. 2008). 

 

Studies on the combined effects of temperature and toxicants such as heavy metals suggest that 

they often interact, with warmer temperatures increasing susceptibility to toxicants, and in turn, 

those toxicants decreasing heat tolerance (Cairns et al. 1975, Sokolova & Lannig 2008, Moe et 

al. 2013). In aquatic ectotherms, elevated temperatures typically stimulate biological rates, e.g., 

metabolism, ventilation, feeding, and growth, all processes that can further expose individuals to 

toxicants and exacerbate their negative effects (Sokolova & Lannig 2008). Respiratory surfaces 

are often a primary route by which toxicants enter the body (Lannig et al. 2006, Clements 2019), 

which may directly inhibit the efficiency of gas exchange (Nonnotte et al. 1993). For aquatic 

insects in particular, respiratory interference from metal exposure would likely reduce their 

thermal tolerance, given the role of oxygen-transport in setting these limits (Pörtner 2001, 

Verberk et al. 2016, Frakes et al. 2021). 

 

The Clark Fork River Basin Superfund Complex extends from Butte to Missoula, MT, and is the 

largest complex of Superfund sites in the United States (Vincent 2012). Historical copper and 

silver mines near Butte, MT, introduced arsenic, cadmium, copper, lead, and zinc into the upper 

watershed (Axtmann & Luoma 1991). Subsequent flooding events have washed accumulated 

metals into the Upper Clark Fork River (further referred to as UCFR) downstream over 300 km 

(Johns 1995, Stagliano 2020), where metal contamination has been detected across trophic levels 

from macrophytes to ospreys (Johns 1995, Cain et al. 2004, Langner et al. 2012). Large-scale 

remediation efforts (e.g., bank sediment removal and the construction of the Warm Springs 

Settling Ponds) have attempted to restore the UCFR and protect its inhabitants from heavy metal 
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exposure (Vincent 2012); as such, metal levels in the UCFR are now declining. Higher river 

temperatures stemming from climate change, however, may amplify the effects of the heavy 

metals that remain (Sokolova & Lannig 2008, Moe et al. 2013). Additionally, increases in flood 

severity in the future—a consequence of climate change in Montana (Whitlock et al. 2017)—

may mobilize toxicants buried in riparian sediment and floodplain soils and produce transient 

periods of high metal load in the UCFR.  

 

To examine the effects of exposure to the dual stressors of heavy metal contamination (copper or 

lead) and higher temperatures on aquatic invertebrates, we measured the survival, growth, and 

critical thermal maxima (CTMAX) of an important stonefly, Pteronarcys californica (the giant 

salmonfly), in a set of lab-based exposure experiments. We predicted that the combination of 

heavy metal exposure and elevated temperature would interact to reduce salmonfly performance. 

Warm temperatures may increase the rate of metal exposure and exacerbate its negative effects, 

or certain metal toxins may decrease salmonflies thermal tolerance, making them more 

susceptible to high-temperature stress (Sokolova & Lannig 2008). In our experiments, we 

compared performance and physiology between larval salmonflies collected from the UCFR 

versus those from a nearby uncontaminated and cooler tributary, Rock Creek, near Clinton, MT 

(Fig. 1). We envisioned two opposing outcomes: Populations that have experienced stressors 

(those from the UCFR) may have adapted or acclimated to such stressors, allowing them to 

outperform populations from cool and uncontaminated places when they are exposed to warm 

and contaminated water. This would be supported if salmonflies from the UCFR outperformed 

those from Rock Creek. Alternatively, chronic exposure to stressful conditions like those in the 

UCFR may negatively impact organismal condition and the capacities of their underlying 
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physiological systems. This would be supported if Rock Creek salmonflies outperformed those 

from the UCFR during experimental exposure to higher levels of temperature and heavy metals. 

 

Aquatic insects often show strong phenotypic plasticity in their upper thermal limits (Gunderson 

& Stillman, 2015), likely an important trait to maintain as populations navigate warming 

climates (Huey et al., 1999). Therefore, we complement the lab experiments with an in-field 

transplant experiment to assess how the CTMAX of salmonflies from Rock Creek change when 

held in mesocosms at three locations along the UCFR during the hottest days of summer (Fig. 1).  

