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Young, Fischer L., Ph.D., Autumn 2022   Chemistry, Analytical/Environmental 

 

Characterizing Riverine Carbon: A spatiotemporal study of organic and inorganic carbon 
variability and evaluation of methods for quantifying pCO2 
 

Chairperson: Dr. Michael DeGrandpre 
 
Carbon is a critical component of aquatic ecosystems. For inland waters, carbon is a basal 

resource for biological communities and is a key component of trophic transfer through ingestion 
and respiration processes. Additionally, carbon acts as a key biogeochemical tracer that can track 
chemical, physical, and biological processes from the terrestrial landscape to inland waters to the 
ocean. Riverine carbon, however, can be challenging to characterize and interpret due to the 
complexity of its sources and sinks along a riverine continuum. Included in this work are the 
biogeochemically relevant forms of carbon such as dissolved inorganic carbon (DIC), the partial 
pressure of carbon dioxide (pCO2), and dissolved organic carbon (DOC). Together, these forms 
of carbon along with spectrophotometric pH, temperature, total alkalinity, and ionic strength 
were measured and analyzed to evaluate a novel method for quantifying freshwater pCO2 and to 
assess the spatial and temporal variability of inorganic and organic carbon along the upper Clark 
Fork River (UCFR), MT, USA.  
 Overall, the method for calculating pCO2 showed a ~4-fold improvement in accuracy, 
compared to an infrared reference, when using an indicator-based pH instead of electrochemical 
pH. Moreover, this method was validated through a 19-d field application in the UCFR. This 
method was then used to calculate pCO2 on 275 discrete samples to estimate the air-water CO2 
flux along the UCFR. The UCFR was a source of CO2 to the atmosphere with a river-wide 
average air-water CO2 flux of 80 ± 140 mmol m-2 d-1 (n = 275). The magnitude of the air-water 
CO2 flux was primarily driven by riverine pH, discharge, and season. Additionally, DOC 
variability along the UCFR was assessed through the Carbon Processing Domain framework 
where stream reaches were designated by functional space. DOC dynamics were strongly linked 
to changes in discharge, characteristic of a snowmelt dominated system, where reaches along the 
UCFR occupied diluter, enhancer, compiler, conduit, and consumer domains dependent on 
season, reach, and hydraulic loads. This work characterized the carbon dynamics of ~215 km of 
the UCFR from ~3500 discrete samples over 4 years to better understand carbon sources, sinks, 
and variability along the UCFR.
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Chapter 1 

Introduction  

Overview 

Carbon is a critical component of aquatic ecosystems. For inland waters, carbon is 

generally categorized into two primary groups: inorganic carbon and organic carbon. These 

groups can be further divided into particulate, colloidal, and dissolved fractions. However, for 

the work described here only dissolved forms of inorganic and organic carbon are described. 

Dissolved inorganic carbon (DIC) includes key chemical species such as carbon dioxide (CO2), 

bicarbonate (HCO3-), and carbonate (CO3-2) (Stumm and Morgan, 2008; Middleburg, 2019). 

These species originate from the dissolution of geogenic sources (i.e., limestone), air-water gas 

exchange with the atmosphere, and from the biologically mediated oxidation of organic matter 

(i.e., heterotrophic, and autotrophic respiration). Dissolved organic carbon (DOC) in inland 

waters is either produced from endogenous processing (i.e., photosynthetic exudates) or is 

brought to the system via exogenous transport (i.e., transport of terrestrially sourced organic 

matter). DOC is a basal resource for biological communities and is a key component of trophic 

transfer (Drakare et al. 2002). As such, DIC and DOC are critical components of aquatic 

ecosystems as they elucidate several important biogeochemical processes including metabolism, 

gas exchange, floodplain connectivity, and hydrologic transport. 

    In addition to their ecological importance, these carbon pools are a significant part of 

the global carbon budget (Raymond et al. 2000; Cole et al. 2007; Raymond et al. 2013; 

Hotchkiss et al. 2015). The focus on these systems is attributed to the continued progression of 

climate change (IPCC, 2022) and the fraction to which inland waters have been shown to 

contribute key greenhouse gases (GHG), namely carbon dioxide (CO2) and methane (CH4), to 
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the atmosphere (Choi et al. 1998; Cole and Caraco, 2001; Duvert et al. 2018; Rocher-Ros et al. 

2020; Karlsson et al. 2021). Raymond et al. (2013) provides an estimate of global air-water CO2 

flux from inland waters to be 1.8 Pg C yr-1 while current estimates of global riverine DOC and 

DIC fluxes to the coastal oceans are 0.24 and 0.41 Pg C yr-1, respectively (Li et al. 2017). Thus, 

indicating the relative importance of inland carbon cycling to the global carbon budget and that 

continued research of freshwater carbon dynamics and GHGs is needed as climate change 

progresses at an unprecedented rate (IPCC, 2022).  

 Due to the dynamic nature of inland waters, inorganic carbon parameters vary spatially 

and temporally due to changes in allochthonous inputs, floodplain connectivity, gas exchange, 

and instream processing (Raymond et al. 1997; Worrall and Lancaster, 2005; Parker et al. 2007; 

Lynch et al. 2010; Rocher-Ros et al. 2019; Shangguan et al. 2021). DIC, pH, AT, and the partial 

pressure of CO2 (pCO2) often have strong diel (24-hr) cycles that follow sunlight, temperature, 

and primary productivity (Lynch et al. 2010; Shangguan et al. 2021). These diel cycles have 

characteristically large ranges, spanning hundreds of µatm and µmol L-1 for pCO2 and DIC, AT, 

respectively, while the diel pH range can be over one pH unit (Shangguan et al. 2021; Young et 

al. 2022). Additionally, seasonal and interannual variability also illicit strong responses in these 

parameters due to changes in river discharge, temperature, groundwater and tributary influences, 

sunlight, nutrients, and the succession of primary producers (Raymond et al. 2000; Lynch et al. 

2010; Cory et al. 2014; Peter et al. 2014; Minor et al. 2019). Furthermore, this temporal 

variability in inorganic carbon is compounded by spatial differences driven by similar processes 

(i.e., river discharge, temperature, allochthonous inputs, and primary production).  

 Processes that impact the dynamics of inorganic carbon in rivers, discussed above, can 

also drive DOC dynamics. For example, many studies have shown that discharge is a key driver 
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of DOC variability and significantly controls the flux of DOC from the terrestrial landscape to 

the river (Evans and Davies, 1998; Godsey et al. 2009; Mast et al. 2016; Raymond et al. 2016; 

O’Donnell and Hotchkiss, 2019; Shogren et al. 2021). Further, the magnitude of DOC loading to 

a system (e.g., volumetric flow multiplied by concentration) can depend on antecedent floodplain 

conditions, such as droughts (Tunaley et al. 2016). Similar to inorganic carbon, DOC has also 

been shown to have a diel cycle in freshwater systems due to photo-oxidation, biological uptake 

and release, and temperature (Spencer et al. 2007; Parker et al. 2010; Tunaley et al. 2016; 

Johnson, 2021; Oviedo-Vargas et al. 2022). The diel cycle of DOC, however, seems to be less 

predictable than the diel cycle of inorganic carbon where DOC could have no peaks during 24-hr 

or multiple (Spencer et al. 2007; Johnson, 2021). Additionally, the diel range of DOC in 

freshwater systems, if present at all, is relatively small compared to inorganic carbon with a 

range of ~80 to ~300 µmol L-1 in temperate systems (Kaplan and Bott, 1982; Spencer et al. 2007; 

Parker et al. 2010; Johnson, 2021; Oviedo-Vargas et al. 2022). Seasonal changes in DOC, 

however, can be significantly larger than diel DOC variability (e.g., ~200 to ~1300 µmol L-1 

from winter to spring; Mast et al. 2016). Additionally, spatial differences in biological 

communities and the quality of DOC also contribute to its variability in freshwater systems 

(D’Andrilli et al. 2015; Brailsford et al. 2019). A recent study by Valett et al. (2022) outlines a 

budgetary approach, known as Nutrient Processing Domains, geared towards providing insight 

into both discharge-driven processes and in situ biological uptake. The work presented in 

Chapter 4 employs this approach for DOC to better interpret its spatial and temporal variability 

and what biogeochemical process(es) significantly controls that variability.  

Advancements in quantifying riverine carbon 
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Issues exist, however, for characterizing inorganic carbon dynamics in freshwater 

systems. Such issues include accurately quantifying the gas transfer velocity and dissolved CO2 

(i.e., pCO2). Recent studies have outlined techniques to better estimate gas transfer velocities 

using the open-source R program, streamMetabolizer (Appling et al. 2018b). This approach 

utilizes a Bayesian statistical model to estimate gas transfer velocity from high-resolution in situ 

dissolved oxygen data. Conversely, issues with accurately calculating pCO2 from pH and total 

alkalinity (AT) in freshwater has been documented in several studies (Hunt et al. 2011, Abril et 

al. 2015, Liu et al. 2020; Young et al. 2022). To avoid issues involved with its calculation, pCO2 

can be measured directly using in situ sensors (Parker et al. 2007; Lynch et al. 2010; Rocher-Ros 

et al. 2020) or headspace equilibrium techniques coupled to nondispersive infrared (NDIR) 

analysis or gas chromatography (Cole and Caraco, 2001; Abril et al. 2015; Rocher-Ros et al. 

2019; Aho et al. 2021). However, obtaining direct measurements of pCO2 can be expensive and 

so most studies have relied on the analysis of collected samples. Thus, the work presented here 

details a novel methodological approach for accurately calculating freshwater pCO2 from 

spectrophotometric pH and AT (Young et al. 2022). Outlined in this approach is the 

consideration of freshwater ionic strength (µ) (commonly assumed to be negligible in freshwater 

systems, Hunt et al. 2011; Abril et al. 2015) for calculating pH, thermodynamic equilibrium 

constants, and pCO2 (Young et al. 2022). As a result, these accurately calculated pCO2 values 

can be used along with high quality gas transfer velocities estimated from streamMetabolizer to 

obtain accurate air-water CO2 flux estimates based on discrete samples.   

 Compared to DIC, DOC is relatively simple to collect and analyze. Methods for its 

quantification and its quality characterization have been established for many years (U.S. EPA, 

2005; Holmes et al. 2008; Dai et al. 2012; D’Andrilli et al. 2015). DOC concentrations are 
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typically measured by acidifying sample with sulfuric acid and heating it with persulfate (U.S. 

EPA, 2005). This process oxidizes organic carbon into CO2 which is then detected with an NDIR 

detector. Further, DOC cannot be measured in situ via autonomous sensor and instead is 

typically manually sampled and analyzed in a laboratory as described above. However, higher 

resolution proxy measures of DOC can be obtained from measures of fluorescent or colored 

dissolved organic matter from in situ spectrophotometers (i.e., s::can Spectrolyser UV-Vis, 

Messtechnik GmbH, Austria; Vaughan et al. 2017).     

