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ABSTRACT 
 

Epstein, Margaret, M.S., Summer 2022       

                                                                          Forestry 

 

LiDAR-LANDSAT COVARIANCE FOR PREDICTING CANOPY FUELS 

Managing wildfires in the western United States is becoming increasingly complex. 

Visualizing and quantifying canopy structures allows fire  managers to both plan for fire and 

track recovery. Light detecting and ranging, or LiDAR can measure forests in three dimensions, 

but has limited spatial and temporal coverage. LiDAR-Landsat covariance uses machine learning 

to fill in the spatial and temporal gaps of LiDAR coverage with supplemental Landsat imagery. 

However, in order to capture real forest dynamics, a model needs to be stable enough to detect 

long term trends, sensitive to episodic disturbance, and general enough to work on multiple 

landcovers. The purpose of this research is to refine the methodology behind LiDAR-Landsat 

covariance and assess if these predictions can yield stable and ecologically sensible time series to 

track forest fire recovery over time. Gradient boosted machine models (GBMs) were built to 

predict canopy cover, height, and base height. Then, they were tested on a series of validation 

sites in order to quantify the spatial and temporal sources of error associated with these models. 

Finally, the models were used to predict the trajectories of canopy cover, height, and base height 

on 164 fire scars in Montana, Idaho and Wyoming over the course of 36 years. The models were 

sensitive to moderate and high severity disturbance, both on an incident wide and pixel by pixel 

basis. Overall model R2 values were 0.89 for canopy cover, 0.84 for height, and 0.88 for base 

height. Year to year variability in canopy cover on validation sites was 2.3%. Height had more 

variability due to a sensor artifact from the transition from Landsat 5 to Landsat 8. On the Lost 

Fire the model found high severity fire corresponded with greater canopy fuel losses on a pixel-

wise basis. The models also detected canopy recovery, and found four distinct trajectories in 

which burned sites recover from disturbance. Seventy-seven percent of sites fully recovered 

canopy cover to pre-fire conditions within the 36-year time series. Further refinement of GBM-

based LiDAR-Landsat covariance can increase the sensitivity to smaller disturbances and reduce 

the impact of model error on performance. 
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INTRODUCTION 

 
Fire is a natural and necessary force on western United States landscapes. However, 

anthropogenic climate change and altered forest structures are creating unprecedented fire 

conditions (Abatzoglou et al., 2021; Hagmann et al., 2021a; Hanan et al., 2021). Fire 

management requires increasingly powerful decision-making tools to match the complexity of 

the natural and human factors in the fire environment (Noonan-Wright et al., 2011). Tools that 

improve the ability to quickly and accurately predict fuel type and distribution are especially 

relevant for forecasting fire behavior, planning fuel treatments, and better understanding 

landscape change. 

 Fuel, weather, and topography are the drivers of fire behavior at the scale of individual 

fires (McGranahan and Wonkka, 2018). Fuel is the flammable material in a wildland 

environment, and is the only element of fire behavior that can be directly manipulated through 

forest management. Fuel models depict the quantity and arrangement of flammable material on 

the landscape. They are also the substrate on which fire behavior modeling is performed (Reeves 

et al., 2006) which then informs operational decision making (Noonan-Wright et al., 2011).  The 

horizontal distribution of fuels controls canopy connectivity and thus fire’s ability to spread 

between trees or stands. The vertical distribution of fuels controls the ease at which a fire can 

move from the ground to the canopy. Increased fuel loading and ladder fuel components are 

associated with high severity fire (Hagmann et al., 2021b; Skowronski et al., 2020) and 

subsequent slower vegetation recovery time (Bright et al., 2019).  

Over the past few years, technological and computational improvements have allowed for 

more spatially and temporally detailed canopy fuel models. Light detecting and ranging (LiDAR) 
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is an active remote sensing technique that is increasingly being used for detailed forest 

observations (Coops et al., 2021; Guo et al., 2021). A laser is mounted and fired from a drone, 

airplane, or fixed stand. Then, the LiDAR sensor measures the time it takes for the emitted 

energy to bounce off the surrounding environment and return to the sensor. This method yields a 

detailed three-dimensional point cloud that can then be summarized into two dimensional rasters 

representing canopy fuel characteristics such as cover, height, or base height. In this thesis, 

canopy fuels refers to canopy cover, height, and base height together. 

These LiDAR-derived canopy fuel metrics are important both ecologically and in fire 

behavior modeling. Canopy cover is the proportion of ground covered by the projection of tree 

canopies. Closed canopies create cooler, moister micro-climates that are somewhat buffered 

from fluctuations in air temperature (Davis et al., 2019). Closed canopies are associated with 

higher fuel loads (D’Este et al., 2021) and subsequently more severe fire (Hagmann et al., 

2021b). Height is the distance from the ground to the top of the tree crown. Base height is the 

distance between the ground and the base of the canopy. Together, height and base height 

describe the vertical distribution of fuels in the canopy.  Base height drives crown fire initiation 

because lower base heights require less energy and subsequently shorter flame lengths to move 

from the ground into tree crowns (Wagner, 1977).  

LiDAR is particularly powerful for these metrics because it has high spatial resolution 

and is the best available sensor for measuring in the vertical plane (Hyde et al., 2006). However, 

LiDAR data is expensive and time consuming to acquire. These data acquisitions tend to have 

small spatial footprints because they are limited by the amount of ground the sensor can cover.  

Additionally, LiDAR datasets are static and only reflect the landscape at the time of acquisition. 

They become less relevant for vegetation assessment if they are not updated as the landscape 
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changes through time or succession. In contrast, traditional optical remote sensors provide global 

coverage and updates on a predictable cycle (16 days for Landsat). Landsat images are free and 

publicly available. But, Landsat does not measure directly in the vertical domain. Machine 

learning can draw upon both kinds of sensors to create fuel predictions with the spatial and 

temporal coverage of Landsat and three-dimensional measurements of LiDAR.  

LiDAR-Landsat covariance is the process of identifying exploitable relationships 

between Landsat and LiDAR observations on the same pixels. This method can be used to 

extrapolate LiDAR-derived metrics beyond their original geographic footprints (Hudak et al., 

2002; Matasci et al., 2018; Wilkes et al., 2015) or to update older LiDAR data without collecting 

another acquisition (Matasci et al., 2018). It has been successfully used to predict canopy cover 

(Matasci et al., 2018), height (Hudak et al., 2002; Pascual et al., 2010), and biomass 

(Pflugmacher et al., 2014).   

 Using LiDAR-Landsat covariance for fuels mapping has several advantages over 

existing methodologies such as the one used by LANDFIRE.  LANDFIRE is an interagency data 

clearinghouse designed to create and provide raster datasets for wildland fire suppression and 

fuels planning.  It includes national fuel predictions and is ubiquitous on wildfires across the 

United States. LiDAR-Landsat covariance has significantly outperformed LANDFIRE fuel 

models for predicting cover, height and base height (Moran et al., 2020), is faster to update after 

a disturbance, and is adept at predicting forward and backward in time. So, there is strong 

potential to outperform the current fuel products in use on wildland fires through LiDAR-

Landsat covariance, both in accuracy of predictions and updating speed.  

However, successful forest time series of forest attributes need to be stable enough to 

detect subtle, long term trends, yet also sensitive to episodic disturbance. This combination of 
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constraints is a challenging barrier to integrating machine learning into ecological applications. 

Despite the promise of the LiDAR-Landsat covariance method, all machine learning techniques 

have inherent error associated with them. Understanding the nature of these errors is critical to 

applying LiDAR-Landsat covariance to natural systems. Additionally, LiDAR-Landsat 

covariance tends to perform best on sites that are ecologically or spectrally similar to the sites the 

model was trained upon. So, the inherent variability within the predictions is often greater than 

the year to year change on the landscape, potentially leading to noisy or uninterpretable time 

series. The relative contributions of these spatial and temporal sources of error have not been 

explicitly explored.  

The purpose of this thesis is to build upon previous work in LiDAR-Landsat covariance 

to quantify spatial and temporal errors and to determine the viability of this method for 

predicting canopy structures through time.  

OBJECTIVES 

1) To refine the methodology of  Moran et al.  (2020) to model canopy fuel using 

Landsat-LiDAR covariance and produce fuel metrics within Montana, Idaho, and 

Wyoming across a 36-year time period.  

 

2) To assess the quality of predicted canopy fuel attributes, including the contributions 

of space and time in model prediction variability.  

 

3) To evaluate changes in forest canopy fuels on burned landscapes from 1985 to 2021 

as sites recover from wildfire.  
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METHODS 

There are three phases to this project (Figure 1). Each phase corresponds to one of the 

above objectives. The first is to develop machine learning models to predict canopy cover, 

height, and base height from a series of Landsat and topographical indices. The second is to 

validate these models. The third phase is to apply the model predictions to a series of burned 

sites to track how canopy fuels recover over time. 

  

Figure 1: Workflow by objective.  
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MACHINE LEARNING FRAMEWORK 

This project utilizes gradient boosted machine learning (GBM) to predict canopy fuel 

characteristics. Three separate GBM models were built to predict canopy cover, height, and base 

height respectively. The goal of the machine learning process was to teach the model to predict 

LiDAR-derived canopy metrics in areas where LiDAR does not exist.   

 GBM is a supervised machine learning (ML) method that iterates through a series of 

regression or classification trees and improves as it builds more trees. At each node in a tree, data 

is partitioned into groups based on some threshold value in the features. Eventually the data is 

sorted into smaller and smaller groups as the tree branches further. In this case, the regression 

trees are used to predict canopy cover, height, and base height based on Landsat-derived 

characteristics of the sites.  

 GBM is an ensemble method where final predictions are drawn from a composite of 

multiple regression trees. Trees are boosted by combining multiple weak learners into a single, 

better performing tree. However, unlike traditional decision-tree methods such as random forest, 

the trees are built sequentially, and the model improves relative to a loss function between each 

tree (Malohlava and Candel, 2021). The model gradient refers to progress along the loss 

function. The model is only allowed to move in a positive direction along the gradient. This is 

powerful because over several iterations the model will learn to create more effective ensembles 

of trees for the machine learning task, as measured by the loss function. The canopy cover, 

height, and base height gradients were calculated in respect to root mean square error (RMSE).  

