
University of Montana University of Montana 

ScholarWorks at University of Montana ScholarWorks at University of Montana 

University of Montana Course Syllabi Open Educational Resources (OER) 

Fall 9-1-2021 

CSCI 232.00: Intermediate Data Structures and Algorithms CSCI 232.00: Intermediate Data Structures and Algorithms 

Douglas John Brinkerhoff 
University of Montana, Missoula, douglas1.brinkerhoff@umontana.edu 

Follow this and additional works at: https://scholarworks.umt.edu/syllabi 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Brinkerhoff, Douglas John, "CSCI 232.00: Intermediate Data Structures and Algorithms" (2021). University 
of Montana Course Syllabi. 12188. 
https://scholarworks.umt.edu/syllabi/12188 

This Syllabus is brought to you for free and open access by the Open Educational Resources (OER) at 
ScholarWorks at University of Montana. It has been accepted for inclusion in University of Montana Course Syllabi 
by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact 
scholarworks@mso.umt.edu. 

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/syllabi
https://scholarworks.umt.edu/open_educational_resources
https://scholarworks.umt.edu/syllabi?utm_source=scholarworks.umt.edu%2Fsyllabi%2F12188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/syllabi/12188?utm_source=scholarworks.umt.edu%2Fsyllabi%2F12188&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu


            
    

CSCI  232:  Data  Structures  and  Algorithms  –  Fall  2021 

Course  information 
Meeting time/location: 
Lecture: M/W 10:00-10:50AM SS 362 
Labs: (one of) Th 11:00-12:50 (section 1, SS344) 

F 10:00-11:50 (section 2, SS362) 

Course material/submissions/grades are in Moodle (http://umonline.umt.edu) 

Instructor  information 
Instructor: Doug Brinkerhoff1 

Office: Social Science 403 
E-mail: douglas1.brinkerhoff@umontana.edu 
Phone: 406-243-4597 
Office Hours: Mon 11:00–1:00 

Wed 2:00–4:00 
E-mail for appointment 

Teaching Assistant: Tim Anderson 
E-mail: tim.anderson@umontana.edu 
Office Hours: TBD 

Course  Objectives 
The purpose of this course is to introduce you to essential data structures and the 
algorithms that accompany them. These fundamentals will serve as valuable building 
blocks for the remainder of your career as a computer scientist. We emphasize 
understanding of both (i) the methods for implementing fundamental data structures and 
algorithms and (ii) the ways in which these data structures algorithms can be used in 
code you will write for the remainder of your career. In this course, you will: 

● Become familiar with fundamental data structures like stacks, queues, priority 
queues, associative arrays / hashes, and graphs (e.g. search trees and perhaps 
tries) 

● Become familiar with fundamental algorithms based on these data structures, 
including sorting, clustering, graph search, and string search 

● Improve your software development skills, by implementing these data structures 
and algorithms in Java 

1 The course material (including this syllabus) is based heavily on previous iterations of CSCI232 
developed by Dr. Travis Wheeler. 

http://umonline.umt.edu
mailto:douglas1.brinkerhoff@umontana.edu
mailto:tim.anderson@umontana.edu


● Become familiar with run-time and space analysis, as applied to algorithm 
development 

Course  Requirements 
Prerequisite: CSCI 136/152 
Corequisite: M225 (Discrete Math) or M307 (Abstract Math) 
Required textbook: 
Algorithms Fourth Edition 
By Robert Sedgewick and Kevin Wayne 
Booksite: http://algs4.cs.princeton.edu/ 

Flipped  classroom 
Contemporary research in scientific teaching has shown that lectures are a relatively 
ineffective means of information transmission, in the sense that if I stand up and talk for 
an hour, you are unlikely to retain that information in the long term. As such, we take a 
different approach in this class, referred to as a “flipped classroom.” You will watch 
video lectures online before class, and come to class with this material already fresh in 
your mind. Our in-person class time will then be devoted to discussion, individual and 
group problem solving, and instructor-led clarification of some of the complex ideas in 
the material. While demonstrably more effective, this approach places the following 
burden on you: 

● Before class, watch the recorded lectures and skim the assigned pages in the 
book. I will assume that you have done so. It will be apparent if you haven’t 
(Why? Because you’ll be expected to communicate on these ideas with me and 
your classmates. Not having a fully crystallized understanding of the material is 
expected and 100% okay.  Not having engaged with it at all is not) 

● there will be quizzes in moodle due before class that you are expected to 
complete. 

After class is complete, you should 
● Review any of the lecture videos that remain confusing (perhaps formulate 

questions for office hours?) 
● Read the text in detail 

Video  Lectures 
Recorded lectures are available within these Coursera courses: 
Part 1: https://www.coursera.org/learn/algorithms-part1 
Part 2: https://www.coursera.org/learn/algorithms-part2 
The expected viewing schedule can be found on Moodle. Note that you’ll need to 
“register” for the Coursera course to get access to the videos. 

http://algs4.cs.princeton.edu/
https://www.coursera.org/learn/algorithms-part1
https://www.coursera.org/learn/algorithms-part2


Lab 
Most weeks, you will be expected to attend a 2 hour lab section. Specific activities will 
vary from week to week, but in general you will be expected to implement and 
experiment with some basic data structure or approach that we have discussed in class. 
These lab sessions are intended to give you hands-on experience with the structures 
we care about, and will lay the foundation necessary to succeed in written and 
programming assignments. You will be expected to submit the results of your in-lab 
work, usually with a brief writeup. 