Study system 

 The work presented throughout this dissertation took place along the upper Clark Fork 

River (UCFR) located in Montana, USA. The UCFR is the ~215 km upper portion of the Clark 

Fork River (total length is ~500 km) with ongoing floodplain restoration with a legacy of heavy 

metal pollution produced by more than 125 years of copper and silver mining and smelting 

activities (Moore and Luoma, 1990; Nagorski, 2001; Parker et al. 2007; Moore and Langner, 

2012). It is a productive, mid-order river characterized as a snowmelt dominated catchment 

(Moore and Luoma, 1990; Lynch et al. 2010; Moore and Langner, 2012). Further specifics 

regarding descriptions, sampling locations, and reaches are described in detail in each of the 

subsequent chapters.   

The numerous studies referenced above have provided a vast amount of information 

regarding inorganic and organic carbon variability. However, few studies have had the time and 

resources to measure carbon variability along ~215 km of a single river for multiple years at 

daily, monthly, seasonal, and annual time scales. The study presented here provides inorganic 

and organic carbon information from roughly 4 years (48 months, 65 sampling events) for 13 

mainstem and 3 tributary sampling locations along the upper Clark Fork River (UCFR), MT, 
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USA. Approximately 5,600 total discrete data points and ~1700 high resolution autonomous 

sensor data points have been collected and calculated over this study period and spatial gradient. 

Of this dataset, ~3,500 discrete data points were used in the work described below. Complete 

records of the data are published on the Environmental Data Initiative (EDI) repository and are 

publicly available (DeGrandpre and Young, 2021a, 2021b, 2021c; DeGrandpre et al. 2021a, 

2021b, 2021c; Young et al. 2022). The parameters included in this subset of data are AT, pH, 

DIC, pCO2, air-water CO2 flux, DOC, and ancillary measurements (i.e., temperature, specific 

conductivity, µ) to better understand inorganic and organic carbon variability along the UCFR. 

This dissertation is organized around three manuscripts focused on a methodological 

approach for calculating freshwater pCO2 (Chapter 2) as well as the quantification and 

interpretation of freshwater inorganic carbon (Chapter 3) and organic carbon (Chapter 4) 

spatiotemporal variability. The methodological approach for calculating freshwater pCO2 

(Chapter 2) has been published in the journal Limnology and Oceanography: Methods and its 

reference is available in the References section (Young et al. 2022). The second manuscript 

focused on freshwater inorganic carbon and air-water CO2 flux variability is under internal 

revision as part of the dissertation review. Additionally, the third manuscript focused on the 

spatial and temporal variability of freshwater DOC using the Carbon Processing Domain 

approach (Valett et al. 2022) is in advanced draft form. The appendices located at the end of this 

dissertation (Appendix A, B, and C) are analogous to the supplemental information document 

submitted alongside a manuscript for peer-review. Additional graphics and tables, however, have 

been included to provide further support for each chapter.      
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Chapter 2 

Comparison of spectrophotometric and electrochemical pH measurements for 

calculating freshwater pCO2 

Introduction 

Inland waters process and transport substantial amounts of terrestrially derived carbon 

(Hotchkiss et al. 2015). Most streams and rivers are sources of carbon dioxide (CO2) to the 

atmosphere (Raymond et al. 2000; Wang and Cai, 2004; Chen et al. 2012), where they represent 

a substantial component in the global carbon cycle (Cole et al. 2007; Raymond et al. 2013; 

Hotchkiss et al. 2015). A common way of evaluating the magnitude of these CO2 sources is by 

calculating the CO2 exchange over a given area of freshwater (i.e., flux). Current challenges in 

quantifying air-water CO2 fluxes include obtaining accurate gas transfer velocities and accurately 

quantifying dissolved CO2, usually reported as the partial pressure of CO2 (pCO2) (Raymond et 

al. 2012; Duvert et al. 2018; Rocher-Ros et al. 2019; Ulseth et al. 2019). Recent studies have 

outlined techniques to increase the accuracy of gas transfer velocities (Appling et al. 2018a, 

2018b; Rocher-Ros et al. 2021); however, debates continue about the best practices for obtaining 

accurate freshwater pCO2 (Hunt et al. 2011; Abril et al. 2014; Liu et al. 2020).  

Currently, freshwater pCO2 is either measured directly or calculated. Researchers 

measure pCO2 directly using in situ sensors (e.g., Parker et al. 2007; Lynch et al. 2010; Rocher-

Ros et al. 2020) or headspace equilibrium techniques coupled to nondispersive infrared (NDIR) 

analysis or gas chromatography (Cole and Caraco, 2001; Johnson et al. 2009; Åberg and Wallin, 

2014; Abril et al. 2015; Rocher-Ros et al. 2019; Aho et al. 2021). However, most freshwater 

studies rely on analysis of collected samples. The pCO2 is then calculated from any two 

quantifiable inorganic carbon parameters i.e., total alkalinity (AT), pH, or dissolved inorganic 
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carbon (DIC). The two measured parameters are input into an equilibrium model that uses proton 

(i.e., AT) and mass (i.e., DIC) balances and the thermodynamic equilibria for carbonic acid 

(H2CO3) (e.g., CO2SYS or PHREEQC) (Choi et al. 1998; Lewis and Wallace, 1998; Butman and 

Raymond, 2011; Parkhurst and Appelo, 2013; Abril et al. 2014, 2015).  

Both AT and pH are commonly monitored by government and research agencies around the 

world (Raymond et al. 2013; Stets et al. 2017; Wen et al. 2017; Coles et al. 2019; Liu et al. 2020) 

and these long-term datasets have been used to calculate pCO2 and estimate global CO2 emissions 

(Cole et al. 2007; Aufdenkampe et al. 2011). Studies have shown, however, that using AT and 

electrochemical pH can result in overestimation of calculated pCO2 leading to inflated estimates of 

global freshwater CO2 emissions (Herczeg and Hesslein, 1984; Hunt et al. 2011; Abril et al. 2015; 

Liu et al. 2020). Freshwater pCO2 can be overestimated by 10 to >100% when calculated from pH 

and AT (Hunt et al. 2011; Abril et al. 2015; Liu et al. 2020). These erroneously high pCO2 values 

are thought to be caused by systematically low electrode pH and the presence of non-carbonate 

species (e.g., organic acid anions) that can contribute to higher AT values. This “excess AT” 

overestimates pCO2 because carbonate equilibrium models assume that freshwater AT is all 

carbonate alkalinity. Other chemical species, like phosphate, could also contribute to AT but are 

typically at negligible concentrations in freshwater compared to carbonate concentrations. Findings 

from Liu et al. (2020) revealed that organic acids can be a significant portion of AT when AT is less 

than ~1000 µmol L-1 with errors in calculated pCO2 of >40%. This error is significantly reduced 

(<8%), however, at higher AT (e.g., >2000 µmol L-1; Liu et al. 2020). Additionally, Liu et al. 

(2020) suggested empirical relationships based on ionic strength (µ) and dissolved organic carbon 

(DOC) to correct past electrochemical pH and AT measurements, respectively. Even with the pH 

measurement correction, pCO2 error was only reduced by ~40% (Liu et al. 2020), so there remains 
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a need for more accurate pH measurements and more rigorous thermodynamic calculations of 

pCO2. 

The inaccuracy of pH electrodes in freshwater is primarily due to changes in the liquid 

junction potential (Illingworth 1981; Herczeg and Hesslein, 1984; Davison and Woof, 1985; 

Stauffer, 1990; Raymond et al. 1997). Calibration of an electrode in standard buffer solutions (i.e., 

National Institute of Standards and Technology (NIST)) that have higher µ than freshwater (i.e., µ 

>0.01 M) commonly leads to systematically low pH in low µ conditions (Herczeg and Hesslein, 

1984; Byrne et al. 1988; French et al. 2002; Liu et al. 2020). Spectrophotometric pH, which uses a 

colorimetric indicator to determine pH, has demonstrated improved accuracy compared with glass 

electrodes (Byrne et al. 1988; Yao and Byrne, 2001; French et al. 2002; Yuan and 

DeGrandpre, 2008; DeGrandpre et al. 2014; Lai et al. 2016; Minor et al. 2019). The accuracy has 

been reported to be <0.008 pH units for freshwater applications (Yuan and DeGrandpre 2008; Lai 

et al. 2016). Although spectrophotometric pH is commonly used for calculation of pCO2 in 

seawater where its utility has been extensively characterized (Byrne et al. 1988; Zhang and 

Byrne, 1996; Lueker et al. 2000; Byrne et al. 2010; DeGrandpre et al. 2014; Bockmon and 

Dickson, 2015; Takeshita et al. 2020), it has not been significantly used for calculation of 

freshwater pCO2 or for that matter, calculation of other freshwater equilibria (e.g., solubility). 

Freshwater measurements of spectrophotometric pH pose unique challenges, however, because of 

the uncertainty of µ effects and the potential perturbation of pH of poorly buffered freshwater by 

addition of indicator (Yuan and DeGrandpre, 2008). Therefore, it is important to evaluate the 

utility of spectrophotometric pH measurements more thoroughly for freshwater applications, 

especially for its use in calculating pCO2.  
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The recent availability of purified meta-cresol purple (pmCP) and characterization of its 

equilibrium constant at low µ has made this evaluation more opportune (Lai et al. 2016) where pH 

accuracy might vary due to different mCP impurities in commercial products (Liu et al. 2011). 

Over a decade ago, marine chemists discovered that dye impurities degrade the accuracy of 

seawater pH measurements and demonstrated improved accuracy by purifying the indicator (Yao 

et al. 2007; Liu et al. 2011). The effects of dye impurities on freshwater measurements have never 

been determined and so the uncertainty created by this problem has likely compromised the appeal 

of indicator-based pH measurements for freshwater. Additionally, µ is integral to this assessment 

because it can alter the inorganic carbon equilibria, i.e., the apparent dissociation constants 

increase with increasing µ (Stumm and Morgan, 2008). The effect of µ on freshwater CO2 

calculations has not been rigorously evaluated, however. Additionally, µ encompasses a range 

from ~0.1 mM to >10 mM in freshwater systems (Cormier et al. 2013), a range that significantly 

changes the apparent Henry’s Law constant (KH¢), apparent dissociation constants (K1¢, K2¢, and 

KW¢) and, as a result, calculated pCO2. Therefore, rigorously accounting for freshwater µ could 

improve carbonate equilibrium models and, accordingly, calculated pCO2 values. 

To evaluate the freshwater applicability of spectrophotometric pH measurements, a 

laboratory study was conducted to compare spectrophotometric and electrochemical pH 

measurements for calculating freshwater pCO2 over a wide range of conditions (i.e., µ, AT, and 

temperature). The experiments used a test tank where the pCO2 could be monitored while 

samples were simultaneously obtained for pH and AT. Further, high frequency in situ 

spectrophotometric pH measurements were made in a local river to evaluate the accuracy of 

calculating pCO2 through a real-world application.  

