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Making “habitat quality” meaningful: quantifying demographic effects of habitat in two 

sympatric species  

 

Chairperson: Paul M. Lukacs 

 

Abstract 

Habitat quality may be an underlying factor driving or exacerbating mule deer 

(Odocoileus hemionus) population declines across their range and concurrent white-tailed 

deer (Odocoileus virginianus) population increases. A clearer understanding of how the 

two species respond to habitat variables is needed to disentangle the drivers of mule deer 

decline and identify opportunities to change population trajectories through habitat 

management. Capitalizing on extensive monitoring data for sympatric populations of 

mule deer and white-tailed deer, this dissertation improves understanding of habitat 

quality by exploring and developing modeling approaches that connect habitat and 

demographics in these two species.  

  Using a resource selection function (RSF) in Chapter 1, I found a high degree of habitat 

overlap between mule deer and white-tailed deer and little support for niche 

differentiation between the two species during summer but not winter. Individual 

variation was strong and models were not predictive of future resource use. In contrast to 

the RSF, which assumes that resource selection corresponds with habitat quality, in 

Chapter 2 I used survival modeling to connect habitat to population performance. The 

survival model showed little connection between survival and winter severity, nutritional 

availability, or drought, suggesting that population-level survival of deer cannot be 

predicted by environmental conditions through these models. To overcome the 

limitations of current survival models, for Chapter 3 I developed a novel Survival and 

Habitat Quality model (SHQ) that directly estimates the effect of habitat on an 

individual’s unobservable survival probability. This autoregressive model allows 

inference to resources’ cumulative contribution to survival over an individual’s lifetime. 

Using the SHQ model in Chapter 4 for the first time, I estimated the long-term effects of 

habitat on survival. Unlike other survival models, the SHQ model was able to identify 

substantial differences between species and age classes in how environmental variables 

affected survival.  

  Together, these analyses build a more complete picture of habitat quality, selection, and 

use by sympatric ungulate species. The comparative investigation of methodologies can 

guide the selection of methodological approaches for species with comparable monitoring 

data. The improved approach developed in this dissertation will aid successful inference 

for conservation and management of many species. 
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Dissertation Introduction 

All life forms need the right conditions to survive, grow, and reproduce, and 

populations can only persist where all these conditions are met. The set of biotic and 

abiotic conditions that can support a population’s existence determines patterns of species 

distributions (Morrison et al. 2006). Ecological theory and empirical studies show that 

low quality habitat supports smaller populations than high quality habitat (Fretwell and 

Lucas 1970, Pöyry et al. 2009, Häkkilä et al. 2018). Given that habitat loss and 

degradation are major concerns for wildlife species worldwide, understanding habitat 

quality is important for conserving wildlife populations (Maxwell et al. 2016, Horvath et 

al. 2019, Powers and Jetz 2019).  

Defined as an individual's “per capita contribution to population growth expected 

from a given habitat,” habitat quality is extremely difficult to measure (Johnson 2007). 

This is because useful measures of habitat quality must connect habitat to long-term 

population trends, thus requiring large sample sizes and long-term datasets for precise 

estimation of survival, reproduction, and density (Van Horne 1983, Morrison et al. 2006). 

Only with clear estimates of these three demographic parameters over time and space can 

habitat quality be accurately quantified.  

A number of different approaches have been designed to tackle the estimation of 

habitat quality. One of the most common approaches is the resource selection function 

(RSF), which estimates a species’ relative probability of use of different resources 

(Manly et al. 2002). RSFs assume that resource selection corresponds with habitat quality 

but does not connect habitat to population demographics. Survival modeling improves on 

this approach by connecting habitat to a demographic rate (survival). By relying on 
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mortality locations to connect habitat to survival, survival modeling allows inference 

about resources on a relatively short time frame proximal to an individual’s death. 

However, it provides no insight into how resources contribute cumulatively to survival 

over an individual’s lifetime. An ideal habitat quality model would connect both the 

short- and long-term effects of habitat to population demographic rates such as survival.  

Capitalizing on extensive monitoring data for sympatric populations of mule deer 

(Odocoileus hemionus) and white-tailed deer (Odocoileus virginianus), this dissertation 

aims to improve understanding of habitat quality by exploring and developing modeling 

approaches that connect habitat and demographics in these two species. Apparent 

declines of mule deer and increases of white-tailed deer populations in recent decades 

concern wildlife managers, and competition has been hypothesized as a possible driver 

(Anthony and Smith 1977, Whittaker and Lindzey 2004). Using this large dataset to 

understand the habitat quality needs of the two species will not only clarify the potential 

for competition and help managers design interventions to conserve mule deer but will 

also provide an opportunity to develop and test a new habitat quality modeling approach.  

In Chapter 1, I use an RSF to measure resource selection at an individual scale 

using one of the largest global positioning system (GPS) collar datasets collected on 

sympatric mule and white-tailed deer. To improve understanding of habitat quality across 

time and space, Chapter 2 uses discrete-time survival modeling to measure spatial 

patterns in survival across populations using a 12-year dataset of 10 sympatric mule and 

white-tailed deer populations. In Chapter 3, I present and validate a new time-series 

habitat quality model that builds on existing methods and addresses the limitations of 

RSF and survival modeling from the first two chapters. Finally, Chapter 4 applies this 
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novel survival-habitat quality model to our fine-scale GPS data to quantify the long-term 

effects of different resources on each deer species. 

Together, these chapters provide insight into deer habitat needs for managers 

making decisions about habitat interventions to affect demographics of one or both 

species. They also provide a comparative investigation of different methodologies that 

can guide the selection of methodological approaches for species with comparable 

monitoring data. Conceptually and in practice, habitat quality is central to the work of 

both managers and researchers. The improved approach developed in this dissertation 

will aid successful inference for conservation and management of many species. 
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Chapter 1. Comparative resource selection of two sympatric ungulate species in the 

northern Great Plains 

Abstract 

For decades, mule deer (Odocoileus hemionus) populations have appeared to shrink range 

wide, while white-tailed deer (Odocoileus virginianus) populations have increased, and 

their range has expanded. The underlying drivers of these patterns are unclear, and a 

combination of factors may be at play, including land use changes, climate change, and 

direct or indirect competition between the two species. Understanding how the two 

species share the landscape and whether niche partitioning exists would help shed light 

on the underlying drivers of mule deer decline and highlight opportunities to change 

population trajectories through habitat management. Using one of the largest GPS 

datasets ever collected on mule deer and white-tailed deer in their sympatric range, we 

used resource selection functions to investigate the relative probability of use of different 

resources available to the two species. Our models described population-level relative 

probability of use in winter and summer and demonstrated that a combination of factors, 

including nutrition, thermal cover, and human impact best described resource selection 

better than any single factor on its own. We verified patterns consistent with established 

patterns describing the two species’ different uses of habitat and discovered some 

evidence of spatial segregation between mule deer and white-tailed deer. Inter-individual 

and intra-individual variation was high and made predictions of individual behavior and 

future patterns of resource selection difficult.  
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Introduction 

For decades, biologists have noted the expansion of white-tailed deer (Odocoileus 

virginianus) range and abundance and the concurrent decline of mule deer (Odocoileus 

hemionus) abundance across their range (Wallmo 1981, VerCauteren 2003). Due to 

considerable range expansion of white-tailed deer westward and northward, the two 

species now have extensive range overlap in western North America (Hygnstrom et al. 

2008). Many hypotheses have been proposed to explain the decline of mule deer and the 

increase of white-tailed deer, including differing effects of predators, weather, hunting, 

livestock, competition, disease, and habitat changes (Anderson et al. 2012, DeVivo et al. 

2017). The observed success of white-tailed deer compared to mule deer could be an 

outcome of any of these hotly debated hypotheses. 

Mule deer and white-tailed deer are habitat generalists, existing in a wide range of 

climates and vegetation communities; their sympatric range extends from Mexico to 

Canada. The two species’ habitats are often differentiated from each other; white-tailed 

deer occupy habitats with more tree cover and agriculture whereas mule deer are 

expected in higher elevations and rangeland (Wood et al. 1989, Whittaker and Lindzey 

2004). However, across their sympatric range the two species show a great deal of 

overlap in habitat selection and diet, leading many to conclude that they are direct 

competitors (Martinka 1968, Anthony and Smith 1977, Smith 1987, Lingle 2002, 

Whittaker and Lindzey 2004).  

In the Great Plains, the relatively homogeneous habitat and lack of dramatic 

elevational gradients may increase the habitat overlap of mule deer and white-tailed deer, 

creating the potential for greater competition (Karish 2022). The relatively recent advent 
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of global positioning system (GPS) collars and widely available, fine-grain remote 

sensing data have the potential to further disentangle resource selection between these 

two species in their sympatric range and provide additional evidence for patterns of 

habitat segregation and coexistence. Comparative resource selection can also help 

managers selectively manage habitats for species-specific management goals (Avey et al. 

2003).  

Research describing resource selection of mule deer and white-tailed deer follows 

some broad themes, three of which are nutrition, cover, and human impact. The first of 

these, nutrition, or access to forage, is probably the most commonly studied (Pierce et al. 

2004, Whittaker and Lindzey 2004). Most studies on deer resource selection explore 

forage type, quantity, or quality as a driver of resource selection in some capacity (e.g., 

Haus et al. 1997, Pierce et al. 2004, Marshal et al. 2006, Jenkins et al. 2007, Kittle et al. 

2008). Beyond using nutritional resources to describe a single species’ patterns of 

resource selection, potential nutritional differences between the two deer species have 

long been sought to explain differences in their use of the landscape (Martinka 1968, 

Anthony and Smith 1977). Although the diets of mule deer and white-tailed deer are 

similar, differences in their nutritional needs and abilities to digest lower-quality forages 

may lead to differential resource selection between the species (Berry et al. 2019, 

Staudenmaier et al. 2022).  

The second theme, cover, can be used to explain protection from predators 

(security cover) or the elements (thermal cover) including cold winters and hot summers 

(Pierce et al. 2004, Whittaker and Lindzey 2004). Differences in escape strategies from 

predators could influence the amount of cover needed for each species (Lingle 2002). 
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Critical temperature differences suggest that mule deer have a greater tolerance for low 

temperatures than white-tailed deer do but a similar heat tolerance (Parker and Robbins 

1984, Mautz 1985). These physiological differences could lead to species-specific and 

season-specific selection of resources to meet their differing physiological needs.  

Finally, human-impacted landscapes can affect deer both positively and 

negatively, and white-tailed deer may respond differently to human development than 

mule deer do. Areas of high urban development can act as refuges for both species and 

allow populations to become over-abundant (VerCauteren et al. 2005). In more rural 

areas, however, agriculture and roads are more predominant features of human impact 

that may affect resource selection of deer. Because white-tailed deer are often more 

associated with agriculture than mule deer, they may respond more positively to this 

aspect of human development. Furthermore, mule deer avoid highly modified areas such 

as well pads and high-traffic roads, thus establishing another difference between the two 

species (Sawyer et al. 2009).  

Nutrition, cover, and human impacts can have different effects on deer resource 

selection throughout the year due to different habitat needs in different seasons (Long et 

al. 2009). First, dietary overlap of the two species in winter can be much greater than in 

summer, and the summer niche differentiation could be a mechanism for coexistence of 

the two species (Whittaker and Lindzey 2004). Second, because mule deer and white-

tailed deer have similar heat tolerances but different cold tolerances, their selection for 

cover may be different between seasons (Mautz 1985, Parker and Gillingham 1990). 

Likewise, tolerance for human-impacted landscapes can change with weather or changes 
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in human activities throughout the year. For example, mule deer avoid roads in summer 

but not winter (Marshal et al. 2006). 

Using one of the largest GPS datasets of mule deer and white-tailed deer in their 

sympatric range ever collected, we compared resource selection between the species to 

identify habitat segregation in summer and winter. We compared four competing a priori 

ecological hypotheses driving resource selection: (1) access to nutrients and energy, (2) 

thermal cover, (3) human impact, and (4) multiple drivers (i.e., all of the above). We fit 

resource selection functions to two years of data to determine which hypothesis best 

described resource selection by mule deer and white-tailed deer, and we contrasted 

resource selection between seasons when deer may be driven by different biological 

needs. We also tested the ability of each hypothesis to predict future resource selection 

using a third year of data. In addition to comparing the predictive ability of the ecological 

hypotheses against each other, we compared them against an ecological null model to 

evaluate the overall quality of prediction (Koons et al. 2022).   

 

Methods  

Study area  

We conducted the study in northwestern South Dakota, USA (Figure 1.1; 44°57'8" – 

45°56'43" N, 100°18'31" – 104°2'44" W). In 2017, South Dakota Game, Fish and Parks 

defined 11 data analysis units (DAU) to designate deer populations for management and 

monitoring (South Dakota Department of Game Fish and Parks 2017). DAUs were 

defined by relatively homogeneous climate and geographic factors. Our study area, DAU 

1 (~21,160 km2), was dominated by mixed-grass prairie and agricultural crops. The 15-
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year mean temperatures in this area ranged from -7°C in February to 23°C in August and 

mean precipitation ranged from 0.5 cm in January to 8.9 cm in May (National Climatic 

Data Center 2022). Elevation in the study area ranged from 490 m to 1173 m, and the 

land was a mixture of private and public ownership. In addition to mule deer and white-

tailed deer, pronghorn (Antilocapra americana) were common, and elk (Cervus 

canadensis) were present but rare. Coyotes (Canis latrans) and bobcats (Lynx rufus) were 

the most common and probable predators of deer. 

 

Capture and collaring 

Over the winters of 2019, 2020, and 2021, we captured and collared 345 mule deer and 

345 white-tailed deer using helicopter net-gunning. We captured juveniles (<1 year-old) 

and adult females (>1 year-old). We aimed for even spatial representation of collars on 

both species across the study area and tried to spread collars across groups. We followed 

the American Society of Mammalogists’ guidelines for animal capture and handling 

(Sikes et al. 2016), and our protocols were approved by University of Montana 

Institutional Animal Care and Use Committee (064-18PLWB-121418). Collars 

functioned for multiple years; collars recovered from mortalities were redeployed on new 

individuals. We outfitted each deer with a global positioning system (GPS) collar from 

Vectronic Aerospace GmbH (Berlin, Germany) or Telonics, Inc. (Mesa, Arizona, USA). 

The Vectronic collars used the Iridium satellite system and took positions every 5 hours 

(n = 135 deer). The Telonics collars used the GlobalStar satellite system and took 

positions every 5 hr (n = 81), 11 hr (n = 279), or 13 hr (n = 195). We placed non-

expandable collars (495 – 560 g) on female deer, which we padded with temporary foam 
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for juvenile females. On juvenile male deer, we deployed expandable collars (270 – 365 

g) and temporary foam to allow for growth and neck expansion during the rut.  

 

Home ranges 

We designated mortalities that occurred within 14 days of capture as capture-related, and 

we excluded these individuals from analyses (Chalmers and Barrett 1982). We ignored 

GPS locations on the day of capture and the following day to remove potential effects of 

the helicopter capture on deer behavior. For any individuals that died during our study 

(not capture-related), we removed GPS locations from the two days prior to death to 

account for any uncertainty about timing of mortality. The GPS collars functioned for 

multiple years, so some individuals were represented in multiple years of our analysis 

(Table 1.1).  

We created seasonal home ranges for each collared individual in winter (Jan – 

Mar) or summer (Jun – Aug) of 2019, 2020, and 2021 using 95% minimum convex 

polygons in R 4.1.3 (R Core Team 2022). Within each home range, we drew ten available 

locations for every recorded GPS location recorded for use in our resource selection 

function (Northrup et al. 2013).  

 

Environmental variables 

We used remote sensing data that have been developed and ground-truthed to quantify 

the resources at each used or available point. We chose independent predictor variables to 

represent our a priori hypotheses on habitat selection (Table 1.2).   
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For our nutrition hypothesis, we selected variables that we expected to be 

important food resources to deer, including shrubs (Carson and Peek 1987, Avey et al. 

2003, Berry et al. 2019), perennial forbs and grasses (Martinka 1968, Berry et al. 2019), 

and important agricultural crops, including alfalfa (Martinka 1968), other hay, corn 

(Vercauteren and Hygnstrom 1998, Baasch 2008), soybeans (Baasch 2008), sunflowers 

(Kamler et al. 2009), spring wheat (Selting 1994), winter wheat (Thomas and Irby 1973), 

and other small grains (rye, barley, oats, and durum wheat). We first used the Rangeland 

Analysis Platform to quantify annual net primary productivity of shrubs (shrub NPP) and 

perennial forbs and grasses (perennial NPP) at 30m resolution (USDA Natural Resources 

Conservation Service et al. 2019, Robinson et al. 2019). Second, we used the annual 30m 

resolution crop cover layer from CropScape (USDA 2019) to classify lands into areas 

planted with the crops listed above. To capture all agricultural lands, including areas 

planted with crops not palatable to deer that would potentially be avoided, we classified 

all other cultivated areas not captured in these categories as “other crops”. To 

differentiate between agriculture and non-agriculture lands, we designated uncultivated 

areas as the category “no crops”.  

To represent thermal cover and exposure for our second hypothesis, we used 

variables representing tree cover and shelter from the wind. We obtained percent tree 

cover at 30 m resolution from the Rangeland Analysis Platform. To represent shelter 

from the wind, we first created a categorical variable for direction of exposure. To 

classify direction of exposure, we calculated aspect from the 10m resolution The National 

Map Digital Elevation Model (U.S. Geological Survey 2019) using Google Earth Engine 

(Gorelick et al. 2017), then we created four bins: east (between 45° and 135°), south 
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(between 135° and 225°), west (between 225° and 315°), and north (between 315° and 

45°). Additionally, we calculated slope from The National Map to help quantify thermal 

shelter, as more complex terrain (i.e., greater slopes) may provide micro-climate refuges 

from wind in the Great Plains. Finally, we represented a component of thermal shelter by 

classifying lands that were enrolled in the Conservation Reserve Program (CRP) and 

allowed to grow without annual grazing or mowing (Selting 1994). We obtained a 

polygon dataset of lands enrolled in CRP in 2020, and we removed enrolled parcels that 

allowed annual grazing or haying (i.e., practices “CP87”, “CP87A”, “CP88”, and 

“CP88A”; Farm Service Agency 2020). For the purposes of making predictive maps, we 

created a 30 m resolution raster from this polygon dataset. 

To represent human impact, we used a conglomerate human modification score as 

well as road density. The global Human Modification (gHM) dataset provides a 0-1 score 

for each 1000 x 1000m cell worldwide, and it represents the proportion of each cell that 

has been modified and the intensity of modification due to human settlement, agriculture, 

transportation, mining and energy production, and electrical infrastructure (Kennedy et 

al. 2019). Because agriculture was a component of this calculation, we chose to let that 

component of gHM represent the coarse-grain process of land conversion, while the crop 

variables in our nutritional model represented finer-grain selection or avoidance of 

particular crops. Additionally, although roads were captured at a large scale by gHM, we 

also calculated road density at a 30 m resolution to capture finer-grain detail of the study 

area, using the TIGER US Census roads dataset (United States Census Bureau 2016) and 

Google Earth Engine.  
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We centered and scaled all continuous covariates to assist with model 

convergence and allow for direct comparison of parameter estimates. The variables we 

used were not strongly collinear (R2 < 0.6 for all pairs).  

 

Resource selection function 

We used logistic regression to model third-order resource selection (use of habitats within 

home range) from our used-available design (Johnson 1980, Manly et al. 2002, Thomas 

and Taylor 2006). This approach allowed us to estimate the exponential resource 

selection function and relative probability of use of different resources (Lele and Keim 

2006). To account for inter-individual differences in habitat selection behavior and data 

collection (e.g., fix rate), we used a random intercept for individual in all models. When 

fitting the generalized linear mixed models using R package glmmTMB version 1.1.3 

(Brooks et al. 2017), we assigned a weight of 1 for used points and a weight of 5,000 for 

available points, and we fixed the variance of the random intercept at 1,000 (Muff et al. 

2020).  

We fit five models separately for mule deer and white-tailed deer in winter and 

summer (Table 1.2). We used the sample-size corrected Akaike’s Information Criterion 

(AICc) to assess relative support of our ecological hypotheses and select the most 

parsimonious model (Burnham and Anderson 2002) for each species, season, and year. 

We also assessed model fit and predictive power using two methods. Our first method 

was out-of-sample validation using root mean squared error (RMSE). For each of the first 

two years of data (2019 and 2020), we randomly selected 20% of the individuals to 

withhold, and we fit each model to the other 80%. We calculated RMSE on the withheld 
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20% of individuals; this represented a measure of within-year validation. We also tested 

prediction ability (hereafter called “next-year validation”) by fitting the model to the 

following year’s used and available data and calculating RMSE. Our second method of 

validation was Spearman-rank correlation (Boyce et al. 2002). After fitting the RSFs and 

using AICc to select the top model, we created predictive maps of resource selection 

based on the top model for each species, season and year. We then collected the values 

into 10 equal-area bins. Spearman-rank correlation quantifies the correlation between the 

number of used points in each bin to the bin rank (1 through 10), with 1 representing high 

predictive performance and 0 representing low performance. We quantified within-year 

validation via Spearman-rank correlation using that year’s used locations, and we 

calculated next-year validation by using the following year’s locations. For within-year 

and next-year validation, we calculated Spearman-rank correlation at the population level 

by pooling all individuals’ locations and at the individual-level by classifying the count 

of locations in each bin separately by individual.   