Parameters are metrics that are innate to the data, while hyperparameters are controls on 

the machine learning process that can be adjusted by the user. The objective of model tuning in 
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this instance, is to create a model that is sensitive to change in canopy conditions without 

overfitting to specific ecosystems or forest structures. Several hyperparameters were manipulated 

over the course of model tuning for this objective. Tree depth controls how many nodes are 

allowed in each decision tree, and is the single biggest control on model performance. Tree depth 

and number of trees together dictate the degree of nuance the model can detect. Overfit trees 

perform worse on novel data that they were not exposed to in training (Garcia Leiva et al., 2019) 

and decision tree-based systems can be prone to overfitting. Small ensembles of deep trees are 

more closely fit to the training data than big ensembles of shallow trees. Avoiding overfitting is 

important in this application because overfit trees will perform worse on new landscapes or 

landscapes that have been altered by disturbance or succession.  

Cartesian grid searches are the process of testing all possible combinations from a list of 

hyperparameters. Two grid searches were used for model tuning. First, a preliminary grid tested 

several tree depths while holding all other hyperparameters constant. This grid search was 

performed first because tree depth has the single biggest impact on model performance of any 

user-defined control. The number of trees in the ensemble was not limited to encourage the 

machine to build a shallow forest of many trees. Then, once the optimal tree depth was defined, a 

second grid search was performed across learn rate, sample rate, and column sample rate to find 

the best performing overall model. The two-step approach is a systematic way of choosing every 

hyperparameter and parameter in the model with the least possible number of grid searches.  

LIDAR 
 

LiDAR-derived canopy cover, height, and base height observations served as the 

response variable in the model training process. The models were trained on a collection of ten 
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LiDAR acquisitions from across Montana and Northern Idaho. The LiDAR acquisitions were 

chosen to represent a wide variety of biomes across the Northern Rockies (Table 1). Training on 

a variety of ecosystems and forest types prevents the model from becoming overfit to a specific 

type of forest.  Each LiDAR acquisition met the requirements for the US Geological Survey’s 

Quality Level 1, which includes 8 returns or more per square meter. 

 

Figure 2: Map of training sites with year of LiDAR acquisition  
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Each LiDAR dataset was initially represented in a three-dimensional point cloud of XYZ 

values. Each cloud was then indexed using LasTools. The indexed point clouds were processed 

to 30-meter resolution using the R package LidR. The processing resolution was chosen to match 

the Landsat satellite imagery. The following definitions of height, cover, and base height were 

used to process all 10 acquisitions. 

 

Site 
Acquisition 

Year Hectares Site Description: 

Blackfoot-
Swan 2014-2015 73055 

Multi-piece LiDAR acquisition collected over two years. 
110 miles north to south,  covering most of the Blackfoot-
Swan valley and into the Helena National Forest.  

Carter 2018 14184 
40 miles east of Broadus, Montana in Carter County.  
Originally collected in a survey of sage grouse habitat.  

Cascade 2020 29426 

Two-piece LiDAR acquisition covering Cascade County, 
Montana.  
Includes Great Falls and the surrounding foothills.  

Clear Creek 2011 
 

1983 
Nez Perce-Clearwater National Forest. 15 miles southeast 
of Kooskia, Idaho.  

Daly Gold 2010 4374 

10 miles east of Hamilton, Montana. Bounded by the 
Bitterroot River to the North and 
 Daly Creek to the South.  

Lincoln 2020 36299 

Three swaths of LiDAR acquired in Lincoln County, 
Montana.  
The north acquisition boundary is the Canadian border and 
the west edge is the Idaho border. Over 90% of the 
acquisition falls on the Salish-Kootenai National Forest.  

Phillips 2018 4681 11 miles south of Malta, Montana. 

Powell 2011 13404 

Nez Perce-Clearwater National Forest. Bounded on the 
east by the Montana/Idaho state line. 
 Partially bounded on the South by the Lochsa River.  

Slate 2009 33396 

Nez Perce-Clearwater National Forest. 24 miles south of 
Grangeville, ID.  
Transected east/west by Slate Creek.  

Tenderfoot 2005 11604 
Helena-Lewis and Clark National Forest. 3 miles west of 
Neihart, Montana.  

Table 1: LiDAR acquisitions used for model training 

1

0. 
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• Height is the 99th percentile of Z values greater than 2 meters within a pixel 

 

• Cover is the sum of all Z values greater than 2 meters divided by the total number 

of returns*100 

 

• Base height is the mean of all Z values greater than two meters minus the standard  

deviation of all Z values greater than two meters. There are multiple methods for 

calculating base height from LiDAR point clouds, including 1st percentile, ½ of 

height, and 25th percentile, and the value of the lowest non-ground point. Mean-

SD was chosen for this application because it has previously outperformed other 

metrics in similar forests (Peterson et al., 2015). 

 

 Nonsensical values were removed from the LiDAR sets prior to training. Any value less 

than zero was set to zero. Canopy cover values greater than 100% were set to 100. Height and 

base height values greater than 70 meters were removed from the set. Base height values greater 

than 90% of the of the height in the same pixel were removed from the set.  

 

 

 

LANDSAT  
 

  Landsat is the predictor variable in model training, and also the model input when 

predicting beyond the spatial or temporal footprint of an existing LiDAR acquisition. The study 

period stretches over 36 years and three iterations of Landsat sensors. The time period was 

determined based on the availability of Landsat 5, 7, and 8 imageries. Landsat 8 was used from 
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2013 to 2020, Landsat 5-7 composites were used in 2012, and Landsat 5 alone was used from 

1985 to 2012. Landsat 5-7 composites were used in 2012 rather than Landsat 7 alone to avoid the 

effects of the scan line corrector failure on the Landsat 7 satellite, which causes striping in the 

imagery.  

Landsat 8 has higher radiometric resolution and spectrally narrower bands than previous 

Landsat iterations (Flood 2014; Roy et al. 2016). This initially caused disjointed time series, as 

the model tended to underpredict forest characteristics in the years collected by Landsat 8. Two 

separate methods were used to address this issue. First, linear regression was used to transform 

Landsat 8 raw channel data to match Landsat 7 and 5. Landsat 8 was transformed to Landsat 7 

instead of vice versa because most of the training data comes from Landsat 5 and 7. The 

transformation methodology and linear regression coefficients came from Roy et. al (2016). 

Because the Landsat 8 bands are spectrally narrower, the linear transformations presented by 

Roy are imperfect. So, the GBM was allowed to know which sensor a given pixel was acquired 

from so it could adjust for sensor differences internally.  

All Landsat pre-processing and compositing was done in Google Earth Engine (GEE). 

The Landsat 5 and Landsat 7 Level 2 Collection 2 Tier 1 surface reflectance image collections 

were used from 1985 to 2012. The Landsat 8 Level 2 Collection 2 Tier 1 was used from 2013 to 

2021. Each image collection was first filtered to only include images from May 1st to October 1st 

of the given year, in order to capture the full scope of vegetation growth while minimizing the 

impacts of snow and ice on the imagery. The QA_PIXEL band was used to identify pixels with 

clouds, cloud shadows, snow, ice and terrain occlusion, and the confidence that those 

unfavorable conditions exist. This band was used to select and mask pixels that were unfit for 

analysis. Any pixel with terrain occlusion was removed. Any pixel with a medium or high 
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confidence of clouds, shadow, or snow and ice was removed.  Since the Landsat series covers the 

earth on a 16-day cycle, most places had multiple Landsat images within the growing season. 

Compositing is the process of summarizing multiple Landsat images into a single final image on 

a pixel by pixel basis. Two composite images were created for each year. One depicts the median 

pixel value of all images in the composite, and one depicts the maximum. Each image has 5 

bands: normalized difference vegetation index (NDVI), normalized burn ratio (NBR), and 

Tassled Cap brightness, greenness, and wetness. NDVI and NBR are both normalized ratios of 

specific bands. NDVI includes near infrared and red bands, whereas NBR includes the near 

infrared and shortwave infrared bands. Tassled-Cap indices are derived from a principal 

component analysis (PCA) process, where many dimensions of spectral information are 

summarized along three axes of brightness, greenness, and wetness.  

These five indices are useful because they are well understood in remote sensing and 

more intuitive to visualize than raw spectral information. However, some nuance is lost when 

raw spectral information is summarized into indices prior to machine learning. Ultimately, 

machine learning was performed on indices rather than raw spectral data for a few reasons. 

Decision trees are built around thresholds within the data. They essentially sort the input data 

into finer and finer bins. A strong interaction between two bands is harder to detect with a tree-

based system. So, NBR and NDVI might add helpful information to the analysis because they 

better describe the distribution of burned land and vegetation than their component bands 

individually. Additionally, all five Landsat indices are well established and meaningful in natural 

resource applications. So, it is easier to visually check the model and determine that the outputs 

are sensible relative to the input indices. It is also more meaningful to fire managers since the 

model operates with familiar metrics such as NBR.   
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In addition to Landsat-derived indices, the models were trained on elevation, slope, and 

normalized aspect. These factors were included to capture the range of geophysical site 

characteristics that may control the distribution of canopy fuels on the landscape. Elevation and 

slope came from LANDFIRE  (U.S. Department of Interior & U.S. Department of Agriculture, 2022). 

Aspect was normalized so the machine learning process would treat 0 and 360 degrees as 

adjacent slopes rather than opposites.  

 The LANDFIRE Existing Vegetation Cover dataset (US Geological Survey and US 

Department of Agriculture 2016) was used to query out training pixels with bare ground, urban 

development, or irrigated cropland. This was done so the model was only trained on pixels 

containing wildland fuels. Pixels with missing values for any Landsat or topographic feature 

were removed from the set. Following model development, predictions were made on entire 

landscapes, including bare ground, urban, and water pixels.  

 

SAMPLING AND VALIDATION 
 

 The LiDAR acquisition sites ranged in size from 1783 to 73054 ha (Table 1). Model 

gradients in this project were calculated relative to root mean square error, and because 

unbalanced datasets are difficult to evaluate using this metric (Branco et al., 2019), each site was 

up-sampled or down-sampled to the mean number of pixels across all sites. Then, the sites were 

combined and shuffled, and 5% of the combined data was held back for validation.  After all 

quality control and sampling holdbacks, each model was ultimately trained on 4,005,816 pixels.  

There were two steps to model validation. The first step predicts on the random 5% 

holdback and compares the predictions to the respective LiDAR observations. Since these pixels 
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were selected randomly, they are spatially independent from each other, even within the same 

site. In addition, two ‘holdback validation’ sites were examined, which were not included in 

model development.    

 The first ‘hold back’ site is North Powell. Prior to model training, the Powell landscape 

was split into two equal parts. The south half of Powell was included in training, while the North 

half was reserved for validation. The North and South halves of Powell are ecologically and 

structurally similar. Both sites have experienced logging and have a distinct checkerboard pattern 

delineating these timber projects. The purpose of the Powell holdback is to evaluate variability 

through time while controlling for space, since the model was trained on a landscape that is 

functionally identical to North Powell. The second holdback landscape is Lubrecht Experimental 

Forest. Lubrecht has two separate LiDAR acquisitions covering the same area, flown ten years 

apart (2005, 2015). The purpose of the Lubrecht holdback is primarily to assess how well the 

model predict canopy trends between the two acquisitions.   