Materials and procedures 
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Laboratory tank study 

Overview 

A 130-L, temperature-controlled, well-mixed tank of a mixture of tap water and 

deionized (DI) water was sampled with pCO2 ranging from ~100-1600 µatm. The pCO2 levels 

were varied by 1) introducing air that was passed through a column of soda lime (Fisher 

Scientific, CAS # 8006-28-8) to drive the pCO2 below atmospheric levels (~100-400 µatm) or 2) 

introducing small volumes of high CO2 into the test tank headspace to increase the pCO2. A 

range of AT from ~1800-3200 µmol L-1 and µ from ~5-9 mmol L-1 were created by dilution of 

tap water (undiluted tap water AT = ~3200 µmol L-1) in the tank with DI water. The tank 

temperature was set to 10, 15, or 20 °C. Most data were collected at 15 ºC with a limited number 

of measurements made at 10 and 20 ºC to determine performance over a broader temperature 

range. These conditions are like those found in a nearby river, the Clark Fork River (CFR), MT, 

USA, where we have worked extensively (Parker et al. 2007; Lynch et al. 2010; Shangguan et al. 

2021), and other temperate and tropical freshwater rivers (Abril et al. 2015).  

The tank pCO2 was quantified using a membrane equilibrator (Membrana, Liqui-Cel SP 

Series) attached to a pump and a CO2/H2O infrared gas analyzer (LI-COR, LI-840A). The gas 

analyzer was zeroed with CO2-free air and then calibrated with two CO2 standards (359 and 1774 

ppm) (Dickson et al. 2007). Sample collection began at the lowest pCO2 concentration in the test 

tank (~100 µatm) and continued sequentially in ~150-200 µatm steps until ~1600 µatm. The 

pCO2 was recorded on a one-minute interval and the measured mole fraction of CO2 was 

converted to pCO2 following Dickson et al. (2007). The overall tank pCO2 accuracy is estimated 

to be ~±5 µatm. 
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 Samples for analysis of AT and pH were collected to coincide with the equilibrator-

infrared measurements. Triplicate samples were dispensed via a pump from the closed test tank 

to maintain pCO2 levels. Samples were collected in borosilicate glass bottles secured with 

greased hollow glass stoppers. The samples were kept on ice for ~5-15 min until 

spectrophotometric pH and AT analysis. For the pH electrode measurements, two additional 

samples (one for each pH electrode measurement) were collected immediately after the 

previously mentioned triplicate samples and analyzed within 1-2 minutes of sample collection.  

Spectrophotometric pH 

Spectrophotometric pH measurements were made using a double beam 

spectrophotometer (Agilent, Cary 300) with 10 cm borosilicate glass cuvettes and temperature 

regulated cuvette holders (Lai et al. 2016). Each bottle was analyzed only once to prevent an 

increase in headspace that could allow gas exchange and alter the pH and pCO2. Triplicate 

spectrophotometric pH measurements were averaged for further analysis.  

For freshwater pH analysis, pmCP was used because the negative logarithm of its acid 

dissociation constant (pKa) is equal to 8.6607 at 25 ⁰C at infinite dilution (µ = 0 mM) (Lai et al. 

2016) and overlaps with the pH range observed in the CFR (e.g., 7.9 to 9.1) (Parker et al. 2007) 

and many other alkaline freshwater systems (Peter et al. 2014). The pKa for purified phenol red 

has also been quantified at low µ and would be suitable for a lower pH range (pKa = 8.0625 at 25 

⁰C at infinite dilution) (Lai et al. 2016). Automated diagnostic checks were performed monthly 

on the spectrophotometer that included validation of wavelength accuracy, wavelength 

reproducibility, photometric noise, and baseline flatness, some of which have been shown to 

affect spectrophotometric pH measurement accuracy (DeGrandpre et al. 2014).  
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Spectrophotometric pH measurements were calculated on the free hydrogen ion scale 

(pHfree = -log[H+], where [H+] is the hydrogen ion concentration) using the following equation 

(Yao and Byrne, 2001; Lai et al. 2016): 

																																							pH!"## = pK$ + log(
R − e%
e& − Re'

) − 4A( √µ
1 + √µ

− 0.3µ)																													(1) 

where pKa is the temperature dependent negative logarithm of the second dissociation constant 

of pmCP at infinite dilution. The indicator (I) pmCP exists in two forms in natural waters, the 

protonated (acid) form, HI-, and the deprotonated (base) form, I2-. Thus, R is the ratio of 

indicator absorbances (A578/A434) at the absorbance maxima of I2- (578 nm) and HI- (434 nm), e1, 

e2, and e3 refer to the molar absorption coefficient ratios corresponding to HI- and I2- at 434 nm 

and 578 nm, and 

																							A = 0.5092 + (T − 298.15) × 8.5 × 10()																																						(2) 

where T is the temperature in Kelvin. Due to minor changes in pH of the sample caused by the 

addition of indicator (Seidel et al. 2008; Yuan and DeGrandpre, 2008; Li et al. 2020), pH was 

calculated using a linear regression of the pH values recorded with addition of three 80 µL 

indicator aliquots. The magnitude of this perturbation correction was -0.005 ± 0.004 pH units (n 

= 84), similar to previously reported perturbation corrections (Yuan and DeGrandpre, 2008). 

This procedure gave absorbances within a range of 0.0930 to 1.4740. Example pH values with 

relevant parameters (i.e., molar absorptivity, absorbance, temperature, and pKa) are summarized 

in Appendix A (Table S1). All sample measurements were temperature corrected to the tank 

water temperature using the equilibrium model CO2SYS (Lewis and Wallace, 1998) at infinite 

dilution (Millero 1979). This program uses an input (measurement) and output (tank) 

temperature, alkalinity, and input pH. Temperature corrections averaged -0.005 ± 0.004 pH units. 

The resulting temperature corrected pH was used for subsequent pCO2 calculations and pH 
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comparisons (see below). Additionally, pH values from the spectrophotometer were compared 

bimonthly to an NIST traceable phosphate buffer (pH 8.00 ± 0.02 at 25.1 ± 0.3 °C, µ = ~0.2 M) 

(Micro Essential Laboratory, Inc., Hydrion). The spectrophotometric pH measurements were 

converted to the National Bureau of Standards (NBS) scale (pHNBS) (see below), and temperature 

corrected to 25.0 °C. Measurements showed good agreement with the pH buffer (average error of 

-0.006 ± 0.02 pH units, n = 12, at 25.1 ± 0.3 °C). 

All spectrophotometric pHfree measurements were converted to pHNBS using Eq. 3 

(Stumm and Morgan 2008) to make them directly comparable with the electrochemical pHNBS 

data. Note that in Eq. 3, z is equal to 1 (i.e., charge of the hydrogen ion).  

																pH*+, = pH!"## + Az&(
√.

%/√.
− 0.3µ)																																													(3)	  

Eq. 3 indicates that pHfree and pHNBS are related by the Davies term (i.e., Az&( √.
%/√.

− 0.3µ)). At 

zero ionic strength both pH values are equal; however, as ionic strength increases, the Davies 

term also increases, and consequently, pHNBS becomes greater than pHfree.  

Tap water ionic strength was determined assuming the reported average ion 

concentrations from the Missoula aquifer (AWQR 2020; Appendix A, Table S2) and using the 

following equation (Stumm and Morgan, 2008): 

																																																																										µ =
1
2>(c0𝑧0&)																																																																(4) 

 where ci and zi are the concentration and charge of an ionic species, respectively. To determine 

the diluted tap water µ, we used a dilution factor derived from the undiluted and diluted specific 

conductivity and µ. Conductivity was measured using an in situ conductivity data logger 

(HOBO, Onset U24 Freshwater). The conductivity logger was calibrated with a 1000 μS cm-1 

conductivity standard (Bicca, Catalog # 2237). Discrete measurements of conductivity were also 
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taken for quality control using a handheld water quality meter (YSI Inc., Pro1030), hereafter 

referred to as the YSI, that was calibrated in the same way as the in situ conductivity sensor. The 

undiluted and diluted calculated µ were used for all pH (Eqs. 1 and 3) and pCO2 calculations as 

described below. 

Electrochemical pH 

Glass pH electrode measurements were made with two different electrodes: 1) an 

electrode commonly used for pH measurements in the field (YSI Inc., Pro1030) and 2) a 

laboratory grade pH electrode (Metrohm AG, Ecotrode Plus), hereafter referred to as Metrohm. 

Both electrodes were calibrated with 4.00, 7.00, and 10.00 NIST traceable pH buffers (Micro 

Essential Laboratory, Inc., Hydrion) to align with literature methods (Hunt et al. 2011; Abril et 

al. 2014) and the U.S. Geological Survey (USGS) recommended method for calibration (Barnes 

1964). All water samples and calibration buffers were stirred and both pH electrode 

measurements were made immediately upon collection after a one-minute stabilization period. 

Sample temperature was measured at the same time as pH measurements to a precision of ±0.1 

°C. To test their accuracy and precision after calibration, results of replicate (n = 10) buffer pH 

(8.00 ± 0.02 at 25 °C) measurements were 7.99 ± 0.02 and 8.012 ± 0.009, for the YSI and 

Metrohm pH electrodes, respectively. During the study, the YSI and Metrohm pH electrodes had 

average response slopes of 98.1 ± 0.1% (n = 6) and 100.1 ± 0.7% (n = 18), respectively, of the 

theoretical response.   

Electrochemical pH measurements were temperature corrected to the in situ tank 

temperature using the same approach as outlined above for spectrophotometric pH. YSI pH 

measurements were only evaluated at ~15 °C in the test tank because it was not available when 

tank measurements were being done at 10 and 20 °C.  
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Total alkalinity 

Unfiltered samples were analyzed for AT using an open cell titration system consisting of 

a syringe pump (Kloehn Co LTD), pH electrode (Metrohm AG, Ecotrode Plus), and pH meter 

(Fisher Scientific, AR 25). The electrode was conditioned for low ionic strength solutions by 

immersion in tap water for one hour prior to use. Titration data were processed using the non-

modified Gran Plot titration method (Gran 1952) from pH 3.5 to 3.1. The HCl acid titrant ranged 

from 0.0997- 0.1002 N (Fisher Scientific) and the factory certified value was used in the 

analysis. AT was analyzed on the bottle samples after spectrophotometric pH to minimize pH 

error from CO2 exchange. 

The automated titration system was tested monthly prior to sample analysis using an in-

house alkalinity standard made from dried sodium carbonate (Na2CO3). The average difference 

between the standard and measured values was -1.0 ± 4.3 µmol L-1 (n = 13) (Appendix A, Figure 

S1). Consequently, very good “calibration-free” accuracy was achieved, and no offsets were 

added to the standard AT values. 

Dissolved organic carbon (DOC) was measured on tank samples to assess whether non-

carbonate alkalinity (i.e., organic acid anions) could be significant. DOC was analyzed with an 

Aurora 1030W Total Organic Carbon Analyzer (Xylem Inc., OI Analytical) that uses heated 

persulfate wet chemical oxidation coupled with an NDIR detector (U.S. EPA, 2005).  