 

Results  

Landscape inventory 

 Our study area was predominantly non-agricultural, with 87 – 88% of the study 

area categorized as “no crops” each year (Table 1.3). CRP land that wasn’t mowed or 

grazed annually represented only 1% of our study area. Of the crops grown, other hay 

(excluding alfalfa) was the most common, and soybeans and winter wheat were the least 

common. Of our continuous variables, values of road density and NPP of perennial forbs 

and grasses were approximately evenly distributed on both sides of the median, whereas 
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percent tree cover, slope, and shrub NPP were highly skewed (Table 1.4, Figure 1.2). The 

skew showed that the majority of values recorded in our study area were small, but some 

values were very large compared to the mean.  

 

Model selection 

For seven of our eight species-season-year combinations (mule deer and white-

tailed deer, winter and summer, 2019 and 2020), the global model was the most 

parsimonious as determined by AICc (Table 1.5). For each of these seven, the global 

model received 100% of the model weight, suggesting that none of the other four models 

(nutrition, thermal, human impact, or null) should be considered as a contender for 

explaining resource selection. However, for resource selection of mule deer in summer 

2019, the nutrition and global models did not converge; the variance-covariance matrices 

were not estimable. Therefore, these two models were excluded from further 

consideration (Brooks et al. 2022). Of the three models that converged for mule deer 

summer 2019, the thermal model received 100% of the model weight.  

 

Mule deer 

We used the top model for summer and winter of each year to identify patterns in mule 

deer seasonal resource selection (Figure 1.3). Mule deer selected for CRP lands in the 

winter but avoided or showed no response to them during the summer. Mule deer in 

winter of both years showed selection for soybeans, corn, alfalfa, spring wheat, and 

“other” crops. Of these, corn, spring wheat, and other crops were also selected in 

summer, but soybeans and alfalfa were neither selected nor avoided. Mule deer had 
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inconsistent selection of other non-alfalfa hay and sunflowers; in the first winter these 

crops were neither selected nor avoided, but they were both selected in the next winter. 

The first of these, non-alfalfa hay, was avoided in the summer, whereas sunflowers were 

selected year-round in 2020 (no estimate was available for summer 2019 in the top 

model). In one winter, mule deer appeared to avoid winter wheat, but the next winter they 

showed no selection or avoidance, and in one summer they selected winter wheat. 

Selection of aspect was different between winter and summer; in winter, northern aspects 

were avoided and southern aspects were selected, but in summer, northern aspects were 

selected and southern aspects were neither selected nor avoided. Mule deer selected for 

lands with high human modification in the winter but avoided them in summer, and 

selection for road density was inconsistent between seasons and years. Additionally, 

selection for percent tree cover was inconsistent; in the first summer and following 

winter, tree cover was selected, but in the other seasons it was neither selected nor 

avoided. Finally, mule deer displayed year-round selection for steeper slopes and higher 

shrub NPP and perennial NPP.  

 

White-tailed deer  

Compared to mule deer, white-tailed deer had consistent positive selection across seasons 

and years for a greater number of environmental variables. These included year-round 

selection of corn, soybeans, spring wheat, other small grains, “other” crops, higher 

human modification, higher road density, higher perennial NPP, higher shrub NPP, 

steeper slopes, and higher percent tree cover (Figure 1.3). Like mule deer, white-tailed 

deer showed varied responses to alfalfa, winter wheat, and other hay across seasons and 

years. Also similar to mule deer, white-tailed deer also had a positive or neutral response 
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to sunflowers in each season. As with mule deer, white-tailed deer avoided northern 

aspects and selected for southern aspects in the winter, but in contrast to mule deer, they 

had more varied responses to aspect in the summer. Finally, white-tailed deer showed no 

consistent response to CRP; they selected and avoided CRP in the two winters, and they 

selected or showed no response in the summers.  

 

Species comparison  

Overall, white-tailed deer responded consistently between seasons and years to more 

resources than mule deer did. However, the two species showed consistent, positive, 

year-round selection of quite a few variables, including corn, spring wheat, other crops, 

slope, shrubs, and perennials. They both selected southern slopes in the winter and 

avoided northern slopes. Furthermore, both species responded positively to human 

modification and road density in winter, although they had opposite responses in the 

summer, with mule deer appearing to avoid areas of higher human modification and road 

density in summer and white-tailed deer selecting them. These were the only two 

variables that provided evidence of spatial partitioning in summer but not winter, 

although the evidence was weak because the top model for mule deer in the first summer 

did not have parameter estimates for these variables.   

 

Model fit and prediction ability 

We validated all ecological hypotheses using RMSE for within-year fit and next-year 

prediction, and we validated the top model for each species, season, and year using 

Spearman-rank correlations. For within-year fit from RMSE, the global model was 
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generally ranked last and the null model was ranked first (Table 1.6). This contrasted 

with model selection by AICc, which ranked the global model first (Table 1.5). Next-year 

fit from RMSE showed that all models performed approximately equally, although once 

again the global model was frequently ranked last and the least complex models (null and 

human impact) were ranked first in predictive ability (Table 1.7).  

At the population level, we found very high Spearman-rank correlation (r0.92) 

between RSF value and predicted within-year use and next-year use for all of the 

following: mule deer in summer of both years, white-tailed deer in winter of both years, 

and white-tailed deer in summer 2020 (Table 1.8). Mule deer had slightly lower scores 

(r0.84) in winter of both years. For each of these seven species-season-year 

combinations, within-year fit was greater than or approximately equal to next-year fit. In 

contrast, RSF values for white-tailed deer in summer 2019 had much lower correlation 

with use than any of the other models, and within-year correlation (r = 0.37) was less than 

next-year correlation (r = 0.45).  

Model performance at the individual level was worse than population-level 

performance for all models (Table 1.8). This indicated that individuals’ patterns of 

selection were more variable than the overall population’s pattern of selection. 

Furthermore, the models did not consistently perform better at estimating an individual’s 

relative probability of use of different resources within a year than across years. This 

indicated that variation in selection was common within a single individual across time. 

We created predictive maps of resource selection for each species, season, and 

year using the top model selected by AICc (Figure 1.4). RSF values were grouped into 10 

equal-area bins for visualization. Because population-level Spearman-rank correlation 
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was generally high, the maps illustrate the relative probability of use spatially distributed 

in our study area (Boyce et al. 2002).  

 

Discussion 

Overall, we found some evidence of spatial segregation between mule deer and white-

tailed deer due to their patterns of resource selection. Consistent with long-established 

patterns, white-tailed deer selected for agriculture and tree cover more consistently than 

mule deer did (Whittaker and Lindzey 2004, Baasch 2008). However, both species 

responded positively to many different crops, perennial NPP, and shrub NPP, which was 

evidence of a large degree of overlap in diet (Anthony and Smith 1977, Smith 1987, 

Whittaker and Lindzey 2004, Baasch 2008, Karish 2022). Additionally, there was little 

evidence of a greater degree of habitat overlap during winter than summer. In support of 

this idea and the hypothesis that summer niche differentiation is a mechanism for 

coexistence (Whittaker and Lindzey 2004), resource selection was similar between the 

two species in winter but different in summer for soybeans, northern aspects, and human 

impact. However, for all other environmental variables, the two species had similar 

selection year-round or selection was highly variable between seasons and years (Figure 

1.3). Deer populations in our study area were not migratory, and niche differentiation 

between seasons may be weaker when summer and winter ranges are not distinct.  

There was mixed support for our hypothesis that the combination of nutrition, 

thermal cover, and human impact described resource selection better than any of the three 

on its own. On one hand, this model was consistently selected by AICc and had high 

predictive ability for population-level relative probability of use (Table 1.8). On the other 
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hand, it never outperformed the ecological null model (selection is in proportion to 

availability) for prediction of resource selection by individuals not used to fit the model 

(Tables 1.6 – 1.7). Several factors may be responsible for these results. First, large 

sample sizes can lead to AIC selection of more complex models (Boyce et al. 2002). This 

is because large sample sizes can support precise estimates of very small effects – thus 

leading to selection by AIC – but if the variance in responses is large compared to the 

effect size, prediction ability suffers. Second, many of our variables were uncommon on 

the landscape (Tables 1.3 – 1.4), and selection strength would need to be very high to 

drive animals to use those resources more than the common resources. Third, our two 

species were habitat generalists, and predictions from resource selection functions are 

less robust for generalists than for habitat specialists because RSFs do not account for 

individual variation (Boyce et al. 2002, Montgomery et al. 2018). 

Our results showed a high degree of habitat generalism for the two species; inter-

individual variation within a year and intra-individual variation across years were high, 

so the models did not apply well to different individuals or different times. We 

determined there was high inter-individual variation by Spearman-rank correlation. 

Although selection by the population as a whole may have been predictable by the model, 

any one individual’s pattern of selection was not (Table 1.8). We also suspect that intra-

individual variation was high across years; individuals that lived multiple years were used 

both to fit the model and validate the model to the following year’s used locations. 

However, this did not improve prediction between years, and in fact next-year prediction 

was often worse than prediction to other individuals within a year. High intra-individual 

variation was not likely caused by a dynamic landscape; there was little variation in the 
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makeup of our study area between years (Tables 1.2 – 1.3, Figure 1.2). Furthermore, we 

do not suspect that the landscape context (i.e., the spatial arrangement of resources) 

changed greatly between years, as our only temporally varying resources were crops, tree 

cover, and NPP, which would only be expected to vary at the scale of the land ownership.  

Although the support for our models as predictors was mixed, the top models 

selected by AIC were highly successful at describing relative probability of use at the 

population scale (Table 1.7). Therefore, they served as good descriptors of resource 

selection and relative probability of use at the population scale during the years used to fit 

the models, even though predictive ability was limited. Thus, we interpreted the selection 

coefficients from the top models to evaluate the support for selection of different 

resources within the categories of nutrition, thermal cover, and human impact. Overall, 

the selection coefficients from our top models indicated that nutrition was an important 

driver of resource selection and that thermal cover and human impact drove some 

species-specific differences in resource selection between seasons. 

First, we found evidence of dietary overlap and the importance of nutrition on 

resource selection by the responses of mule deer and white-tailed deer to shrubs, 

perennial forbs and grasses, and crops. Both species showed small but consistent 

selection for shrubs and perennial forbs and grasses throughout the year. Additionally, 

both species showed positive year-round selection of corn, spring wheat, and other crops, 

and white-tailed deer also had positive year-round selection of soybeans and other small 

grains. Because selection was positive in all seasons, these crops may be vulnerable to 

depredation most consistently of any crop in our study area. However, the strength of 
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selection for these crops was not notably greater than for other crops, so their relative 

probability of use may not have been greater than for other crops.  

Second, we found support that thermal cover was important for resource 

selection. In winter, both species showed avoidance of north-facing slopes and selection 

for south-facing slopes, which receive more solar radiation. They both selected positively 

for steeper slopes year-round, which represented terrain complexity and potential wind 

refuges in our relatively flat study area. Steeper slopes were associated with two main 

features: river bottoms and buttes. White-tailed deer may have predominantly selected the 

former while mule deer selected the latter, which would be consistent with previous 

descriptions of habitat differentiation between the two species. White-tailed deer 

consistently selected for higher percent tree cover in summer and winter, whereas mule 

deer sometimes selected for higher percent tree cover and sometimes did not. The effect 

sizes for selection of tree cover were very small, which may be because trees were 

uncommon in our study area (Table 1.4). Deer response to CRP was not consistent across 

years or seasons for either species, except mule deer selected for CRP in both winters. 

Responses to CRP can be highly variable, and it may be more important in other times of 

year (e.g., parturition) than winter or summer (Thomas and Irby 1973, Gould and Jenkins 

1993, Selting and Irby 1997, Kern 2019). Overall, the responses to different aspects of 

thermal cover indicated that resource selection was more similar between the two species 

in winter than in summer, which did not support our hypothesis that selection would be 

driven by different lower critical temperatures between species but similar upper critical 

temperatures. 
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Third, for human impact, we found some species-specific and season-specific 

patterns. Our study area was rural with no major urban interfaces, so the biggest feature 

of human modification was agriculture. Both species of deer responded positively to 

human modification in winter, and white-tailed deer maintained positive selection in 

summer, but mule deer avoided human modification in summer. Additionally, we found 

that white-tailed deer selected for areas with higher road density year-round, whereas – 

consistent with prior literature – mule deer selected these areas in the winter but avoided 

them in summer (Marshal et al. 2006). Because our study area was so rural, roads were 

mostly low-speed roads through agricultural land. This could indicate that positive 

selection was for agriculture, which happened to coincide with higher road density, but 

avoidance by mule deer in summer could have been driven by either avoidance of roads 

or agriculture. Together, these results indicated that white-tailed deer had a higher 

tolerance for human activity, and the results could potentially highlight a small amount of 

spatial partitioning between the species. 

Assuming resource selection correlates with a demographic benefit to the 

populations, our results do not point to any clear management actions that could be taken 

to benefit mule deer more than white-tailed deer. No single resource was consistently 

selected by one species and avoided by the other in winter or summer. Furthermore, 

effect sizes across variables were typically small or imprecisely estimated, and no 

variable stood out with a consistent, outsized effect on resource selection (Figure 1.3). 

Small effect sizes indicated resources were selected slightly out of proportion with their 

availability, and without measuring a demographic benefit (i.e., increased fitness due to 
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resource use), we could not tease apart whether these resources were of small importance 

or highly important but only in small amounts. 

Our extensive GPS collar dataset allowed closer examination of resource selection 

and differentiation by mule deer and white-tailed deer in their sympatric range at a large 

spatial extent and fine spatial grain. We found evidence that resource selection of both 

species was driven by a combination of factors, including nutrition, thermal cover, and 

extent of human impact. However, even with one of the largest datasets ever collected on 

these two species, we were not able to overcome high levels inter-individual variation to 

make generalizable conclusions about the resource needs of these two generalist species. 

The inability of our models to accurately predict future resource selection by individuals 

demonstrates that predicting habitat use and measuring habitat quality is more complex 

than resource selection function modeling allows. Furthermore, using the RSF approach 

we had to assume a demographic benefit of resource selection, but without measuring this 

more directly, we encourage caution in making habitat management decisions based on 

resource selection. To connect resources on the ground to demographic performance of a 

population, the next step is understanding spatial patterns in survival, which we address 

in Chapter 2. 
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Tables 

Table 1.1. Number of individuals with GPS collars used in RSF analyses by species, 

season, and year.   

 2019 2020 2021 

Mule deer winter 102 202 222 

Mule deer summer 92 131 153 

White-tailed deer winter 101 205 218 

White-tailed deer summer 88 159 172 

 

  



 34 

Table 1.2. Variables used in resource selection. All models contained a random effect for 

individual ID.  

Model  

Nutrition crops [alfalfa] + crops [corn] + crops [other hay] + crops [other small 

grains] + crops [other crops] + crops [soybeans] + crops [spring wheat] 

+ crops [sunflower] + crops [winter wheat] + perennial NPP + shrub 

NPP 

Thermal tree % cover + direction [north] + direction [west] + direction [south] + 

CRP + slope 

Human 

impact 

human modification + road density 

Multiple 

drivers 

crops [alfalfa] + crops [corn] + crops [other hay] + crops [other small 

grains] + crops [other crops] + crops [soybeans] + crops [spring wheat] 

+ crops [sunflower]+ crops [winter wheat] + perennial NPP + shrub 

NPP + tree % cover + direction [north] + direction [west] + direction 

[south] + CRP + slope + human modification + road density 

Null Intercept only 
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Table 1.3. Percentage of study area represented by each categorical variable. Some values 

varied by year and are shown by ranges.  

Environmental variable Percentage of study area 

Direction [N] 24% 

Direction [S] 25% 

Direction [W] 23% 

CRP 1% 

Crops [Alfalfa] 2-3% 

Crops [Corn] 2% 

Crops [No crops] 87-88% 

Crops [Other small grains] 0-1% 

Crops [Other crops] 1-2% 

Crops [Other hay] 6-7% 

Crops [Soybeans] 0% 

Crops [Spring wheat] 3% 

Crops [Sunflower] 1-2% 

Crops [Winter wheat] 0% 
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Table 1.4. Values of continuous variables in study area. 

Variable Year Percentile Value 

Slope (°) 
 

all minimum 0 

all median 2.24 

all maximum 88 

Human modification (0-1) 
 

all minimum 0 

all median 0.1 

all maximum 0.68 

Road density (%) 
 

all minimum 0.54 

all median 0.75 

all maximum 0.96 

Tree cover (%) 2019 
 

minimum 0 

median 0 

maximum 96 

2020 
 

minimum 0 

median 0 

maximum 96 

2021 
 

minimum 0 

median 0 

maximum 96 

Perennial NPP (g C m−2 yr−1) 2019 minimum 0 

median 3248 

maximum 6414 

2020 
 

minimum 0 

median 2703 

maximum 6284 

2021 minimum 0 

median 2159 
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maximum 5609 

Shrub NPP (g C m−2 yr−1) 
 

2019 
 

minimum 0 

median 19.2 

maximum 1244 

2020 
 

minimum 0 

median 0.59 

maximum 1025 

2021 
 

minimum 0 

median 0.22 

maximum 909 
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Table 1.5. Model selection by AICc.  

 Model AICc AICc Model 

weight 

K 

Mule deer 

winter 2019 

Global 386922 0 1 20 

Thermal 388493 1571 0 7 

Nutrition 390542 3620 0 12 

Human impact 392529 5607 0 3 

Null 392699 5777 0 1 

Mule deer 

winter 2020 

Global 755145 0 1 20 

Thermal 757696 2550 0 7 

Nutrition 759512 4366 0 12 

Human impact 760704 5558 0 3 

Null 761356 6210 0 1 

Mule deer 

summer 

2019 

Global* - - - 20 

Thermal 414500 0 1 7 

Nutrition* - - - 12 

Human impact 416660 2159 0 3 

Null 416743 2243 0 1 

Mule deer 

summer 

2020 

Global 583103 0 1 20 

Thermal 586815 3712 0 7 

Nutrition 588620 5517 0 12 

Human impact 591879 8777 0 3 

Null 592012 8909 0 1 

White-

tailed deer 

winter 2019 

Global 368416 0 1 20 

Thermal 370394 1978 0 7 

Nutrition 370791 2375 0 12 

Human impact 371286 2870 0 3 

Null 372369 3953 0 1 

White-

tailed deer 

winter 2020 

Global 770925 0 1 20 

Nutrition 773182 2257 0 12 

Human impact 774820 3895 0 3 

Thermal 775034 4109 0 7 

Null 776296 5371 0 1 

White-

tailed deer 

summer 

2019 

Global 362200 0 1 20 

Nutrition 363019 819 0 12 

Thermal 365613 3413 0 7 

Human impact 366842 4642 0 3 

Null 366995 4795 0 1 

White-

tailed deer 

summer 

2020 

Global 704089 0 1 20 

Nutrition 705619 1530 0 12 

Thermal 716892 12803 0 7 

Human impact 719026 14937 0 3 

Null 719356 15267 0 1 

*Model did not converge and removed from consideration 



 39 

Table 1.6. Root mean squared error (RMSE) of within-year out-of-sample validation for 

resource selection models. The best predictive model (lowest RMSE) for each species 

and season is highlighted in blue, and the worst predictive model is in red. 

 Nutrition Thermal Humans Global Null 

Mule deer 

winter 2019 

0.38 0.53 0.4 0.59 0.3 

Mule deer 

winter 2020 

0.39 0.41 0.41 0.56 0.3 

Mule deer 

summer 2019 

- 0.35 0.34 - 0.3 

Mule deer 

summer 2020 

0.61 0.48 0.38 0.83 0.3 

White-tailed 

deer winter 

2019 

0.4 0.37 0.43 0.57 0.3 

White-tailed 

deer winter 

2020 

0.46 0.35 0.41 0.56 0.3 

White-tailed 

deer summer 

2019 

0.75 0.35 0.33 0.82 0.3 

White-tailed 

deer summer 

2020 

0.86 0.34 0.34 0.87 0.3 

 

  



 40 

Table 1.7. Root mean squared error (RMSE) of next-year prediction for resource 

selection models. Models were fitted to one year of data and tested on the following 

year’s used and available points. The best predictive model (lowest RMSE) for each 

species and season is highlighted in blue, and the worst predictive model is in red. 

 Nutrition Thermal Humans Global Null 

Mule deer 

winter 2019 

7.12 7.13 7.03 7.24 7.03 

Mule deer 

winter 2020 

7.64 7.55 7.55 7.72 7.53 

Mule deer 

summer 2019 

- 7.49 7.46 - 7.46 

Mule deer 

summer 2020 

8.34 8.09 8.03 8.44 8.03 

White-tailed 

deer winter 

2019 

7.04 7.00 7.01 7.10 6.96 

White-tailed 

deer winter 

2020 

7.66 7.54 7.53 7.68 7.53 

White-tailed 

deer summer 

2019 

7.17 6.91 6.90 7.17 6.90 

White-tailed 

deer summer 

2020 

8.34 7.86 7.82 8.35 7.83 
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Table 1.8. Spearman rank for top model of each species, season, and year, validated 

within year and to next year, as well as population-wide and individual-based.  