 

FIRE ANALYSIS 
 

 The third objective and phase of this thesis is to evaluate how sites recover from wildfire. 

First, wildfire perimeters were gathered from the Monitoring Trends in Burn Severity (MTBS) 

database (USDA Forest Service & US Geological Survey, 2017). The minimum fire size in this dataset 

is 1000 acres.  Fires were filtered to Montana, Idaho, and Wyoming and the years 1988 through 

1994. This date range was chosen because it includes several large fire years, ensures 3-9 years 

of pre-fire data, and also has many years of Landsat available post-fire in which to detect a 

recovery signal. Fires were not included if any part reburned after the original disturbance.  
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 The MTBS dataset includes a pixel by pixel severity estimate. The possible pixel values 

are unburned to low severity, low severity, moderate severity, and high severity. These classes 

are calculated on a fire by fire basis based on the difference normalized burn ratio (dNBR), 

which is the difference in NBR pre and post-fire. These values are then manually sorted into 

severity classes by an analyst. A reference dataset is used to maintain consistency between 

different analysts (Eidenshink et al., 2007). 

 Each fire was assigned an overall severity classification. The classification is the mode of 

the severity classification of the pixels within the fire. Fires are rarely homogenous in severity 

but summarizing the fires into overall severity classes can capture the general fire effects of a site 

and allows for fires to be more easily compared to each other. Landsat data for each fire and each 

year from 1985 to 2021 was acquired through Google Earth Engine. Then, the GBM models 

were used to predict canopy cover, height, and base height for each pixel in the time series. 

 Each fire was summarized into a time-series curve based on the median observation for 

each year. In this thesis, recovery trajectory refers to these median curves. Fire and recovery 

present in many different ways on the landscape and classifying these recovery trajectories can 

help speak to the nature of the fire that causes specific recovery shapes. Classifying these curves 

is also necessary for comparing fires to one another. 

 The ShapeSelectForest (SSF) classification is a method of describing temporal patterns in 

Landsat time series (Moisen et al., 2016). It was developed to identify and classify forest 

disturbance regimes on broad geographic areas over time. The possible shapes are flat, 

decreasing, jump, a single jump, inverted vee, vee, linear increase, and double jump. Each shape 

is an archetype of a particular way in which disturbance presents spectrally on Landsat imagery. 

Some shapes include multiple kinds of disturbance. For example, the inverted vee shape is 
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associated with fire, harvest, stress, and conversion (Moisen et al., 2016). Fire is most commonly 

associated with a single jump or inverted vee shaped trajectory (Moisen et al., 2016). The R 

package ShapeSelectForest was used to classify fire trajectories into these pre-defined shapes. 

Canopy cover, height, and base height curves were classified separately. So, one fire could 

potentially have three different shapes associated with it if the cover, height, and base height 

curves are dissimilar from each other.  

 The ShapeSelectForest classification was then used as a guide for a new proposed 

classification specific to GBM-derived recovery trajectories. There are four shapes in the new 

proposed classification system based on the location of the local minimum in the trajectory 

following a disturbance. The local minimum is the inflection point where a forest begins to 

recover and regain canopy after disturbance. The goal of this classification system was to create 

a method for sorting curves by recovery trajectory without sorting by underlying forest type by 

default. These new classes are: V shaped fires, U shaped fires, Wavy fires, and Flat fires.  

 Flat fires have no distinct minimums or maximums (Figure 3). They have consistent 

values throughout the time series and are identical to the flat spline in the ShapeSelectForest 

system (Moisen et al., 2016). 
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Figure 3: Example of a flat fire. The Metcalf Fire started on 8/10/1988 and burned 11,946 acres west of Malad City, Idaho.  The 
plot is a traditional box and whisker in which the green box is defined by the 25th and 75 percentiles. The horizontal bar is the 
median, and the dots are outliers. 

 V fires decrease dramatically and reach their local minimum within two years of the fire 

event. Then, they gradually climb (Figure 4). 

 

Figure 4: Example of a V-shaped fire trajectory. The Combination Fire began on 8/25/1988 and burned 8,588 acres 30 miles west 
of Deer Lodge, Montana on the Beaverhead-Deerlodge National Forest.  This fire reached it’s minimum on year 2.  
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U fires also have a single minimum in the time series but take more than two years to bottom out 

(Figure 5).  

Wave fires have multiple peaks and valleys within the time series (Figure 6).  

 

Figure 6: Example of a Wave Fire. The Little Pra Fire started on 8/3/1992 and burned 2,326 acres on the Craters of the Moon 
National Monument.  

Figure 5: Example of a U-Shaped fire. The Star Gulch Fire burned 28,570 acres outside on the Boise National Forest, 17 
miles east of Boise, Idaho. It began on 8/19/1994 and was part of the Idaho City Complex. The local minimum is at year 8, 
after which this fire began recovering canopy.  
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RESULTS: 

 
 The best performing models for canopy cover, height, and base height used the following 

hyperparameters (Table 2).   

 

Model N trees Max Depth Learn Rate Sample Rate 
Column 

Sample Rate 

Canopy Cover 178 22 0.05 0.7 0.6 

Height 119 26 0.05 0.7 0.6 

Base Height 118 23 0.05 0.9 0.7 
Table 2: Hyperparameters by model. 

 

MODEL PERFORMANCE (OBJECTIVE 1): 

VARIABLE IMPORTANCE: 

 Variable importance represents the relative influence of each training variable in the 

model. Greater variable importance is associated with variables that were frequently selected to 

split upon during tree building, and caused the tree to make bigger improvements relative to the 

loss function. The relative weight of each variable at each location in the tree and its contribution 

to improvement along the loss function was calculated with the Gedeon method (Gedeon, 1997) 

then normalized between 0 and 1.  
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Figure 7: Variable importance by model 

The most important training variables for predicting canopy cover were median wetness, 

median brightness, and median NBR. The most important variables for both base height and 

height were median brightness, elevation, and median wetness (Figure 7).   

RANDOMLY SELECTED VALIDATION PIXELS: 

 

 Validation was performed by comparing the model-predicted canopy metrics with the 

directly measured LiDAR observations for randomly selected pixels (Table 3). The holdback 

pixels were not included in model training.  
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Metric RMSE MAE R2 Bias 

Observed 

Mean 

Predicted 

Mean 

Observed 

Kurtosis 

Predicted 

Kurtosis 

Observed 

skew 

Predicted 

Skew 

Canopy 
Cover (%) 9.46 6.41 0.89 2.00 49.59 47.59 1.90 1.91 -0.06 -0.05 

Height (m) 5.96 3.34 0.84 0.82 24.84 24.02 3.68 3.36 0.93 0.73 

Base 
Height (m) 1.65 1.01 0.88 0.30 5.92 5.61 6.23 5.63 1.39 1.16 

 

Table 3: Performance metrics of each model. The validation was performed on a group of pixels randomly selected from within 
all 10 training sites. Root mean squared error (RMSE) and mean absolute error (MAE) describe the agreement between the 
model outputs and LiDAR observations.  

 

Within individual LiDAR acquisition areas, model performance also was largely good, 

with differences among and between canopy metrics and sites (Table 5). Phillips and Tenderfoot 

were the best performing sites across all metrics. Lincoln was the worst performing site for both 

canopy cover and base height. South Powell also consistently underperformed the other sites. 

Otherwise, the best and worst ranking sites varied metric to metric. Site performance does not 

appear to depend on geography, forest type, or sensor. For example, Carter and Phillips are in 

eastern Montana. Phillips is primarily grassland with low density mixed conifer forest and Carter 

is primarily mixed grassland and sagebrush with isolated stands of juniper and ponderosa 

(Comer et al., 2003).  The rangeland sites performed similarly to the forested western sites. The 

Idaho sites performed similarly to the sites east of the Continental Divide. Data for Clear Creek, 

Daly-Gold, South Powell, Slate, and Tenderfoot were collected by Landsat 5. Data for 

Blackfoot-Swan, Carter, Cascade, Lincoln, and Phillips were collected by Landsat 8. There does 

not appear to be a correlation between sensor and site performance at the sitewide level. The 

relationship between predicted and observed canopy cover and height are linear with residuals 

distributed mostly evenly between over and under estimation though, most under estimation at 

the highest canopy covers (Figures 8, 9). LiDAR-derived height values greater than 70 meters 

were removed prior to training, creating a ceiling in the possible observed values (Figure 9). 
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Base height had a linear relationship between predicted and observed values up to about 20 

meters, then the model tends to under-predict high base heights (Figure 10).  
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Phillips 1.49 0.66 0.99 0.30 9.79 9.49 12.44 13.26 2.79 2.88 

Tenderfoot 3.71 2.59 0.93 0.46 33.14 32.67 2.95 3.07 -0.13 -0.31 

Carter 8.43 4.39 0.87 2.83 22.52 19.70 4.57 4.83 1.45 1.52 

Clear Creek 7.35 5.55 0.86 1.92 75.79 73.87 3.92 4.10 -1.18 -1.23 

Slate 8.27 5.83 0.85 2.33 63.53 61.20 2.96 2.84 -0.68 -0.61 

Daly Gold 8.47 6.15 0.83 2.15 47.45 45.30 2.28 2.30 -0.24 -0.28 

South 
Powell 11.74 8.83 0.80 0.96 50.03 49.06 1.98 2.08 -0.06 -0.10 

Lincoln 12.72 9.08 0.78 3.30 65.75 62.45 2.39 2.19 -0.68 -0.62 

Blackfoot-
Swan 10.39 7.79 0.75 1.76 54.98 53.22 2.67 2.76 -0.56 -0.65 

Cascade 11.86 8.44 0.75 2.93 29.07 26.14 2.39 2.64 0.66 0.83 
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Phillips 1.34 0.72 0.99 0.08 13.27 13.19 5.48 5.29 1.66 1.60 