Carbonate system equilibrium programs 

Two commonly used equilibrium programs (CO2SYS and PHREEQC) (Lewis and 

Wallace, 1998; Parkhurst and Appelo, 2013) and an in-house MATLAB script (Appendix A) 

(hereafter referred to as CalcCO2_frompH) were used to assess the influence of µ on freshwater 

pCO2 calculations. CO2SYS’s freshwater option sets µ = 0 (infinite dilution) (Lewis and 
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Wallace, 1998) while PHREEQC (Parkhurst and Appelo, 2013) and CalcCO2_frompH can 

incorporate µ values. Carbonic acid thermodynamic equilibrium constants (K1 and K2) from 

Millero (1979) and Henry’s law constant (KH) from Weiss (1974) are used in CO2SYS and 

CalcCO2_frompH. CalcCO2_frompH accounts for changes in dissociation constants due to µ 

using the Davies equation (right side of Eq. 3) (i.e., apparent dissociation constants K1¢, K2¢, and 

KH¢; Appendix A). PHREEQC (version 3.4.0, Database used: wateq4f; Ball and Nordstrom, 

1991), on the other hand, uses equilibrium constants from Plummer and Busenberg (1982). Over 

a temperature range of 0-30 °C, average percent differences between Millero (1979) and 

Plummer and Busenberg (1982) equilibrium constants (K1 and K2) were 0.15% ± 0.08% and 

0.25% ± 0.09%, respectively. Further, the average percent difference between Weiss (1974) and 

Plummer and Busenberg (1982) Henry’s law constant over the same temperature range was 

0.18% ± 0.12%. These differences have a negligible effect on calculated pCO2 so the pCO2 from 

each equilibrium program can be directly compared. Input parameters for CO2SYS include in 

situ temperature, AT, and in situ pHNBS. PHREEQC uses the same input parameters as CO2SYS 

with the addition of µ that it estimates from AT. To minimize the charge balance equation within 

PHREEQC, a counterion (sodium, Na+, in this case) is used. Lastly, CalcCO2_frompH uses 

temperature, AT, in situ pHfree, and the estimated µ explained above. pHfree is used instead of 

pHNBS in CalcCO2_frompH to be consistent with the program’s apparent dissociation constants. 

Field application 

Overview 

In situ spectrophotometric pH measurements were made in the Clark Fork River (CFR), 

MT, USA to evaluate the accuracy of calculating pCO2 through a real-world application. 

Submersible Autonomous Moored Instruments (DeGrandpre et al. 1995; Martz et al. 2003; 
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Lynch et al. 2010) were deployed to measure spectrophotometric pH (SAMI-pH) and pCO2 

(SAMI-CO2) directly in the CFR. A conductivity sensor for estimating µ was also deployed as 

described below. A conductivity-derived AT was calculated from a linear relationship between 

specific conductivity and AT obtained from data collected from 2017-2020 (discussed below). 

The calculated AT was used with in situ pHfree, temperature, and µ to calculate pCO2 using the 

CalcCO2_frompH program. This pCO2 was then compared to the in situ pCO2 measurements. A 

similar strategy is commonly used to compute seawater pCO2, i.e., AT is derived from a linear 

relationship with salinity and used with pH measurements to compute pCO2 (Gray et al. 2012; 

DeGrandpre et al. 2019). In situ temperature was measured directly from the SAMI-CO2 and 

SAMI-pH. Temperature between the two sensors showed good agreement (-0.5 ± 0.4 °C), so in 

situ temperature from the SAMI-pH was used for all sensor-related equilibrium calculations. 

Discrete bottle samples for AT and spectrophotometric pHfree along with specific conductivity, 

pHNBS, and temperature (YSI) were also collected four times during the deployment. This study 

took place from August 21, 2019 to September 9, 2019 during base flow river conditions on the 

CFR at Gold Creek (GC), MT, USA (46°35’24” N, 112°55’42” W). 

Autonomous in situ pH and pCO2 instruments 

 The in situ pH system is based upon spectrophotometric pH measurements of sample and 

colorimetric indicator (e.g., purified meta-cresol purple), where a pump and valve draw in 

samples and mix with indicator (Seidel et al. 2008). The weak-acid indicator can perturb the 

sample pH and so the SAMI-pH employs an automated indicator pH perturbation correction 

(Seidel et al. 2008; Yuan and DeGrandpre, 2008) like what was described above for discrete 

spectrophotometric pH measurements (Li et al. 2020). The in situ pCO2 sensor also uses a 

colorimetric pH indicator (bromothymol blue) for spectrophotometric detection and operates by 
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equilibration of ambient freshwater (or seawater) pCO2 with the indicator contained in a gas-

permeable membrane (DeGrandpre et al. 1995). Prior to the field deployment, both the pH and 

pCO2 instruments were validated or calibrated in house, respectively. An NIST traceable pH 8.00 

± 0.02 at 25.0 ± 0.1 °C (µ = ~0.2 M) phosphate buffer was used to check the SAMI-pH accuracy. 

The SAMI-pH values were converted to pHNBS (Eq. 3) and showed good agreement with the 

phosphate buffer (average error of -0.007 ± 0.001 pH units, n = 12, at 25.05 ± 0.05 °C). The CO2 

sensor was calibrated over a range of 100-2000 µatm at 20.0 ± 0.1 °C for 10 days in the same 

test tank described above, using the LI-COR for pCO2 validation (DeGrandpre et al. 1995). The 

SAMI-CO2 has a response time of ~5 min and an estimated uncertainty of ~10 ± 1 µatm based 

on the standard deviation of residuals from the calibration fit (n = 956). 

Conductivity and conductivity-derived alkalinity 

The conductivity sensor (HOBO, Onset U24 Freshwater) was calibrated before 

deployment and assessed for sensor drift after deployment using the same method described 

above for the laboratory tests. Discrete measurements of conductivity were also taken using the 

YSI calibrated the same way as the in situ conductivity sensor. No sensor drift was evident but 

the entire in situ time series was corrected with a constant offset of -12.9 µS cm-1 based on the 

average difference between the in situ and discrete conductivity measurements.   

The linear relationship using data collected from 2017-2020 at the deployment site (n = 

33) between conductivity and AT is shown in Figure 1. AT correlates with conductivity because it 

is primarily bicarbonate (HCO3-) at this location and along the CFR (Appendix A, Figure S2) and 

is relatively conservative with a single source (i.e., groundwater) that is also diluted or 

concentrated proportionally from precipitation and evaporation, respectively. The residual error 

from this relationship ranged from -303 to 262 µmol L-1 with a standard deviation of ±130 µmol 
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L-1 (~5% uncertainty relative to the mean AT). The contribution of AT uncertainty to the 

calculated pCO2 used for the field application is assessed below. 

Estimating riverine µ 

In situ µ was estimated using a relationship between AT and µ at Bearmouth, MT, USA 

on the CFR from Nagorski (2001): 

																													𝜇 = (2.63 × 10(1 ∗ A2) + 7.01 × 10()																																						(5) 

The Bearmouth sampling site is located on the CFR (46°42’16” N, 113°20’41” W) ~55 km 

downstream of the deployment site and has similar chemical composition (i.e., pH and AT; 

Nagorski, 2001). To obtain Eq. 5, ionic strength was calculated from Eq. 4 from measured total 

ion concentrations (HCO3-, Ca2+, K+, Mg2+, Na+, SO42-, SiO32-) in surface water samples and 

Figure 1. The relationship between AT and specific conductivity 
obtained on the CFR at GC used to calculate AT for pCO2 computation. 
The red line is the linear best fit (n = 33). The average residual AT is 0 ± 
130 µmol L-1.  
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linearly correlated with AT (Nagorski, 2001). Equation 5 was then used to estimate µ during the 

deployment using the conductivity-derived AT from Figure 1. 

Data analysis 

 The primary statistical analyses used for this study were linear regression analysis and 

Student’s T-Test (α = 0.05). These tools allowed us to examine the significance of direct 

comparisons between pH measurements as well as calculated pCO2 values. Graphical 

visualization techniques, which include error and 1:1 plots, were also used to explore dataset-

wide trends as they related to differences in pH measurements and pCO2 values.  

Assessment 

Laboratory study 

Electrochemical and spectrophotometric pH comparisons 

The tank experiment took place over a 7-month period where 35 tank samples were 

analyzed for pH and AT. The overall measured pHNBS in the test tank ranged from 7.91 to 9.11 

with an average pH of 8.40 ± 0.29. The standard deviation of the spectrophotometric pH 

replicates ranged from ±0.0001 to ±0.02 pH units (n = 3) over the range of pCO2 in the test tank 

(~100 to 1600 µatm). During the study, no replicate samples were taken for electrochemical pH 

measurements (i.e., Metrohm and YSI). However, an independent assessment of the precision of 

each electrode found the Metrohm (n = 6) and YSI (n = 6) pH precisions to be ±0.005 and ±0.05 

pH units, respectively. Note that the digital resolution of the Metrohm and YSI pH meters are 

±0.001 and 0.01, respectively. 
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Figure 2 shows that spectrophotometric pHNBS and electrochemical pHNBS data fall below 

the 1:1 line indicating that both electrode pH data are lower than the corresponding 

spectrophotometric pH measurements (p<0.001; Table 1). The pH electrode data are uniformly 

scattered around the 1:1 line (Figure 2b) and there is no statistical difference between the two 

Figure 2. A comparison of in situ electrochemical and spectrophotometric pHNBS 
measured in the test tank (15.2 ± 2.2 °C). The pH was varied by changing the pCO2 
and AT (see Methods). (a) YSI pH electrode versus spectrophotometric pH data. (b) 
YSI pH electrode versus the Metrohm pH electrode data. (c) Metrohm pH electrode 
versus spectrophotometric pH data. Data points are colored by measured AT in the 
test tank and range from 1841–3195 µmol L-1. The 1:1 line (black dashed line) and 
linear regression (red line) are also shown with the equation and the R2 in the upper 
left of each plot. An * or ** indicate that the x and y axis variables are statistically 
different (p<0.05) or not (p>0.05), respectively. Error bars for the 
spectrophotometric pH values have been omitted because the range of the error is 
too small to be seen on the x-axis range (0.00017 - 0.016 pH units). 
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electrochemical pH datasets (p>0.05; Table 1, Figure 2b). Additionally, the slopes derived from 

the linear regressions between spectrophotometric and electrochemical pH are statistically 

different from 1.0 (Figure 2a,c; p<0.001). The slopes <1.0 appear to arise from systematically 

larger pH differences at higher pH (i.e., pH >8.7; Figure 2a,c).  

The coefficients of determination (R2) for each pH comparison were found to be 0.86, 

0.89, and 0.97 for Figure 2a,b,c, respectively (Table 1). These values further illustrate differences 

in random errors between the electrochemical and spectrophotometric pH measurements. The 

lower R2 values appear to be due to larger random errors from the YSI pH electrode (Table 1, 

Figure 2a,b) reflecting the replicate precision discussed above. The standard deviation of the 

residuals for each regression analysis were ±0.12, ±0.11, and ±0.05 pH units (Figure 2a,b,c, 

respectively), with the larger residual standard deviations corresponding to the regressions 

involving the YSI pH electrode.  