Season Species Year 
Validation 

year 

Spearman rank - 

population 

Spearman rank - 

individual 

Winter Mule Deer 2019 within 1.00 0.35 

Winter Mule Deer 2019 next 0.84 0.10 

Winter Mule Deer 2020 within 0.89 0.17 

Winter Mule Deer 2020 next 0.87 0.31 

Summer Mule Deer 2019 within 0.99 0.71 

Summer Mule Deer 2019 next 1.00 0.51 

Summer Mule Deer 2020 within 1.00 0.46 

Summer Mule Deer 2020 next 1.00 0.59 

Winter White-tailed Deer 2019 within 1.00 0.61 

Winter White-tailed Deer 2019 next 0.92 0.37 

Winter White-tailed Deer 2020 within 0.96 0.48 

Winter White-tailed Deer 2020 next 0.99 0.56 

Summer White-tailed Deer 2019 within 0.37 0.19 

Summer White-tailed Deer 2019 next 0.45 0.11 

Summer White-tailed Deer 2020 within 0.99 0.45 

Summer White-tailed Deer 2020 next 0.96 0.51 
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Figures 

 

Figure 1.1. Data analysis units (DAUs) in South Dakota, USA, with our study area, DAU 

1, outlined in black.  

 



 43 

 

Figure 1.2. Interquartile ranges of centered-and-scaled continuous covariates in our study 

area. Horizontal lines (whiskers) span minimum and maximum values, boxes span 25th to 

75th percentiles, and vertical lines mark median values.  
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Figure 1.3. Selection coefficients and confidence intervals (horizontal bars) for different 

resources by mule deer and white-tailed deer in winter and summer of two different 

years, as estimated by the top model for each. Negative effects shown in red, positive 

effects shown in blue, and no effect (95% confidence interval crosses 0) shown in gray.  
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Figure 1.4. Maps of resource selection in northwestern South Dakota for winter and 

summer of 2019 and 2020 for mule deer (MD) and white-tailed deer (WT). Colors 

represent binned RSF values from low relative probability of use (1) to high relative 

probability of use (10).  
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Chapter 2. Applying a Bayesian ragged telemetry model to quantify environmental 

influences on survival of mule deer (Odocoileus hemionus) and white-tailed deer 

(Odocoileus virginianus) 

Abstract 

Environmental factors that differentially influence survival of mule deer and white-tailed 

deer could help explain the range expansion and population increases of white-tailed deer 

while mule deer populations decline. Because mule deer and white-tailed deer are long-

lived species as well as habitat generalists, estimating environmental effects on survival 

requires large numbers of individuals over long timeframes. Such datasets often contain 

multiple types of monitoring information, and often include both very high frequency 

(VHF) and global positioning system (GPS) collars, which contain different information 

and levels of uncertainty. Using a Bayesian ragged telemetry model originally proposed 

to estimate avian nest survival, we integrated VHF and GPS collar data for 10 

populations of sympatric mule deer and white-tailed deer over 12 years. We tested three 

hypothesized drivers of monthly survival for juvenile and adult deer: (1) harsh winters 

decrease survival; (2) nutrient availability increases survival; (3) drought decreases 

survival. We found little evidence consistent with any of our three hypotheses and 

concluded that population-level survival of deer cannot be predicted by environmental 

conditions.  

 

Introduction  

Over recent decades, mule deer (Odocoileus hemionus) range and abundance have 

declined while white-tailed deer (Odocoileus virginianus) range and abundance have 
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increased (Wallmo 1981, VerCauteren 2003). The two deer species have much in 

common: they are long-lived ungulates and habitat generalists, and they exist in a wide 

range of climates and vegetation communities, including an extensive overlapping range 

in North America (VerCauteren 2003). However, mule deer and white-tailed deer have 

slightly different life histories; mule deer tend to have higher adult survival than white-

tailed deer but take longer to mature to reproductive age (Nixon 1971, Mueller and 

Sadleir 1979, DeYoung 2011, Forrester and Wittmer 2013). The small but meaningful 

differences in population dynamics may indicate that environmental and habitat 

conditions affect the two species differently. These differences are particularly important 

to understand in the two species’ sympatric range, where many biologists are concerned 

about the future of mule deer populations.  

Deer survival can be affected by environmental conditions, and the two species 

may have different tolerance levels for harsh conditions. Our goal was to understand the 

environmental conditions that affect survival of mule deer and white-tailed deer in their 

sympatric range. We explored three hypotheses to explain and predict survival of 

different ages and sexes of both species. We hypothesized that (1) harsh winters decrease 

survival; (2) nutrient availability increases survival; (3) drought decreases survival.  

The first hypothesis, winter severity, has long been proposed as a limiting factor 

on deer survival for a variety of reasons. First, deep snow requires more energetic 

expenditure and leads to reduced survival in adults and juveniles (Moen 1976, Parker et 

al. 1984, Jackson et al. 2021). Second, nutrition is limiting in the winter (Bishop et al. 

2009, Bergman et al. 2014), and limited access to nutrition caused by snow cover may 

lead to poorer body condition and therefore to lower survival. Third, when environmental 
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conditions expose deer to temperatures below their critical body temperature, deer must 

expend additional energy to stay warm (Mautz 1985). Differences in body size, 

locomotion style, and lower critical temperatures between mule deer and white-tailed 

deer may influence their overwinter survival differently. Additionally, winter influences 

age classes differently; juvenile survival is typically lower than adult survival during 

winter (Nelson and Mech 1986, Bishop et al. 2005). 

The second hypothesized environmental condition affecting survival is nutrient 

availability. Experiments have shown that nutrition is limiting in the winter and 

supplemental feed can increase both adult survival and neonatal survival the following 

year (Bishop et al. 2009, Jackson et al. 2021). Furthermore, nutrient availability in the fall 

can affect body condition and therefore overwinter survival (Hurley et al. 2014). Because 

of the impact of nutrition on survival, deer may follow the “green wave” throughout the 

year to track plants at their peak nutritional quality and quantity (Merkle et al. 2016).  

Finally, drought conditions may decrease survival via two mechanisms. First, 

plant primary productivity decreases during drought, which leads to reduced quantity and 

quality of nutritional resources for deer (Lashley and Harper 2012, Jackson et al. 2021). 

Second, drought conditions are associated with outbreaks of hemorrhagic disease, which 

can reduce survival in episodic pulses (Christensen et al. 2020). These two factors may 

affect mule deer and white-tailed deer differently. First, mule deer may be more adapted 

to subsisting on lower-quality forage than white-tailed deer (Lashley et al. 2015). Second, 

hemorrhagic disease may decrease survival of white-tailed deer much more dramatically 

than mule deer (Hoff et al. 1973). 
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Survival models (e.g., known fate, Cormack-Jolly-Seber, Cox proportional 

hazards, etc.) can be used to relate environmental variables to survival probability and 

therefore establish a direct link between habitat and a meaningful metric of population 

performance and trajectory. However, sample size is a limiting factor making this 

connection. To understand the survival process of long-lived species, long-term datasets 

are required to capture the range of conditions an individual experiences over its lifetime. 

Furthermore, for habitat generalists that may have a large amount of inter-individual 

variation, the datasets must include large numbers of individuals. Deer, which are both 

long-lived species and habitat generalists, are difficult and expensive to capture and 

monitor over long timeframes, so sufficient datasets are rare.  

Using a long-term dataset with thousands of individuals, our goal was to 

understand the environmental conditions that affect survival of mule deer and white-

tailed deer in their sympatric range. Due to technological advances over recent years, 

long-term datasets like ours often include different types of data, particularly telemetry 

data from very high frequency (VHF) collars and global positioning system (GPS) 

collars. To complete a survival analysis with both data types, we applied a ragged 

telemetry model originally developed to estimate avian nest survival. This model allowed 

us to integrate the two data types and handle the uncertainty inherent to the different 

types of data. Through this modeling approach, we explored our three hypotheses to 

explain and predict survival of different ages and sexes of both species at the population 

level. We determined the effect of each hypothesized environmental factor on monthly 

survival of males and females of two age classes across 12 years and 10 populations of 

mule deer and white-tailed deer.  
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Methods  

Study area 

Our study area was the state of South Dakota, USA (42°28'14"– 45°56'43" N, 96°25'26"– 

104°2'44" W). The state was divided into eleven Data Analysis Units (DAUs), which 

were defined by homogeneous physiographic and climatic features and were used by 

South Dakota Department of Game, Fish, and Parks (SDGFP) to designate distinct deer 

populations (Figure 2.1; South Dakota Department of Game, Fish, and Parks 2017).  

The three major physiographic regions in South Dakota are West River (west of 

the Missouri River), East River (east of the Missouri River), and the Black Hills (in the 

western part of the state). Aside from the Black Hills, which are forested and higher 

elevation, South Dakota is considered mixed-grass prairie in the northern Great Plains. 

Elevation ranges from 294 m at Big Stone Lake in the northeast to 2,207 m at Black Elk 

Peak in the Black Hills. Aside from the Black Hills, which are colder and wetter than the 

surrounding area, there is a distinct temperature gradient from north (colder) to south 

(warmer) and precipitation gradient from west (drier) to east (wetter; Figure 2.2). The 30-

year mean daily temperature ranged from around 4°C in the north to 10°C in the south, 

and annual precipitation over the same period ranged from around 38 cm in the west to 

71 cm in the east (Fick and Hijmans 2017). Ungulate species in the state in addition to 

mule deer and white-tailed deer include pronghorn (Antilocapra americana) and elk 

(Cervus canadensis). Predator species include mountain lions (Puma concolor), coyotes 

(Canis latrans), and bobcats (Lynx rufus). 
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Capture and collaring  

From 2009 – 2021, we captured and collared 2,045 mule deer and 3,358 white-tailed deer 

in 10 of our 11 DAUs. We captured males and females of two age classes: adult (>1 yr) 

and juvenile (<1 yr). We captured adults in the winter (599 mule deer and 1,162 white-

tailed deer), and we captured some juveniles in the spring as neonates (753 mule deer and 

1,007 white-tailed deer) and some juveniles in the winter at approximately 6 months of 

age (693 mule deer and 1,189 white-tailed deer). We primarily used helicopter net-

gunning to capture adults and juveniles in winter, and we supplemented winter captures 

in some DAUs with Clover traps (Clover 1956). For spring capture of juveniles (2013 – 

2018), we used a combination of methods to locate neonates, including vaginal implant 

transmitters (VITs) placed in adult females, grid searching, and driving transects and 

observing adult female behavior indicating post-partum condition.    

We followed the American Society of Mammalogists’ guidelines for animal 

capture and handling (Sikes et al. 2016), and our protocols in 2019 – 2021 were approved 

by University of Montana Institutional Animal Care and Use Committee (064-18PLWB-

121418).  

 In the earlier years of our study (2009 – 2019), we outfitted each deer with a very 

high frequency (VHF) collar, and in later years (2019 – 2021) we used global positioning 

system (GPS) collars. The 4,713 individuals in the earlier years received VHF collars 

from Advanced Telemetry Systems (Isanti, Minnesota, USA). In the later years, 135 deer 

received GPS collars from Vectronic Aerospace GmbH (Berlin, Germany) that used the 

Iridium satellite system and took positions every 5 hours. The other 555 deer with GPS 

collars received collars from Telonics, Inc. (Mesa, Arizona, USA) that used the 
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GlobalStar satellite system and took positions every 5 hr (n = 81), 11 hr (n = 279), or 13 

hr (n = 195). Juveniles captured in the spring all received expandable collars (all VHF, 68 

g). Juvenile and adult female deer captured in the winter received non-expandable collars 

(VHF 160 g; GPS 495 – 560 g); we padded these collars with temporary foam before 

deploying on juvenile females to fit their smaller necks and allow for growth. On male 

deer captured in winter, we deployed expandable collars (VHF 160 g; GPS 270 – 365 g), 

and we used temporary foam to allow for growth and neck expansion during the rut.  

 

Survival monitoring  

From 2009 to 2021, we performed monthly telemetry flights to monitor the status (alive 

or dead) of VHF collars. Collars emitting mortality signals were pinpointed from the air. 

In the following days, an observer would investigate whether the signal was from a true 

mortality event (evidence included blood, bones, and hair) or a broken or slipped collar. 

When GPS collars sent mortality messages via satellite, an observer located the collar 

within several days and investigated the site for signs of mortality using the same 

protocol as for investigating VHF mortalities. Once we collected a collar, we backdated 

mortality to the date the mortality signal was first heard (VHF) or transmitted (GPS).  

  

Environmental variables 

To determine the effect of environmental factors on deer survival at the population level, 

we collected four covariates to represent our three hypotheses: drought, winter severity 

and nutrient availability. We aggregated data to monthly values for each DAU using 

Google Earth Engine (Gorelick et al. 2017). For drought, we used the Palmer Drought 
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Severity Index (PDSI) from the 4-km daily Gridded Surface Meteorological (GRIDMET) 

dataset (Palmer 1965, Abatzoglou 2013). We calculated a median monthly value from the 

daily dataset and then calculated the median value of these to aggregate the 4 km cells to 

each DAU. PDSI values less than 0 indicated drier conditions and values greater than 0 

indicated wetter conditions (Palmer 1965). To quantify winter severity, we calculated two 

variables: percent snow cover and the number of cold days below the lower critical 

thermal temperature of deer. We quantified percent snow cover from the daily 500 m 

resolution MODIS dataset (Hall and Riggs 2016). We calculated the mean value per 

month and the mean monthly value per DAU to aggregate to our desired spatiotemporal 

scale. We calculated harsh cold at the DAU level as the number of days per month with a 

nighttime low below -10°C, based on the lower critical temperature for white-tailed deer 

(Bunnell et al. 1986). We aggregated the 1km MODIS dataset (Wan et al. 2021) to the 

DAU by taking the maximum value of the pixels in that DAU. Finally, we represented 

nutrient availability throughout the year using the normalized difference vegetation index 

(NDVI; Didan 2021). We aggregated the 16-day dataset to month by taking the median 

value and then aggregated to DAU by taking the median value of 1km pixels.   

 

Analysis  

We used a ragged telemetry model to estimate monthly survival of deer in our study area. 

This model was developed to measure avian nest survival when the fledge date or nest 

failure date is unknown (Royle and Dorazio 2008). This same model applies well to 

telemetry data from VHF or GPS collars in which a collared individual’s fate can be 

observed but the exact mortality date is not always known (Royle and Dorazio 2008). For 
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example, if a monthly flight cannot be performed for some reason, animals recorded dead 

during the following month’s flight could have died in either of two months. For any 

missing observations due to a failure to locate a collar (e.g., no flight performed or the 

animal left the study area), the model integrates over all possible encounter histories that 

could have occurred, thereby eliminating the need to record the exact interval of death. 

We extended this idea to estimate the survival probability of individuals whose fates were 

not observable due to collar failures. If a collar failure occurred, we used the model to 

integrate over all possible alive/dead encounter histories from the last time the individual 

was known to be alive until the end of the study. This allowed us to handle individuals 

with unknown fates without having to right-censor them from our sample. Additionally, 

the ragged telemetry model conditions survival probability on capture, so it allowed 

staggered entry without the need for left-censoring individuals. This was particularly 

useful for our juvenile age class because approximately half of our juveniles entered the 

study in spring and half entered in winter.  

We designated mortalities that occurred within 14 days of capture as capture-

related, and we excluded these individuals from the survival analysis (Chalmers and 

Barrett 1982). We right-censored individuals that died from hunter harvest, so survival 

rates were interpreted as the probability of survival in the absence of hunting. For 

individuals whose collars fell off, lost battery power, or failed for any other reason, we 

allowed the model to integrate over all possible fates for the individual from the time of 

the last known alive to the end of the study. 

 We estimated survival probability independently for each species, age class, sex, 

and year. We used uninformative priors for our beta coefficients (Normal distribution 
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with mean 0 and standard deviation 1.7). We used a Normal(1.5, 1) distribution as a 

weakly informative prior for baseline survival probability in the absence of covariate 

effects. After the logit transformation, this prior was weighted toward higher values of 

monthly survival (i.e., greater than 0.6) because monthly survival is high for long-lived 

ungulates (Forrester and Wittmer 2013). 

Using estimated monthly survival, we derived annual survival for the biological 

year, which we defined as June 1 – May 30 each year. The first capture event in most 

DAUs occurred in winter – partially through our defined biological year – therefore the 

first derived “annual” estimate for that DAU referred to survival from capture through 

May 30 of that year. For example, in DAU 10, white-tailed deer were first captured in 

January 2009, so the reported “annual” survival for year 1 was actually survival from 

January until May 30. Because we used only a partial year, estimated annual survival in 

the first year for each DAU was higher than true annual survival.  

Because we estimated annual survival independently for each DAU, we were able 

to compare survival across time and space. We summarized survival for each species, 

sex, and age class from all years and DAUs to capture the spatiotemporal process 

variance in mean annual survival across deer populations. When comparing annual 

survival across populations, we removed any “annual” estimates derived from partial 

years.  

 We used an information-theoretic approach to select variables to test our 

hypotheses. Three of our covariates (cold days, percent snow cover, and NDVI) were 

highly correlated (r2>0.7; Table 2.1), so we selected only one of these to use in the full 

model. To select the covariate, we first defined and fit four models, each containing one 
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environmental covariate: snow cover, cold days, NDVI, and PDSI (Figure S2.1 in 

Appendix 2.1). The deviance information criterion (DIC) supported NDVI as the top-

ranked model (Table 2.2). Using NDVI to represent all three correlated covariates, we 

then created a single model with two covariates: NDVI and PDSI, which had low 

correlation to the other three variables. 

For each of the four initial models and our full model, we allowed the effects of 

the environmental covariates to vary by species, sex, and age class, so we could compare 

the differential impact of each covariate on each of these groups. Environmental 

covariates were centered and scaled, to aid in comparison of effect size. We ran the 

models in JAGS version 4.3.1 (Plummer 2003) using R version 4.1.3 (R Core Team 

2022) and the R2jags package (Su and Yajima 2021). We ran 3 chains for 30,000 

iterations each and discarded the first 10,000 iterations as burn-in. We checked for chain 

convergence visually using trace plots and by R-hat values < 1.1 (Gelman and Rubin 

1992). 

 

Results 

Survival 

Out of 5,086 deer used in our analysis, we observed 2,636 deaths (52%) over our study 

(Table 2.3). Our monthly monitoring of VHF collars did not allow us to collect cause-

specific mortality, but we investigated collar sites for clues and classified mortality to the 

best of our ability. Therefore, the largest category of mortalities was natural or unknown. 

This was followed by hunter harvest and vehicle collision (Table 2.3). Forty-two percent 
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of the deer (n = 2,159) outlived their collars because the collar malfunctioned, reached 

the end of its battery life, or fell off prematurely.  

We estimated annual survival for each DAU, species, age class, sex, and year 

(Table S2.1 in Appendix 2.1). Across all our deer populations and years, we found that 

mule deer adult female survival (mean = 0.86, SD = 0.04) was the least variable of all the 

vital rates (Table 2.4). Mule deer juvenile survival was the lowest of any survival rate 

(female 0.37; male 0.31). For both species, juvenile survival was lower and more variable 

than adult female survival of that species.  

 

Landscape inventory 

Over our 12-year study, we measured spatio-temporal variation in the four environmental 

variables we collected to represent our hypotheses (Figure 2.3). First, to represent winter 

harshness, we collected the number of cold days per month (days with a nighttime low 

below -10° C) and the monthly percent of snow cover in each DAU. The number of cold 

days varied throughout the year, from 0 in summer months to 24 days in the coldest 

winters. Monthly cold days was relatively consistent between years and between DAUs 

(Figure 2.3). The second winter variable, snow cover, also varied throughout the year, as 

expected, from 0% in summer months to 79% in the snowiest winter. Similar to monthly 

cold days, snow cover was relatively consistent across DAUs and across time, with the 

exception of 2012, which had very little snow compared to other years (Figure 2.3).  

Monthly NDVI values during our study ranged from -0.04 to 0.85. We recorded 

high temporal variation in NDVI throughout the year, with lowest values in the winter 

months and highest values in the summer months (Figure 2.3). Values of NDVI below 
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0.1 (including negative values) represented barren ground or snow whereas high values 

from approximately 0.6 to 0.9 corresponded to high vegetative greenness, such as crops 

during peak growth (Remote Sensing Phenology 2018). There was some variation in 

NDVI between DAUs, but yearly cycles were relatively consistent, with the exception of 

2012, which showed higher-than-average NDVI values during winter (likely due to less 

snow cover) and lower-than-average NDVI values the following summer.  

Our drought severity index, PDSI, varied less within a year than the other three 

environmental variables but more between years (Figure 2.3). It also showed more 

variability between DAUs than the other environmental variables. We recorded values 

from -5.6 in 2012 to 9.17 in 2019. PDSI values between -1 and 1 are considered “normal” 

(neither drought nor wet conditions) and negative numbers indicate drier conditions while 

positive numbers indicate wetter conditions (Abatzoglou 2013). Values below -5 are 

considered extreme drought and values above 5 are extremely wet conditions.  

 

Environmental effects 

We considered covariate effects to be significant if at least 95% of the posterior 

distribution was on the same side of 0 as the mean. We found consistent evidence that 

higher NDVI was associated with decreased survival in juveniles of both species and 

sexes (Figure 2.4). The standard deviation was an order of magnitude smaller than the 

mean and approximately 100% of the posterior distribution was on the same side of 0 as 

the mean, indicating evidence of an effect. For adults, the effect of NDVI on survival 

varied by species; there was no measurable effect on survival of mule deer adult females 

(-0.06, SD 0.06) or males (-0.03, SD 0.14), but higher NDVI was associated with 



 59 

increased survival of white-tailed deer adult females (0.15, SD 0.04) and males (0.56, SD 

0.07).  

Overall, drought (represented by PDSI) had little effect on survival (Figure 2.4). 