 

Methods 

Insect collection 

Nymphs of Pteronarcys californica that ranged from 0.04 - 1.12 g (supplemental Fig. 1) were 

collected from Rock Creek, near Clinton, MT (lat, long; 46.688073, -113.662777), and the Clark 

Fork River, near Phosphate, MT (46.555749, -112.873970), using a kick screen barrier net (1×1 

m). Insects were identified on site and placed temporarily into buckets of river water aerated with 

battery-powered air pumps (Silent Air B10 Aquarium Air Pump, Penn – Plax, Hauppauge, NY). 

The buckets were transported to the University of Montana on the same day and placed into a 

temperature-controlled incubator at 12 ºC (I66LLC8; Percival, Perry, IA) with conditioned 

cottonwood (Populus) leaves collected from Rock Creek (food source) for approximately one 

week. Two identical sets of insect collections occurred on each river, first on July 29th for the 

copper exposure experiments, and then again on September 9th for the lead exposure 

experiments.  
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Experimental design  

To determine how salmonflies from Rock Creek and the UCFR respond to combinations of 

heavy metals and temperature, we used a factorial design that crossed two temperatures (12 ± 3 

ºC and 18 ±3 ºC) with three environmentally relevant treatment levels of heavy metals (control, 

medium, high) for two metals, lead (Pb) and copper (Cu). We exposed 12 insects from both 

rivers to each combination of temperature and heavy metal concentration.  

 

Prior to experiments, all plastic consumables (aquaria, nylon mesh bags, cable ties, and tubing) 

were acid washed with 3% trace metal grade nitric acid (A509-500, Fisher Chemical, Waltham, 

MA) and rinsed with milli-Q water (resistivity 18 MΩ.cm). Each treatment was conducted in a 

plastic aquarium (60.5 L, Sterilite, Townsend, MA) filled with 50 L of temperature stabilized and 

chlorine free (degassed) tap water fitted with an aquarium pump (600 Aqua Pump; Rio Plus, 

Tiapei, Tiawan) and air stone (AP- 8, Danner Manufacturing Inc., China). To mimic diel 

fluctuations in temperature in the UCFR, temperatures in both treatments were varied by 6 ºC 

around the mean (3 ºC above during the day and 3 ºC below at night). The pH in each treatment 

at the end of each experiment was slightly alkaline, ranging from 8.26 – 8.45 (Halo pH meter; 

Hanna Instruments, Smithfield, RI). The hardness of the tap water used in the experiments 

ranged from 325 – 393 ppm (samples analyzed by Clearwater Systems, Missoula, MT).  

 

 

At the start of the experiment, nymphs were briefly blotted dry with a sheet of Kimtech paper 

and then weighed on a Mettler Toledo balance to the nearest milligram (ME54TE/00, Columbus, 

OH). Individuals were then placed in custom-sewn nylon mesh bags (12 cm × 15 cm, mesh size 
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2 mm) with three conditioned cottonwood (Populus) leaves, collected from Rock Creek, and 

then secured with cable ties before being placed into their treatment. Individuals were held for 21 

days in the warm treatments and 28 days in the cold treatments.  

 

Copper exposure  

At the time of collections (July 29th 2019) the daily mean temperature was ~ 19 ºC in the UCFR 

(near Garrison, MT) and ~ 16 ºC in Rock Creek (near Clinton, MT) (USGS). Three initial 

exposure levels were used: control (0 mg/L Cu), a medium (0.5 mg/L Cu), and high (2.0 mg/L 

Cu). Initial exposure levels were ecologically relevant as they were based on concentrations 

measured by the USGS in the UCFR (Table 1). Our medium-level copper exposure was 0.5 

mg/L Cu, which is approximately the 95th percentile of copper from unfiltered water sampled in 

the UCFR between the years of 1984 – 2019 (USGS 2021). A high level of 2 mg/L Cu, and a 

control treatment with no copper added, were also used. A stock solution of copper (1000 mg/L) 

was prepared using copper sulfate (CuSO4) (Sigma-Aldrich, St. Louis, MO) dissolved in 

deionized water. Volumes of stock solution were added to each aquarium filled with 50 L of 

water to achieve the final concentrations listed above. Copper was added to the aquarium four 

hours prior to the addition of insects, leaves, and bags. 