Average Differences 
(±SD) 

Spec – Metrohm* (n = 35) 0.084 ± 0.050 R2 = 0.97 
Spec – YSI* (n = 21) 0.13 ± 0.12 R2 = 0.86 

Metrohm – YSI** (n = 21) 0.036 ± 0.11 R2 = 0.89 

Table 1. The average (±SD) differences for each regression analysis and R2 values for 
the three pH techniques of spectrophotometric (Spec), Metrohm, and YSI found in 
Figure 2. An * or ** indicate that the comparison is either statistically different or not, 
respectively, with an α = 0.05. 
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Calculated pCO2 

  
Spectrophotometric Metrohm YSI 

(n = 34) (n = 34) (n = 20) 
Calculated pCO2 

(µatm) 
Average (±SD) 683 ± 417 825 ± 522 826 ± 643 

Range 130-1660 203-2065 172-2240 

pCO2 Error 
(µatm) 

Average (±SD) 58 ± 33 203 ± 125 277 ± 284 
Range -30-110 65-553 25-973 

Percent Error (%) Average (±SD) 14 ± 9 40 ± 21 62 ± 51 

 The pCO2 errors calculated from the pHNBS data in Figure 2 were assessed over a pCO2 

range of 101-1593 µatm. The pCO2 was calculated using CO2SYS at infinite dilution, discussed 

above, to be able to focus solely on how pH measurements affect calculated pCO2. Later, a 

thermodynamically rigorous comparison is made to illustrate deviations in calculated pCO2 due 

to µ. The pCO2 error dependence on pCO2 levels is shown in Figure 3. The error in calculated 

pCO2 using the Metrohm and YSI pH electrodes generally increased with increasing pCO2 

(Figure 3a,b), whereas the error in calculated pCO2 from spectrophotometric pH appears 

relatively consistent with increasing pCO2 (Figure 3c). Spectrophotometric, Metrohm, and YSI 

pH had average pCO2 errors (calculated – measured) of 58 ± 33 µatm, 203 ± 125 µatm, and 277 

± 284 µatm, respectively (Table 2). Additionally, the average percent errors from 

spectrophotometric, Metrohm, and YSI pH are 14 ± 9%, 40 ± 21%, and 62 ± 51%, respectively 

(Table 2). Metrohm and YSI calculated pCO2 also displayed the largest absolute errors of 553 

and 973 µatm, respectively (Table 2). Further, temperature did not appear to affect pCO2 error 

regardless of the pH used (Figure 3b,c). The systematically high pCO2 values from the electrode 

measurements (Figure 3a,b, Table 2) supports that the pH bias shown in Figure 2 is due to errors 

Table 2. The average (±SD) and range of calculated pCO2 and pCO2 error (compared to the 
measured pCO2) between the three pH techniques calculated from CO2SYS at infinite 
dilution. The average percent error of each pH technique relative to the measured pCO2 is 
also reported.  



 25 
 

in the electrode pH. The precision of calculated pCO2 among the three pH techniques was also 

assessed. The pCO2 precision from the two pH electrodes was ±125 and ±284 for Metrohm and 

YSI pH, respectively; compared to ±33 µatm for spectrophotometric pH (Table 2, SD of pCO2 

errors). From Figure 3 data, it is evident that pCO2 calculated using spectrophotometric pH is 

both more accurate and precise compared to pCO2 calculated from electrochemical pH (Figure 

3c, Table 2), especially at higher pCO2 levels.  

It is important to mention, here, that the tank DOC ranged from ~8-42 µmol L-1 (n = 6) 

during the study. Following the conclusions in Liu et al. (2020), that states that in more alkaline 

Figure 3. The pCO2 error (calculated - measured) versus measured pCO2. 
Spectrophotometric (n = 34), Metrohm (n = 34), and YSI (n = 20) pHNBS data are used 
to calculate pCO2 using the equilibrium program CO2SYS at infinite dilution. The 
dashed black line represents zero error. Measured AT values ranged from 1841–3195 
µmol L-1. Different symbols represent different in situ tank temperatures. Calculated 
pCO2 from the (b) Metrohm and (c) spectrophotometric pH measurements were 
analyzed at 10 °C (n = 4), 15 °C (n = 26) and 20 °C (n = 4) whereas calculated pCO2 
from the (a) YSI pH electrode was only analyzed at 15 °C (n = 20).   
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waters (e.g., pH = 7-8.5 and AT > 1000 µmol L-1) low in DOC (e.g., <350 µmol L-1) the 

contribution of “excess AT” from organic acid anions is negligible. Therefore, the tank water 

DOC was assumed to be too low to significantly contribute to the measured AT, and 

consequently, the calculated pCO2. 

Assessment of µ and associated pCO2 error 

The importance of µ was initially underestimated in our pCO2 accuracy evaluations as µ 

in freshwater systems is typically assumed to be zero (e.g., Hunt et al. 2011; Stets et al. 2017). 

We noticed that the calculated pCO2 error would change depending on 1) the µ used to calculate 

in situ pH (Eq. 1,3) and 2) if µ was used to calculate apparent equilibrium constants (i.e., K1¢, 

K2¢, and KH¢). This led to the µ sensitivity tests using four different programs, CO2SYS at 

infinite dilution, PHREEQC, CalcCO2_frompH_1, and CalcCO2_frompH_2, which illustrate 

different approaches for using µ (Figure 4, Table 3). CalcCO2_frompH_1 and 

CalcCO2_frompH_2 pCO2 values were calculated using spectrophotometric pH and AT with 

calculated µ from the Missoula Aquifer (AWQR 2020) and from the Griffin and Jurinak (1973) 

relationship, respectively. The relationship from Griffin and Jurinak (1973) correlates µ with 

conductivity, but it is derived from soil water and river samples, making its comparison to 

CalcCO2_frompH_1 useful for broad scale applicability in other systems. Spectrophotometric 

pHfree measurements were used in CalcCO2_frompH_1 and CalcCO2_frompH_2. To be 

consistent with the pH scales, spectrophotometric pHNBS values were used in both CO2SYS 

(infinite dilution) and PHREEQC. pCO2 values calculated with CO2SYS were included to be 

able to compare to how pCO2 is conventionally calculated in the literature and are the same 

values presented in Figure 3c. Additionally, PHREEQC calculates µ within its program from the 

input AT (i.e., [HCO3-]) and counterion used to achieve charge balance (e.g., [Na+]), neglecting 
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other ions potentially present in waters. Thus, the µ used for the apparent dissociation constants 

are lower in PHREEQC compared to CalcCO2_frompH_1 and CalcCO2_frompH_2 (Table 3). 

Further, the average and standard deviation of µ presented in Table 3 reflect the differences in 

Figure 4. (a) The comparison of pCO2 calculated from spectrophotometric pH and AT using 
different equilibrium models to measured pCO2. The dashed black line represents the 1:1 
line. pHfree or pHNBS were used to be consistent with the pH scales in each program. (b) The 
pCO2 error (calculated - measured) versus measured pCO2 (n = 136). The black dashed line 
represents zero error. 
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the approaches used for estimating µ. Different approaches explicitly assume different ionic 

species concentration. 

 

 
CO2SYS 
(n = 34) 

µ = 0 mM 

PHREEQC 
(n = 34) 

µ = 2.8 ± 0.4 mM  

CalcCO2_frompH_1 
(n = 34) 

µ = 7.4 ± 1.2 mM 

CalcCO2_frompH_2 
(n = 34) 

µ = 4.2 ± 0.7 mM 
Average (±SD) 58 ± 29 38 ± 24 35 ± 19 37 ± 42 

Range -30-110 -130-67 -97-67 -176-34 
 

The different calculated pCO2 values are compared to the measured pCO2 using a 1:1 plot 

(Figure 4a) where most values appear to follow the 1:1 line with minimal spread. However, 

when looking at the pCO2 error, a “fanning-out” pattern becomes clear as you go from low to 

high pCO2 levels (Figure 4b). The pCO2 calculated from CO2SYS at infinite dilution generally 

overestimated pCO2 while the pCO2 calculated using apparent dissociation constants 

(CalcCO2_frompH and PHREEQC) generally underestimated pCO2 at higher levels (Figure 4b). 

Compared to the average error from PHREEQC, CalcCO2_frompH_1, and CalcCO2_frompH_2, 

the average error calculated from CO2SYS is significantly larger (p<0.01). The average error 

from PHREEQC, CalcCO2_frompH_1, and CalcCO2_frompH_2 is not significantly different 

from each other (p>0.05). Recall that CO2SYS and CalcCO2_frompH use the same equilibrium 

constants; thus, at infinite dilution these two programs calculate the same pCO2 values when 

using the same pH scale. The differences in calculated pCO2 between CO2SYS and 

CalcCO2_frompH arise in part because of the differences between pHNBS and pHfree (Eq. 3). The 

Table 3. The average (±SD) pCO2 error (|calculated - measured pCO2|) and range using 
different µ in CO2SYS (infinite dilution), PHREEQC, and CalcCO2_frompH. 
CalcCO2_frompH_1 and CalcCO2_frompH_2 use µ calculated from AWQR (2020) and 
Griffin and Jurinak (1973), respectively. µ averages (±SD) are included in the header and 
represent the µ used to calculate the apparent dissociation constants. Averages were taken from 
absolute values to avoid biases from large positive and negative values. The range is not 
reported in absolute values to illustrate the true range of pCO2 error. 
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error in calculated pCO2 gets further compounded by differences in infinite dilution dissociation 

constants (i.e., CO2SYS) and apparent dissociation constants (i.e., CalcCO2_frompH). 

Moreover, we see an increase in calculated pCO2 with increasing µ using pHfree and 

CalcCO2_frompH as noted by the decreasing error from CalcCO2_frompH_2 to 

CalcCO2_frompH_1 (Figure 4b, Table 3). The increase in calculated pCO2 from higher µ is a 

result of the covariation between pHfree and the apparent dissociation constants within 

CalcCO2_frompH. Conversely, we see a decrease in calculated pCO2 with higher µ using pHNBS 

(CO2SYS compared to PHREEQC; Figure 4b, Table 3).  

Figure 5. Modeled relative pCO2 error for percent error in µ where 
individual lines are colored by calculated pCO2 (µatm). Only the 
spectrophotometric pHfree dataset was used for this model, thus, the pCO2 
calculated from spectrophotometric pHfree lies at 0% ionic strength error and 
zero pCO2 error. The black dashed line represents zero calculated pCO2 
error. All model calculations of pCO2 were done using the 
CalcCO2_frompH script at in situ tank temperatures. 
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To further evaluate µ effects on calculated pCO2 error, the pCO2 error was modeled as a 

function of µ percent error. The pCO2 calculated from spectrophotometric pHfree and its 

associated µ (calculated from AWQR 2020) were used as the reference dataset (dataset in Figure 

4; CalcCO2_frompH_1). The reference spectrophotometric pHfree values were adjusted by using 

the Davies term (right side of Eq. 3) to account for the modeled µ percent error. Figure 5 

illustrates the range for calculated pCO2 error from zero ionic strength (e.g., -100% ionic 

strength error) to double the reference ionic strength (e.g., +100% ionic strength error; µ = 14.8 

mM) over the range of pCO2 found during the tank study. The relative error is also a function of 

pCO2 where high pCO2 error is associated with high pCO2 levels and large µ error (Figure 5). 

Further, if µ is assumed to be zero (i.e., -100% ionic strength error) as is commonly done in 

freshwater CO2 studies (Stets et al. 2017), the uncertainty in calculated pCO2 error is ~20%. 