The positive relationship of PDSI with survival of white-tailed deer female juveniles 

(0.22, SD 0.12) indicated that wetter conditions increased survival and drier conditions 

decreased survival for this group. However, drought had the opposite effect on mule deer 

female juveniles (-0.26, SD 0.13) and white-tailed deer adult males (-0.22, SD 0.13). For 

all three of these groups with a detected effect, there was a large standard error relative to 

the mean and the 95% Bayesian Credible Interval (BCI) overlapped 0, so the effects were 

not strong. Furthermore, we found no effect of PDSI on male juveniles of either species, 

no effect on mule deer adults, and no effect on white-tailed deer adult females.  

 

Discussion  

The ragged telemetry survival model was a flexible approach to estimating survival that 

allowed us to combine a VHF telemetry dataset with finer-scale GPS collar data. It 

integrated over all possible fates when an individual’s exact fate date was unobservable, 

which was a greater source of uncertainty in the VHF data than GPS data and would have 

been an obstacle in combining the two datasets in a purely known fate model. Despite 

monthly effort, some VHF collars were not located from the air for several months due to 

a variety of reasons, including individuals moving long distances or collars 

malfunctioning. Therefore, mortalities were sometimes found months after the individual 

was last known to be alive, creating uncertainty in the death date. Furthermore, the 

ragged telemetry survival model approach also allowed us to integrate over all possible 
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fates for individuals that outlived their collars (nearly half of all individuals) without 

needing to remove them from the sample. This feature allows for continual updating of 

the model if new mortality information comes in (e.g., the collar is returned by a hunter 

or found on a road-killed animal).  

Consistent with known demographic patterns in ungulates, we found that adult 

survival was higher and less variable than juvenile survival in both species (Gaillard et al. 

2000). The greatest number of effects and largest effect sizes we found from the 

environmental covariates were among juveniles, which was likely because juvenile 

survival was more variable than adult survival (Figure 2.4). Our estimate of mean mule 

deer adult female survival (0.856) matched the range-wide mean of mule deer adult 

survival (0.84, 95% CI 0.76-0.94; Forrester and Wittmer 2013). Mule deer juvenile 

survival (females 0.37; males 0.31) also fell in the range-wide mean (0.29, 95% CI: 0.19 

– 0.39) and may have been on the upper end (Forrester and Wittmer 2013). There is a 

large amount of variation in white-tailed deer survival between studies (adult females 

0.44 – 0.93, adult males 0.27 – 0.97), and our estimates (adult females 0.82; adult males 

0.72) also fell within these bounds (DeYoung 2011). These values showed that mean 

adult survival was comparable between mule deer and white-tailed deer in South Dakota 

over our study period. However, juvenile survival of white-tailed deer was much higher 

than mule deer, with approximately the same amount of variability. Low mule deer 

recruitment of fawns may be a critical factor for conserving mule deer populations, and 

our results could indicate a competitive advantage of white-tailed deer over mule deer in 

the areas where they coexist (Carpenter 1997).  
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With our extensive, long-term dataset, we aimed to understand the environmental 

variables affecting mule deer and white-tailed deer survival at the population level, and 

we found little support for any of our hypotheses. We used a single variable, NDVI, to 

test our first two hypotheses: (1) harsh winters decrease survival and (2) nutrient 

availability increases survival. The limited support for these hypotheses was the positive 

effect of NDVI on white-tailed deer adults, which indicated that higher nutrient 

availability (and by extension to the correlated variables, lower snow cover and fewer 

cold days) increased monthly survival, as predicted. However, higher values of NDVI 

decreased survival in juveniles of both species and had no effect on mule deer adults. 

This suggested that lower nutrient availability and harsher winters increased survival of 

juveniles, which was unexpected. Because deer are concentrate selectors, NDVI may not 

always correlate with higher nutrient availability, as plant parts that are not eaten can 

contribute to the overall greenness score (Zimmerman et al. 2006, Lashley et al. 2014). 

Additionally, our metrics of winter severity showed little variation between years, with 

only one particularly mild winter recorded and no extremely harsh winters. This indicated 

that within the range of conditions in typical winters, there was little support for winter 

harshness decreasing survival.  

Our third hypothesis – drought conditions would decrease monthly survival 

through either decreased access to quality forage or increased risk of disease transmission 

– was also largely unsupported. Although we found that drought had a negative effect on 

white-tailed deer juvenile female survival as predicted, the effect size was small and 

uncertain. For every other species, age class, and sex, drought had no effect on survival 

or the opposite effect of what was predicted. These results did not follow any biologically 
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meaningful patterns that could describe or predict survival at the population level. Over 

our 12-year study, we recorded a wide range of drought conditions, from extreme drought 

to extreme wet, yet there was no measurable effect at the population level. Mule deer and 

white-tailed deer are habitat generalists that can persist in a wide range of conditions; 

their physiological and behavioral adaptations appeared to allow individuals to survive at 

a similar rate across highly variable conditions. It also may be possible that sustained 

drought conditions over a longer time would be necessary to cause a decrease in survival 

at the population level.   

Although our results showed little support for our hypotheses and highlighted 

some counterintuitive patterns, they are in keeping with the inconsistent results found in 

the literature. For example, snow depth or winter precipitation are commonly used 

environmental variables in habitat selection and demographic studies, and they have been 

associated with decreased survival of white-tailed deer (DelGiudice et al. 2002), mule 

deer adults (Jackson et al. 2021), and mule deer juveniles (Forrester and Wittmer 2013, 

Hurley et al. 2014). However, they have also been shown to have the opposite or no 

effect on mule deer adults (Forrester and Wittmer 2013, Schuyler et al. 2019) and 

unlikely to have an effect on mule deer juveniles (Bergman et al. 2014). Given the 

contradictory evidence across time and space, it is likely that snow is only limiting in 

severe winters, so it does not have a consistent effect on survival across years (Jackson et 

al. 2021). The same may be true about our measures of forage, winter severity, and 

drought. Experiments have shown that deer survival is linked to nutritional condition 

(Bishop et al. 2009), but inter-individual variability within a population may be large 

enough to drown out any effects of the environment when conditions are within normal 
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bounds. These results suggest further support for the conclusion that environmental 

variables cannot predict an individual’s probability of survival better than more direct 

measures such as body mass (Bishop et al. 2005). 

For long-lived species like deer, the effects of nutritional stress and cold exposure 

likely function on a longer timeframe than we were able to capture in our study. For 

example, summer and fall nutrient availability affect an individual’s body condition and 

therefore its resilience to winter (Rowland et al. 2018). Therefore, the limiting factors for 

survival may occur months before the winter conditions that are proximally responsible 

for mortality. However, the ragged telemetry model we used was formulated to link 

survival to environmental conditions occurring at the time of observation, not months 

before. To use this and other survival models to quantify the effect of variables that have 

longer-term effects, researchers must use lag effects (e.g., Hurley et al. 2014, Jackson et 

al. 2021). However, lag effects must be assigned specific time delays (e.g., a lag of one 

month, two months, etc.), and in the absence of experimental data, the scale can be very 

hard to define and may be arbitrary. Thus, there is a need for modeling approaches that 

improve our ability to capture long-term processes effectively. In the next chapter, we 

introduce a new model to address these limitations of current methodologies.  

 

Literature cited 

Abatzoglou, J. T. 2013. Development of gridded surface meteorological data for 

ecological applications and modelling. International Journal of Climatology 33:121–

131. 



 64 

Bergman, E. J., C. J. Bishop, D. J. Freddy, G. C. White, and P. F. Doherty. 2014. Habitat 

management influences overwinter survival of mule deer fawns in Colorado. Journal 

of Wildlife Management 78:448–455. 

Bishop, C. J., J. W. Unsworth, and E. O. Garton. 2005. Mule deer survival among 

adjacent populations in southwest Idaho. Journal of Wildlife Management 69:311–

321. 

Bishop, C. J., G. C. White, D. J. Freddy, B. E. Watkins, and T. R. Stephenson. 2009. 

Effect of enhanced nutrition on mule deer population rate of change. Wildlife 

Monographs 172:1–28. 

Bunnell, F. L., K. L. Parker, L. L. Kremsater, and F. W. Hovey. 1986. Thermoregulation 

and thermal cover of deer and elk on Vancouver Island: A problem analysis. 

Victoria, B. C. 

Carpenter, L. 1997. Deer in the West. Page in J. C. DeVos, editor. Proceedings of the 

1997 deer/elk workshop. Arizona Game and Fish Department, Rio Rico, AZ. 

Chalmers, G. A., and M. W. Barrett. 1982. Capture myopathy. Pages 84–94 in G. L. Hoff 

and J. W. Davis, editors. Noninfectious diseases of wildlife. Iowa State University 

Press, Ames, Iowa. 

Christensen, S. A., M. G. Ruder, D. M. Williams, W. F. Porter, and D. E. Stallknecht. 

2020. The role of drought as a determinant of hemorrhagic disease in the eastern 

United States. Global Change Biology 26:3799–3808. 

Clover, M. R. 1956. Single-gate deer trap. California Fish and Game 42:199–201. 



 65 

DelGiudice, G. D., M. R. Riggs, P. Joly, and W. Pan. 2002. Winter severity, survival, and 

cause-specific mortality of female white-tailed deer in north-central Minnesota. 

Journal of Wildlife Management 66:698–717. 

DeYoung, C. A. 2011. Population dynamics. Pages 147–180 in D. G. Hewitt, editor. 

Biology and management of white-tailed deer. First edition. Taylor & Francis, Boca 

Raton, FL. 

Didan, K. 2021. MODIS/Terra Vegetation Indices 16-Day L3 Global 1km SIN Grid 

V061 [Data set]. https://doi.org/10.5067/MODIS/MOD13A2.061. 

Fick, S. E., and R. J. Hijmans. 2017. WorldClim 2: new 1km spatial resolution climate 

surfaces for global land areas. International Journal of Climatology 37:4302–4315. 

Forrester, T. D., and H. U. Wittmer. 2013. A review of the population dynamics of mule 

deer and black-tailed deer Odocoileus hemionus in North America. Blackwell 

Publishing Ltd. 

Gaillard, J.-M., M. Festa-Bianchet, N. G. Yoccoz, A. Loison, and C. Toigo. 2000. 

Temporal variation in fitness components and population dynamics of large 

herbivores. Annual Review of Ecology and Systematics 31:367–393. 

Gelman, A., and D. B. Rubin. 1992. Inference from iterative simulation using multiple 

sequences. Statistical Science 7:457–511. 

Gorelick, N., M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore. 2017. 

Google Earth Engine: Planetary-scale geospatial analysis for everyone. Elsevier. 

Hall, D. K., and G. A. Riggs. 2016. MODIS/Terra Snow Cover Daily L3 Global 500m 

SIN Grid, Version 6 [Data set]. https://doi.org/10.5067/MODIS/MOD10A1.006. 



 66 

Hoff, G. L., S. H. Richards, and D. O. Trainer. 1973. Epizootic of hemorrhagic disease in 

North Dakota deer. Journal of Wildlife Management 37:331–335. 

Hurley, M. A., M. Hebblewhite, J. M. Gaillard, S. Dray, K. A. Taylor, W. K. Smith, P. 

Zager, and C. Bonenfant. 2014. Functional analysis of normalized difference 

vegetation index curves reveals overwinter mule deer survival is driven by both 

spring and autumn phenology. Philosophical Transactions of the Royal Society B: 

Biological Sciences 369. 

Jackson, N. J., K. M. Stewart, M. J. Wisdom, D. A. Clark, and M. M. Rowland. 2021. 

Demographic performance of a large herbivore: effects of winter nutrition and 

weather. Ecosphere 12. 

Lashley, M. A., M. C. Chitwood, C. A. Harper, C. E. Moorman, and C. S. DePerno. 

2014. Collection, handling and analysis of forages for concentrate selectors. Wildlife 

Biology in Practice 10:29–38. 

Lashley, M. A., M. C. Chitwood, C. A. Harper, C. E. Moorman, and C. S. DePerno. 

2015. Poor soils and density-mediated body weight in deer: forage quality or 

quantity? Wildlife Biology 21:213–219. 

Lashley, M. A., and C. A. Harper. 2012. The effects of extreme drought on native forage 

nutritional quality and white-tailed deer diet selection. Southeastern Naturalist 

11:699–710. 

Mautz, W. and P. P. and W. J. 1985. Cold temperature effects on metabolic rate of white-

tailed, mule, and black-tailed deer in winter coat. The Royal Society of New Zealand 

Bulletin 22:453–457. 



 67 

Merkle, J. A., K. L. Monteith, E. O. Aikens, M. M. Hayes, K. R. Hersey, A. D. 

Middleton, B. A. Oates, H. Sawyer, B. M. Scurlock, and M. J. Kauffman. 2016. 

Large herbivores surf waves of green-up during spring. Proceedings of the Royal 

Society B: Biological Sciences 283. 

Moen, A. N. 1976. Energy conservation by white-tailed deer in the winter. Ecology 

57:192–198. 

Mueller, C. C., and R. M. F. S. Sadleir. 1979. Age at first conception in black-tailed deer. 

Biology of Reproduction 1104:1099–1104. 

Nelson, M. E., and L. D. Mech. 1986. Mortality of white-tailed deer in northeastern 

Minnesota. Journal of Wildlife Management 50:691–698. 

Nixon, C. M. 1971. Productivity of white-tailed deer in Ohio. The Ohio Journal of 

Science 71:217–225. 

Palmer, W. C. 1965. Meteorological drought. U.S. Department of Commerce, Weather 

Bureau, Washington, D. C., USA. 

Parker, K. L., C. T. Robbins, and T. A. Hanley. 1984. Energy expenditures for 

locomotion by mule deer and elk. Journal of Wildlife Management 48:474–488. 

Plummer, M. 2003. JAGS: A program for analysis of Bayesian graphical models using 

Gibbs sampling. Page in K. Hornik, F. Leisch, and A. Zeileis, editors. 3rd 

International Workshop on Distributed Statistical Computing (DSC 2003). Vienna, 

Austria. 

R Core Team. 2022. R: a language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. 



 68 

Remote Sensing Phenology. 2018, November 27. NDVI, the Foundation for Remote 

Sensing Phenology. https://www.usgs.gov/special-topics/remote-sensing-

phenology/science/ndvi-foundation-remote-sensing-phenology. 

Rowland, M. M., M. J. Wisdom, R. M. Nielson, J. G. Cook, R. C. Cook, B. K. Johnson, 

P. K. Coe, J. M. Hafer, B. J. Naylor, D. J. Vales, R. G. Anthony, E. K. Cole, C. D. 

Danilson, R. W. Davis, F. Geyer, S. Harris, L. L. Irwin, R. Mccoy, M. D. Pope, K. 

Sager-Fradkin, and M. Vavra. 2018. Modeling elk nutrition and habitat use in 

western Oregon and Washington. Wildlife Monographs 199:1–69. 

Royle, J. A., and R. M. Dorazio. 2008. Hierarchical modeling and inference in ecology. 

First edition. Academic Press, London, UK. 

Schuyler, E. M., K. M. Dugger, and D. H. Jackson. 2019. Effects of distribution, 

behavior, and climate on mule deer survival. Journal of Wildlife Management 

83:89–99. 

Sikes, R. S. 2016. 2016 Guidelines of the American Society of Mammalogists for the use 

of wild mammals in research and education. Journal of Mammalogy 97:663–688. 

South Dakota Department of Game Fish and Parks. 2017. South Dakota white-tailed and 

mule deer management plan, 2017-2023. Pierre, South Dakota. 

Su, Y., and M. Yajima. 2021. R2jags: Using R to run “JAGS.” 

VerCauteren, K. C. 2003. The deer boom: Discussions on population growth and range 

expansion of the white-tailed deer. 

Wallmo, O. C. 1981. Mule and black-tailed deer distribution and habitats. Pages 1–26 in 

O. C. Wallmo, editor. Mule and black-tailed deer of North America. A Wildlife 

Management Institute book. University of Nebraska Press, Lincoln, NE. 



 69 

Wan, Z., S. Hook, and G. Hulley. 2021. MODIS/Terra Land Surface 

Temperature/Emissivity Daily L3 Global 1km SIN Grid V061 [Data set]. 

https://doi.org/10.5067/MODIS/MOD11A1.061. 

Zimmerman, T. J., J. A. Jenks, and D. M. Leslie. 2006. Gastrointestinal morphology of 

female white-tailed and mule deer: Effects of fire, reproduction, and feeding type. 

Journal of Mammalogy 87:598–605. 

  

  



 70 

Tables 

Table 2.1. Collinearity of environmental variables (r2). 

 Cold days PDSI NDVI Snow cover 

Cold days 1 - - - 

PDSI 0.009 1 - - 

NDVI -0.800 0.030 1 - 

Snow cover 0.800 0.116 -0.740 1 
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Table 2.2. Model selection between four hypothesized drivers of survival probability 

using deviance information criterion (DIC).  

Model DIC DIC 

NDVI 23030.9 0.0 

Cold days 23229.8 198.9 

Snow cover 23416.7 385.8 

PDSI 23771.8 740.9 
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Table 2.3. Causes of observed mortalities. We did not aim to get cause-specific mortality, 

so the greatest number of mortalities were categorized as Natural or Unknown. 

Fate n 

Alive 291 

Capture-related 317 

Hunter harvest 340 

Collar failure 2,159 

Natural or unknown 2,167 

Vehicle collision 129 

Total 5,403 
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Table 2.4. Annual survival in the absence of harvest for juvenile (<1 yr) and adult (>1yr) 

mule deer and white-tailed deer across 10 populations and 12 years.  

Species Age Sex Mean SD n1 

Mule Deer adult female 0.856 0.043 49 

Mule Deer adult male 0.743 0.062 36 

Mule Deer juvenile female 0.374 0.135 16 

Mule Deer juvenile male 0.314 0.133 16 

White-tailed Deer adult female 0.822 0.082 62 

White-tailed Deer adult male 0.724 0.062 48 

White-tailed Deer juvenile female 0.493 0.133 20 

White-tailed Deer juvenile male 0.452 0.117 20 
1sample size = number of DAU-specific annual survival estimates 
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Figures  

 

Figure 2.1. Data analysis units (DAUs) of South Dakota.  
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Figure 2.2. General variability of temperature and precipitation in South Dakota, USA, 

1970–2000. Map by Samantha Nichols, data from Fick and Hijmans (2017).   
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Figure 2.3. Monthly values of environmental variables recorded for each Data Analysis 

Unit (DAU) from January 2009 – December 2021.  
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Figure 2.4. Estimated effects of normalized difference vegetation index (NDVI) and 

Palmer’s drought severity index (PDSI) on monthly survival probability by species, age 

class, and sex, including 95% Bayesian credible interval. 
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Appendix 2.1 

 

 

Figure S2.1. Estimated effects of number of monthly cold days, normalized difference 

vegetation index (NDVI), Palmer’s drough severity index (PDSI), and percent snow 

cover on survival of mule deer and white-tailed deer adults (>1 yr) and juveniles (<1 yr). 