 

Lead exposure 

At the time of collection (September 9th, 2019) the daily mean temperature was ~ 15ºC in the 

UCFR (near Garrison, MT) and ~ 13ºC in Rock Creek (near Clinton, MT) (USGS). Again, three 

ecologically relevant levels of lead were chosen: control (0 mg/L Pb), medium (0.065 mg/L Pb), 

and high (0.5 mg/L Pb; Table 1). A stock solution of lead (1000 mg/L) was prepared using lead 
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acetate (Pb(C2H3O2)2; Sigma-Aldrich, St. Louis, MO) dissolved in deionized water. Volumes of 

stock solution were added to each aquarium filled with 50 L of water to achieve the final 

concentrations (Table 1). Lead was added to the aquarium 4 hours prior to the addition of insects, 

leaves, and bags. 

 

We expected concentrations of metals in the water to peak at the start of the experiment then to 

decline as the metals bound to organic matter (e.g., leaves, biofilms, and insect bodies) and 

adsorbed to the plastic surfaces. Thus, insects could take up metals both across the cuticle and 

via ingested food.  

 

Survival and growth  

We assessed survival on the last day of the experiment, and dead individuals were discarded. 

Growth was calculated directly at the breakdown of experiments by re-weighing each surviving 

nymph (same as above). We calculate growth rate as (final mass – initial mass) / days in 

experiment, which we use as our response variable in our analysis.  

 

Critical thermal maxima 

Critical thermal maximum (CTMAX) of each surviving nymph was measured two days after the 

end of the experiment. Nymphs were transferred back into their mesh bags without a food source 

and held in 15 ºC chlorine-degassed tap water within incubators (I66LLC8; Percival, Perry, IA) 

before CTMAX began. Measurements of CTMAX were carried out on batches of individuals (≤ 24 

nymphs at a time) with two observers monitoring the experiment. Nymphs were held 

individually in coffee filters that were partially submerged (5 cm) in water (15 ºC) for two 
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minutes before temperature ramping began. Water temperature was then ramped continuously 

(0.3 ºC/min) using a programmable temperature controller with a ramp/soak function (SK-

89810-04; Cole-Parmer, Vernon Hills, IL) and circulated around a large cooler using two 

aquarium pumps (600 Aqua Pump; Rio Plus, Tiapei, Tiawan). CTMAX was determined as the 

temperature at which nymphs lost the ability to right themselves after being placed on their backs 

with forceps after every 1 ºC of change (Lutterschmidt & Hutchison 1997, Frakes et al. 2021). 

 

Metal analyses 

Directly following CTMAX experiments, nymphs were gently scrubbed with a small paintbrush 

and rinsed in deionized water to remove adherent debris. They were then placed into 15 ml 

conical tubes and dried for 10 days at 60 ºC in a drying oven (VWR 1525; Sheldon 

Manufacturing Inc., Cornelius, OR), after which they were weighed on a microbalance (± 1 µg; 

MC5; Sartorius, Göttingen, Germany). 

 

Copper and lead levels in individual nymphs were determined using inductively coupled plasma 

mass spectrometry (ICP-MS). Insects were digested overnight in 3 ml of trace metal grade nitric 

acid (Fisher Chemical A509), and the insect-acid mixture was then diluted with 3 ml of 

deionized water and heated to 98 ºC for two hours. Conical tubes were housed in larger 50 ml 

tubes and surrounded with aquarium sand to help conduct heat from the hot-block digester (54-

well Environmental Express SC 154; Cole Palmer, Vernon Hills, IL). After samples had cooled, 

each was aliquoted to 1% nitric acid and sent for ICP-MS analysis. ICP-MS was conducted by 

the Montana Bureau of Mines and Geology’s analytical laboratory at Montana Technological 

University in Butte, MT (iCAP Qc Quadrupole; Thermo Fisher Scientific, Waltham, MA) 
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Initial water concentration of copper and lead in each aquarium was analyzed using an ICP-OES 

(Optima 5300DV; PerkinElmer, Waltham, MA). Water samples were diluted to 10% and 

acidified to 2% before being analyzed (Table 1). Final concentrations of water were sampled on 

the last day of the experiment (Table 1). Water samples were acidified to 3% nitric acid and 

stored in 15 ml conical tubes in a freezer, then directly prior to ICP-MS analysis the water 

samples were diluted to 1% nitric acid.   