Moreover, at a -50% µ error relative to CalcCO2_frompH_1 (i.e., CalcCO2_frompH_2, Table 

3), the average modeled pCO2 error (from absolute values) was not statistically different from 

the CalcCO2_frompH_2 error (Table 3) (p>0.05). 

Field application 

The time-series from the field study are shown in Figure 6. Riverine pHfree and 

temperature measured from the SAMI-pH during the deployment ranged from 8.11 to 8.83 

(average of 8.41 ± 0.21) and 1.7 to 21.3 ºC (average of 12.7 ± 4.6 ºC), respectively (Figure 6a,b). 

Conductivity-derived AT (Figure 6c), specific conductivity (Appendix A, Figure S3), and µ 

(Appendix A, Figure S3) ranged from 2490 to 3440 µmol L-1 (average = 3050 ± 113 µmol L-1), 

394.4 to 465.4 µS cm-1 (average = 424.4 ± 8.7 µS cm-1), and 7.3 to 9.7 mM (average = 8.7 ± 0.3 

mM), respectively. The average diel range of pH was ~0.6 pH units and the average diel range of 

pCO2 was ~900 µatm (Figure 6a,d). The average difference between discrete pH and SAMI-pH 
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measurements was -0.003 ± 0.028 pH units for spectrophotometric pH and -0.09 ± 0.06 pH units 

for YSI pH. The average difference between discrete AT and conductivity-derived AT was -14 ± 

11 µmol L-1. Further, the pCO2 calculated from spectrophotometric and YSI pH discrete samples 

Figure 6. A 19-d in situ time series from the CFR of (a) spectrophotometric pHfree, (b) 
temperature, (c) conductivity-derived AT, and (d) measured pCO2 (SAMI-CO2; solid black 
line) and calculated pCO2 (SAMI-pH and conductivity-derived AT; red dashed line). 
Discrete samples of measured pH and calculated pCO2 using spectrophotometric pH 
(green circles) and YSI pH (green squares) are also shown in (a) and (d), respectively. 
Discrete AT samples are represented by green triangles in (c). The date and time displayed 
is UTC during the year 2019. 
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had average differences of -66 ± 39 and 35 ± 71 µatm, respectively, when compared to SAMI-

CO2 measurements (Figure 6d). 

The in situ pHfree (Figure 6a; Eq. 1) data was used with conductivity-derived AT (Figure 1 

and Figure 6c), µ (Appendix A, Figure S3; Eq. 5) and temperature (Figure 6b) to calculate pCO2 

Figure 7. (a) The comparison of measured pCO2 and pCO2 calculated from SAMI-pH and 
conductivity-derived AT during the in situ deployment in the CFR. The dashed black line 
represents the 1:1 line. (b) The pCO2 error (calculated - measured) versus measured pCO2 (n 
= 1685). The dashed black line represents zero error. See Figure 6c for the conductivity-
derived AT value range during the deployment. The CalcCO2_frompH script with µ 
estimated from eq. 5 was used to calculated pCO2. 
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(Figure 6d). The average difference between the calculated and measured pCO2 is -70 ± 57 µatm 

with an average percent error of 10 ± 7% (Figure 7). We found that the error in calculated pCO2 

during the field application was pCO2 dependent e.g., the average error was -55 ± 52 µatm at 

pCO2 <1000 µatm and -102 ± 55 µatm at pCO2 >1000 µatm (Figure 7b). This error can be 

partially explained by uncertainty in the conductivity-derived AT where the residual uncertainty 

from the Figure 1 linear fit is ±130 µmol L-1. It is important to note that the uncertainty of the AT 

(Appendix A, Figure S1) and specific conductivity (<5 µS cm-1) measurements is much less than 

the uncertainty reported by the linear least-squares regression (Figure 1). This suggests that the 

scatter of this relationship is caused by biogeochemical factors and not measurement error. 

Instead, this relatively large uncertainty could be driven by evapotranspiration which creates diel 

inputs of groundwater (Dodds et al. 2017; Shangguan et al. 2021).  Additionally, there appears to 

be a repeating clockwise pattern in pCO2 error (i.e., hysteresis) (Figure 7b). Further discussion of 

potential mechanisms that may explain this pattern are provided below.  

Discussion 

It is evident in Figures 2 and 3, Tables 1 and 2, and the statistics stated in the Assessment 

that spectrophotometric pH has significantly better replicate precision than electrochemical pH 

and, based on its application for calculation of pCO2, significantly better accuracy. 

Spectrophotometric pH is based on highly reproducible and accurate optical absorbances in 

contrast to the pH electrode potential that is affected by many environmental and instrumental 

factors (e.g., ionic strength gradient, buffer composition, reference potential, etc.). The 

conclusions presented here support findings of past studies that electrode pH is systematically 

low in low ionic strength solutions (Illingworth 1981; Herczeg and Hesslein, 1984; Davison and 

Woof, 1985) stemming from the liquid junction of the reference electrode.  
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The spectrophotometric pH accuracy and precision translates into greatly improved 

estimation of pCO2 from pH and AT. The large differences in pCO2 calculated from the two pH 

electrodes show that, while electrode performance might be adequate under some circumstances, 

it is difficult to control and predict even in a controlled laboratory study with carefully calibrated 

electrodes. Figure S4 (Appendix A) provides further field-based evidence of this where 

electrochemical pH is more variable compared to spectrophotometric pH over time.  

This study also found that accounting for µ in the equilibrium constants and pHfree can 

improve calculated pCO2 accuracy (Figure 4). The pCO2 error is reduced using the best available 

µ (Table 3, CalcCO2_frompH_1) compared to the common practice of using CO2SYS at infinite 

dilution (Table 3). Further, theoretical calculations indicate that changes in µ can alter 

equilibrium constants and impact calculated pCO2 (Figure 5). Moreover, theoretical calculations 

(Figure 5) were also able to predict a similar average error that was observed for 

CalcCO2_frompH_2.  

The average percent error in calculated pCO2 from spectrophotometric pHfree (using 

CalcCO2_frompH) from the tank study and field application is 8 ± 6% and 10 ± 7%, 

respectively. The field application using in situ sensors demonstrated that spectrophotometric pH 

can be employed in a real-world application and produce similar results found in a controlled 

laboratory setting. As discussed above, the error in calculated pCO2 during the field application 

was pCO2 dependent (Figure 6 and Figure 7). Errors were largest at high pCO2 levels which 

occurred at night due to respiration (Figure 6d and Figure 7). Further, error in the conductivity-

derived AT relationship likely contributed significantly to the observed pCO2 error from the field 

application. As discussed above, the residual uncertainty in the relationship between specific 

conductivity and AT (Figure 1) ranged from -303 to 262 µmol L-1 with a standard deviation of 
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residuals of ±130 µmol L-1. The large residuals are mostly driven by the data with high specific 

conductivity and high AT (Figure 1), measurements that are common during base flow 

conditions. Because the field study took place during base flow conditions, uncertainties in the 

conductivity-derived AT time series could contribute to the observed differences between 

calculated and measured pCO2 (Figure 6d and Appendix A, Figure S5). To examine this idea, the 

standard deviation of residuals (±130 µmol L-1) was added to and subtracted from the entire 

conductivity-derived AT time-series (Figure 6c) to create upper and lower bounds (Appendix A, 

Figure S5). These limits were then used to calculate pCO2, as described previously. Figure S5 

(Appendix A) reveals that for most of the diel cycles, error in the conductivity-derived AT can 

explain a significant part of the difference between calculated and measured pCO2, where the 

original calculated pCO2 error (Figure 6d) is significantly different from the uncertainty 

corrected pCO2 error (Appendix A, Figure S5; upper orange ribbon boundary) (p< 0.001). The 

average pCO2 error and percent error were reduced to -34 ± 54 µatm (n = 1685) and 7 ± 6%, 

respectively, a 51% improvement in calculated pCO2 error. As discussed above, 

evapotranspiration (ET) can drive AT and conductivity diel cycles (Wilcock and Chapra, 2005; 

Shangguan et al. 2021) and is likely controlling the diel AT in the CFR (Shangguan et al. 2021), 

with lower groundwater signals during the day (lower AT) due to riparian groundwater uptake. 

Thus, ET accounts for the major uncertainty of the AT-conductivity relationship during base flow 

(Figure 1). This proposed mechanism seems to explain most of the difference between the 

calculated and measured pCO2 during the field application portion of this study (Figure 6 and 

Appendix A, Figure S5). Additionally, the error in calculated pCO2 may be further attributed to 

photo-contamination and/or temperature effects within the pH and pCO2 sensors. Figure 7b 

indicates a cyclic pattern between pCO2 error and measured pCO2. Upon further exploration, we 
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found that this hysteresis pattern is driven by a diel signal (i.e., solar radiation, temperature) in 

the river that causes the sensor’s blank intensities to change. We believe, however, that this error 

is minor compared to the conductivity-derived AT uncertainty. 

Lastly, accurate pCO2 is critical for constraining air-water fluxes. Therefore, the observed 

percent uncertainty in computed pCO2 (8 ± 6%) from spectrophotometric pHfree, AT, and µ (see 

dataset in Figure 4; CalcCO2_frompH_1) presented in this study would translate to a similar 

percent uncertainty when estimating CO2 gas fluxes. Thus, more accurate CO2 gas flux estimates 

could be obtained from spectrophotometric pH than from electrochemical pH, which had an 

observed percent uncertainty in computed pCO2 of >40% (Table 2). 

Conclusion 

The study clearly demonstrates the advantages of using spectrophotometric pH for 

freshwater pCO2 calculations. pH is of course a master variable in aquatic systems and a wide 

array of freshwater research could potentially benefit from higher quality pH measurements. 

Spectrophotometric pH data might improve model calculations of metal speciation/complexation 

and toxicity modeling (Wang et al. 2016; Huang et al. 2017), calcium carbonate saturation 

(Müller et al. 2015; Khan et al. 2021), and net ecosystem production (Oren et al. 2006; Lynch et 

al. 2010; Kanuri et al. 2017). Highly reproducible pH measurements will also be valuable for 

monitoring long-term changes in pH due to CO2 acidification or other long-term anthropogenic 

impacts in rivers and lakes (Butman and Raymond, 2011; Phillips et al. 2015; Arroita et al. 2019; 

Minor et al. 2019). Moreover, a “do-it-yourself” portable photometer developed for seawater 

(Yang et al. 2014; Wang et al. 2019), could make discrete freshwater measurements of 

spectrophotometric pH for the computation of pCO2 easier in the field. It remains, however, that 

measuring freshwater pCO2 directly rather than computing it from inorganic carbon parameters 
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is preferred, as is true for seawater. Although, our focus is on riverine CO2, these findings and 

subsequent conclusions apply to all freshwater systems. 

Future experiments should expand the pCO2 range to include much higher levels (e.g., 

2000-10000 µatm), vary the temperature over a larger range (0-30 ºC), and evaluate at lower AT 

(e.g., <1000 µmol L-1; Liu et al. 2020). Organic acid concentrations could further increase pCO2 

error and should also be considered in future studies with spectrophotometric pH and AT. An 

additional complicating factor with spectrophotometric pH is that colored dissolved organic 

matter could cause inaccurate absorbance readings at high concentrations and could therefore 

lead to inaccurate pH values (i.e., tenths of pH units too low in strongly colored waters, Müller et 

al. 2017). This might mostly be corrected by the blank but needs to be tested, nonetheless. Thus, 

at high DOC concentrations both AT and spectrophotometric pH measurements could be biased. 