Models were fit separately.  
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Table S2.1. Estimates of annual survival for each DAU, species, age class, sex, and year, 

given a minimum of 10 individuals were monitored.  

parameter species age sex bioyear yr DAU mean sd n 

partial year Mule Deer adult female 2009 2 2 0.519 0.083 39 

partial year Mule Deer adult female 2009 2 7 0.520 0.083 48 

annual Mule Deer adult female 2010 3 2 0.721 0.082 44 

annual Mule Deer adult female 2010 3 7 0.719 0.082 53 

annual Mule Deer adult female 2011 4 2 0.878 0.051 54 

annual Mule Deer adult female 2011 4 7 0.876 0.052 40 

annual Mule Deer adult female 2012 5 2 0.875 0.046 51 

annual Mule Deer adult female 2012 5 7 0.873 0.047 36 

annual Mule Deer adult female 2013 6 2 0.920 0.035 44 

annual Mule Deer adult female 2013 6 7 0.924 0.034 23 

annual Mule Deer adult female 2014 7 2 0.904 0.030 50 

partial year Mule Deer adult female 2014 7 3 0.967 0.011 38 

annual Mule Deer adult female 2014 7 4 0.907 0.029 52 

partial year Mule Deer adult female 2014 7 6 0.971 0.010 49 

annual Mule Deer adult female 2014 7 7 0.913 0.028 31 

annual Mule Deer adult female 2015 8 2 0.909 0.019 54 

annual Mule Deer adult female 2015 8 3 0.901 0.021 109 

annual Mule Deer adult female 2015 8 4 0.905 0.020 111 

annual Mule Deer adult female 2015 8 6 0.912 0.019 109 

annual Mule Deer adult female 2015 8 7 0.910 0.019 37 

annual Mule Deer adult female 2016 9 2 0.851 0.018 52 

annual Mule Deer adult female 2016 9 3 0.847 0.020 122 

annual Mule Deer adult female 2016 9 4 0.844 0.019 141 

annual Mule Deer adult female 2016 9 6 0.843 0.019 126 

annual Mule Deer adult female 2016 9 7 0.838 0.020 37 

annual Mule Deer adult female 2017 10 2 0.890 0.017 44 

annual Mule Deer adult female 2017 10 3 0.884 0.017 132 

annual Mule Deer adult female 2017 10 4 0.886 0.017 157 

annual Mule Deer adult female 2017 10 6 0.888 0.016 142 

annual Mule Deer adult female 2017 10 7 0.881 0.018 37 

partial year Mule Deer adult female 2018 11 1 0.942 0.008 102 

annual Mule Deer adult female 2018 11 2 0.860 0.017 36 

annual Mule Deer adult female 2018 11 3 0.854 0.018 122 

annual Mule Deer adult female 2018 11 4 0.859 0.017 201 
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annual Mule Deer adult female 2018 11 6 0.866 0.017 198 

annual Mule Deer adult female 2018 11 7 0.860 0.017 37 

annual Mule Deer adult female 2019 12 1 0.830 0.019 116 

annual Mule Deer adult female 2019 12 2 0.828 0.019 36 

annual Mule Deer adult female 2019 12 3 0.829 0.020 120 

annual Mule Deer adult female 2019 12 4 0.825 0.020 175 

annual Mule Deer adult female 2019 12 6 0.833 0.019 177 

annual Mule Deer adult female 2019 12 7 0.826 0.020 37 

annual Mule Deer adult female 2020 13 1 0.842 0.021 133 

annual Mule Deer adult female 2020 13 2 0.842 0.021 36 

annual Mule Deer adult female 2020 13 3 0.837 0.022 101 

annual Mule Deer adult female 2020 13 4 0.839 0.021 161 

annual Mule Deer adult female 2020 13 6 0.838 0.021 153 

annual Mule Deer adult female 2020 13 7 0.829 0.024 37 

annual Mule Deer adult female 2021 14 1 0.825 0.025 154 

annual Mule Deer adult female 2021 14 2 0.828 0.025 36 

annual Mule Deer adult female 2021 14 3 0.815 0.028 92 

annual Mule Deer adult female 2021 14 4 0.822 0.026 150 

annual Mule Deer adult female 2021 14 6 0.822 0.026 134 

annual Mule Deer adult female 2021 14 7 0.819 0.026 37 

annual Mule Deer juvenile female 2013 6 2 0.459 0.081 18 

annual Mule Deer juvenile female 2013 6 7 0.346 0.080 19 

annual Mule Deer juvenile female 2014 7 2 0.305 0.086 17 

annual Mule Deer juvenile female 2014 7 7 0.346 0.088 15 

annual Mule Deer juvenile female 2015 8 3 0.408 0.066 33 

annual Mule Deer juvenile female 2015 8 4 0.596 0.056 38 

annual Mule Deer juvenile female 2015 8 6 0.628 0.061 36 

annual Mule Deer juvenile female 2016 9 3 0.316 0.052 53 

annual Mule Deer juvenile female 2016 9 4 0.468 0.048 57 

annual Mule Deer juvenile female 2016 9 6 0.419 0.048 52 

annual Mule Deer juvenile female 2017 10 3 0.254 0.041 39 

annual Mule Deer juvenile female 2017 10 4 0.445 0.042 82 

annual Mule Deer juvenile female 2017 10 6 0.411 0.042 84 

annual Mule Deer juvenile female 2018 11 3 0.283 0.073 34 

annual Mule Deer juvenile female 2019 12 1 0.097 0.048 55 

annual Mule Deer juvenile female 2020 13 1 0.210 0.095 52 

annual Mule Deer adult male 2014 7 2 0.688 0.137 14 

annual Mule Deer adult male 2014 7 7 0.709 0.138 12 

annual Mule Deer adult male 2015 8 2 0.803 0.090 27 
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annual Mule Deer adult male 2015 8 7 0.804 0.090 15 

annual Mule Deer adult male 2016 9 2 0.823 0.053 27 

annual Mule Deer adult male 2016 9 3 0.822 0.055 20 

annual Mule Deer adult male 2016 9 4 0.817 0.054 33 

annual Mule Deer adult male 2016 9 6 0.816 0.054 24 

annual Mule Deer adult male 2016 9 7 0.812 0.055 15 

annual Mule Deer adult male 2017 10 2 0.806 0.052 26 

annual Mule Deer adult male 2017 10 3 0.801 0.052 39 

annual Mule Deer adult male 2017 10 4 0.802 0.052 59 

annual Mule Deer adult male 2017 10 6 0.805 0.051 63 

annual Mule Deer adult male 2017 10 7 0.794 0.056 15 

annual Mule Deer adult male 2018 11 2 0.799 0.044 26 

annual Mule Deer adult male 2018 11 3 0.796 0.044 52 

annual Mule Deer adult male 2018 11 4 0.799 0.043 97 

annual Mule Deer adult male 2018 11 6 0.806 0.040 119 

annual Mule Deer adult male 2018 11 7 0.801 0.041 15 

annual Mule Deer adult male 2019 12 2 0.686 0.081 26 

annual Mule Deer adult male 2019 12 3 0.692 0.082 61 

annual Mule Deer adult male 2019 12 4 0.681 0.083 91 

annual Mule Deer adult male 2019 12 6 0.692 0.081 110 

annual Mule Deer adult male 2019 12 7 0.684 0.081 15 

annual Mule Deer adult male 2020 13 1 0.681 0.086 24 

annual Mule Deer adult male 2020 13 2 0.681 0.086 26 

annual Mule Deer adult male 2020 13 3 0.678 0.091 55 

annual Mule Deer adult male 2020 13 4 0.678 0.086 88 

annual Mule Deer adult male 2020 13 6 0.678 0.087 106 

annual Mule Deer adult male 2020 13 7 0.664 0.093 15 

annual Mule Deer adult male 2021 14 1 0.692 0.059 55 

annual Mule Deer adult male 2021 14 2 0.695 0.059 26 

annual Mule Deer adult male 2021 14 3 0.683 0.069 55 

annual Mule Deer adult male 2021 14 4 0.688 0.060 88 

annual Mule Deer adult male 2021 14 6 0.689 0.061 106 

annual Mule Deer adult male 2021 14 7 0.687 0.062 15 

annual Mule Deer juvenile male 2013 6 2 0.409 0.081 17 

annual Mule Deer juvenile male 2013 6 7 0.199 0.067 23 

annual Mule Deer juvenile male 2014 7 2 0.244 0.062 25 

annual Mule Deer juvenile male 2014 7 7 0.175 0.058 20 

annual Mule Deer juvenile male 2015 8 3 0.248 0.051 35 

annual Mule Deer juvenile male 2015 8 4 0.478 0.053 41 
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annual Mule Deer juvenile male 2015 8 6 0.420 0.061 41 

annual Mule Deer juvenile male 2016 9 3 0.209 0.044 44 

annual Mule Deer juvenile male 2016 9 4 0.464 0.049 47 

annual Mule Deer juvenile male 2016 9 6 0.392 0.048 56 

annual Mule Deer juvenile male 2017 10 3 0.255 0.044 40 

annual Mule Deer juvenile male 2017 10 4 0.523 0.045 72 

annual Mule Deer juvenile male 2017 10 6 0.437 0.045 73 

annual Mule Deer juvenile male 2018 11 3 0.268 0.069 35 

annual Mule Deer juvenile male 2019 12 1 0.058 0.037 42 

annual Mule Deer juvenile male 2020 13 1 0.240 0.093 52 

partial year White-tailed Deer adult female 2008 1 10 0.554 0.133 26 

partial year White-tailed Deer adult female 2008 1 8 0.649 0.114 25 

annual White-tailed Deer adult female 2009 2 10 0.638 0.106 44 

annual White-tailed Deer adult female 2009 2 8 0.640 0.105 43 

annual White-tailed Deer adult female 2010 3 10 0.794 0.076 37 

annual White-tailed Deer adult female 2010 3 8 0.802 0.074 33 

annual White-tailed Deer adult female 2011 4 10 0.842 0.062 46 

annual White-tailed Deer adult female 2011 4 8 0.845 0.061 25 

annual White-tailed Deer adult female 2012 5 10 0.629 0.080 68 

annual White-tailed Deer adult female 2012 5 8 0.631 0.080 17 

partial year White-tailed Deer adult female 2013 6 1 0.946 0.019 49 

annual White-tailed Deer adult female 2013 6 10 0.845 0.048 54 

partial year White-tailed Deer adult female 2013 6 11 0.938 0.021 46 

annual White-tailed Deer adult female 2013 6 8 0.845 0.048 17 

annual White-tailed Deer adult female 2014 7 1 0.918 0.023 49 

annual White-tailed Deer adult female 2014 7 10 0.910 0.025 58 

annual White-tailed Deer adult female 2014 7 11 0.912 0.024 62 

partial year White-tailed Deer adult female 2014 7 3 0.965 0.010 72 

annual White-tailed Deer adult female 2014 7 8 0.912 0.025 17 

partial year White-tailed Deer adult female 2014 7 9 0.967 0.010 49 

annual White-tailed Deer adult female 2015 8 1 0.895 0.019 56 

annual White-tailed Deer adult female 2015 8 10 0.892 0.021 68 

annual White-tailed Deer adult female 2015 8 11 0.897 0.019 136 

annual White-tailed Deer adult female 2015 8 3 0.910 0.017 111 

annual White-tailed Deer adult female 2015 8 8 0.898 0.019 17 

annual White-tailed Deer adult female 2015 8 9 0.894 0.020 102 

annual White-tailed Deer adult female 2016 9 1 0.856 0.018 61 

annual White-tailed Deer adult female 2016 9 10 0.864 0.017 65 

annual White-tailed Deer adult female 2016 9 11 0.873 0.017 158 
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annual White-tailed Deer adult female 2016 9 3 0.870 0.018 124 

annual White-tailed Deer adult female 2016 9 7 0.868 0.017 22 

annual White-tailed Deer adult female 2016 9 8 0.871 0.016 119 

annual White-tailed Deer adult female 2016 9 9 0.866 0.017 131 

annual White-tailed Deer adult female 2017 10 1 0.870 0.017 51 

annual White-tailed Deer adult female 2017 10 10 0.881 0.015 167 

annual White-tailed Deer adult female 2017 10 11 0.884 0.015 177 

annual White-tailed Deer adult female 2017 10 3 0.884 0.015 126 

annual White-tailed Deer adult female 2017 10 7 0.882 0.015 22 

annual White-tailed Deer adult female 2017 10 8 0.884 0.015 144 

annual White-tailed Deer adult female 2017 10 9 0.877 0.015 169 

annual White-tailed Deer adult female 2018 11 1 0.839 0.015 149 

annual White-tailed Deer adult female 2018 11 10 0.839 0.015 209 

annual White-tailed Deer adult female 2018 11 11 0.852 0.016 233 

annual White-tailed Deer adult female 2018 11 3 0.856 0.014 120 

annual White-tailed Deer adult female 2018 11 7 0.847 0.014 22 

annual White-tailed Deer adult female 2018 11 8 0.847 0.014 188 

annual White-tailed Deer adult female 2018 11 9 0.837 0.016 215 

annual White-tailed Deer adult female 2019 12 1 0.842 0.015 155 

annual White-tailed Deer adult female 2019 12 10 0.840 0.015 217 

annual White-tailed Deer adult female 2019 12 11 0.848 0.015 207 

annual White-tailed Deer adult female 2019 12 3 0.851 0.015 129 

annual White-tailed Deer adult female 2019 12 7 0.845 0.015 22 

annual White-tailed Deer adult female 2019 12 8 0.846 0.015 212 

annual White-tailed Deer adult female 2019 12 9 0.838 0.016 182 

annual White-tailed Deer adult female 2020 13 1 0.794 0.021 211 

annual White-tailed Deer adult female 2020 13 10 0.806 0.019 190 

annual White-tailed Deer adult female 2020 13 11 0.802 0.020 189 

annual White-tailed Deer adult female 2020 13 3 0.813 0.021 109 

annual White-tailed Deer adult female 2020 13 7 0.812 0.019 22 

annual White-tailed Deer adult female 2020 13 8 0.813 0.019 175 

annual White-tailed Deer adult female 2020 13 9 0.804 0.020 172 

annual White-tailed Deer adult female 2021 14 1 0.653 0.031 225 

annual White-tailed Deer adult female 2021 14 10 0.681 0.037 175 

annual White-tailed Deer adult female 2021 14 11 0.673 0.030 189 

annual White-tailed Deer adult female 2021 14 3 0.691 0.029 104 

annual White-tailed Deer adult female 2021 14 7 0.675 0.030 22 

annual White-tailed Deer adult female 2021 14 8 0.674 0.030 147 

annual White-tailed Deer adult female 2021 14 9 0.676 0.032 161 
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annual White-tailed Deer juvenile female 2013 6 10 0.399 0.076 42 

annual White-tailed Deer juvenile female 2013 6 11 0.326 0.076 33 

annual White-tailed Deer juvenile female 2014 7 1 0.554 0.069 14 

annual White-tailed Deer juvenile female 2014 7 10 0.404 0.063 22 

annual White-tailed Deer juvenile female 2014 7 11 0.326 0.063 43 

annual White-tailed Deer juvenile female 2014 7 7 0.423 0.068 32 

annual White-tailed Deer juvenile female 2015 8 1 0.682 0.041 11 

annual White-tailed Deer juvenile female 2015 8 11 0.506 0.051 62 

annual White-tailed Deer juvenile female 2015 8 3 0.559 0.057 36 

annual White-tailed Deer juvenile female 2015 8 7 0.570 0.048 25 

annual White-tailed Deer juvenile female 2015 8 9 0.572 0.047 73 

annual White-tailed Deer juvenile female 2016 9 11 0.539 0.053 78 

annual White-tailed Deer juvenile female 2016 9 3 0.445 0.056 48 

partial year White-tailed Deer juvenile female 2016 9 8 0.854 0.020 29 

annual White-tailed Deer juvenile female 2016 9 9 0.571 0.044 96 

partial year White-tailed Deer juvenile female 2017 10 10 0.865 0.017 53 

annual White-tailed Deer juvenile female 2017 10 11 0.393 0.045 78 

annual White-tailed Deer juvenile female 2017 10 3 0.334 0.043 47 

partial year White-tailed Deer juvenile female 2017 10 8 0.843 0.020 66 

annual White-tailed Deer juvenile female 2017 10 9 0.429 0.041 87 

partial year White-tailed Deer juvenile female 2018 11 10 0.871 0.020 45 

annual White-tailed Deer juvenile female 2018 11 3 0.352 0.054 54 

partial year White-tailed Deer juvenile female 2018 11 8 0.837 0.024 56 

annual White-tailed Deer juvenile female 2019 12 1 0.642 0.100 65 

annual White-tailed Deer juvenile female 2020 13 1 0.827 0.073 58 

annual White-tailed Deer adult male 2014 7 10 0.693 0.109 13 

annual White-tailed Deer adult male 2014 7 11 0.731 0.099 10 

partial year White-tailed Deer adult male 2014 7 3 0.870 0.054 21 

partial year White-tailed Deer adult male 2014 7 9 0.917 0.035 48 

annual White-tailed Deer adult male 2015 8 1 0.722 0.053 12 

annual White-tailed Deer adult male 2015 8 10 0.739 0.053 29 

annual White-tailed Deer adult male 2015 8 11 0.695 0.058 22 

annual White-tailed Deer adult male 2015 8 3 0.796 0.045 39 

annual White-tailed Deer adult male 2015 8 9 0.743 0.051 69 

annual White-tailed Deer adult male 2016 9 1 0.699 0.047 29 

annual White-tailed Deer adult male 2016 9 10 0.693 0.048 29 

annual White-tailed Deer adult male 2016 9 11 0.719 0.047 48 

annual White-tailed Deer adult male 2016 9 3 0.826 0.032 95 

annual White-tailed Deer adult male 2016 9 7 0.748 0.039 18 
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annual White-tailed Deer adult male 2016 9 9 0.715 0.044 116 

annual White-tailed Deer adult male 2017 10 1 0.616 0.044 29 

annual White-tailed Deer adult male 2017 10 10 0.598 0.045 29 

annual White-tailed Deer adult male 2017 10 11 0.578 0.052 81 

annual White-tailed Deer adult male 2017 10 3 0.713 0.034 145 

annual White-tailed Deer adult male 2017 10 7 0.613 0.045 18 

annual White-tailed Deer adult male 2017 10 8 0.613 0.046 22 

annual White-tailed Deer adult male 2017 10 9 0.639 0.040 157 

annual White-tailed Deer adult male 2018 11 1 0.753 0.031 29 

annual White-tailed Deer adult male 2018 11 10 0.730 0.034 63 

annual White-tailed Deer adult male 2018 11 11 0.717 0.043 133 

annual White-tailed Deer adult male 2018 11 3 0.817 0.024 130 

annual White-tailed Deer adult male 2018 11 7 0.777 0.028 18 

annual White-tailed Deer adult male 2018 11 8 0.769 0.029 49 

annual White-tailed Deer adult male 2018 11 9 0.744 0.033 185 

annual White-tailed Deer adult male 2019 12 1 0.743 0.039 29 

annual White-tailed Deer adult male 2019 12 10 0.717 0.042 82 

annual White-tailed Deer adult male 2019 12 11 0.710 0.046 125 

annual White-tailed Deer adult male 2019 12 3 0.826 0.029 127 

annual White-tailed Deer adult male 2019 12 7 0.747 0.038 18 

annual White-tailed Deer adult male 2019 12 8 0.737 0.040 81 

annual White-tailed Deer adult male 2019 12 9 0.721 0.042 157 

annual White-tailed Deer adult male 2020 13 1 0.753 0.059 60 

annual White-tailed Deer adult male 2020 13 10 0.755 0.058 77 

annual White-tailed Deer adult male 2020 13 11 0.765 0.057 123 

annual White-tailed Deer adult male 2020 13 3 0.843 0.042 113 

annual White-tailed Deer adult male 2020 13 7 0.768 0.055 18 

annual White-tailed Deer adult male 2020 13 8 0.755 0.058 69 

annual White-tailed Deer adult male 2020 13 9 0.767 0.055 149 

annual White-tailed Deer adult male 2021 14 1 0.680 0.058 90 

annual White-tailed Deer adult male 2021 14 10 0.583 0.091 75 

annual White-tailed Deer adult male 2021 14 11 0.733 0.051 123 

annual White-tailed Deer adult male 2021 14 3 0.795 0.043 113 

annual White-tailed Deer adult male 2021 14 7 0.745 0.049 18 

annual White-tailed Deer adult male 2021 14 8 0.749 0.049 66 

annual White-tailed Deer adult male 2021 14 9 0.666 0.068 149 

annual White-tailed Deer juvenile male 2013 6 10 0.389 0.082 41 

annual White-tailed Deer juvenile male 2013 6 11 0.341 0.081 33 

annual White-tailed Deer juvenile male 2014 7 1 0.405 0.064 25 
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annual White-tailed Deer juvenile male 2014 7 10 0.292 0.049 32 

annual White-tailed Deer juvenile male 2014 7 11 0.236 0.048 49 

annual White-tailed Deer juvenile male 2014 7 7 0.330 0.058 28 

annual White-tailed Deer juvenile male 2015 8 1 0.658 0.041 21 

annual White-tailed Deer juvenile male 2015 8 11 0.494 0.050 63 

annual White-tailed Deer juvenile male 2015 8 3 0.505 0.057 38 

annual White-tailed Deer juvenile male 2015 8 7 0.555 0.047 23 

annual White-tailed Deer juvenile male 2015 8 9 0.559 0.047 53 

annual White-tailed Deer juvenile male 2016 9 11 0.470 0.054 88 

annual White-tailed Deer juvenile male 2016 9 3 0.425 0.058 47 

partial year White-tailed Deer juvenile male 2016 9 8 0.832 0.024 22 

annual White-tailed Deer juvenile male 2016 9 9 0.527 0.047 62 

partial year White-tailed Deer juvenile male 2017 10 10 0.884 0.017 35 

annual White-tailed Deer juvenile male 2017 10 11 0.446 0.046 74 

annual White-tailed Deer juvenile male 2017 10 3 0.418 0.045 60 

partial year White-tailed Deer juvenile male 2017 10 8 0.860 0.020 32 

annual White-tailed Deer juvenile male 2017 10 9 0.506 0.042 67 

partial year White-tailed Deer juvenile male 2018 11 10 0.878 0.022 35 

annual White-tailed Deer juvenile male 2018 11 3 0.382 0.062 45 

partial year White-tailed Deer juvenile male 2018 11 8 0.845 0.026 39 

annual White-tailed Deer juvenile male 2019 12 1 0.385 0.117 38 

annual White-tailed Deer juvenile male 2020 13 1 0.710 0.107 41 
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Chapter 3. A time-series survival model to measure habitat quality from 

demographic outcomes 

Abstract 

Habitat quality can be defined as the effect of habitat on demographic outcomes, and it is 

often argued that habitat quality should be measured in this way. However, making the 

connection between habitat use and demographic outcomes has been limited by both 

technology and a lack of analytical frameworks that allow this connection to be made 

explicitly. We present a novel modeling framework to measure habitat quality by its 

effect on demographic outcomes. We developed an autoregressive hierarchical model 

that uses observed GPS locations and survival state (alive/dead), to model the 

unobservable probability of survival as it changes with habitat use. Our Survival and 

Habitat Quality (SHQ) model quantifies the effects of varying quantity or quality of 

different resources on an individual’s survival probability over time. This framework 

allows researchers to quantify the cumulative effects of factors such as nutrition and 

harsh weather on survival, while allowing for spontaneous factors such as predation or 

vehicle collisions.  

 

Introduction 

Habitat quality has long been noted as a driver of population dynamics, with different 

quality habitats conferring different levels of fitness on the individuals that use them 

(Fretwell and Lucas 1970). Building from this idea, Johnson (2007) defined habitat 

quality as an individual's "per capita contribution to population growth expected from a 

given habitat.” By this definition, a habitat’s quality should be measured by a change in 
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population demographic rates, including survival and reproduction (Johnson 2007). 

However, habitat quality is rarely measured by demographic rates because of several 

limiting factors.  