Tenderfoot 1.31 0.84 0.95 0.07 17.38 17.31 3.21 3.43 -0.89 -1.06 

Clear Creek 2.71 1.92 0.94 0.72 31.33 30.62 2.21 2.19 -0.29 -0.37 

Carter 1.42 0.89 0.90 
-

0.14 8.72 8.86 17.19 16.32 2.21 2.31 

Slate 2.84 2.03 0.88 0.79 30.11 29.32 3.48 3.36 -0.42 -0.54 

Daly Gold 2.56 1.82 0.83 0.42 22.52 22.10 3.00 3.20 0.09 0.00 

Cascade 3.07 2.17 0.74 
-

0.12 13.31 13.43 2.64 2.97 0.16 0.26 

Blackfoot-
Swan 5.01 3.60 0.48 

-
0.57 21.32 21.90 3.02 4.29 0.33 0.58 

South 
Powell 8.57 6.82 0.33 

-
0.63 24.68 25.31 2.04 2.24 0.05 0.22 

Lincoln 13.30 9.53 0.26 6.43 49.58 43.14 3.12 2.66 -0.87 -0.62 
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Base Height 
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Phillips 2.23 1.52 0.97 0.22 5.46 5.24 5.14 3.52 2.08 2.01 

Tenderfoot 1.31 0.84 0.97 0.07 17.38 17.31 3.21 3.43 0.58 0.46 

Slate 0.52 0.30 0.88 0.04 3.64 3.60 2.58 2.36 0.47 0.19 

Clear Creek 2.08 1.32 0.87 0.58 8.22 7.65 3.35 2.40 0.81 0.36 

Carter 0.93 0.44 0.85 0.08 3.38 3.30 148.04 222.53 8.24 10.71 

Daly Gold 1.30 0.91 0.83 0.30 6.36 6.06 3.20 3.26 0.41 0.11 

South 
Powell 1.98 1.36 0.78 0.63 9.21 8.57 3.28 2.90 1.38 1.01 

Cascade 1.38 0.89 0.70 0.16 3.99 3.83 17.07 14.95 2.28 2.15 

Blackfoot-
Swan 1.87 1.32 0.57 0.35 6.03 5.68 3.92 3.07 0.85 0.42 

Lincoln 0.76 0.31 0.13 0.14 5.54 5.40 6.79 6.45 -0.86 0.71 
 

Table 4: Model performance by site 
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Figure 8: Predicted versus LiDAR observed canopy cover on a sample of random pixels. Density is displayed on a logarithmic 
scale.  
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Figure 9: Predicted versus LiDAR observed height for a selection of random validation pixels. Density is displayed on a 
logarithmic scale.  
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Figure 10: Predicted versus LiDAR observed base height for a selection of random validation pixels. Density is displayed on a 
logarithmic scale.  
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VALIDATION OF INDEPENDENT LANDSCAPES (OBJECTIVE 2): 
 

POWELL: 

 

North Powell  and Lubrecht Experimental Forest were reserved from model training to 

examine if predictions on independent landscapes make coherent spatial sense. At Powell, there 

has been continuous timber harvest throughout the study period with the earliest recorded timber 

harvest on the site in 1954 (US Department of Agriculture, 2021). Powell is powerful for 

validation because the timber projects occurred on private land inholdings delineated by the 

Public Land Survey System (PLSS) grid, resulting in a checkerboard effect in the forest (Figure 

11). Each pixel is spatially independent in the machine learning process, meaning the ML does 

not know which pixels neighbor each other. So, a strong visual test would be to examine the 

straight lines along the PLSS grid, to see if the ML correctly predicts the values (at least in a 

relative sense) of each pixel along the section boundaries (Figure 11, 12, 13). 

Table 5 shows the statistics for North Powell and South Powell. They perform similarly, 

but North Powell has consistently higher error and lower R2, particularly for the Base Height 

metric. Variability contributing to error can be observed in the observed versus predicted plots 

(Figure 14).  A zippering effect occurred in the canopy-cover predictions in North Powell 

(Figure 11), which could explain some of the difference in performance. This occurs because 

Powell straddles the border between two swaths of Landsat scenes. The zippering effect is a 

function of how the scenes are knitted together within Google Earth Engine. All three metrics 
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were calculated on the same Landsat imagery, but the zippering is less evident in height and base 

height predictions. 

Additionally, predicted minus observed plots (Figures 11, 12, 13, bottom panel) show 

coherent spatial patterns to model over- and under-prediction. These patterns appear to occur on 

a topographic template, but on closer inspection, landcover seems to play a role too. However, 

they do not occur on the obvious harvest checkerboard pattern. 

 

 Observed Mean Predicted Mean RMSE R2 MAE 

  North Powell 

Canopy Cover (%) 40.61 41.15 13.65 0.65 10.45 

Height (meters) 22.6 23.79 11.6 0.23 9.3 

Base Height 4.95 3.28 3.26 0.17 2.54 

  South Powell (random holdback pixels) 

Canopy Cover (%) 50 49.06 11.74 0.8 8.82 

Height (meters) 24.68 25.31 8.6 0.33 6.8 

Base Height 9.2 8.57 1.98 0.78 1.26 

Table 5: Comparison of performance metrics on North and South Powell 
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Figure 11: Lidar observed canopy cover (top), predicted canopy cover (middle), and residual canopy cover (bottom) at North 
Powell. Residual canopy cover is predicted canopy cover minus observed canopy cover 
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Figure 12: Observed (top), predicted (middle) and residual (bottom) tree height at North Powell.  
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Figure 13: Observed (top), predicted (middle) and residual (bottom)  base  height at North Powell.  
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The predicted versus observed values for canopy cover and height are linear with even 

distribution of over and underestimating residuals. The GBM tended to slightly underpredict 

base height, which was also true of the randomly sampled validation pixels (Figure 14).  

 

 

POWELL THROUGH TIME: 

 

North Powell experienced small fuel treatments and logging operations on various parts 

of the landscape throughout the time series, so the occasional year to year decreases are sensible 

as trees are harvested. However, large annual increases in canopy cover, height, and base height 

are of more concern because these are less likely to reflect actual change on the ground.  

Overall, North Powell experienced stable median canopy cover from 1985-1994 at which 

point it declined systematically to a minimum in 2009, and began recovering (Figure 15). 

Median canopy height showed a similar pattern with less variability (Figure 16). Base height 

 

Figure 14: From left to right: predicted versus observed canopy cover, height, and base height at North Powell 
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declined slowly from roughly 1992 to 2006 and then leveled off (Figure 17). The average year to 

year change in median canopy cover is 2.3% (Table 6). The greatest increase in canopy cover in 

any given year was 7.93%. The average absolute change in height and base height were 

0.745 meters and 0.208 meters respectively. The greatest single year in increase in height was 

2.9 meters and the single greatest increase in base height was 0.95 meters. Interannual increases 

and decreases tended to track across all three metrics, indicating that they are more likely a 

function of an underlying signal in the spectral data and not noise produced by the GBM. These 

trends are also consistent across the entire range of prediction values for a given year, not just the 

means. All three sets of predictions are fairly stable through time (Figures 15, 16, 17) and 

changes in canopy cover, height, and base height tend to track together. 

  

 

 

Figure 15: Predicted canopy cover from 1985 to 2021 at North Powell 
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Figure 16: Predicted height from 1985 to 2021 at North Powell 

 

Figure 17: Predicted base height from 1985 to 2021 at North Powell 
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 Canopy Cover (%) Height (m) Base Height (m) 
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2021 42.29 40.48 19.35 -4.02 24.91 25.26 7.15 -1.62 4.42 4.58 1.44 -0.21 

2020 48.27 44.50 19.41 2.86 27.13 26.88 7.89 0.21 4.70 4.78 1.62 -0.03 

2019 44.88 41.63 19.45 0.02 26.60 26.67 8.01 0.74 4.62 4.81 1.57 -0.05 

2018 45.20 41.62 19.53 3.78 25.63 25.92 7.63 -0.02 4.69 4.86 1.63 0.20 

2017 39.61 37.83 18.62 -3.25 26.09 25.95 7.53 -0.58 4.41 4.66 1.48 -0.24 

2016 44.41 41.09 19.91 1.53 26.58 26.53 7.87 0.65 4.78 4.90 1.61 -0.14 

2015 42.64 39.56 19.10 -3.00 25.60 25.88 7.29 -1.08 4.86 5.04 1.50 0.11 

2014 45.82 42.55 19.40 2.16 27.06 26.96 7.87 2.11 4.77 4.94 1.59 0.28 

2013 43.00 40.39 19.86 0.43 24.12 24.86 7.42 1.18 4.55 4.66 1.58 0.14 

2012 41.40 39.97 20.42 -1.19 23.77 23.68 7.39 -0.11 4.36 4.52 1.71 -0.46 

2011 42.14 41.15 21.07 0.21 23.74 23.79 7.55 0.01 4.81 4.98 1.95 0.00 

2010 42.32 40.94 20.23 7.93 23.42 23.78 7.34 2.50 4.92 4.98 1.77 0.19 

2009 31.30 33.01 17.44 -2.03 20.68 21.28 6.66 0.57 4.43 4.79 1.84 0.16 

2008 34.15 35.04 18.60 -1.16 20.01 20.71 6.68 -1.38 4.27 4.63 1.85 -0.04 

2007 35.38 36.20 20.92 -0.72 21.82 22.09 7.22 -0.60 4.31 4.67 1.90 0.06 

2006 37.10 36.92 19.80 -0.90 22.84 22.69 7.26 -0.22 4.41 4.61 1.77 -0.15 

2005 37.87 37.83 20.75 -2.25 22.52 22.91 7.25 -0.29 4.58 4.77 1.85 -0.15 

2004 40.68 40.07 21.29 4.02 22.88 23.19 7.39 0.36 4.76 4.91 1.93 0.06 

2003 35.40 36.06 19.77 -2.51 23.06 22.84 7.21 0.24 4.67 4.85 1.85 -0.06 

2002 37.87 38.57 20.91 -1.03 22.84 22.60 7.18 -0.36 4.68 4.92 1.95 -0.21 

2001 40.60 39.60 20.85 -1.18 22.94 22.95 7.05 0.67 5.00 5.12 1.85 -0.05 

2000 41.99 40.78 21.41 -0.16 22.09 22.28 7.01 -2.12 4.94 5.18 2.07 -0.11 

1999 42.10 40.94 18.58 -1.70 25.29 24.40 7.15 0.28 5.17 5.28 1.99 0.21 

1998 45.49 42.64 19.22 3.84 25.17 24.12 7.52 -0.17 5.00 5.07 1.99 -0.03 

1997 39.96 38.80 17.09 -2.58 25.13 24.29 7.10 -0.25 5.13 5.10 1.84 -0.16 

1996 42.07 41.38 19.31 -3.39 25.08 24.54 7.14 -1.56 5.23 5.26 1.93 -0.31 

1995 48.82 44.77 19.78 1.46 26.93 26.10 7.26 0.90 5.61 5.57 1.97 -0.36 

1994 46.72 43.31 21.65 -3.50 25.89 25.20 7.13 0.93 5.86 5.93 2.13 0.13 

1993 49.54 46.80 22.31 2.40 24.07 24.26 7.49 0.47 5.71 5.80 2.23 -0.60 

1992 47.50 44.41 22.30 1.61 25.22 23.79 7.27 -0.91 6.39 6.41 2.48 0.95 

1991 46.36 42.80 20.12 -3.01 25.37 24.70 7.07 -0.29 5.43 5.46 1.94 -0.04 

1990 49.33 45.81 19.52 0.71 25.06 24.99 7.20 1.07 5.55 5.49 1.91 0.32 

1989 48.50 45.10 19.85 5.67 23.76 23.92 7.02 0.22 5.21 5.18 1.82 0.24 

1988 40.97 39.43 19.28 -3.04 23.81 23.70 6.75 -1.11 4.82 4.93 1.70 -0.76 

1987 46.10 42.46 20.09 -2.18 25.43 24.81 6.81 0.07 5.63 5.69 2.00 0.28 

1986 48.32 44.64 18.68 2.25 25.67 24.74 7.11 0.98 5.43 5.41 1.97 0.04 

1985 46.31 42.39 18.62 - 24.74 23.76 6.74 - 5.35 5.38 2.02 - 

             