The findings from this study also indicate that inaccurate µ contributes significantly to calculated 

pCO2 uncertainty and must be accounted for to minimize pCO2 error. Additionally, a caveat to 

our conclusions regarding field measurements of spectrophotometric pH is that the CFR is a well 

buffered system and so the indicator pH perturbation is relatively small (as discussed in 

Methods). This perturbation effect could be larger in other, less buffered systems (<1000 µmol L-

1) even if they are corrected using established methods (Yuan and DeGrandpre, 2008; Lai et al. 

2016). 
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CHAPTER 3 

The temporal and spatial regulation of inorganic carbon and air-water CO2 

flux along a montane river 

Introduction 

Dissolved inorganic carbon (DIC) has multiple sources and sinks within riverine aquatic 

ecosystems making it a valuable biogeochemical tracer. These sources and sinks include 

chemical weathering of silicate and carbonate-rich rocks (Middleburg, 2019), net ecosystem 

production (NEP) (Oren et al. 2006; Lynch et al. 2010; Kanuri et al. 2017), allochthonous inputs 

from tributaries and groundwater (Worrall and Lancaster, 2005; Shangguan et al. 2021), 

exchange of carbon dioxide (CO2) with the atmosphere (Raymond et al. 1997; Finlay et al. 

2010), and calcium carbonate formation and dissolution (Heath et al. 1995; Chauvaud et al. 

2003; Liu et al. 2004; Shangguan et al. 2021). Due to the autochthonous production of DIC and 

its allochthonous transport pathways (i.e., sources of CO2 from groundwater and soils), most 

streams and rivers are sources of CO2 to the atmosphere (Neal et al. 1998; Aucour et al. 1999; 

Raymond et al. 2000; Hope et al. 2001; Wang and Cai 2004; Ciasis et al. 2008; Chen et al. 

2012). Rivers are also important conduits for carbon to the coastal oceans, consequently, they 

represent a significant component of the global carbon cycle (Cole et al. 2007; Raymond et al. 

2013; Hotchkiss et al. 2015). River air-water CO2 fluxes are typically calculated as the CO2 

exchange over a given area of freshwater (Eq. 6): 

																																											CO&	Flux = J𝑝CO&	(5$6#") − 𝑝CO&	($0")L × K8` × 𝑘:;! 																									(6) 

where pCO2 (water) is the partial pressure of CO2 (pCO2) from the water column, pCO2 (air) is the 

converted wet pCO2 of the atmosphere, and KH` and kCO2 are the apparent solubility of CO2 and 

gas transfer velocity (k600) normalized to the temperature dependent Schmidt (Sc) number for 
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CO2, respectively. However, challenges exist for quantifying CO2 fluxes that include accurate 

quantification of gas transfer velocities and pCO2 (Raymond et al. 2012; Duvert et al. 2018; 

Rocher-Ros et al. 2019; Ulseth et al. 2019; Young et al. 2022). Recent studies, however, have 

outlined techniques to increase the accuracy of both gas transfer velocities (Appling et al. 2018a, 

2018b; Rocher-Ros et al. 2021) and calculated freshwater pCO2 (Liu et al. 2021; Young et al. 

2022). Thus, utilizing these recent advances can improve air-water CO2 flux estimates for 

freshwater systems and more accurately characterize freshwater inorganic carbon dynamics.  

Inland waters (i.e., rivers, lakes, etc.) are dynamic in nature with many spatial and 

temporal factors controlling their structure and function. Because of this, inorganic carbon 

dynamics in inland waters can differ greatly. The spatial variability of inorganic carbon in rivers 

and streams can be controlled by several biogeochemical processes including instream 

processing (e.g., gross primary production (GPP) and ecosystem respiration (ER)), allochthonous 

inputs (e.g., groundwater and tributaries), and floodplain connectivity. Accurate quantification of 

these processes can explain the variability from upstream to downstream within a given river as 

well as across different rivers and catchments (Hotchkiss et al. 2015; Rocher-Ros et al. 2019; 

Ulseth et al. 2019). In addition to spatial variability, temporal variability is also critical to assess 

as inorganic carbon can vary daily, seasonally, and interannually at a single location (Parker et 

al. 2007; Lynch et al. 2010; Arroita et al. 2019; Aho et al. 2021). Temporal variability can stem 

from hydrologic (i.e., annual snowmelt, localized precipitation, baseflow), physical (i.e., 

temperature, gas exchange), and biological production (i.e., GPP, ER). Note that several 

processes described here overlap and contribute to both spatial and temporal variability. Thus, 

accurately characterizing inorganic carbon both spatially and temporally is critical for adequately 

interpreting inorganic carbon variability along a river continuum (Hotchkiss et al. 2015). 
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As discussed above, being able to accurately quantify freshwater pCO2 is a major factor 

in understanding its spatiotemporal variability in freshwater systems. While pCO2 can be 

measured directly (Parker et al. 2007; Lynch et al. 2010; Rocher-Ros et al. 2020), it is often 

calculated from two inorganic carbon parameters such as pH and alkalinity (Hunt et al. 2011; Liu 

et al. 2020; Young et al. 2022) as explained in more detail in the Methods section. A recent study 

from Young et al. (2022), demonstrated by comparing spectrophotometric pH and electrode pH 

for CO2 calculation, that systematic errors in pH electrode data overestimate pCO2 by as much as 

60%. Past freshwater studies have also shown that pCO2 is typically overestimated when 

calculated from AT and electrochemical pH (Abril et al. 2014; Hunt et al. 2011; Liu et al. 2020). 

However, by employing the method outlined by Young et al. (2022) and including ionic strength 

in carbonate equilibria and pH measurements, error in calculating freshwater pCO2 can be 

minimized.  

Accurate gas transfer velocities (Eq. 6) are also important for obtaining accurate air-water 

CO2 flux estimates. Gas transfer velocities can be obtained through the R modeling program 

streamMetabolizer (sM) (Appling et al. 2018a, 2018b; Rocher-Ros et al. 2021). This program 

uses high-resolution (e.g., hourly) dissolved oxygen (O2) data and Bayesian statistical modeling 

to estimate GPP, ER, and gas transfer velocities. Another way to estimate gas transfer velocities 

is by measuring the decline of added tracer gases such as sulfur hexafluoride (SF6) or argon (Ar) 

(Hall and Madinger, 2018). However, this method can be difficult due to uncertainties in scaling 

(e.g., SF6 to O2) caused by solubility effects in conditions of bubble-mediated gas transfer (Hall 

and Madinger, 2018). Therefore, by using sM to obtain gas transfer velocities and the method 

presented by Young et al. (2022) to calculate pCO2, high quality (i.e., accurate and precise) air-
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water CO2 fluxes can be calculated, and spatial and temporal inorganic carbon gradients can be 

better resolved.  

In the context of global air-water CO2 estimates, Raymond et al. (2013) presented ~7000 

calculated pCO2 values from electrode pH, alkalinity, and temperature from around the world 

and highlighted the potential bias of erroneously low pH values in their analysis. They concluded 

that the median global pCO2 was ~3100 µatm and ranged from ~1300-4300 µatm (Raymond et 

al. 2013). These median values turn out to be much higher than the median value reported in the 

UCFR (500 µatm; see below) from pCO2 calculated from spectrophotometric pH, alkalinity, and 

temperature. Following the approach outlined in Liu et al. (2020) to estimate a CO2% error due 

to error in pH for the presented median pCO2 from Raymond et al. (2013) and a rough estimated 

freshwater specific conductivity of 500 µS cm-1 (Griffith, 2014) we calculate a CO2% error of 

~30%. This error shifts the global median down to ~2200 µatm and the range to ~900 to 3000 

µatm and places the median pCO2 in the UCFR closer to the range of global values but still 

considerably lower. This exercise highlights the recent advancements in being able to correct 

past estimates of pCO2 (e.g., Liu et al. 2020), but more importantly stresses the need for 

obtaining accurate calculated freshwater pCO2 values. The latter being an ongoing issue that 

could be mediated by the accuracy provided by spectrophotometric pH measurements for 

application in freshwater inorganic carbon research. 

The study presented here is the first long-term freshwater inorganic carbon (i.e., DIC, 

pCO2, and CO2 flux) time series calculated using spectrophotometric pH. Spectrophotometric pH 

and total alkalinity samples were collected along ~200 km of the upper Clark Fork River 

(UCFR), MT, USA monthly for 48 months. These measurements along with in situ temperature 

and ionic strength were used to calculate pCO2 (Young et al. 2022). The CO2 flux in the UCFR 
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has been estimated previously by Lynch et al. (2010) at one location over several years. Here we 

extend the assessment to include contiguous measures at multiple sites over 200 km of river for 

four water years to characterize tendencies and variability in the CO2 flux between the river and 

atmosphere. 

Material and methods 

Overview 

The UCFR drains a 57,000 km2 catchment located in western Montana (USA) and is a 

productive mid-order river with average discharge of 23 ± 33 m3 s-1. It is also one of the largest 

Figure 8. A map of the UCFR. Sampling sites are indicated by circles with numbers. The 
USGS gaging stations are depicted by red triangles and define the boundaries for Reaches I-V.  
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superfund sites in the United States, with legacy of mining pollution (Moore and Luoma, 1990; 

Moore and Langner 2012). The UCFR was sampled at 6 main stem and 3 tributary sampling 

locations spanning ~200 km of the UCFR over four water years (Figure 8). Sampling was done 

monthly during the fall, winter, and spring months and bimonthly during the summer months. 

Samples were analyzed for total alkalinity (AT) and spectrophotometric pH. Water temperature 

and specific conductivity were also measured in the field at the same time samples were 

collected. Discharge was obtained from six USGS gaging stations (Figure 8, Table 4) and the 

three tributary sampling sites include the Little Blackfoot (LBF), Flint Creek (FC), and Rock 

Creek (RC) (Table 4).  

Table 4. Sample site names with corresponding sample site number, distance downstream from 
Warm Springs (Figure 8), elevation, and the location. Reaches are designated by roman 
numerals to the left of the sampling location names. A sampling site with two reach designations 
indicates that it is the end member for the previous reach and start member for the following 
reach. 

Reach Site Name Site 
Number 

Downstream 
Distance (km) 

Elevation 
(m) Latitude Longitude 

I Warm Springs* 001 0.0 1459 46.1874 -112.7707 
I, II Deer Lodge* 006 44.9 1378 46.3831 -112.7380 

II, III Garrison* 008 64.8 1340 46.4984 -112.7388 
III Little Blackfoot*, t 008ad 73.6 1333 46.5187 -112.7923 

III, IV Gold Creek* 009 89.2 1276 46.5900 -112.9282 
IV Flint Creek*, t 009am 124.4 1227 46.6289 -113.1514 

IV, V Bear Gulch* 010 144.3 1155 46.7037 -113.3455 
V Rock Creek*, t 011af 182.1 1096 46.6977 -113.6692 
V Turah* 012 197.0 1013 46.8264 -113.8142 

*Indicates sampling sites with USGS gage stations 
t Indicates tributary 

 
Five river segments (Reaches I-V, Figure 8) were identified and averaged 39 ± 16 km in 

length. The shortest reach (Reach II) was 19.9 km in length. Reaches were generally longer 

downstream as river discharge increased where the longest reach (Reach IV) was 55.1 km long. 