The first factor limiting the application of measuring habitat quality through 

demographic rates is sample size. Survival models (e.g., known fate, Cormack-Jolly-

Seber, Cox proportional hazards, etc.) relate environmental variables to survival 

probability at discrete points in time, thereby establishing the link between habitat and 

population demographics. However, long-term datasets are necessary to capture temporal 

variation in habitat and survival rates, particularly for long-lived species (Johnson 2007). 

Additionally, long-lived species tend to have relatively little variation in adult survival 

(Gaillard et al. 1998), so large datasets with many individuals must be collected to 

estimate the survival rate precisely. However, with the advent of global positioning 

system (GPS) collars, collecting survival information and animal locations on a large 

scale is much more feasible than ever before and appropriately large datasets are more 

common.  

When sufficiently large datasets can be collected, analytical limitations are a 

second obstacle in connecting habitat quality to population demographics. When survival 

models connect animal mortality to environmental conditions at the time of death, 

inference is limited to the proximal cause of death, which may not reflect the ultimate 

cause if it occurs on a longer timeframe. For example, poor quality habitat can lead to 

malnourishment and then to death, but the environmental conditions in the death site may 

or may not reflect the conditions that led the animal to its malnourished state. Because we 

can observe only the outcome of survival (alive or dead) rather than survival probability 



 89 

itself, it is challenging to account for cumulative processes that lead to an animal’s death. 

Existing survival models require lag effects to account for these mismatched time scales, 

but the time frame of a lag effect is difficult to define and can be arbitrary.  

Here we present a model that relates survival to more environmental conditions 

than only those experienced at a single moment specified in time. Instead, it relates 

survival to the accumulation of resources over an individual's lifetime. Building from 

existing survival models, the Survival and Habitat Quality (SHQ) model introduces an 

autoregressive process model that is a more realistic representation of how resources 

contribute to long-term survival. By removing the assumption of independence over time 

from existing survival models, it models the survival process rather than simply trying to 

measure or predict the outcome of survival. Using observed GPS locations and survival 

states (alive or dead) to model an individual’s unobservable, time-varying survival 

probability, the SHQ model measures the quality of a given habitat patch by the amount 

its resources increase or decrease an individual’s probability of survival over time. The 

SHQ model therefore allows inference to the ultimate causes of mortality from long-term 

processes like nutrition and disease exposure.  

In this chapter, we develop the SHQ model conceptually and validate it using 

simulated data where habitat quality is known. In natural environments, many factors 

affect survival to varying degrees; some have strong effects, and some have weak effects. 

Traditional survival models may detect strong effects on a short time scale but are 

unlikely to detect weak effects. We demonstrate the model’s ability to detect small and 

large effects of resources on survival under perfect detection and with missing data.  
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Methods 

Model development 

The Survival and Habitat Quality (SHQ) model defines the quality of a habitat patch by 

its cumulative effect on an individual’s probability of survival. It is an autoregressive, 

discrete time survival model that uses observations of yit, the state (alive or dead) of 

individual i at time t. For each individual, the model is defined for every occasion the 

individual is alive from capture (Ci) until death or censoring (Di). Censoring occurs when 

an individual’s collar fails or the study ends. Li, an individual’s lifespan over the study 

(i.e., the number of discrete occasions alive) is therefore calculated as  

𝐿𝑖 = 𝐷𝑖 − 𝐶𝑖 + 1    (Eq. 1) 

The model is conditional on capture, so when the model is defined from t = 1, …, 

Li for each individual, individuals are known to be alive (yi = 1) at t = 1, and therefore the 

probability of survival on the first occasion, Si1 = 1. For every occasion from t = 2, …, Li, 

the alive/dead state yit is drawn from a Bernoulli distribution, which is defined by 

survival probability, Sit, and the individual’s previous state (alive = 1 or dead = 0) 

    𝑦𝑖𝑡~𝐵𝑒𝑟𝑛(𝑆𝑖𝑡 ∙ 𝑦𝑖(𝑡−1)).   (Eq. 2) 

The Markovian dependence on the individual’s previous alive/dead state allows 

for imputation on occasions in which the alive/dead state is unobservable; it maintains 

dead animals in the dead state (survival probability on all future occasions is 0) and live 

animals in the live state with probability Sit. The probability of survival, Sit, is then 

defined by the habitat quality experienced by the individual on that and all previous 

occasions. We represent habitat quality of a patch experienced by individual i at time t 

using the linear model Xit, where Xit is a vector of covariates representing resource 
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quality or quantity at the individual’s location at time t and β is the vector of coefficients 

defining the effect size of each covariate  

𝑙𝑜𝑔𝑖𝑡(𝑆𝑖𝑡) = 𝛼𝑖0 +∑ 𝑋𝑖𝑘𝛽
𝑡
𝑘=2 , 𝑡 = 2,… , 𝐿𝑖   (Eq. 3)  

Because habitat use prior to capture is not known, we model an individual’s initial 

survival probability using a random effect (i0) with mean 0 and standard deviation 0  

𝛼𝑖0~𝑁(𝜇0, 𝜎0).    (Eq. 4) 

The autoregressive component allows survival probability to continually decrease 

with time spent in low-quality habitat and to increase with time spent in high-quality 

habitat. The logit transformation asymptotes near 0 and 1, meaning that an individual in 

very good condition with a high survival probability near 1 will only benefit marginally 

from continued use of high-quality habitat, but an individual with a survival probability 

nearer to 0.5 will benefit to a much greater degree. In this way, we model the 

unobservable process of survival (or ultimate, rather than proximal, cause of death) 

mechanistically as a function of habitat use.  

Although survival probability is defined by habitat use, there is always some 

probability that an individual will die (Sit < 1), regardless of the quality of its current 

habitat or its history, so randomness can dictate the proximal cause of death. 

Alternatively, the model in Eq. 3 can be modified to accommodate environmental 

variables that represent acute risk but do not affect probability of survival long-term. For 

example, crossing a road may only present a short-term risk to an individual without 

causing chronic stress. Acute effects are added in a linear model to Eq. 3 

𝑙𝑜𝑔𝑖𝑡(𝑆𝑖𝑡) = 𝛼𝑖0 +∑ 𝑋𝑖𝑘𝛽
𝑡
𝑘=2 +𝑊𝑖𝑡𝜃   (Eq. 5) 

where Wit is a vector of acute covariates and  is the vector of effects parameters.  
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Simulation 

We tested the SHQ model with simulated data using R version 4.1.3 (R Core Team 

2022). We first simulated a landscape of distinct habitat patches, where habitat quality 

was known for each patch. We defined habitat quality in each patch (Qc) via a linear 

model on five simulated covariates plus some additional unobserved error (Eqs. 6 – 7).  

𝑄𝑐 = −0.6𝑋1𝑐−0.08𝑋2𝑐 + 0𝑋3𝑐 + 0.08𝑋4𝑐 + 0.6𝑋5𝑐 + 𝜀𝑐   (Eq. 6) 

𝜀𝑐~𝑁(0, 0.1)      (Eq. 7) 

We chose effect sizes of -0.6, -0.08, 0, 0.08, and 0.6 to test the model’s ability to detect 

small and large effects – in both negative and positive directions – as well as no effect. 

We simulated covariates that were centered and scaled, so larger effect sizes represented 

resources with higher relative importance. The value of 0.6 reflected a large possible 

change in daily survival rate for a long-lived species and 0.08 reflected a small but 

meaningful possible change in daily survival rate on the logit scale. For example, given a 

baseline daily survival rate of 0.9994 (annual survival 0.803), an increase of 0.6 on the 

logit scale increases daily survival rate to 0.9997 (annual survival 0.887), and an increase 

of 0.08 increases daily survival rate to 0.99945 (annual survival 0.817).  

We then simulated 300 animals that randomly selected one of 1000 habitat 

patches at each of 300 discrete temporal occasions. Each individual’s initial survival 

probability was drawn from a normal distribution centered on 0.9994 with a standard 

deviation of 0.2. These values were chosen to represent individual heterogeneity in daily 

survival probability of a long-lived species. At the following time step, t = 2, survival 

probability increased or decreased from its initial survival probability, depending on the 

quality of the patch experienced at t = 2. At all subsequent time steps, the individual’s 
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survival probability increased or decreased from the previous occasion depending on 

habitat quality of the patch the individual occupied at time t. After simulating each 

individual’s time-varying survival probability, we simulated the individual’s state (alive 

or dead) from the Bernoulli distribution defined by the individual’s survival probability at 

time t and whether the individual was alive (y = 1) or dead (y = 0) at the previous time 

step (Eq. 2).  

To validate the model, we first simulated 10 data sets with no missing 

observations, and we estimated the β parameters for each replicate data set using 

NIMBLE version 0.12.2 (de Valpine et al. 2022). We used uninformative priors on the 

mean and standard deviation of i0, as well as on the β parameters (see Appendix 3.1). 

For each model run, we ran three chains for 50,000 iterations, with the first 10,000 

discarded as burn-in. We assessed convergence visually by inspecting the MCMC plots 

for chain mixing and analytically through R-hat values of <1.1.  

To validate the model when an individual’s location and alive/dead state could not 

always be observed, we incorporated missing observations into 10 additional simulated 

data sets. We randomly assigned approximately 10% of all individuals’ locations to be 

missing, and we replaced Xit and yit with NA values on those occasions. To allow the 

model to integrate over all possible values of the environmental covariates, we defined 

prior distributions for our missing values of Xit (Appendix 3.1). Estimating parameters 

when some observations were missing took much longer computationally, so we reduced 

our simulated data for this analysis to 150 occasions in each data set. We also used a 

slightly informative prior on 0 (Appendix 3.1). For each of the 10 simulated data sets, 

we ran the model for 30,000 iterations, and discarded the first 10,000 as burn-in.  



 94 

Results  

For our simulation without missing observations, the model-estimated 95% Bayesian 

Credible Interval (BCI) captured the true value of the habitat quality parameters for 98% 

of the parameters across the 10 replicates (Figure 3.1). Between the large and small 

parameters (excluding the 0 effect parameter), the BCI did not overlap 0 for 97.5% of 

estimates, indicating precision in estimation. We recorded a slight negative bias in 

estimates of negative parameters but a slight positive bias in estimates of positive 

parameters (Table 3.1).  

When we ran the model on datasets with 10% of observations missing, the model 

performed similarly in terms of coverage; the true value was captured within the BCI for 

92% of the parameter values across the 10 replicates (Figure 3.2). Estimates were 

somewhat less precise, with 88% of BCIs for non-0 effect sizes not overlapping 0. 

Recorded bias in parameter estimates was in the opposite direction from the model with 

no missing observations; there was a slight positive bias for negative parameters and a 

slight negative bias for positive parameters (Table 3.1). 

Chain convergence of all parameters was achieved for all 10 of the model runs for 

datasets without missing observations, but only 6 of the 10 replicates for datasets with 

missing observations. For those replicates that did not converge, R-hat values near 1.1 

indicated that the models were close to convergence, but small values of effective sample 

size indicated models needed to be run for more iterations to achieve more consistent 

convergence.  
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Discussion 

The SHQ model provides a new framework for defining habitat quality from processes 

that accumulate over an individual's life. By defining survival through the combination of 

past experiences, current conditions, and luck, it establishes a more biologically realistic 

model of processes that occur on long time scales, such as malnutrition, chronic stress in 

a landscape of fear, and exposure to disease risk. By viewing survival probability as a 

cumulative process rather than a quantity to be estimated at discrete time points, it 

removes the necessity of defining lag effects for processes that occur at long time scales. 

Additionally, the cumulative nature of the model allows for individual differences in 

responses to habitat quality, as individuals in worse condition have more to gain from 

high quality resources than individuals with an already-high survival probability do. 

Rather than complicating the model, variation in conditions experienced between 

individuals and over time increases the observed variability in covariate values and 

therefore improves parameter estimation. 

The SHQ framework is flexible enough to apply to a wide variety of species and 

ecosystems. Habitat quality, as defined in Eq. 3, is made up of a combination of resources 

defining a habitat patch at a given point in time, and these resources can be measured by 

their quality or quantity. Some examples of resources include nutritional quality (perhaps 

represented by forage greenness for herbivore species), food quantity (e.g., biomass), 

exposure to disease (e.g., relative abundance of disease vectors), and predation risk (e.g., 

number of predators present). Quadratic effects could be added for resources that are 

hypothesized to have highest quality in mid-range values. Additionally, interaction 

effects could be included to account for resources whose quality changes due to other 
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variables. For example, in an arid environment, water sources can be highly important to 

survival, but in disease outbreak years, water sources may congregate individuals and 

increase transmission, thereby making water sources a lower quality habitat in these years 

(Berry et al. 2013). An interaction effect of water availability and disease outbreak could 

capture this complexity. Finally, the short-term and long-term combination model 

specified in Eq. 5, may allow researchers to tease apart ultimate versus proximate causes 

of mortality (e.g., comparing long-term effects of nutrition or chronic stress to short-term 

risks like predation or vehicle collision).  

Because the SHQ model defines habitat quality through its impact on a 

demographic outcome, it explicitly measures the effect of habitat on population 

dynamics, rather than assuming a demographic outcome from behavior. In contrast to 

resource selection functions (RSFs), the SHQ model measures the habitat quality of 

locations used by animals without making any assumptions about the motivations behind 

the choice to use that location (Buskirk and Millspaugh 2006). The SHQ model does not 

assume that animals make every movement purposefully, nor does it assume that animals 

make rational decisions with perfect knowledge of the landscape, such as assessing 

tradeoffs between nutrition and predation risk. The same model applies equally well to 

“lucky” individuals that happen to live in ideal conditions for its species, “smart” 

individuals that make the best choices given their surroundings, “unlucky” individuals 

that experience stochastic events (such as major storms, vehicle collisions, or hunter 

harvest), and “dumb” individuals that make imperfect decisions. The SHQ model allows 

researchers to differentiate between these different categories of experiences, rather than 

making assumptions of habitat quality based on behavior.  
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Habitat quality estimators that use GPS locations assume that GPS fixes represent 

used resources, which may not always be true. For example, for an individual fleeing a 

predator, available food resources are irrelevant and remain unused. GPS fixes do not 

differentiate between an individual using a habitat patch to flee and an individual using 

the habitat patch for nutritional benefit. To help differentiate between behaviors, it may 

be possible to incorporate staying time into the SHQ model to help provide context for 

animal behavior and level of use. Additionally, it could be useful to model animals’ 

movement to better inform habitat use between GPS fixes. Using a movement model may 

improve the precision of parameter estimation when some locations are missing; instead 

of integrating over all possible resource values that could have been experienced 

qualities, the model could be limited to exploring the values from areas available to the 

individual. 

The SHQ model provides an estimate of habitat quality based on survival and 

allows inference to the habitats that support the healthiest animals by this metric. 

Individuals with access to a high quality or quantity of nutrition tend to have better body 

condition, which affords them a higher survival probability. Meanwhile, individuals 

without proper nutrition can get weaker over time and become more susceptible to 

disease, predation, and the effects of malnutrition, so their survival probability decreases. 

However, survival alone does not paint the entire picture of habitat quality without 

knowledge of reproduction and abundance (van Horne 1983). Areas with high survival 

and high abundance may have low reproduction rates as a result of density dependence 

(Hobbs and Hanley 1990). Alternatively, two habitats with equal survival rates may 

support different animal densities, with the higher quality habitat supporting higher 
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density. A more holistic and accurate estimate of habitat quality could be attained if 

reproduction and abundance were also included as response variables in an integrated 

model (van Horne 1983, Johnson 2007).  

When used in conjunction with other analytical techniques such as RSFs or home 

range analyses, the SHQ results could yield critical insight for habitat management and 

conservation. For example, the results of the SHQ model allow the creation of predictive 

maps of high- and low-quality habitats for the species of interest. When overlaid on a 

map predicting animal distribution or resource selection, areas with high animal selection 

but low survival could indicate habitat “sinks” or ecological traps and therefore priority 

zones for habitat management interventions (Kristan 2003). Such maps would also 

provide insight into the spatial arrangement of habitat quality and selection, which could 

be useful for managers tasked with redistributing wildlife to match human tolerances. 

Areas with differing levels of human conflict, animal survival, and selection may require 

different management approaches.  

The SHQ model is general enough to be applied to any species with fine-scale 

location data. GPS collars and remote sensing data make application of the model 

feasible over large areas and long timeframes. Several distinctions between simulated 

data and real data may affect inference, so some practices should be kept in mind. First, 

our simulation allowed animals to randomly use habitat patches, regardless of spatial 

arrangement or quality. Real animals with movement constraints and decision-making 

abilities may experience less variation in habitat quality, which would reduce the model’s 

power to estimate effects. Temporal variation (e.g., due to seasons, storms, disease 

outbreaks, etc.) may be sufficient to overcome the decreased variation, particularly if 
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collars are monitored over long time periods. Second, because habitat quality in the SHQ 

model is derived from the experiences of individuals, it is important that collared 

individuals represent the population as a whole. Habitat quality effects should be easier to 

detect with lower numbers of collared individuals if the study species is a specialist with 

low inter-individual variation than if the species is a habitat generalist (Boyce et al. 

2002). Because the SHQ model was able to estimate habitat quality for simulated data, 

we proceed to Chapter 4 to test it on data collected from real animals. 
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Tables 

Table 3.1. Mean bias in estimates for 5 parameters across 10 replicated datasets, using no 

missing observations or with 10% of observations missing.  

Parameter Truth Bias, no missing 

observations 

Bias, 10% observations 

missing 

B[1] -0.6 -0.059 0.030 

B[2] -0.08 -0.007 0.005 

B[3] 0 0.006 0.017 

B[4] 0.08 0.008 -0.015 

B[5] 0.6 0.055 -0.026 
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Figures 

 

Figure 3.1 Mean parameter estimates and 95% Bayesian Credible Intervals from 10 

simulated datasets without any missing data. Simulated (“true”) values of parameters 

represented by dotted gray lines. 
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Figure 3.2. Mean parameter estimates and 95% Bayesian Credible Intervals from 10 

simulated datasets, with approximately 10% of observations missing. True values 

represented by dotted gray lines.  
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Appendix 3.1. Survival and Habitat Quality model BUGS code 

model{ 

  # Priors  

  # Centered on 0.99 

  beta0.mu ~ dnorm(log(0.99/(1 - 0.99)), 0.05)T(-10, 10) # Uninformative prior no 

missing data 

#  beta0.mu ~ dnorm(log(0.99/(1 - 0.99)), 2)T(-10, 10) # More informative prior - 

missing data 

  beta0.tau <- 1/(beta0.sd * beta0.sd) 

  beta0.sd ~ dunif(  0, 2 )  

  for(i in 1:nind){ 

    b0[i] ~ dnorm( beta0.mu, beta0.tau ) 

  } 

  for(c in 1:ncov){ 

    B[c] ~ dnorm(0, 0.001)T(-10, 10)   

  } 

   

  # Likelihood 

  for(i in 1:nind){ 

    # First time step 

    Smu[i, f[i]] <- b0[i] # individual intercept 

    # Future time steps 

    for(t in ((f[i])+1):(d[i])){ 

      Smu[i, t] <- Smu[i, t-1] + (X[i,t,] %*% B[])[1,1]  

    } 

    for(t in (f[i]):(d[i])){ 

      # Transform to 0-1 scale 

      logit(S[i, t]) <- Smu[i, t] 

    } 

  } 

   

  # Survival 

  for(i in 1:nind){ 

    y[i, f[i]] <- 1 

    for(t in (f[i]+1):d[i]){ 

      muS[i, t] <- S[i, t] * y[i, t-1] 

      y[i, t] ~ dbern(muS[i, t]) 

    } 

  } 

   

  # Data likelihood for any missing observations  

 

  for(i in 1:nind){ 

    for(j in f[i]:d[i]){  

      for(c in 1:ncov){  
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        X[i,j,c] ~ dnorm(0, 1)T(-5, 5) # centered and scaled covariates 

      } 

    }  

  } 

}  
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Chapter 4. Novel method quantifies habitat quality and survival of mule deer 

(Odocoileus hemionus) and white-tailed deer (Odocoileus virginianus) 

 

Abstract 

Changes in habitat quality and quantity may be a consistent underlying factor driving or 

exacerbating mule deer population declines and concurrent white-tailed deer population 

increases. However, understanding what constitutes high quality habitat for mule deer 

and white-tailed deer is challenging, due to limitations of technology, sample size, and 

analytical frameworks. Leveraging one of the largest existing long-term datasets of GPS 

collared mule deer and white-tailed deer, we applied the newly developed Survival and 

Habitat Quality (SHQ) model to measure habitat quality through different resources’ 

effects on survival. Over three years, we estimated survival and habitat quality for adult 

females and juveniles of both species. Juvenile deer had more variation than adults in 

their responses to elevation, slope, drought, perennial forbs and grasses, annual forbs and 

grasses, and shrubs. Juvenile mule deer had the strongest responses to habitat variables of 

any group, showing increased survival in areas of higher elevation, lower slope, more 

shrubs, and less production of annual forbs and grasses. The SHQ model gave inference 

into long-term effects of habitat on individual survival, thereby connecting habitat quality 

to an important metric of population performance. Predictive maps of habitat quality will 

help managers highlight areas of conservation priority for mule deer. 
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Introduction  

Across their range, mule deer (Odocoileus hemionus) populations appear to have been 

declining for decades (Wallmo 1981). Concurrently, white-tailed deer (O. virginianus) 

populations are expanding into new areas not previously part of their range and are highly 

abundant in many areas (VerCauteren 2003). In the two species’ sympatric range, many 

wildlife managers are concerned about these long-term patterns and are interested in 

increasing mule deer populations and decreasing white-tailed deer populations (Carpenter 

1997). However, despite decades of research, the underlying driver of these patterns is 

still not clear, making management difficult. Numerous hypotheses have been proposed 

for the patterns, including differing effects on the two species of predators, weather, 

hunting, livestock, competition, disease, and habitat changes, but no single hypothesis has 

emerged with strong support across time and space (Anderson et al. 2012, DeVivo et al. 