Table 6: Year to year change in predicted canopy cover, height, and base height at North Powell Cell color corresponds with the 
magnitude of year to year change, with green cells decreasing in value between the previous and current year, and red cells 
increasing in value.   
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 The landscape of North Powell is adjacent to and similar to South Powell, providing a 

baseline for inferring the inherent error associated with GBM predictions prior to diverging 

geographically and ecologically from the training data. The results suggest that GBM predictions 

yield stable time series and reveal spatial patterns that are consistent with what is expected on the 

ground. They indicate that GBM canopy cover models yield about 14% (based on RMSE) 

uncertainty intrinsic to the modeling process before any spatial or temporal error is introduced. 

These intrinsic error estimates are about 12 meters and 3 meters for height and base height 

respectively.  

 

 

LUBRECHT: 

 

 Lubrecht Experimental Forest has two separate LiDAR acquisitions for validation. The 

first was flown in 2005, and the second in 2015. The purpose of the Lubrecht validation is to 

evaluate the model’s ability to detect the direction and magnitude of forest change between two 

points in time. It is worth acknowledging that the 2005 LiDAR acquisition did not meet USGS 

Quality Level 1 standards due to low return density (1.5 returns/m2) and large scan angles (+ 30 

degrees), and some of the differences in model performance are likely related to these 

differences. 

The mean LiDAR-observed canopy cover at Lubrecht in 2005 was 51.55%. The 

predicted canopy cover was 43.03%. The mean LiDAR-observed canopy cover in 2015 was 

43.76% and the predicted canopy cover was 44.44%. The RMSE between predicted and 

observed canopy cover was 16.41 in 2005 and 12.14 in 2015.  The R2 was 0.57 in 2005 and 0.69 
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in 2015. The model mostly under predicted canopy cover in 2005, while 2015 errors were more 

evenly divided between over and under-prediction (Figure 19). As with North Powell, error was 

not spatially random, with similar patterns observed that may be associated with a complex 

interaction between terrain and landcover. 

 

 

Figure 18: Observed (top) and predicted (bottom) canopy cover at Lubrecht Experimental Forest in 2005 (left) and 2015 (right). 
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Figure 19: Residual (predicted-observed) canopy cover at Lubrecht Experimental Forest  
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Mean observed height in 2005 was 20.90 meters and predicted height was 25.26 meters, 

compare with a 2015 observed mean height of 19.32 meters and predicted height of 22.87 

meters. The RMSE between predicted and observed height was 9.35 in 2005 and 7.92 in 2015. 

The R2 was 0.97 in both 2005 and 2015. The model tended to over predict height in the large 

meadow in the north central part of the acquisition, while underpredicting height in riparian 

corridors and mountainous terrain (Figure 21), and the spatial patterns in predicted minus 

observed are similar between the two years. 

 

Figure 20: Observed (top) and predicted (bottom) tree height at Lubrecht in 2005 (left) and 2015 (right) 
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Figure 21: Residual (predicted-observed) tree height at Lubrecht Experimental Forest. The blue pixels represent overpredicted 
height, and the yellow and red pixels are underpredicted height.  
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Finally, the observed mean base height in 2005 was 5.67 meters, compared to a predicted 

6.05 meters. The observed mean base height in 2015 was 6.77 meters and the predicted mean 

base height was 5.41 meters. The RMSE between predicted and observed base height was 3.45 in 

2005 and 3.62 in 2015. The R2 was -0.11 in 2005 and 0.04 in 2015. 

 

Figure 22: Observed (top) and predicted (bottom) base height at Lubrecht Experimental Forest in 2005 (left) and 2015 (right).  
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Figure 23: Residual (predicted-observed) base height at Lubrecht Experimental Forest in 2005 (top) and 2015 (bottom).  

 

Residual Base Height 
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In 2005, the canopy cover predicted versus observed values were roughly linear with 

more underprediction. The model tended to overpredict height (especially in the mid-heights). 

Base height estimates did not correlate as well as the other predictions (Figure 24).  The canopy 

cover predicted and observed values were linear in 2015, though the model tended to assign zero 

values to pixels with actual canopy covers up to 25%. The model overpredicted height more 

pronouncedly than in 2005. The model also tended to overpredict base heights on lower values. 

Only the height scatters were significantly different between 2015 and 2005 (Figure 24).  

 

Figure 24: Predicted and observed canopy cover (left) height (middle) and base height (right) in 2005 (top) and 2015 (bottom) 
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LUBRECHT THROUGH TIME: 

   

The canopy cover and height models at Lubrecht have a noticeable sensor effect where 

the underlying data changed from Landsat 5 to Landsat 8 in 2013 (Figure 25). In the canopy 

cover model, it is evident across the entire distribution of values in the later years, while the 

height model only reflects the sensor difference in the upper outliers.  

The mean year to year change in canopy cover was 2.3%, as was seen at Powell.  

The mean absolute annual change in height and base height were 0.75 and 0.22 meters 

respectively. The greatest single year increase in canopy cover was 7.89% and the greatest single 

year increases in height and base height were 2.31 and 0.95 meters respectively (Table 7).    

 

 

 

Figure 25: Predicted canopy cover from 1985 to 2021 at Lubrecht 
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Figure 26: Predicted tree height from 1985 to 2021 at Lubrecht 

 

 

Figure 27: Predicted base height from 1985 to 2021 at Lubrecht  
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2021 37.39 37.00 19.62 -0.90 23.11 22.88 7.18 -0.06 4.53 4.71 1.80 -0.09 

2020 38.17 37.90 20.59 -2.29 22.57 22.94 7.11 -0.33 4.64 4.80 1.85 -0.16 

2019 41.09 40.19 21.12 3.57 23.03 23.28 7.26 0.22 4.83 4.96 1.93 0.02 

2018 36.27 36.62 19.59 -2.12 23.37 23.05 7.13 0.33 4.79 4.94 1.87 -0.02 

2017 38.19 38.74 20.51 -1.57 23.09 22.72 7.02 -0.24 4.77 4.96 1.92 -0.22 

2016 41.77 40.31 20.66 -1.10 22.95 22.97 6.88 0.65 5.09 5.18 1.83 -0.05 

2015 43.03 41.42 21.17 0.07 22.15 22.31 6.86 -2.26 5.03 5.23 2.04 -0.14 

2014 42.75 41.35 18.30 -1.56 25.54 24.57 7.04 0.33 5.30 5.36 1.99 0.22 

2013 45.85 42.90 18.96 4.10 25.32 24.24 7.39 -0.24 5.12 5.15 1.99 -0.02 

2012 39.97 38.81 16.71 -2.53 25.40 24.48 7.00 -0.23 5.23 5.16 1.82 -0.17 

2011 42.03 41.34 18.92 -3.72 25.32 24.71 7.03 -1.41 5.33 5.33 1.91 -0.30 

2010 49.16 45.05 19.52 1.40 26.92 26.12 7.12 0.92 5.69 5.63 1.95 -0.35 

2009 47.21 43.66 21.43 -3.51 25.84 25.20 7.01 1.00 5.94 5.98 2.11 0.14 

2008 50.16 47.16 22.01 2.64 23.99 24.20 7.33 0.34 5.78 5.84 2.20 -0.61 

2007 47.67 44.52 22.11 1.47 25.36 23.87 7.18 -0.78 6.49 6.45 2.45 0.95 

2006 46.74 43.05 19.93 -3.01 25.26 24.65 6.94 -0.31 5.50 5.51 1.93 -0.03 

2005 49.66 46.06 19.34 0.89 25.03 24.96 7.09 1.11 5.61 5.54 1.90 0.32 

2004 48.58 45.17 19.69 5.57 23.72 23.85 6.89 0.16 5.27 5.22 1.80 0.24 

2003 41.31 39.60 19.18 -3.02 23.77 23.69 6.67 -1.11 4.88 4.98 1.69 -0.75 

2002 46.34 42.61 20.00 -2.16 25.38 24.80 6.74 0.04 5.68 5.73 1.99 0.25 

2001 48.50 44.77 18.63 2.36 25.70 24.77 7.02 1.02 5.50 5.48 1.98 0.05 

2000 46.42 42.41 18.60 2.58 24.75 23.75 6.66 -1.35 5.41 5.44 2.02 0.82 

1999 41.47 39.83 19.52 -4.16 24.64 25.09 7.14 -1.75 4.46 4.62 1.44 -0.21 

1998 47.89 43.99 19.54 2.92 26.95 26.84 7.88 0.16 4.75 4.83 1.62 -0.02 

1997 44.41 41.07 19.62 0.04 26.50 26.69 8.01 0.88 4.66 4.85 1.57 -0.05 

1996 44.66 41.04 19.65 3.70 25.42 25.81 7.61 -0.10 4.72 4.90 1.64 0.20 

1995 39.14 37.33 18.77 -3.11 26.04 25.91 7.55 -0.49 4.47 4.70 1.49 -0.21 

1994 43.87 40.44 20.09 1.04 26.36 26.41 7.99 0.57 4.78 4.91 1.62 -0.19 

1993 42.63 39.41 19.03 -2.90 25.54 25.83 7.24 -1.18 4.91 5.10 1.52 0.11 

1992 45.71 42.31 19.37 2.09 27.10 27.02 7.85 2.03 4.83 5.00 1.60 0.28 

1991 42.92 40.22 19.81 0.54 24.24 24.99 7.44 1.14 4.61 4.71 1.59 0.13 

1990 41.18 39.68 20.27 -1.47 23.95 23.84 7.36 0.00 4.48 4.59 1.71 -0.47 

1989 42.35 41.16 20.95 0.19 23.81 23.85 7.43 0.08 4.93 5.06 1.95 0.02 

1988 42.59 40.97 20.09 7.84 23.40 23.77 7.19 2.31 4.99 5.03 1.76 0.16 

1987 31.67 33.13 17.32 -1.95 20.97 21.46 6.60 0.64 4.55 4.87 1.84 0.17 

1986 34.24 35.08 18.53 -1.28 20.15 20.81 6.61 -1.40 4.36 4.70 1.87 -0.03 

1985 35.72 36.36 20.84   21.95 22.21 7.13   4.41 4.74 1.91  
 

Table 7: Annual change in canopy cover, height, and base height at Lubrecht Experimental Forest 
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CANOPY FUELS ON BURNED LANDSCAPES (OBJECTIVE 3): 
 