Topics 
Below is a list of topics I expect to cover, in rough chronological order and subject to 
change. Please consult Moodle for an up-to-date schedule. 

● Fundamentals (Objects, data types, APIs, Analysis, Stacks, Queues) 
● Sorting (Elementary, Mergesort, Quicksort, Priority Queues) 
● Searching (Symbol Tables, Search trees, Hash tables) 
● Graphs (Directed and undirected, BFS/DFS, Spanning trees, Shortest paths) 
● Strings (Tries, Suffix arrays) 
● Compression (Huffman codes) 

Grading 
Assignments will include both problem sets (questions requiring written answers) and 
programming assignments. 

Problem sets: 25% 
Programming: 25% 
Labs: 15% 
Exams: 25% 
Quizzes: 10% 

Adaptive grade thresholds (The “curve”) 
You may have heard that the grades assigned in this course for assignments and 
exams are often quite low. I account for this, and set grade cutoffs accordingly. Cutoffs 
are usually lower than the typical 90/80/70 splits. I will provide an update with 
approximate cutoffs as the semester progresses. 

Exam Schedule 
There will be two mid-term exams contributing equally to the total 25% exam 
component of the course grade. The exam will be in the form of a one-on-one meeting 
with me, where I will ask you to expound upon various topics related to the course 
materials. 



Midterm dates (approximate): 
● during the week of Oct 04-Oct 08 
● during the week of Nov 15-Nov 19 

Cheating 
Academic dishonesty (including plagiarism) will not be tolerated. Cheating hurts all 
involved: 

● It devalues the grades earned by others in the class, and the degree from our 
program 

● It leaves you without the skills you’ve asked (and paid) me to help you gain 

Consult the university’s student conduct code for more details. I will follow the 
guidelines given there. I will seek out the maximum allowable penalty for any academic 
dishonesty that occurs in this course. If you have questions about what constitutes 
acceptable use of resources, I encourage you to reach out to me – I will always respect 
your attempts to understand the ethics of the situation. With specific regard to answers 
appearing online, I’m not naïve enough to think these don’t exist, and will be on the 
lookout for plagiarized submissions. Also, don’t copy solutions from your classmates. I 
retain the right to question you about the material turned in. If it is evident that you don’t 
understand it, I will reduce your score, and may treat your submission as an instance of 
cheating. 

Rather than cheat, I encourage you to seek help from me or Tim. You will be pleasantly 
surprised by how much you (and how quickly) you can legitimately understand a topic 
with a bit of careful conversation. Throughout the course, you are also encouraged to 
work together in small groups. This is because the best way to understand the 
subtleties of the homework problems is to talk (argue?) about the answers. Read below 
for a few examples of how I would like you to interact with your classmates. 

Working together (problem sets) 
I expect that most of you will end up talking about class assignments with other students 
– that’s good! However, each of you should work on all of the problems independently, 
and not just sub-divide the questions among group members. You are welcome to 
discuss problems and collectively devise solutions at the conceptual level, but you 
should not share the way you’ve written up your solution – each of you should 
independently write up a separate submission. Do not write your solutions up then 
share them with someone else. Though the ideas behind your solutions may be similar, 
the text should be your own. 



 

Working together (programming assignments) 
I encourage discussion with others regarding programming assignments, as well. As 
with problem sets, these should be high-level discussions. Code should be written 
independently. If I suspect copying or plagiarism, I will ask you to explain each piece of 
the code to me, possibly resulting in a reduced grade or removal from class. 

Working together (labs) 
The lab sessions are where you have direct, hands-on exposure to implementing and 
using simple algorithms and the data structures they depend on. In this capacity, I want 
you to talk to each other, discussing the most minute details. This can (and should) 
involve looking at the code of your classmates. The goal is that you learn the material 
and share what you’ve learned with others, and I’m not worried about plagiarism here. 
The exception is that when a lab asks that you write something about what you’ve done, 
this should be in your own words! 

Late  policy 
Submissions for programming and homework assignments are due at the beginning of 
class. Late submissions will not be accepted. Every student will get one free extension 
on an assignment (programming or homework) for up to a week. You do not have to ask 
for this – just write that you are using your free extension when you turn it in. Don’t 
waste this extension or feel obligated to use it, as another extension will be given only in 
exceptional circumstances. 

Attendance 
Attendance is required. You are responsible for all material presented in class, and 
some of that material is not covered in the textbook. 

Computers 
You may develop your programs on any machine that you like: we encourage you to 
use your own equipment. In the first lab, we will provide instructions for setting up a 
Java and terminal programming environment under Windows, Mac OS X, and Linux. 
Windows laptops will be available during lab sections. 

Disabilities 
Students with disabilities are encouraged to meet with me to discuss any 
accommodations they require. 

Personal contact 



Don’t be afraid to visit my office hours, or stop by my office to ask questions or say 
hello. In fact, as your first assignment, I require that you do so at least once in the first 
four weeks of class. Expect to spend 15 minutes. 


	CSCI 232.00: Intermediate Data Structures and Algorithms
	Let us know how access to this document benefits you.
	Recommended Citation

	CSCI 232.00: Data Structures and Algorithms