2017). Indeed, multiple factors may be occurring at once, making it hard to separate out a 

single driver. However, rapid changes in habitat quality and quantity may be a consistent 

underlying factor driving or exacerbating changes in population trajectory (Carpenter 

1997). 

A clear understanding of habitat quality is critical for disentangling drivers of 

population change. However, understanding what constitutes high quality habitat for 

mule deer and white-tailed deer is challenging. Mule deer and white-tailed deer habitats 

are typically differentiated, with white-tailed deer described as using more tree cover and 

agriculture and mule deer using higher elevations and rangeland (Wood et al. 1989, 

Whittaker and Lindzey 2004). However, the two species have a high degree of overlap in 

habitat selection and diet (Martinka 1968, Anthony and Smith 1977, Smith 1987, Lingle 
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2002, Whittaker and Lindzey 2004). Additionally, both species can be described as 

habitat generalists because their ranges encompass dramatically variable climatic, 

physiographic, and biological features. Together, these factors make it difficult to define 

high- and low-quality habitat for each species. 

Limitations of technology, sample size, and analytical tools also make it difficult 

to define and measure habitat quality of any species. Habitat quality should be measured 

by population-level changes in demographic rates including survival, reproduction, and 

abundance (Johnson 2007). However, long-term datasets with sufficient data to estimate 

these demographic rates are hard to come by. Estimating survival of a long-lived ungulate 

species requires huge monitoring datasets of many individuals across many years. 

However, the relatively recent expansion in use of global positioning system (GPS) 

collars now allows biologists to collect large, fine-resolution datasets of individuals’ 

locations and to monitor survival of many individuals without extensive field time. Yet, 

the price tag of capturing and collaring many individuals is prohibitive in many cases.  

Even when sufficient sample sizes for estimating survival can be obtained, 

available analytical tools limit the conclusions that can be made about habitat quality. 

Traditional survival models (e.g., known fate, Cormack-Jolly-Seber, Cox proportional 

hazards) relate environmental conditions experienced by animals to their survival state 

(alive or dead). In doing so, they are designed to make inference only to a resource’s 

effect on survival at a single point in time. Long-term effects are captured with lag 

effects, although the appropriate time scale of lag effects can be very hard to define. Even 

with large datasets consisting of many individuals monitored for multiple years, these 

models cannot differentiate between an individual in good condition that dies in a low-
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quality or risky habitat from an individual in poor condition that dies from nutritional 

stress but is located in high-quality habitat at the time of death. The mortality locations of 

both individuals will be observed as poor habitat. This is a fundamental deficiency with 

the current state of survival and habitat modeling. 

The newly developed Survival Habitat Quality (SHQ) model from Chapter 3 

addresses the analytical issues inherent to other survival models by incorporating an 

animal’s entire history of resource use and the cumulative effects of those experiences. 

The SHQ model is a Bayesian hierarchical model that uses observed GPS locations and 

survival state (alive/dead), to model the unobservable probability of survival as it changes 

with resource use. It is a time-series survival model that quantifies the cumulative effect 

of resource quantity or quality on an individual’s survival probability over time. This 

approach contrasts with traditional survival models in that it models the survival process 

rather than measuring or predicting the survival outcome. By defining habitat quality via 

a change in survival probability, this framework allows researchers to quantify the 

cumulative effects of factors such as nutrition and harsh weather on survival, while also 

allowing for spontaneous factors such as predation or vehicle collisions. The results allow 

biologists to directly compare the quality of different resources on the landscape and to 

build predictive maps of habitat quality for a given species, which then enables managers 

and conservationists to identify target areas for habitat manipulation.  

Our aim in this study was to quantify the habitat quality available to sympatric 

populations of mule deer and white-tailed deer. We capitalized on one of the largest long-

term datasets of GPS collared deer in their sympatric range and used the newly developed 

SHQ model to measure habitat quality through different resources’ effects on survival. 
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We tested six factors that we hypothesized may differentiate habitat quality of mule deer 

and white-tailed deer: elevation, slope, drought, and net primary productivity of three 

different plant functional groups (annual forbs and grasses, perennial forbs and grasses, 

and shrubs). We compared the effects of each resource on the survival probability of 

juveniles and adult females of both mule deer and white-tailed deer. Our results shed new 

light on habitat quality for North American deer and provide managers with a new way to 

prioritize habitat management interventions. 

 

Methods 

Study area 

We conducted the study in northwestern South Dakota, USA (Figure 4.1; 44°57'8" – 

45°56'43" N, 100°18'31" – 104°2'44" W). Our study area was one of 11 data analysis 

units (DAU) which designate deer populations based on climate, geographic factors, and 

management (South Dakota Department of Game Fish and Parks 2017). Our study area, 

DAU 1 (~21,160 km2), was dominated by mixed-grass prairie and agricultural crops, and 

the land was a mixture of private and public ownership. The 15-year mean temperatures 

in this area ranged from -7°C in February to 23°C in August and mean precipitation 

ranged from 0.5 cm in January to 8.9 cm in May (National Climatic Data Center 2022). 

Elevation ranged from 490 m to 1173 m. In addition to mule deer and white-tailed deer, 

pronghorn (Antilocapra americana) were common and elk (Cervus canadensis) were 

present but rare. The most common predators of deer in the study area were coyotes 

(Canis latrans) and bobcats (Lynx rufus). 
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Capture, collaring, and monitoring 

Over the winters of 2019, 2020, and 2021, we captured and collared 345 mule deer and 

345 white-tailed deer using helicopter net-gunning (Table 4.1). We captured juvenile 

males and females (<1 year-old) and adult females (>1 year-old) of both species, 

following the American Society of Mammalogists’ guidelines for animal capture and 

handling (Sikes et al. 2016). Protocols were approved by University of Montana 

Institutional Animal Care and Use Committee (064-18PLWB-121418). We aimed for 

even spatial representation of collars on both species across the study area and tried to 

collar individuals from different groups. Collars functioned for multiple years, and if 

recovered from mortalities they were redeployed on new individuals. We outfitted 135 of 

the 690 deer with GPS collars manufactured by Vectronic Aerospace GmbH (Berlin, 

Germany), which used the Iridium satellite system and took positions every 5 hr. The 

other 555 deer received GPS collars from Telonics, Inc. (Mesa, Arizona, USA) that used 

the GlobalStar satellite system and took positions every 5 hr (n = 81), 11 hr (n = 279), or 

13 hr (n = 195). Female deer received non-expandable collars (495 – 560 g), and male 

deer received expandable collars (270 – 365 g) to allow for neck expansion during the 

rut. For juveniles of both sexes, we padded the collars with temporary foam to allow for 

growth during aging.  

When our GPS collars sent mortality messages via satellite, an observer located 

the collar within several days and investigated the site for signs of mortality (evidence 

included blood, bones, and hair) or for a broken or slipped collar. Once we retrieved a 

collar, we backdated mortality or collar failure to the date the mortality signal was first 

transmitted.  
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Habitat quality survival model 

We assessed survival probability and habitat quality using the Survival and Habitat 

Quality (SHQ) model developed in Chapter 3. In the model, daily survival probability for 

each individual is dependent on survival probability from the previous day and the habitat 

quality experienced on the current day. The model assumes that each resource has a 

linear relationship with its effect on survival. Habitat quality (Q) of any location c at time 

t is defined by the linear model   

   𝑄𝑐𝑡 = 𝑿𝑐𝑡𝛽 + 𝜀𝑐     (Eq. 1) 

where X is a vector of values of environmental covariates at location c,  is the effect of 

each environmental covariate on the logit-transformed daily survival probability, and  is 

normally distributed error. Habitat quality is defined as the amount that a location 

increases or decreases an individual’s daily survival probability. This effect is 

cumulative; an individual that stays in a low-quality location will have its survival 

probability reduce every day. Because survival probability is logit-transformed, the same 

habitat cell will decrease or increase survival probability most if the individual has a daily 

survival probability around 0.5; as daily survival probability gets closer to 1 or 0, the 

habitat will have a smaller effect on survival probability (Figure 4.2).  

 

Preparing encounter histories  

We used GPS data from January 2019 – December 2021 for our analysis. We made daily 

survival encounter histories for each collared deer during this study period. We 

designated mortalities that occurred within 14 days of capture as being capture-related, 



 113 

and we excluded these individuals from analyses (Chalmers and Barrett 1982). We 

started each individual’s encounter history two days after its capture date to allow deer 

adequate time to return to normal habitat use and movement behavior. We right-censored 

individuals that died by hunter harvest or whose collars stopped functioning, so survival 

rates were interpreted as the probability of survival in the absence of hunting. To 

standardize across our different collar fix rates, we subset our data to one GPS fix per 

individual per day, which we selected randomly from the fixes taken each day.  

We defined juvenile survival from January 1 to May 30, and we interpret juvenile 

survival results as overwinter survival probability. Juveniles that were still alive on June 

1 were assigned to the adult age class from then on and were used to fit adult models. We 

defined adult survival from January 1 to December 31 each year. Because the SHQ 

model is a time-series model, long encounter histories increase the complexity and total 

computational load. To increase our adult sample size and decrease computational load, 

we made encounter histories for each individual in each year it was alive. Thus, an 

individual that was alive and on-air during our entire 3-year study appeared in the 

encounter history three times.  

We determined whether individual was alive on a daily basis (recording 1 if alive 

and 0 if dead). If no GPS fixes were taken on a given day, we recorded the day as missing 

data (NA). Our model accounted for missing data by integrating over all possible 

encounter histories. We assumed that survival states, when observed, were assigned 

without error, so we assigned any missing data between “alive” observations as “alive”. 

We did not change any missing observations that preceded a “death” observation or the 
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end of the encounter history. We removed 23 of the total 1,239 encounter histories 

(1.8%) that consisted of more than 20% missing data.  

 

Measuring habitat variables 

To measure the habitat experienced by each individual on each day, we extracted the 

values of remote sensing layers to each individual’s one daily GPS location. Because we 

measured survival on a daily basis, we imposed a grid on the study area with a grid cell 

size defined by the average distance moved per day. To estimate average daily distance, 

we first calculated movement speed for each individual between subsequent GPS 

locations (using all locations, not just one per day) by dividing the distance between 

points by the time elapsed. We then obtained an estimate of daily movement by 

multiplying each individual’s hourly movement speed by 24 hours. Across all our 

individuals, we calculated the median daily distance traveled as 1,569 m. Using this value 

as the hypotenuse of a square, we determined that the appropriate grid cell was 

approximately 1,110 x 1,110 m.  

We accessed remote sensing data for elevation, slope, drought, net primary 

production (NPP) of perennial forbs and grasses (PFG), NPP of annual forbs and grasses 

(AFG), and NPP of shrubs using Google Earth Engine (Gorelick et al. 2017). For 

elevation and slope, we used the 10m resolution 3D Elevation Program Digital Elevation 

Model (U.S. Geological Survey 2019). To represent drought, we used the Palmer 

Drought Severity Index (PDSI) from the daily, 4-km resolution Gridded Surface 

Meteorological (GRIDMET) dataset (Palmer 1965, Abatzoglou 2013). We obtained our 

three NPP variables (PFG, AFG, and shrubs) from the annual, 30m resolution Rangeland 
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Analysis Platform (USDA Natural Resources Conservation Service et al. 2019, Robinson 

et al. 2019). 

Because our habitat variables had different resolutions than our target grid cell 

size, we aggregated each remote sensing dataset to the designated cell size. For each 

environmental variable, we calculated new cell values from the mean of the original cells 

within each new 1,110 x 1,110 m grid cell. For each daily location for each individual, 

we extracted the value of the corresponding environmental variables for use in our 

analysis. To aid in interpretation of our results, we centered and scaled all variable values 

we experienced by deer during our study. The six variables we tested were not strongly 

collinear (R2 < 0.5 for all pairs). 

 

Analysis 

To compare and contrast habitat needs across species and age classes, we ran the SHQ on 

four separate groups: mule deer juveniles (males and females combined), mule deer adult 

females, white-tailed deer juveniles (males and females), and white-tailed deer adult 

females. We ran the SHQ model on each species-age group using NIMBLE (de Valpine 

et al. 2017, 2022) in R version 4.1.3 (R Core Team 2022). For juvenile models, we ran 

three chains of 30,000 iterations each, with the first 10,000 discarded as burn-in. Adult 

models were much more computationally complex due to the longer encounter histories 

and had a correspondingly long run time, so we ran three chains of 10,000 iterations each, 

with the first 2,000 discarded as burn-in. For all models, we checked for convergence 

visually using trace plots and numerically by Rhat values < 1.1 (Gelman and Rubin 

1992).  
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Using the SHQ model, we estimated each individual’s survival probability on 

each day based on current and previous environmental conditions as well as the 

individual’s unknown initial survival probability. We formulated initial survival 

probability as an individual-varying random effect. We used informative priors for the 

random effect because deer are long-lived species and daily survival probability is 

generally high, with juvenile survival lower and more variable than adult survival 

(Gaillard et al. 1998). We modeled the mean of the random effect as a normal distribution 

centered on 0.99, with a standard deviation of 0.7 (for adults) or 1.4 (for juveniles). We 

fixed the standard deviation of the random effect at 1 for all groups except white-tailed 

deer juveniles, which we set at 2; all were based on estimates of standard deviation 

obtained from initial model runs.  

We used uninformative priors for the effects of the environmental variables. We 

expected the effect sizes to be small, given we were monitoring effects on daily survival. 

To allow the MCMC to explore a wide range of values, we used normal priors centered 

on 0 with a standard deviation of 1.7, but we defined our parameters in the model as 

1/100 of that value. Because the environmental variables were centered and scaled, we 

used standard normal distributions as priors for any missing data points. 

 

Results 

Mortalities 

We recorded 275 natural (non-hunting) mortalities from the 630 deer used in our 

analysis. Of these, 69 mortalities were of mule deer juveniles, 63 were of mule deer adult 
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females, 16 were white-tailed deer juveniles, and 127 were white-tailed deer adult 

females.  

 

Site characteristics  

We quantified the available values of each of our habitat variables in our study area and 

compared the use recorded by our collared individuals (Table 4.2). Both species of deer 

and both age classes used the full range of elevation and slope available. Both species and 

both ages used comparable values of PDSI, using all but the most extreme dry and wet 

values. PDSI values in our study area ranged from -5 to 14, with negative values 

representing drier conditions than normal and positive values representing wetter 

conditions than normal. PDSI values below -5 indicate extreme drought and values above 

5 are extremely wet conditions. 

For two of our three NPP variables (AFG NPP and PFG NPP), we found that 

some recorded values were much higher than was realistic (see Discussion). Although the 

maximum AFG NPP value was 2955, the distribution was highly skewed and the value of 

the 99th percentile was only 486. Compared to the 99th percentile, mule deer juveniles and 

white-tailed deer juveniles used slightly smaller values of AFG NPP, and adults of both 

species used the full range of available values. The PFG NPP values were also higher 

than was realistic, but deer were recorded across all values. Finally, all species and ages 

used the smaller values of shrub NPP, with mule deer juveniles using the smallest range 

of values and white-tailed deer adult females using the largest range of values.  
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Mule deer juveniles 

Mean daily survival probability for mule deer juveniles was 0.9950 (95% BCI 0.9936 – 

0.9962). Mean 6-month overwinter survival probability was 0.404 (95% BCI 0.311 – 

0.500).   

Four of our six environmental variables had a measurable effect on mule deer 

juvenile survival (Figure 4.3a). The strongest effect on mule deer juvenile survival was 

NPP of annual forbs and grasses, with larger values of AFG NPP decreasing daily 

survival probability (mean -0.0303, 95% BCI -0.0464 – -0.0152). Holding all other 

habitat variables at their mean, an individual mule deer with the mean daily survival rate 

of 0.9950 that spent one day at the lowest value of AFG NPP in our study area (0 g C m-2 

y-1) would increase its daily survival rate to 0.9951 (Table 4.3). In contrast, spending one 

day at the 99th percentile value of AFG NPP in our study area (486 g C m-2 y-1) would 

decrease daily survival rate to 0.9945. Because the effect on survival probability is 

cumulative, after 10 days in the minimum or maximum AFG NPP, daily survival 

probability would be 0.9961 or 0.9873, respectively (Table 4.3). We recorded mule deer 

juveniles only in lower values of AFG NPP, where survival was highest (Table 4.2).  

Slope also had a negative effect on juvenile mule deer survival (mean -0.0106, 

95% BCI -0.0171 – -0.0039), indicating that survival decreased in areas with steeper 

slopes. Unlike with AFG NPP, we recorded mule deer juveniles across all values of slope 

in our study area (Table 4.2).  

In contrast to AFG NPP and slope, the two variables of elevation and shrub NPP 

had positive effects on survival, showing that survival increased at higher elevation and 

with higher shrub NPP. The effect sizes of elevation and shrub NPP were comparable, 
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but elevation had a slightly stronger effect on survival (mean 0.0065, 95% BCI -0.0003 – 

0.0131). Although credible interval of elevation overlapped 0, 97% of the posterior 

showed a positive effect. Shrub NPP had a slightly smaller positive effect on survival 

(mean 0.0061, 95% BCI -0.0019 – 0.0146), with 93% of the posterior distribution 

showing a positive effect. Mule deer juveniles were recorded at all elevations in our study 

area, but they remained in the smaller values of shrub NPP, using values from 0 – 81 g C 

m-2 y-1, as compared to the range of 0 – 279 g C m-2 y-1 in the study area (Table 4.2).  

Drought (PDSI) and perennials (PFG NPP) had no measurable effect on mule 

deer juvenile survival, as their posterior distributions overlapped 0 to a high degree. Mule 

deer juveniles used the full range of possible PFG NPP in our study area and all but the 

wettest values of PDSI, meaning they experienced a wide range of conditions from 

extreme drought to extreme wet (Table 4.2).  

 

White-tailed deer juveniles  

Mean daily survival of white-tailed deer juveniles was 0.9990 (95% BCI 0.9982 – 

0.9995) and mean 6-month survival was 0.833 (95% BCI 0.726 – 0.910). This was 

considerably higher than survival probability of mule deer juveniles.  

We found no evidence of an effect of any of our habitat variables on survival of 

white-tailed deer juveniles (Figure 4.3b). The 95% credible intervals for all habitat 

variables included 0, and the posterior distributions were not weighted to either side of 0. 

Each posterior had between 54-82% of its distribution on one side of 0, demonstrating no 

support for a meaningful effect of any habitat variable.  
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Mule deer adult females  

Mean daily survival for mule deer adult females was 0.9994 (95% BCI 0.9993 – 0.9996). 

Mean annual survival was 0.82 (95% BCI 0.78 – 0.86).  

There was some evidence of an effect of drought on mule deer adult female 

survival, with the posterior overlapping 0 but 92% of the posterior indicating a positive 

effect of PDSI (mean 0.0016, 95% BCI -0.0007 – 0.0039; Figure 4.3c). This indicated 

that wetter conditions increased survival and drier areas decreased survival. Additionally, 

there was some weak evidence of an effect on survival of PFG NPP and AFG NPP, with 

87% and 88% of the posteriors, respectively, showing a negative effect. The small 

negative effect of PFG NPP (-0.0016, 95% BCI -0.0043 – 0.0013), showed that survival 

decreased in areas with higher NPP of perennial forbs and grasses. AFG NPP also 

showed a negative effect on survival (mean -0.0006, 95% BCI -0.0015 – 0.0005), but the 

effect size was very small, so the evidence of an effect of annual forbs and grasses on 

survival was very weak. The small effect sizes translated to smaller changes in daily and 

annual survival than predicted for mule deer juveniles (Table 4.4).  

 

White-tailed deer adult females 

Mean daily survival for white-tailed deer adult females was 0.9990 (95% BCI 0.9988 – 

0.9992), which was equal to survival of juveniles. Mean annual survival was 0.69 (95% 

BCI 0.64 – 0.74).  

There was evidence of an effect of slope, drought, and AFG NPP on white-tailed 

deer adult survival, with approximately 100% of each posterior showing a positive effect 

for each (Figure 4.3d; Table 4.5). The effect sizes of slope and AFG NPP were 
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comparable, and the effect of drought was smaller. First, slope had a small positive effect 

on survival (mean 0.0046, 95% BCI 0.0020 – 0.0071), indicating that survival increased 

at steeper slopes. The positive effect of AFG NPP (mean 0.0042, 95% BCI 0.0012 – 

0.0073) indicated that survival increased with higher NPP of annual forbs and grasses. 

PDSI had a smaller positive effect on survival (mean 0.0026, 95% BCI 0.0010 – 0.0043), 

indicating that survival increased in wetter conditions and decreased in drier conditions. 

There was no evidence of an effect of elevation, PFG NPP, or shrub NPP, as no more 

than 65% of any of their posteriors was on one side of 0.  

 

Habitat quality maps 

Using the mean estimated habitat variable effects for each species and age class, we 

mapped predicted habitat quality across our study area at a daily resolution (Figure 4.4). 

Because maps used mean effects, they did not reflect the variation in parameter estimates.  