The purpose of the fire analysis is to utilize GBM-derived predictions to explore the impact of 

fire to forest canopy and its recovery. 164 fires ultimately met the criteria of occurring in 

Montana, Idaho, or Wyoming between 1988 and 1994 with no subsequent reburns. Of these 

fires, 114 were predominately low severity, 30 were moderate severity, and 20 were high 

severity. Time series of cover, height, and base height by the severity class mode for each fire 

(Figures 28, 29, 30) are unremarkable. High severity fires tend to show sudden reductions in 

cover and height with gradual recoveries, but similar patterns are observable in the other severity 

classes. The disturbance signal is less clear in base height. For many fires, the disturbance signal 

did not appear until a few years after the disturbance. Many low and moderate severity fires have 

flat time series, perhaps reflecting the fact that they occur in rangeland environments with low 

canopy cover, or forested environments where only surface fire occured.  Rangeland fires are 

overwhelmingly classified as low severity and rangelands do not create as stark of a difference 

when they burn.  
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Figure 29: Height trajectory by severity.   

Figure 28: Canopy cover trajectory by severity.  
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Figure 30: Base height trajectory by severity. 

 

 

SHAPESELECTFOREST SPLINE CLASSIFCATION: 

 

 Each of the 164 fires was classified to the ShapeSelectForest spline it most closely 

resembled. Every possible shape had at least one fire associated with it (Figure 31). The highest 

severity fires tended to most closely resemble the V or double jump shape (Figure 32). Jumps are 

associated with many different kinds of disturbance, but V shaped trajectories are mostly 

associated with stress-related trajectories. 
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.

 

Figure 31: ShapeSelectForest splines from Moisen et al. 2016 (far right column) and the fire trajectories that resemble each 
spline. From left to right: canopy cover trajectories, height trajectories, and base height trajectories 
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Figure 32: ShapeSelectForest classification by severity. See Figure 35 for classification splines 

 

 High severity fire was most associated with shapes 4, 5, and 7 for canopy cover. These 

shapes are inverted V, V, and double jump. There was no apparent correlation between severity 

and classification for height and base height curves (Table 8).  
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Canopy Cover 

SSF 
Class  

Mean 
Pre-Fire 
Canopy 
Cover  

Mean 
Canopy 
Cover 
Loss  

Mean 
BIC  

1  7.71  -0.14  163.12  

2  9.00  0.61  137.05  

3  9.01  0.31  152.22  

4  11.23  3.20  155.62  

5  32.69  10.10  228.21  

6  7.79  -0.43  156.67  

7  21.08  7.70  197.38  

Height 

SSF  
Class  

Mean 
Pre- 
Fire 
Height  

Mean 
Height 
Loss  

Mean 
BIC  

1.00  11.82  0.04  128.50  

2.00  13.25  1.03  117.55  

3.00  15.61  0.67  132.74  

4.00  13.33  0.52  156.71  

5.00  18.48  1.77  140.41  

6.00  12.53  -1.78  170.94  

7.00  17.92  1.33  143.81  

Base Height 

SSF 
Class  

Mean 
Pre-Fire 
Base 
Ht.  

Mean 
Base. 
Ht loss  

Mean 
BIC  

1  1.26  -0.04  -86.52  

2  1.43  0.09  -71.66  

3  1.49  0.12  -68.25  

4  1.44  0.11  -58.73  

5  1.15  0.07  -61.06  

6  1.24  -0.07  -83.94  

7  1.44  0.09  -75.41 

 

Table 8: Canopy cover characteristics of fires in each ShapeSelectForest bin. See Figure 25 for the model splines each bin most 
closely resembles.  
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There was no significant difference in base height loss or pre-fire base height between 

groups, indicating that SSF is not effective for delineating different curves in base height 

response. Groups 5 and 7 (V shaped curves and double jump curves) had the greatest pre-fire 

height and canopy cover, and the greatest canopy losses (Table 8). So, the SSF classification 

system effectively parses out fires in forested environments with distinct canopy loss, but is not 

sensitive to other kinds of fire or sites.  

 SSF was also designed for monitoring Landsat images over time rather than GBM-

derived outputs. The curves were built from a combination of raw spectral Landsat data, NDVI, 

and NBR. Often, GBM outputs have a non-positive and non-linear relationship with the 

underlying Landsat indices informing the predictions (Moran et al., 2020). Classification is 

important for defining kinds of recovery curves, but systems built for raw spectral data will 

likely be inaccurate for GBM-derived metrics.   

 

CUSTOM CLASSIFICATION FOR GBM TIME SERIES: 

 

There are four archetypical time series associated with canopy cover of the burned 

landscapes: Flat, U, V, and Wavy (Figures 33, 34, 35). U fires and V fires are associated with 

greater pre-fire canopy cover, height, and base height, and more dramatic losses in canopy. 

However, some V and U-shaped fires follow this trajectory without heavy initial fuel loading 

(Figure 33). Flat fires are associated with the least amount of canopy loss. 

Each metric was classified separately and trajectories did not need to agree between 

metrics for the same fire. Canopy cover had more V fires and U fires than height or base height 

(Table 10). Site trajectories frequently did not agree between metrics (Tables 11, 12, 13).    
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Figure 33: Canopy cover trajectories of burned sites  over time. They are grouped by the fire shape they most closely resemble. 
Each line represents the trajectory of an individual fire. The  fire occurred at year zero. 
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Figure 34: Height trajectories of burned sites  over time. They are grouped by the fire shape they most closely resemble. Each 
line represents the trajectory of an individual fire. The  fire occurred at year zero. 

 

Figure 35: Base height  trajectories of burned sites  over time. They are grouped by the fire shape they most closely resemble. 
Each line represents the trajectory of an individual fire. The  fire occurred at year zero. 
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Canopy Cover Height Base Height 

Group Count 

Pre-
fire 
Mean  Loss Group Count 

Pre-
fire 
Mean Loss Group Count 

Pre-
fire 
Mean Loss 

Flat 
fires 63 9.42 2.99 

Flat 
fires 83 13.50 2.16 

Flat 
fires 49 1.33 0.21 

U 
fires 37 36.17 19.40 

U 
fires 22 24.10 7.07 

U 
fires 26 1.59 0.41 

V 
fires 26 33.36 19.53 

V 
fires 10 24.61 7.93 

V 
fires 5 1.53 0.44 

Wave 
fires 38 9.75 3.73 

Wave 
fires 49 12.94 2.64 

Wave 
fires 84 1.41 0.27 

 

Table 9: Characteristics of flat fires, U fires, V fires, and Wave Fires. The count represents the number of fires that fall into each 
category. Loss is defined as the pre-fire mean minus the post fire minimum value. It represents the magnitude of disturbance.  

  Height  

   
flat fires U fires V fires Wave fires 

  

Sum 

C
an

o
p

y 
C

o
ve

r flat fires 47 0 0 16 63 

U fires 14 18 2 3 37 

V fires 9 3 8 6 26 

Wave 
fires 

13 1 0 24 38 

 Sum 83 22 10 49  

 

 

 

   Base Height  

   flat fires U fires V fires Wave fires Sum 

 

C
an

o
p

y 
C

o
ve

r flat fires 19 0 0 44 63 

 U fires 11 19 0 7 37 

 V fires 8 7 5 6 26 

 

Wave 
fires 

11 0 0 27 
38 

  Sum 49 26 5 84  
 

 

Table 10: Contingency Table of canopy cover and height classifications. Each metric was classified independently.  
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Table 11: Contingency Table of canopy cover and base height classifications.  

 

       

  Base Height  

  flat fires U fires V fires Wave fires Sum 

H
ei

gh
t 

flat fires 40 5 0 38 83 

U fires 3 15 0 4 22 

V fires 1 4 5 0 10 

Wave 
fires 

5 2 0 42 
49 

 Sum 49 26 5 84  
 

 

Table 12: Contingency Table of base height and height classifications. 

 

FIRE RECOVERY: 

 

 This study defines recovery as the time it takes to meet or exceed pre-fire canopy 

conditions. Thirty-seven fires did not fully recover canopy cover within the 36-year time series.  

Four of those fires were high severity, five were moderate severity, and two were low severity. 

Two of those fires were flat, 5 were U shaped, 3 were V shaped, and 1 was wavy. Four fires did 

not yet fully recover pre-fire heights. One of those fires was high severity, one was moderate 

severity, and two were low severity. One was flat, one was U shaped, and two were V shaped. 

Thirteen fires have yet to recover base height. Four were high severity, 1 was moderate, and 8 

were low severity. 1 was flat, 9 were U shaped, 1 was V shaped, and 2 were wavy.  

Of the three metrics, canopy cover had the clearest relationship between shape 

classification and recovery time. All high severity fires were classified as U or V fires. These two 

classes were associated with slower recovery regardless of fire severity. U and V fires occurred 
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on a wide range of forest types, though wave and flat fires were associated with low cover forests 

(Figure 36). So, if two forests had similar pre-fire cover and both burned at low severity, the 

forest that recovered in a U or V shaped trajectory would take up to 40 years longer to recover 

than a forest that recovered in a flat or wavy shaped trajectory.  

 

 

 

Figure 36: Time to recover canopy cover as a function of pre-fire mean canopy cover, trajectory shape, and severity. Recovery is 
defined as the year canopy cover met or exceeded pre-fire conditions  

 

Height curves have a weaker relationship between severity and shape than canopy cover 

curves. However, fires tend to have slower recovery when following a V or U-shaped trajectory 

compared to other shapes of the same severity (Figure 37).   