 

Leaf samples were collected at the end of the copper experiment. A random number generator 

was used to determine which individuals’ food would be chosen for ICP-MS analysis. Leaf 

material was placed in 15 ml conical tubes and dried for 10 days at 60 ºC in a drying oven then 

weighed on a microbalance (± 1 µg). Dried leaf material was then crushed with an acid-washed 

glass rod before being digested in 6 ml of 50% nitric acid and heated to 98 ºC for two hours.  

 

River mesocosm experiment 

We collected 60 nymphs of P. californica from Rock Creek and then held them in mesocosms at 

four locations (N = 15 per mesocosm) for four weeks (July 15 to August 20, 2020). These 

included three locations on the UCFR: Bear gulch (most downstream) (46.7121841, -

113,3310013), Phosphate (mid-river) (46.5555907, -112.8720703), and Kohrs Bend (most 

upstream) (46.4977712, -112.7410226), as well as a control site on lower Rock Creek 

(46.6717222, -113.67169102) (Fig. 1). After the holding period in the mesocosms, nymphs were 

brought to the University of Montana, and starved at (12 ºC) for 24 hours before CTMAX was 

conducted (see methods for CTMAX above). 
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To avoid the potential spread of whirling disease—caused by Myxobolus cerebralis, a parasite 

that interferes with the nervous systems of salmonids and occurs in Rock Creek—we first held 

the 60 nymphs in chlorine-degassed tap water in an incubator set to 12 ± 3 ºC for 5 days. Water 

was changed three times during the five-day lab acclimation period. Additionally, on the fifth 

day, each nymph was cleaned with a small paintbrush and washed in degassed-tap water before 

being brought to the field. This method was approved by Montana Fish Wildlife and Parks 

(MTFWP permit number: 27-2020).  

 

Mesocosms were custom built from clear Plexiglas cylinders (20-cm interior diameter) cut into 

50-cm lengths. Removable wire-mesh lids (aluminum mesh size = 1 mm) were attached to the 

ends of the cylinders using two large hose clamps, and the cylinders were cable-tied to 

cinderblocks and fitted with a 5 m section of rope. At each site, local sediment, cobbles, and leaf 

litter were added to each mesocosm to provide nymphs with substrate and food. Nymphs were 

then added and both lids were tightly secured before the mesocosms were submerged into riffles 

~70 cm below the surface of the river and oriented parallel to local flows. 

 

Statistical analysis 

Growth and CTMAX were analyzed using linear models, with metal concentration, incubation 

temperature, river of origin, and nymphs’ initial mass as predictors (R Core Team, 2017). 

Survival was modeled using generalized linear models, with metal treatment, temperature 

treatment, river of origin, and initial mass as predictors. The limit of detection on the ICP-MS for 

lead was 0.0002 mg/L, a value that was higher than the concentration of lead found in digests of 
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wild populations of salmonflies from both the UCFR and Rock Creek. For this reason, one-half 

of the limit of detection (0.0001mg/L) was assigned to all surviving nymphs, which were then 

corrected for mass, and used in statistical analysis (see Clarke 1998). The detection limit on the 

ICP-MS for copper was 0.001 mg/L, a value that was lower than concentrations of copper in 

salmonflies from both the UCFR and Rock Creek. 