 

Discussion  

Using the SHQ model, we were able to quantify the long-term effects of habitat on 

sympatric populations of mule deer and white-tailed deer. We measured the varying 

effects on survival of topography, drought, and nutritional resources via the amount that 

each resource increased or decreased survival. Building on traditional survival models, 

this approach provided a new way to account for long-term and cumulative effects of 

habitat without needing to define the time scale of lag effects. The SHQ model takes full 

advantage of GPS collar data and extensive, fine-scale remote sensing data that are recent 
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additions to the wildlife field. The results shed new light on how to define habitat quality 

for a generalist species.  

Overall, we found that juvenile white-tailed deer and adult female mule deer were 

able to use a broad spectrum of habitat values with little impact on survival, as 

demonstrated by posterior distributions overlapping 0 (Figure 4.3). Although these two 

groups showed little response to habitat on average, the large variances for white-tailed 

deer juveniles indicated that individuals had widely variable responses to habitat, while 

individual adult female mule deer consistently had little to no response to different 

habitat variables. For juvenile white-tailed deer, this could indicate that some unmeasured 

variation between individuals, such as body weight, changed the patterns of habitat 

needed to meet nutritional demands. Alternatively, our small number of recorded 

mortalities for white-tailed deer juveniles may have prevented us from estimating any 

effects precisely. In contrast, mule deer adult females’ consistent lack of response to 

habitat indicated that stochastic or short-term factors (such as vehicle collisions or 

extreme weather events) may have played a larger role in their survival than the long-

term effects of nutrition and habitat condition did. Mule deer adult female survival was 

consistent with normal values range-wide (Forrester and Wittmer 2013), which indicated 

that sufficient quality habitat was available in our study area to meet their nutritional 

demands. In environments that are not limiting (e.g., available forage meets nutritional 

demands, no excessive harvest, weather within normal range), adult female mule deer 

survival may not be predictable from environmental variables. It is possible to formulate 

the SHQ model to investigate short-term effects in addition to the long-term factors, so 
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future studies may want to incorporate the instantaneous risk of predation, vehicle 

collision, or hunting in the analysis. 

Our other two groups – mule deer juveniles and white-tailed deer adult females – 

showed stronger responses to habitat, as indicated by larger effect sizes and posteriors not 

overlapping 0. Mule deer juvenile variances were larger than variances for adult females 

of either species, contributing additional evidence that inter-individual survival responses 

to habitat are more variable for juveniles than for adults. However, it is also possible that 

the larger variances for juveniles was a product of their shorter encounter histories 

(approximately 6 months, compared to 1 year for adults). Because survival of mule deer 

juveniles and white-tailed deer adult females was more strongly affected by habitat than 

survival of white-tailed deer juveniles or mule deer adult females was, predicted habitat 

quality throughout the study area was more variable for the former two groups than the 

latter. The effects of habitat on survival of these two groups indicated that habitat quality 

was more variable throughout the study area than for white-tailed deer juveniles and mule 

deer adult females. 

When comparing the two species, we found little evidence that any habitat 

variable had a consistent positive or negative effect for age classes of both species. 

Variables that registered as important for one species imposed either the opposite effect 

or no effect on the other species. For example, AFG NPP had a strong negative effect on 

mule deer juveniles but neutral effect on white-tailed deer juveniles and a positive effect 

on white-tailed deer adult females. Drought (PDSI) was the only variable that potentially 

affected adult females in the same direction, although the evidence of an effect on mule 

deer adult females was weak.  



 124 

From the six environmental variables we measured, we found that topography 

(elevation and slope) formed a key distinction between mule deer and white-tailed deer, 

which is consistent with studies elsewhere in their sympatric range (Staudenmaier et al. 

2021). The first topographical factor, elevation, had a positive effect on mule deer 

juvenile survival but neutral effect on every other group. Higher elevation is routinely 

used to describe mule deer habitat, and our results lend more evidence in support of this 

(Martinka 1968, Anthony and Smith 1977, Anderson et al. 2012). Our study area was 

relatively flat and low-elevation compared to other areas in mule deer range, yet within it 

we found that mule deer juveniles survived better at higher elevations than the 

surrounding area. The second topographical factor, slope, was more surprising; generally, 

mule deer are thought to prefer higher slopes than white-tailed deer (Avey 2003, 

Staudenmaier 2021), although we found the opposite: steeper slopes had a negative effect 

on mule deer juveniles but positive effect on white-tailed deer adult females (and was 

neutral for other groups). There are two potential biological drivers of this pattern in our 

study area. First, slope is that our study area was relatively flat, with the highest slope 

measuring 20°. Steeper slopes were associated with the few rugged buttes in our study 

area but also with river bottoms, which are generally considered white-tailed deer habitat 

(Whittaker and Lindzey 2004). Second, it has been shown that mule deer prefer to forage 

in low-slope areas but use steeper slopes to flee coyote predation (Lingle 2002). Under 

this hypothesis, we would predict a negative effect of slope on long-term survival (i.e., 

nutrition) but a positive effect on short-term survival (i.e., predation). Although we did 

not measure short-term survival, we did find evidence of a long-term negative effect. 
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Further evidence for this hypothesis was that we found a the negative effect only in mule 

deer juveniles, which are more susceptible to predation than adults.  

We recorded a wide range of PDSI values in our study area, from extreme 

drought to extreme wet (see Chapter 2, Figure 2.3). Both age classes of both species used 

comparable values of PDSI; all groups were found in a wide range of values except the 

two extremes. Drought had the largest effect on white-tailed deer adult females, 

indicating that white-tailed deer were more sensitive to drought than mule deer. Drought 

conditions lower the abundance and quality of deer forage, which may affect white-tailed 

deer disproportionately because mule deer are able to meet nutritional demands with 

lower-quality food (Staudenmaier et al. 2022). Additionally, drought conditions increase 

the chance of outbreak of epizootic hemorrhagic disease (Christensen et al. 2020), which 

tends to be deadlier for white-tailed deer than mule deer (Hoff et al. 1973). If drought 

conditions increase across mule deer habitat, mule deer may have a competitive 

advantage over white-tailed deer by tolerating a wider range of climatic conditions.  

We found little or no effect of perennial forbs and grasses on survival of any 

group. Perennial forb species make up more of a deer’s diet than annuals, but grasses 

make up a very small percentage of the diet (Everitt and Draw 1974). If PFG NPP values 

were mostly driven by grasses rather than forbs (which we could not evaluate with our 

data), we would indeed expect to find little to no effect on survival. We would also 

expect to see no effect if all values of PFG NPP in the study area met the basic nutritional 

needs of deer, because this resource would not be limiting for survival. Some recorded 

values of PFG NPP were unreasonably high, which may indicate that the remote sensing 

dataset was insufficient for measuring PFG NPP in our study area. Globally, the highest 
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NPP in rainforests is less than 1000 g C m-2 yr-1 (Yinpeng and Jinjun 2001), but our 

highest values of PFG NPP were above 4000 g C m-2 yr-1. We suspect that the 

unrealistically high values were a result of algorithm not accounting for satellite 

reflection from bare ground or potentially agriculture.  

Net primary productivity of annual forbs and grasses increased white-tailed deer 

adult female survival but decreased mule deer juvenile survival and potentially decreased 

adult mule deer survival. Forbs are an important part of a deer’s diet, so it was surprising 

that mule deer juveniles were strongly negatively affected by AFG NPP (Everitt and 

Draw 1974). The negative effect of AFG on mule deer juveniles could indicate that areas 

with high values of AFG NPP were low-quality mule deer habitat for some other reason, 

perhaps due to competition from white-tailed deer or to increased predation, which would 

affect juveniles more than adults. Similar to PFG NPP, we recorded some extremely high 

values of AFG NPP, which could have directed the strong effect. Yet unlike PFG NPP, 

the large values were outliers in the top 1% of the available values. Upon close inspection 

of our remote sensing data, the large values of AFG NPP appeared in a small area where 

bare soil was visible in badlands-type formations. We recorded juveniles only at lower, 

reasonable values of AFG NPP, so it is unlikely that the remote sensing errors drove our 

results. Furthermore, mule deer juveniles were found in the smallest range of AFG NPP 

of any species and age class, indicating selection for the values where their survival 

probability was highest, which was evidence that the effect was real.  

Shrub NPP had a positive effect on juvenile mule deer survival but no effect on 

any other group. Shrubs are important browse for both species and make up the bulk of 

their diet (Berry et al. 2019), so it was surprising that three groups showed no effect. 
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These results may indicate that sufficient values of shrubs were available to three groups 

but not so for mule deer juveniles. Although mule deer juveniles responded positively to 

shrub NPP, they used the smallest range of values of any of our deer groups. This 

potentially indicated that high values of shrub NPP were inaccessible for some reason, for 

instance, due to higher predation rates in these areas.  

We chose to investigate the effects of six habitat variables we hypothesized would 

be influential on deer survival, but there are additional factors that could be incorporated 

into the model. For example, other resources that could affect long-term survival include 

agricultural crops and hard winters. As the first test of the new SHQ model, we chose to 

focus only on continuous variables with a wide range of values across the study area, 

whereas both agriculture and extreme cold were rare in our study area and represented by 

categorical covariates. However, with appropriate prior distributions designed for missing 

data of each, these and other factors could be incorporated into the SHQ model in the 

future. Additionally, as more high-quality remote sensing data becomes available, we 

could increase the accuracy of our estimates with finer-scale variables. For example, all 

of our NPP values (PFG, AFG, and shrub) were calculated on an annual basis, so we did 

not have the temporal resolution to capture how NPP changed throughout the year. In 

reality, cells with high NPP values did not necessarily have high NPP in every season. 

When finer temporal resolution datasets become publicly available, the SHQ model could 

more accurately assess how NPP affects survival throughout the year.  

Throughout the analysis, we assumed that the underlying equation describing 

habitat quality did not differ over time. This played out in two ways. First, we assumed 

that each environmental variable was equally important throughout the year. Future 
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studies may want to differentiate between resource needs at different times of year, 

including the rut, winter, and post-parturition, as nutritional needs may vary with 

different physical demands. We also assumed that habitat needs did not vary by year. 

Under this assumption, we limited our analysis to daily survival from January 1 to 

December 31, and individuals that were alive in multiple years were included as 

independent individuals. This eased the computational load of the model, as run time 

increased non-linearly with the number of occasions.  

Two potential avenues of research could increase the biological reality of the 

SHQ model for future applications. First, The SHQ model is a fully cumulative model 

where every past experience contributes to an individual’s current survival probability. 

Biologically speaking, there may be a cutoff when past experience is no longer relevant 

to a deer’s probability of survival. It is possible that the SHQ model could incorporate a 

moving window that would allow only recent experiences (e.g., six months) to dictate 

survival probability. This may also ease the computational load and allow long-lived 

individuals to be included as a single, continuous encounter history. Second, we defined 

habitat patches (i.e., grid cell sizes) based on population-wide daily movement patterns, 

which may not perfectly represent the environmental conditions used by an individual 

animal on a particular day. Habitat use may occur at a finer scale than we were able to 

capture, and there is likely inter-individual variation and temporal variation in space use. 

A future extension of the SHQ model might use fine-scale GPS data and movement 

modeling to define habitat patch size by individual and allow it to vary over time.  

While the SHQ model allows inference to the variation in responses to different 

resources, it is difficult to visualize that variation in a predictive map. Maps using mean 
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parameter estimates may not accurately depict habitat quality if the inter-individual 

variation in survival responses is high. For example, all habitat variables for white-tailed 

deer juveniles had wide posterior distributions that spanned many potential values, from 

positive to negative. Using the mean values, our map (Figure 4.4c) indicated many areas 

of low-quality habitat for white-tailed deer juveniles, but this may not be an accurate 

representation of habitat quality, as our results indicate that white-tailed deer juveniles 

tolerated a wide range of habitat values with little effect on survival. Additionally, white-

tailed deer juvenile survival was higher than mule deer juvenile survival, but the 

visualization of results indicated that much more of our study area should be considered 

poor quality habitat for white-tailed deer compared with mule deer. With more variation 

in responses, visualizing habitat quality from the SHQ model becomes more challenging, 

and accurately depicting variability could be an avenue for future research efforts.    

Managers trying to manage for large mule deer populations and smaller white-

tailed deer populations have two critical tools at their disposal: harvest regulation and 

habitat management. In many areas, harvest regulation is insufficient to achieving these 

goals for several reasons. First, in highly abundant white-tailed deer areas, it can be hard 

to harvest enough deer to change the population size due to declines in hunter numbers, 

restricted access on private lands, and focus by hunters on buck harvest rather than 

female harvest (Vercauteren and Hygnstrom 2011, Vercauteren et al. 2011). Second, 

mule deer populations tend to be limited by recruitment of juveniles (Carpenter 1997, 

Gaillard et al. 1998), so manipulating harvest of adults may not have a strong effect on 

population trajectory, especially if harvest is focused on adult males. However, habitat 

management can increase overwinter survival of mule deer fawns (Bergman et al. 2014), 
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so habitat management may be a better tool for achieving population goals. A complete 

understanding of what makes up high-quality mule deer habitat as opposed to white-

tailed deer habitat is crucial for designing management interventions.  

Managers aiming to increase mule deer populations through habitat management 

should likely focus on the factors most important for mule deer juvenile survival 

(Carpenter 1997). In our study area, these factors were slope, elevation, shrubs, and 

annuals. While managers cannot change slope or elevation, it may be possible to manage 

for more shrubs and fewer annual forbs and grasses. In particular, more shrubs and fewer 

annual forbs and grasses in areas of higher elevation and lower slope could be most 

beneficial. Higher elevations in our study area were often associated with butte 

formations, which also have low slopes on top. These formations were typically on public 

land, so this could be a potential avenue for habitat management without the need for 

landowner buy-in to incentive programs.  

Through our test of the SHQ model on mule deer and white-tailed deer, we found 

that the model can provide a thorough understanding of habitat quality as it relates to 

population demographic rates. Furthermore, the predictive maps of habitat quality can 

help conservationists highlight areas of conservation priority. Particular focus of habitat 

management interventions should be placed on resources that are important to survival 

(i.e., effect sizes on survival are large with small variation), are easy to manipulate, and 

have abundant poor quality patches.  
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Tables 

Table 4.1. Number of new GPS collars deployed annually. Collars functioned for 

multiple years, so sample sizes in 2020 and 2021 were larger than column n would 

indicate. 

Year Species Age class n 

2019 Mule Deer Adult female 105 

2019 White-tailed Deer Adult female 106 

2020 Mule Deer Adult female 22 

2020 Mule Deer Juvenile 111 

2020 White-tailed Deer Adult female 18 

2020 White-tailed Deer Juvenile 112 

2021 Mule Deer Juvenile 107 

2021 White-tailed Deer Juvenile 109 
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Table 4.2. Summary of habitat variables the DAU 1 study area from January 2019 – 

December 2021 and recorded use by collared mule deer and white-tailed deer juveniles 

and adult females. 

Variable Species Mean SD Min Max 

AFG NPP 

(g C m-2 y-1)   

 

Study area 101 124 0 2955 

Mule deer juvenile 52 41 1 289 

White-tailed deer juvenile 66 58 0 319 

Mule deer adult female 114 161 0 2955 

White-tailed deer adult female 102 93 0 1611 

Elevation (m) 

 

Study area 854 103 488 1211 

Mule deer juvenile 844 99 580 1174 

White-tailed deer juvenile 843 102 571 1192 

Mule deer adult female 859 108 586 1187 

White-tailed deer adult female 851 99 35 1176 

1 PDSI 

 

Study area 0.7 3.36 -5.2 14 

Mule deer juvenile 1.2 3.9 -3.6 10.7 

White-tailed deer juvenile 1.4 3.8 -3.7 10.5 

Mule deer adult female 0.7 3.3 -4.8 11.7 

White-tailed deer adult female 0.6 3.2 -4.8 11.0 

PFG NPP  

(g C m-2 y-1) 

 

Study area 2384 655 0 4956 

Mule deer juvenile 2285 481 48 3910 

White-tailed deer juvenile 2252 639 0 3910 

Mule deer adult female 2442 617 24 4469 

White-tailed deer adult female 2365 706 0 4334 

Shrub NPP  

(g C m-2 y-1) 

 

Study area 125 15.3 0 279 

Mule deer juvenile 11 15 0 81 

White-tailed deer juvenile 8 13 0 115 

Mule deer adult female 17 25 0 146 

White-tailed deer adult female 15 21 0 203 

Slope (°) 

 

Study area 4.1 2.6 0 20 

Mule deer juvenile 5.1 2.7 0 19 

White-tailed deer juvenile 3.0 1.8 0 18 

Mule deer adult female 5.1 2.9 0 20 

White-tailed deer adult female 3.2 2.0 0 20 
1 PDSI values range from -15 (driest) to 15 (wettest) 
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Table 4.3. Effects of four habitat variables on survival probability of an individual mule 

deer juvenile. Calculations are based on an individual starting with mean daily survival 

probability (0.9950), and spending 1, 2, and 10 days at the minimum and maximum 

values of each habitat variable, assuming all other variables are held at their mean. To aid 

in interpretation, 6-month survival probabilities projected from the daily rates are 

reported in parentheses and printed in red to differentiate from annual survival in Tables 

4.4 – 4.5. Values that increase over time are highlighted in yellow.   

Habitat 

value 

Time spent AFG NPP1 Elevation Slope Shrub NPP 

Minimum 1 day 0.9951 

(0.41) 

0.9949 (0.39) 0.9951 

(0.41) 

0.9950 

(0.40) 

2 days 0.9952 

(0.42) 

0.9948 (0.38) 0.9952 

(0.41) 

0.9950 

(0.40) 

10 days 0.9961 

(0.49) 

0.9937 (0.31) 0.9958 

(0.46) 

0.9948 

(0.38) 

Maximum 1 day 0.9945 

(0.37) 

0.9951 (0.41) 0.9947 

(0.38) 

0.9953 

(0.43) 

2 days 0.9940 

(0.33) 

0.9952 (0.42) 0.9943 

(0.35) 

0.9957 

(0.45) 

10 days 0.9873 

(0.10) 

0.9960 (0.48) 0.9905 

(0.18) 

0.9976 

(0.64) 
1 Used 99th percentile rather than maximum for AFG NPP 
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Table 4.4. Effect of habitat variables on survival probability of an individual mule deer 

adult female. Calculations are based on an individual starting with mean daily survival 

probability (0.9994), and spending 1, 2, and 10 days at the minimum and maximum 

values of each habitat variable, assuming all other variables are held at their mean. To aid 

in interpretation, annual survival probabilities projected from the daily rates are reported 

in parentheses. Values that increase over time are highlighted in yellow.  

Habitat value Time spent PDSI PFG NPP AFG NPP1 

Minimum 1 day 0.9994 (0.82) 0.9994 (0.82) 0.9994 (0.82) 

2 days 0.9994 (0.82) 0.9995 (0.82) 0.9994 (0.82) 

10 days 0.9994 (0.81) 0.9995 (0.83) 0.9994 (0.82) 

Maximum 1 day 0.9994 (0.82) 0.9994 (0.82) 0.9994 (0.82) 

2 days 0.9995 (0.82) 0.9994 (0.82) 0.9994 (0.82) 

10 days 0.9995 (0.83) 0.9994 (0.81) 0.9994 (0.82) 
1 Used 99th percentile rather than maximum for AFG NPP 
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Table 4.5. Effect of habitat variables on survival probability of an individual white-tailed 

deer adult female. Calculations are based on an individual starting with mean daily 

survival probability (0.9990), and spending 1, 2, and 10 days at the minimum and 

maximum values of each habitat variable, assuming all other variables are held at their 

mean. To aid in interpretation, annual survival probabilities projected from the daily rates 

are reported in parentheses. Values that increase over time are highlighted in yellow.  

Habitat value Time spent AFG NPP1 PDSI Slope 

Minimum 1 day 0.9990 (0.69) 0.9990 (0.69) 0.9990 (0.69) 

2 days 0.9990 (0.69) 0.9990 (0.69) 0.9990 (0.69) 

10 days 0.9989 (0.68) 0.9989 (0.68) 0.9989 (0.67) 

Maximum 1 day 0.9990 (0.69) 0.9990 (0.69) 0.9990 (0.70) 

2 days 0.9990 (0.70) 0.9990 (0.69) 0.9990 (0.70) 

10 days 0.9991 (0.72) 0.9991 (0.71) 0.9992 (0.75) 
1 Used 99th percentile rather than maximum for AFG NPP 
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Figures  

 

Figure 4.1. Data analysis units (DAUs) in South Dakota, USA, with our study area, DAU 

1, outlined in black.  
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Figure 4.2. Due to the logit transformation, resource quality has a larger effect on 

individuals with survival probability near 0.5 than near either 0 or 1. Two individuals 

encountering the same resource will likely experience the effect size differently.  
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Figure 4.3. Posterior distributions for effects of habitat variables on daily survival of 

mule deer and white-tailed deer juveniles (<1 yr) and adult females (>1 yr). Mean 

estimates represented by colored vertical lines and 95% Bayesian Credible interval 

shown by shaded areas.  
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Figure 4.4. Predicted habitat in our study area. Example shown for Feb. 4, 2020 for a) 

mule deer juveniles, b) mule deer adult females, c) white-tailed deer juveniles, and d) 

white-tailed deer adult females, using mean effect size of six environmental variables. 

For visualization, habitats were grouped into poor (Qc < -0.01), neutral (-0.01< Qc <0.01), 

and high (Qc > 0.01) quality.  
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