59 
 

 

Figure 37: Time to recover height as a function of pre-fire mean canopy cover, trajectory shape, and severity. Recovery is defined 
as the year height  met or exceeded pre-fire conditions 

 

 U and V shaped trajectories were much less common in base height curves. The 

disturbance events were also less visually obvious in these curves compared to canopy cover and 

height curves. Base heights recovered faster than canopy covers or heights, particularly on high 

severity fires (Figure 38).  
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Figure 38: Time to recover base  height as a function of pre-fire mean canopy cover, trajectory shape, and severity. Recovery is 
defined as the year base  height  met or exceeded pre-fire conditions 

 

   

CASE STUDY: INTRA-FIRE HETEROGENEITY: 

 

 In order to classify fires into curve shapes, multi-pixel fires need to be summarized into a single 

trajectory. However, fires are not internally homogenous, and this method loses nuance in both internal 

severity and recovery dynamics. The purpose of a single fire case study is to evaluate the importance of 

pixel-level severity on recovery within the boundary of a single fire.  

 The Lost Fire occurred about 12 miles west of Buffalo, Wyoming in 1988. It covered 

13,108 acres on the Bighorn National Forest and burned primarily at high severity between August 14 and 
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25. The bounds of the fire is still visible on the landscape today (Figure 39).  It was chosen for analysis 

because I know the landscape, having worked on the Powder River Ranger District where the fire 

occurred.

 

Figure 39: Imagery of the Lost Fire in 2022.  

 

The Monitoring Trends in Burn Severity (MTBS) system classifies most of the Lost Fire 

as high severity. There are scattered patches of low and moderate severity, and some islands that 

increased in greenness after the fire (Figure 40). 
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Figure 40: Monitoring Trends in Burn Severity (MTBS) severity classification for the Lost Fire   

   

Lost Fire followed a V-shaped canopy cover trajectory. The pre-fire mean canopy cover 

was 27.75%. In 1989, the year following the fire, the mean canopy cover hovered at 26.6%. Not 

until 1990, two years following the incident, did the canopy cover drop to 10.8%. This site has 

not fully recovered its canopy cover to pre-fire levels, though it likely will in the next few years 
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if it follows its current recovery trajectory (Figure 41). The predicted mean canopy cover in 2021 

was 23.1% and the median was 24.2%. 

 

Figure 41: Canopy cover through time on the Lost Fire.  

.  

 

 Predicted height on the Lost Fire was less sensitive to the disturbance event than canopy 

cover. The pre-fire mean height was 14.27 meters, and subsequent predictions ranged between 

11 and 14 meters up until 2013.  Predictions between 2013 and 2021 are consistently 1.5 to 

2 meters lower than prior years, probably due to a sensor artifact associated with the transition 

from Landsat 5 to Landsat 8 (Figure 42).  
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Figure 42: tree height through time on the Lost Fire 

 

 Lost Fire followed a wavy trajectory in recovering base height, with a local valley about 

four years post fire, and another one about 11 years post fire. The median base height trend was 

not significantly different than other fires, but Lost Fire had a notable number of low outliers 

across all years (Figure 43). The model was not trained on negative base height values but 

allowed to predict values outside the range of the training set to prevent overfitting. 
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Figure 43: Base height through time on the Lost Fire 

 

 Two years post fire, the burn scar had islands of trees associated with the lower 

severity pixels, indicating agreement between the GBM model outputs and the MTBS severity 

classification system (Figures 40, 44). The site potentially experienced secondary mortality on 

the south and east sides between 1990 (two years post fire) and 2000 (12 years post fire), as 

evident by green pixels in 1990 with substantially lower canopy cover in 2000. By 2020, 32 

years after the fire, the majority of the site had met or exceeded pre-fire canopy cover conditions. 

However, the southwest corner still had less than 25% of the pre-fire canopy cover (Figure 44), 

indicating a potential state change for this portion of the fire.  
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Figure 44: Proportion of pre-fire canopy cover on the Lost Fire 2 years post fire (top left) 12 years post fire (top right), 22 years 
post fire (bottom left), and 32 years post fire (bottom right)  

 

 

 Height loss was less dramatic in the years following the Lost Fire. Tree height on the 

burn scar trended slowly downward over the course of the 35-year time series (Figure 45). 

However, the height loss appeared in patches that are expanding over time. These patches might 

represent standing dead slowly being replaced by new growth, or conversion to meadows.  
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Figure 45: Proportion of pre-fire height on the Lost Fire 2 years post fire (top left) 12 years post fire (top right) 22 years post fire 
(bottom left) and 32 years post fire (bottom right) 

 

 Base height was steady through time (Figure 46). Spatially, the distribution of high and 

low base-height pixels is similar to that of height (Figure 45), though base height loss was 

dramatic than height loss compared to pre-fire conditions.  
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Figure 46:  Proportion of pre-fire base height  on the Lost Fire 2 years post fire (top left) 12 years post fire (top right) 22 years 
post fire (bottom left) and 32 years post fire (bottom right) 

 

 

Predicted canopy cover was sensitive to disturbance across all severity classes. However, 

severity appears to impact the magnitude of disturbance. Unburned and low severity pixels 

tended to follow a U-shaped recovery trajectory, while moderate and high severity pixels 

followed a V-shaped trajectory. High severity pixels had a starker, more dramatic decrease than 

moderate severity pixels (Figure 47).  
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Height trajectories trended down over time. However, the magnitude of this downtrend 

depended on severity, with steeper declines associated with higher severity pixels. Base height 

also has a slight downward trajectory at moderate and high severities (Figure 47).  

 

 

Figure 47: Canopy cover (top) height (middle) and base height (bottom) trajectory by severity. The lines represent median values 
and the ribbons the inter-quartile range 
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DISCUSSION 

VARIABLE IMPORTANCE AND SENSOR EFFECT 
 

The most important variables for predicting canopy cover were median wetness, median 

brightness, and median NBR. The most important variables for height and base height were 

median brightness, elevation, and median wetness (Figure 7). These variables were similar to 

past results from studies using LiDAR-Landsat covariance for predicting canopy characteristics. 

Moran et. al (2020) found median NBR and median brightness to be the most important variables 

across all three metrics, but in contrast to the findings of this study, did not find wetness to be 

particularly important.  

Of the geophysical metrics, only elevation was important for predicting canopy structure. 

This might be because elevation delineates broader landscape trends, while slope and aspect are 

more site specific. Aspect and slope impact soil moisture gradients and available radiative 

energy. Variability in aspect and slope might already be captured by variability in NDVI, NBR, 

or the Tassled Cap indices, making the geophysical indices redundant.  

Ranked variable importance provides insight into which variables the model drew upon 

most frequently and lead to the most improvement along the loss function. However, even less 

important variables can hold substantial sway on the final outputs of the model. The sensor 

variable is a binary variable which delineates whether a pixel came from the operational land 

imager (OLI) sensor on Landsat 8 or the enhanced thematic mapper (ETM+) sensor on Landsat 

5. It is designed to allow the ML process to make small adjustments to account for the difference 

in the observed energy between the Landsat 5 and Landsat 8 satellites. Early model training did 

not include this variable because the sensor difference was already adjusted through linear 

transformation of the Landsat data prior to machine learning (Roy et al., 2016). However, 
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Landsat 8 has higher radiometric resolution and spectrally narrower bands, and these differences 

cannot be perfectly adjusted through linear transformation. Initial models tended to under-predict 

canopy structure metrics derived from Landsat 8 observations. So, the binary sensor variable was 

introduced to allow the model to adjust for sensor on a band by band basis. While some sensor 

effect is still evident at some sites and some metrics, it yields significantly more interoperable 

results than models that did not include a sensor variable. 

Despite its obvious importance to final model outputs, ‘sensor’ is the least important 

variable across all three metrics. This might be a function of how the Gedeon method calculates 

variable importance. If sensor was an early split in most of the decision trees, it would only be 

used once. It also would not contribute much to improvement along the RMSE gradient, because 

sensor alone does not describe any variability in forest characteristics.  

The models performed significantly better under these sensor adjustments than without, 

and created more ecologically sensible time series. However, some landscapes and metrics still 

show a noticeable difference at the sensor break, including Lubrecht. Interestingly, it is not 

reflected across all landscapes, and landscapes do not respond to the change in a uniform way, 

highlighting both the complexity of GBM models and the difficulty in interpreting their outputs. 

The model tends to overestimate height during Landsat 8 years, but a few individual fires had the 

opposite effect where the model underestimated height. The sensor effect is not necessarily site 

specific and can vary between metrics on the same site. Height is more impacted by the sensor 

effect than cover or base height, which can appear stable and ecologically sensible on sites where 

height predictions are nonsensical. Further work is needed to determine why the sensor effect is 

more pronounced for some sites and metrics, and to minimize its effect on the final time series.  
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STABILITY THROUGH TIME 

 
 Stability through time is important for detecting subtle, large scale forest trends. There 

are several sources of error that can lead to noisy, unstable predictions. Atmospheric effects, 

clouds, and cloud shadows can introduce error into the Landsat images, despite filtering and 

compositing to minimize the impact.  The variability in the GBM can also be a source of noise in 

a time series. Machine learning approaches to predicting canopy cover have previously yielded 

root mean squared errors between 10 and 11% (Matasci et al., 2018; Moran et al., 2020). 

However, these models have yielded stable time series despite the inherent prediction 

uncertainties, albeit over very large geographic areas (Matasci et al., 2018). 

 This analysis indicates that smaller sites can also yield stable and ecologically sensible 

time series. The overall root means squared error for the canopy cover model was 9.4%, but the 

average year to year change at Powell and Lubrecht was 2.3%, indicating there is a bias that is 

consistent throughout time. Stark decreases in canopy cover, height, or base height could 

represent a disturbance like fire or harvest, but large single year increases do not make ecological 

sense. Powell and Lubrecht each had two years out of 36 where canopy cover increased more 

than 5% from the previous year.  The three metrics also tended to oscillate together, despite their 

respective models being trained independently. This indicates they are responding to an 

underlying spectral signal rather than model noise.  

 The residuals in both North Powell and Lubrecht indicate a topographic or ecological 

influence on model errors. More work is required to determine the biophysical controls dictating 

where the model performs poorly.  
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SENSITIVITY TO DISTURBANCE 
 

 There is extensive evidence that GBM-derived time series are sensitive to both location 

and magnitude of disturbance at moderate and high severity. At North Powell, the model 

demonstrated the ability to pick out heterogeneity on the landscape caused by logging. The GBM 

predictions successfully recreated the checkerboard harvest pattern in the canopy, which is a 

difficult task for an ML since each pixel is predicted on independently. Additionally, model 

showed a clear response to disturbance on multiple fire sites, particularly in canopy cover. On 

the Lost Fire, canopy cover loss was associated with higher severity pixels, indicating agreement 

between the GBM outputs and MTBS severity predictions. Higher severity pixels were also 

associated with more dramatic losses in canopy cover and height.  

However, it is unclear if the model is sensitive to subtle changes in canopy structure. 