 

Results 

 

Survival  

The concentration of copper and river of origin both influenced larval survival, while there were 

no detectable effects from lead. Copper exposure level influenced nymphal survival (P < 0.0001) 

where over half of nymphs held in 2.0 mg/L Cu died (Fig. 2). Survival was also influenced by 

river of origin: insects from Rock Creek survived better than did those from the UCFR (P 

<0.001). In addition, nymphs with smaller starting masses died more frequently (P < 0.001). The 

temperature × copper interaction was not a meaningful predictor of survival in the copper 

experiment (P = 0.668; Fig. 2; Supplemental Table 1). In contrast to copper, survival was high 

throughout the lead exposure experiments and lead exposure level did not appear to influence 

survival (P = 0.368; Fig. 2), nor did incubation temperature, river of origin, initial mass, or the 

temperature × lead interaction (Supplemental Table 2).  

 

Growth Rate 

Both copper body burden and body size influenced growth rates. Higher body burdens of copper 

in larvae was associated with reduced growth rates (P < 0.001; Fig.3). Growth rate was also 
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lower for salmonflies with larger initial masses (P = 0.006; Supplemental Fig. 2). Larger Rock 

Creek individuals lost more mass than others (P <0.001) and Rock Creek salmonflies tended to 

grow less than UCFR individuals (P = 0. 002). 

–  

Lead exposure did not significantly reduce rates of nymphal growth (P = 0.196; Fig. 4; 

Supplemental Table 2). Growth rates were highly variable in the lead experiment, where large 

nymphs from the UCFR tended to grow more than those from Rock Creek (P < 0.0001) 

(Supplemental Fig. 3). This may result from an increase in food availability in the lead exposed 

treatments as the acetate bound to Pb(C2H3O2)2 may act as a nutrient promoting the rapid growth 

of biofilms.   

 

Upper Thermal Tolerance (CTMAX) 

Body burdens of copper were a robust predictor of CTMAX (P < 0.0001), such that the CTMAX of 

individuals with the highest levels of copper were about 10 ºC lower compared to those with the 

lowest copper levels (Fig. 5). Temperature also influenced salmonfly CTMAX, where warm-

incubated individuals showed slightly higher CTMAX values than cold acclimated individuals (P 

= 0.018). 

–  

Incubation temperature strongly predicted CTMAX in the lead experiment, such that warm-

incubated individuals showed about a 4 ºC increase in CTMAX (Fig. 5). Lead body burden did not 

influence CTMAX (P = 0.655), though initial mass did (P = 0.002; Supplemental Table 2). 

 

Water and leaf samples 



 

 13 

Observed concentrations of copper and lead in the water were close to that of the expected 

concentrations, (0, 0.5, and 2.0 mg/L Cu, and 0, 0.065, and 0.5 mg/L Pb; Table 1). Over the 

duration of the experiment, however, the dissolved concentration of metals in the water 

decreased by about 98% in the copper experiments and ~99.8% in the lead experiments, as 

metals were taken up by other solids in the experimental aquaria (Table 1). Levels of copper in 

the leaves were strongly influenced by exposure levels (P < 0.0001) but did not differ between 

temperature treatments (P = 0.847; Supplemental Fig. 4). Leaf samples were not obtained from 

the lead experiment.  

 

Mesocosm experiment 

The values of CTMAX of salmonfly nymphs held in the UCFR were measurably higher than those 

held in Rock Creek (P = 0.0003) but there was no difference detected among sites on the UCFR 

(P = 0.4612; Fig. 6). This increase in CTMAX is mirrored by a ~3 ºC difference in daily mean 

river temperatures between the UCFR (mean = 18.58 ºC) and Rock Creek (mean = 15.68 ºC) 

while the mesocosms were deployed (Fig. 6). 

 

Discussion 

 

Many populations of aquatic insects, which comprise 70 to 90% of freshwater biodiversity 

(Merritt et al. 2008), are being threatened by increasing heavy metal pollution (Zhou et al. 2020) 

and warming (Whitlock et al. 2017, IPCC 2021, Albert et al. 2021), and these two factors may 

interact to affect organismal performance (Sokolova & Lannig 2008, Moe et al. 2013). Here we 

examined how giant salmonfly nymphs (Plecoptera: Pteronarcys californica) perform during 
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exposure to copper or lead at two water temperatures. Copper is a biologically essential element, 

though it can become toxic at high concentrations. By contrast, lead has no biological utility and 

may be toxic even at low levels (US EPA 2007). Somewhat surprisingly, salmonflies responded 

very differently after exposure to copper than lead; copper reduced all three performance metrics 

(survival, growth, and CTMAX) whereas lead had no direct effect on survival, growth or CTMAX.   

 

Heavy metal bioaccumulation may increase in warmer waters, as ectotherm metabolic activity is 

closely tied to temperature and increased biological rates can further expose organisms to metals 

thereby exacerbating their negative effects (Lannig et al. 2006, Sokolova & Lannig 2008, Moe et 

al. 2013).  We did not find evidence of higher accumulation of metals in warm-acclimated 

salmonflies compared to those that were cold-acclimated. This may be due to multiple factors: 

The aqueous metal concentrations decreased from the start as they bound to other solids in the 

aquaria, warm-acclimated individuals may have expelled metals during the experiment, or many 

of the warm-acclimated salmonflies died in the high levels of copper (Fig. 2), potentially due to 

increased exposure to copper at high temperature. 

 

Another important interaction between heavy metals and temperature is whether the 

accumulation of heavy metals impairs performance at high temperatures. We found that 

salmonflies exposed to copper showed lower upper thermal limits. CTMAX values of nymphs that 

accumulated the highest amounts of copper were about 10 ºC lower than those of control nymphs 

(Fig. 5). In the future, populations may approach their upper thermal limits more frequently and 

our results suggest that those from copper polluted habitats may be more at risk to climate 

change than others. 
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An important way in which aquatic insects may mitigate the stress of warming is via adaptive 

plasticity in their upper thermal limits (Huey et al. 1999, Gunderson & Stillman 2015). However, 

adaptive plasticity, which allows aquatic insects to sense thermal ques from their environment 

and adjust their physiology to match, may be hindered in metal-polluted habitats.  To assess the 

plasticity of CTMAX in a metal-polluted habitat, we held salmonfly nymphs in mesocosms in 

three locations along the UCFR and compared their upper thermal limits to those held in Rock 

Creek (Fig.1). In addition to high metal pollution, the UCFR is about 3ºC warmer in the summer 

than Rock Creek (Fig. 6). We found that, over a short period of time, salmonflies were seemingly 

unaffected by the heavy metal pollution in the UCFR and were able to increase their CTMAX 

(Fig.6). A similar result came from the lead exposure experiments, where lead had no detectable 

effect on CTMAX, but salmonflies adjusted their CTMAX based on temperature (Fig. 5). Thus, 

plasticity may partially mitigate the threat of future higher water temperatures to aquatic insects 

(Gunderson & Stillman 2015). Our copper-exposure experiment, however, provided troubling 

evidence that some heavy metals can reduce the utility of temperature-induced plasticity and can 

directly reduce upper thermal limits (Fig. 5).  

 

One outstanding question is the mechanism that causes CTMAX to decrease following copper 

exposure. Copper may depress CTMAX by binding to and damaging respiratory surfaces, thereby 

inhibiting oxygen uptake (Spicer &Weber 1991, Nonnotte et al. 1993, Grosell & Wood 2002, 

Buchwalter & Luoma 2005) In salmonflies, these surfaces are the tracheal gills that protrude 

from the ventral thorax and ventral abdomen (Supplemental Fig. 5). Such a mechanism of 

toxicity would be consistent with known mechanistic links between oxygen supply and CTMAX in 
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aquatic insects (Verberk et al. 2016, Pörtner 2017, Frakes et al. 2021). Another possibility is that 

copper exposure increases oxygen demand (Kapoor & Griffiths 1976), which could lead to 

mismatches between oxygen supply and demand at lower temperatures (Verberk et al. 2016, 

Pörtner 2017). 