Lubrecht Experiment Forest lost 7% of its canopy cover between 2005 and 2015, and yet the 

model predicted that canopy cover on the forest increased by 1%. The model correctly predicted 

the downward trend in forest height, but not the correct magnitude of the decrease. Mean 

observed height dropped 0.4 meters in the ten years between acquisition, while mean predicted 

height dropped by about 3 meters. Actual base height increased by 1.1 meters, while predicted 

base height decreased by 0.6 meters.  Certainly, for canopy cover, these discrepancies can be 

explained by the relatively low quality of the 2005 LiDAR data. The large scan angle employed 

in that acquisition is known to inflate canopy cover by increasing the probability of canopy 

reflections in the relatively long paths obtained at oblique angles. This effect shouldn’t impact 

canopy height (P99) significantly but it might increase mean height and thus affect predictions of 

base height. In the end, the 2005 results were left in the thesis to show how LiDAR data quality 
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could impact results, and to suggest that differences among acquisitions, if used in the modeling 

itself, might impact performance. 

The canopy cover model produced in this thesis had an overall root mean squared error of 

9.4%. The root means squared error was 13.6% at Powell, before introducing the spatial sources 

of error that occur when extrapolating the model beyond its training landscape. So, the intrinsic 

uncertainty within the predictions is greater than the actual forest change at Lubrecht. Lubrecht 

also spanned both Landsat sensors between 2005 and 2015, and the validation LiDAR was 

collected with slightly different return density standards in 2005 and 2015.  It is unclear if the 

change at Lubrecht was too subtle to be detected by the model, or if it was an error associated 

with the LiDAR or Landsat observations. If the model is unable to detect small landscape 

changes, it is possible that some of the flat fires actually follow a U or V shaped trajectory that 

the model is unable to detect. Further work is required to determine if there is some minimum 

threshold below which the model is not sensitive to change.  

 There were several fires where the trajectories of canopy cover, height, and base height 

did not match, including the Lost Fire. Often, tree heights recover in very different ways than 

their corresponding canopy cover (Bolton et al., 2015, 2017; Matasci et al., 2018), which has 

been well documented in LiDAR based forest monitoring. Of the 63 fires that had a U or V 

shaped canopy cover trajectory, 32 had a flat or wavy height trajectory.  

 LiDAR observed 99th percentile height often detects residual structure and single 

surviving trees. Height trends can appear consistent as standing dead trees are gradually replaced 

by new growth (Matasci et al., 2018). However, standing dead vegetation is more spectrally 

similar to bare ground than to live trees (Liu et al., 2021). Standing dead could contribute to 

forest height in the LiDAR derived training data,  but the GBM model predictions utilize purely 
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Landsat and geophysical information. So, it is unexpected that standing dead trees would still 

appear tall to the model.  

Variable choice in the height model might also contribute to the shape of height 

trajectories. Elevation was also the third most important variable for predicting height. Elevation 

does not change year to year, so it might provide a stabilizing effect on model predictions. There 

are benefits and drawbacks to including a temporally static variable like elevation. It reduces 

year to year variability and creates more stable time series. Forest types tend to vary by 

elevation, so it is an effective strategy for parsing out forests into groups with similar heights. 

However, including height in a model might make it less sensitive to disturbance. If the GBM 

associates specific elevations with tall trees, then it requires a greater disturbance signal in the 

Landsat derived indices to overcome the effect of elevation on a prediction.  

Base height was the least responsive variable to disturbance. Base height is important 

because it determines the amount of energy required to move a fire from the ground into the 

canopy (Wagner, 1977). Taller base heights require more energy to initiate crown fire. In this 

case, base height was defined as the mean Z value of all points greater than 2 meters, minus the 

standard deviation of all points greater than two meters. Directly measuring base heights is 

challenging because it requires the LiDAR sensor to penetrate layers of canopy to measure 

multiple points low in the vertical profile of a given tree (Stefanidou et al., 2020). However, 

under this definition, base height is highly related to variability within a pixel and somewhat 

difficult to interpret through time. Direct observation of base height is becoming increasingly 

more obtainable as LiDAR technology improves (Luo et al., 2018; Stefanidou et al., 2020) but 

will require enough acquisitions to form a body of training data before it can be integrated into 

LiDAR-Landsat covariance methods.  
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BURNED AREA CLASSIFICATION FRAMEWORK 

 

 Classifying forest trajectories is useful for monitoring carbon inventories, disturbance 

regimes, and forest conversion. The ShapeSelectForest approach is a preexisting classification 

scheme that has been widely applied in detecting change over time in Landsat imagery (Moisen 

et al., 2016; Schroeder et al., 2017). The framework is based on seven pre-existing splines, each 

representing a specific disturbance and recovery trajectory. Time series trajectories are sorted by 

the spline they most closely resemble (Moisen et al., 2016).  

 Initially, this analysis utilized the ShapeSelectForest (SSF) approach for classifying fire 

trajectories. The SSF algorithm primarily sorted fires into groups 5 and 7, which represent V-

shaped and double jump shaped trajectories. The algorithm successfully parsed out the highest 

severity fires, but did little to describe the variability in less severe fires.  

 The original SSF approach was built for analyzing raw spectral data or indices like NDVI 

and NBR. GBM models often do not have a linear relationship with their underlying Landsat 

(Moran et al., 2020) and GBM derived canopy cover and height will likely have an inverse 

relationship with NBR, which SSF splines were designed to fit (Moisen et al., 2016). 

Additionally, the SSF system assumes the long-term forest trend is stable. For example, a forest 

that is growing taller over decades, but experiences patches of stand replacing fire would not be 

well described by any SSF spline.  

 This analysis proposed an alternative method of classifying recovery trajectories using 

predicted canopy metrics rather than raw Landsat spectral data. The goal of the alternative 

classification system was to create a flexible classification that is more appropriate for GBM 
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derived time series of landscapes (burned areas) rather than pixels. Under this framework, fires 

were classified based on where the local minima occurred relative to the disturbance. V-shaped 

fires reached their minimum within two years of the disturbance. U shaped fires reached their 

minimum more than two years after the fire. Wavy fires had multiple peaks and valleys within 

the time series. Flat fires were stable without a distinct trend. These differences were observed in 

the time series and don’t necessarily have a clear ecological basis. Each metric for each fire was 

classified independently, since height, canopy cover, and base height may not follow the same 

recovery trajectory post fire. For example, a stand that experiences crown scorch will potentially 

defoliate but not die (Varner et al., 2021), causing incongruent canopy cover and height 

recoveries. In the future, it may make more sense to classify the cover time series and let height 

and base height come with them (as opposed to classifying each metric separately) to aid in 

interpretation. 

 Flat fires were more likely to occur in grassland systems with low pre-fire canopy cover 

and height. Most forested fires followed a U or V shaped recovery trajectory, particularly those 

that burned at higher severity. However, U and V trajectories do not require heavy fuel loading, 

and included forests that initially had sparser canopy cover. Even though U shaped and V shaped 

fires occur on similar forests, their trajectories post-fire are likely ecologically different. U-

shaped fires take longer to reach their local minimum than V-shaped fires. They likely represent 

fires with delayed secondary mortality and sites that were less supportive of new growth post 

fire. U-shaped fires were also less like to recovery fully in the 35-year time series than V fires.  

 There are few potential drivers for wavy recovery trajectories. The first mechanism might 

be intrinsic model error that creates an unstable time series. This is likely true of wavy fires with 

peaks and valleys that do not appear to correspond to a disturbance. Thinning and logging are 
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also potential drivers of wavy trajectories. Powell experienced patches of logging throughout the 

36-year time series, and the canopy cover at Powell followed a wavy trajectory (Figure ten). U 

shaped fires often appear a bit wavy near the bottom of the U (Figure 28), before they reach their 

inflection point and begin recovery. This indicates that burned and early pioneer landscapes 

might have more on the ground variability as the vegetation returns in a patchy manner, causing 

a wavy trajectory.   

 Fires within the study area were mostly recovering. Of the 164 fires included in analysis, 

no burn scar experienced a notable state change, where it lost its canopy and did not begin re-

growing it. The timeline of recovery predicted by the GBM models is consistent with expected 

recovery behavior. Most  disturbed pixels recover 80% of their greenness and NBR within 10 

years (Pickell et al., 2016) and past estimates suggest the Canadian boreal forest recovers 50% of 

its canopy cover in twenty years (Matasci et al., 2018).  

Under anthropogenic climate change, more area is burning under higher severity (Parks & 

Abatzoglou, 2020) and the post-fire environment is becoming increasingly unfavorable for 

regeneration (Coop et al., 2020). However, none of the fires included in this analysis burned 

again after their initial disturbance between 1988 and 1994, which is a major driver of forest 

conversion (Coop et al., 2020).   

CONCLUSION  

 
 This work encompassed three objectives. The first was to continue to refine the LiDAR-

Landsat covariance methodology and to produce fuel metrics for Montana, Idaho, and Wyoming 

across a 36-year time series. The models developed for this work slightly outperformed earlier 

iterations of GBMs for predicting canopy fuel structure (Moran et al., 2020). The second 
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objective was to assess the quality of these fuel predictions and explore the spatial and temporal 

sources of variability in model predictions. Three distinct validations were used to assess model 

quality. First, the models were validated with randomly selected holdback pixels.  Then, North 

Powell was used a spatially coherent validation site that is functionally identical to one of the 

training sites. Last, Lubrecht Experimental Forest was used to determine if the model could 

correctly prediction direction and magnitude of change. The last objective of this work was to 

evaluate recovery on burned sites from 1985 to 2021.  

 This work indicates that GBM derived canopy fuel time series are both stable through 

time and sensitive to episodic disturbance. However, Lubrecht Experimental Forest suggests that 

the model might not be sensitive to smaller, subtle change below a specific threshold. More work 

is needed to identify this threshold and continue to build the model’s sensitivity to light 

disturbance and disturbance in more sparsely forested environments.  

 This analysis also indicated that fires that occurred in 1988 to 1994  have mostly 

recovered to pre-fire conditions by 2021. These fires have relatively simple trajectories because 

they did not reburn. The next steps of this work will include analyzing more complicated but 

more ecologically realistic sites with multiple reburns. This work used individual fires at the unit 

of analysis, but the Lost Fire indicated that there is significant heterogeneity within the bounds of 

a fire, and different areas recover in different ways. Pixel-based change-detection methods such 

as LandTrendr (Kennedy et al., 2010) could potentially be applied to GBM-derived fuels 

products to capture some of this intra-fire nuance.  The ultimate goal of this line of research is to 

continue to develop LiDAR-Landsat covariance into a flexible, sensitive method for monitoring 

canopy fuels through time.  
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