 

We found mixed evidence regarding population specific responses to combinations of metal and 

temperature exposure. On the one hand, we found that salmonflies from the UCFR died at higher 

rates in copper treatments compared to those from Rock Creek (Fig. 2). On the other hand, 

salmonflies from the UCFR grew faster than Rock Creek salmonflies when exposed to either 

copper or lead than Rock Creek individuals (Figs. 3 & 4). This result may be partially attributed 

to the complexity in salmonfly life history: Nymphal salmonflies go through periods of high 

growth and periods of dormancy (Townsend & Pritchard 1998), which likely occur at different 

times between rivers with different seasonal characteristics. Therefore, salmonflies from the 

UCFR may have been entering a phase of rapid growth during the lead exposure experiment, 

while Rock Creek salmonflies were not. 

Summary 

Heavy metal pollution in freshwater ecosystems is increasing in many localities globally, with 

potentially negative consequences for native aquatic taxa. Understanding and predicting these 

consequences is difficult: threats typically arise from multiple metals simultaneously, which may 

enter aquatic organisms via multiple pathways, affect them in species-specific ways, and interact 

in complex ways with abiotic environmental factors. In this experiment, we examined 

interactions between two common heavy metal toxicants (copper and lead) and temperature. We 

show that copper reduces the survival, growth, and upper thermal maxima of an important 
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stonefly species in the American West. These results suggest that additional effort should be 

directed toward understanding interactions among temperature, metals, and other abiotic factors.  
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Tables 

Table 1: Expected and measured concentrations of copper (Cu) and lead (Pb) in spiked 

experimental water samples. BDL = below detection limit of the ICP-MS (0.001 mg/L Cu & 

0.0002 mg/L Pb). Initial measured concentrations were determined by analyzing stock solutions 

of copper and lead using inductively coupled plasma optical emission spectroscopy (ICP-OES). 

Final measured concentrations of copper and lead in water samples, taken on the last day of the 

experiment, were analyzed using ICP-MS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Water Samples [Expected] (mg /L) [Initial Measured] (mg/L) 
[Final Measured] 

(mg/L) 

Cu exposure: 

   

Control 0 0.0015 ± 0.0001 0.0013 ± 0.0002 

Medium 0.5 0.50575 ± 0.0633 0.0081 ± 0.0024 

High 2 2.023 ± 0.2533 0.0362 ± 0.0038 

Pb exposure:    

Control 0 BDL BDL 

Medium 0.065 0.0645 ± 0.00335 BDL 

High 0.5 0.4965 ± 0.02575 0.0011 ± 0.0005 
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Figure captions 

 

Figure 1: Map of Western Montana, USA, showing the Clark fork River and Rock Creek with 

salmonfly collection sites (Rock Creek and Phosphate) and mesocosm deployment sites (black 

dots). Leaflet Map – source: Esri, I-Cubed, USDA, USGS, AEX, GeoEye, Getmapping, Aerogrid, 

IGN, IGP, UPR-EGP, and the GIS User Community. 
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Figure 2: The proportion of salmonfly nymphs that survived in copper (left) and lead (right) 

exposure experiments and under hot (top) and cold (bottom) incubation regimes.  
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Figure 3: Growth rate as a function of copper concentration (determined by ICP-MS) with initial 

mass of each nymph indicated by color. 
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Figure 4: Growth rate as a function of lead concentration with color gradient indicating the 

nymph’s initial mass (g). Nymphs from the control exposure treatment (0 mg/L Pb) had lead 

concentrations below the detection limit (<0.0002 μg/L Pb) of the ICP-MS and are plotted 

separately and horizontally jittered.  
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Figure 5: Critical thermal maximum (CTMAX) as a function of the concentrations of copper (left) 

and lead (right) in individual nymphs. Nymphs below the detection limit of the ICP-MS 

(<0.0002 μg/L Pb) are plotted separately. 
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Figure 6: (Left): Daily mean river temperatures from the UCFR near Garrison, MT, and Rock 

Creek near Clinton, MT, from July 15th – August 12th, 2020 while nymphs were in the mesocosm 

experiment. Data were obtained from the USGS. (Right) Critical thermal maximum (CTMAX) of 

salmonfly nymphs collected from Rock Creek that were held in mesocosms at four locations: 

Rock Creek (control), and three locations on the Upper Clark Fork River (Bear Gulch, 

Phosphate, and Kohrs Bend, MT). 
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