Reaches I and II have no major tributaries while Reaches III, IV, and V include confluences with 

LBF, FC, RC, respectively (Figure 8, Table 4). This study focuses on a dataset comprised of 291 
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measurements of spectrophotometric pH and AT used to calculate DIC, pCO2, and air-water flux 

of CO2 covering 48 months (51 sampling events) beginning in August 2017 and ending in 

September 2021. 

Analytical methods 

Spectrophotometric pH 

Spectrophotometric pH measurements were made as outlined in Young et al. (2022), Lai 

et al. (2016), and Yao and Byrne (2001). Briefly, a double beam spectrophotometer (Agilent, 

Cary 300) was used with 10 cm cuvettes and temperature regulated cuvette holders. Because 

spectrophotometric pH and total alkalinity are analyzed from the same sample, 

spectrophotometric pH is analyzed first to minimize headspace that could allow gas exchange 

and alter the pH and pCO2. Two to three pseudoreplicates (i.e., replicate measurements made 

from the same bottle sample) were analyzed and averaged for further use. Purified meta-cresol 

purple (pmCP) was used because the negative logarithm of its acid dissociation constant (pKa) is 

equal to 8.6607 at 25 ⁰C at infinite dilution (µ = 0 mM) which overlaps with the pH range 

observed in the UCFR (Parker et al. 2007) and is optimal for many other alkaline freshwater 

systems (Peter et al. 2014).  

Spectrophotometric pH measurements were calculated on the free hydrogen ion scale 

(pHfree = -log[H+], where [H+] is the hydrogen ion concentration) using the equations from 

Young et al. (2022). Due to small changes in pH of the sample caused by the addition of 

indicator (Seidel et al. 2008; Yuan and DeGrandpre 2008; Li et al. 2020), pH was calculated 

using a linear regression of the pH values recorded with addition of three 80 µL indicator 

aliquots. The magnitude of this perturbation correction was found to be similar to that described 

in Young et al. (2022) and Yuan and DeGrandpre (2008) with an average correction of 0.005 ± 
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0.006 pH units (n = 1244). All sample measurements were temperature corrected to in situ 

temperature using the equilibrium model CO2SYS (Lewis and Wallace, 1998) at infinite 

dilution. This program uses an input (lab measurement) and output (in situ) temperature, 

alkalinity, and input pH. Temperature corrections averaged 0.14 ± 0.07 pH units due to large 

differences between ex situ (~20°C) and in situ (0 to 20°C) riverine temperature, especially 

during winter months. The resulting temperature corrected pH was used for subsequent pCO2 

calculations. Additionally, NIST traceable pH 8.00 ± 0.02 at 25.1 ± 0.3 °C (µ = ~0.2 M) 

phosphate buffers (Micro Essential Laboratory, Inc., Hydrion) were periodically measured 

monthly. The spectrophotometric pH measurements were converted to the National Bureau of 

Standards (NBS) scale (pHNBS) (i.e., to allow direct comparisons) as described in Young et al. 

(2022), and temperature corrected to 25.0°C. Measurements showed good agreement with the pH 

buffer (average error of 0.00 ± 0.03 pH units, n = 45). 

Total alkalinity 

Unfiltered samples were analyzed for AT using an open cell titration system consisting of 

a syringe pump (Kloehn Co LTD), pH electrode (Metrohm AG, Ecotrode Plus), and pH meter 

(Fisher Scientific, AR 25) (Young et al. 2022). The electrode was conditioned for low ionic 

strength solutions by immersion in tap water for one hour prior to use. Titration data were 

processed using the Gran Plot titration method (Gran 1952). The HCl acid titrant ranged from 

0.0997- 0.1002 N (Fisher Scientific) and the factory certified value was used in the analysis.  

The automated titration system was tested monthly prior to sample analysis using an 

alkalinity standard made from dried sodium carbonate (Na2CO3) following Young et al. (2022). 

The average difference between the standard and measured values was -0.3 ± 1.4 µmol L-1 (n = 

34) and thus, very good calibration-free accuracy was achieved. 
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Estimating riverine ionic strength  

In situ ionic strength (µ) was estimated for each sampling event using a relationship 

between AT and µ at Bear Gulch (Figure 8, Table 4) established using data collected by Nagorski 

(2001): 

																													𝜇 = (2.63 × 10(1 ∗ A2) + 7.01 × 10()																																						(7) 

Estimates of µ were calculated from measured total ion concentrations (HCO3-, Ca2+, K+, Mg2+, 

Na+, SO42-, SiO32-) in surface water samples collected by Nagorski (2001) and linearly correlated 

with measured AT (Eq. 7). Equation 7 was then used to estimate µ at each sampling location 

based on measured AT. This calculated µ was then used for in situ pH for calculating DIC and 

pCO2 (Young et al. 2022). 

DIC and pCO2 

DIC and pCO2 were calculated from spectrophotometric pH and AT measurements using 

the equilibrium calculation described in Young et al. (2022). This calculation was used because it 

incorporates a range of µ values commonly found in freshwater environments and it has been 

shown that ignoring µ affects can affect the accuracy of calculated pCO2 values and other 

inorganic carbon parameters (Liu et al. 2021; Young et al. 2022). Carbonic acid equilibrium 

constants (K1 and K2) from Millero et al. (1979) and Henry’s law constant (KH) from Weiss 

(1974) are used in this calculation and are modified to account for changes in dissociation 

constants due to µ using the Davies activity coefficient equation (i.e., apparent dissociation 

constants K1¢, K2¢, and KH¢). Based on the results in Young et al. (2022) we estimate the 

uncertainty of calculated pCO2 and DIC to be about ±40 µatm and ±14 µmol L-1. 

Air-water CO2 flux 
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 The air-water CO2 flux along the UCFR was determined from the calculated pCO2 along 

with atmospheric pCO2, KH`, and kCO2 (Eq. 6). Air-water CO2 flux was calculated at six sites 

along the UCFR and correspond to the sampling sites with USGS gage stations (Figure 8, Table 

4). Atmospheric CO2 was obtained from a meteorological tall tower in Wisconsin, USA 

(Andrews et al. 2017) of similar latitude to the UCFR (Appendix B, Figure S1). The tall tower 

has time series atmospheric CO2 (among other measurements) from 1992 to present. It is 

important to note that these measurements are reported as the dry mole fraction of CO2 in parts 

per million (xCO2; ppm) and so these values were converted to wet pCO2 (pCO2; µatm) using 

barometric pressure, water vapor pressure, and temperature to convert xCO2 to pCO2 (Dickson et 

al. 2007). The resulting atmospheric pCO2 was then used in the CO2 flux calculations (Eq. 6).   

The solubility of CO2 in equation 6 (KH`) was estimated using an empirical equation 

established by Weiss (1974). kCO2 (Eq. 6) was estimated using temperature dependent Schmidt 

numbers (Sc) calculated from an empirical relationship from Wanninkhof (2014) and estimated 

k600 values derived from sM (Appling et al. 2018b) using high resolution dissolved oxygen time 

series. The dissolved oxygen data used to generate k600 values were collected at the six sampling 

sites (Figure 8, Table 4) during baseflow conditions. streamMetabolizer was employed to 

segregate the dissolved oxygen timeseries based on discharge to pool k600 (Appling et al. 

2018a,b). Estimating k600 based on similar discharge values (i.e., binning) was done because 

discharge varied considerably along the UCFR during baseflow oxygen sensor deployments with 

an average discharge across the six sites of 11 ± 7 m3 s-1. Depth was estimated for each sampling 

event using an empirical relationship between depth and discharge established by Raymond et al. 

(2012) (Appendix B, Figure S2). Monthly k600 values outside of baseflow conditions were 
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estimated using relationships between discharge, depth, and baseflow k600 estimates (Appendix 

B, Figures S2, S3). 

Temporal designation for seasonal analysis 

For this study, seasons are defined by the months that best represent the seasonal 

progression in western Montana, USA. Western Montana is semi-arid with short autumnal 

duration, long winters, and a growing season that extends into late September. Therefore, 

seasons were defined accordingly: fall (October and November), winter (December through 

March), spring (April through June), and summer (July through September).  

Data analysis 

 The molar deviation of DIC from atmospheric saturation (ΔDIC) was calculated for each 

location from temperature, atmospheric pCO2, and measured AT using CO2SYS (Lewis and 

Wallace, 1998). The difference between the measured aqueous concentration of DIC and its 

calculated concentration in equilibrium with the atmosphere is expressed in equation 8 following 

Stets et al. (2017): 

																																																																			∆DIC = DIC< − DIC=																																																														(8) 

where DICW is the calculated DIC in the water column from AT and spectrophotometric pH and 

DICA is the estimated DIC concentration at atmospheric equilibrium at a given temperature, AT, 

and atmospheric pCO2 (Stets et al. 2017). ΔDIC was then used to assess DIC saturation (i.e., -

ΔDIC = undersaturated, +ΔDIC = oversaturated) along the UCFR and how that relates to air-

water CO2 flux variability. At the reach scale, differences in ΔDIC from downstream to upstream 

(ΔΔDIC) were also estimated to assess changes in DIC saturation along the UCFR (Eq. 9).	

																																																													∆∆DIC = ∆DIC>5? − ∆DIC@A																																																							(9) 
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ΔDICdwn and ΔDICup represent the calculated ΔDIC values (Eq. 8) at the downstream and 

upstream location, respectively. The primary statistical analyses used for this study were linear 

regression analysis with Pearson correlations (r) and coefficients of determination (R2) and 

Student’s t-test (α = 0.05). These analyses allowed us to examine insights into the connections 

among many variables of interest. 

Sampling bias 

 Due to the dynamic nature of pCO2 in freshwater it is important to discuss the potential 

for sampling bias whenever discrete samples are concerned. Samples from each sampling event 

were collected from all sampling sites along the UCFR (Figure 8) in one day (Dent and Grimm, 

1999; Ensign et al. 2017). Each sampling event took ~6-hr to complete. Sample collection began 

Figure 9. A 24-hr pCO2 timeseries at the Gold Creek (Figure 8) sampling location in the 
UCFR collected using an in situ pCO2 sensor (Young et al. 2022). The solid black line 
denotes the measured diel pCO2 in the river and the colored segment denotes how pCO2 
levels change over the course of each sampling event from 10:00 am (blue) to 4:00 pm 
(MST) (red). 
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at ~10:00 am Mountain Standard Time (MST) at Warm Springs and ended at ~4:00 pm MST at 

Turah (Figure 8). Past studies have shown that pCO2 exhibits large diel variability along the 

UCFR (Parker et al. 2007; Parker et al. 2010; Lynch et al. 2010; Young et al. 2022). A bias up to 

~400 µatm exists in the UCFR depending on when sampling takes place with values biased high 

upstream and low downstream (Figure 9). For example, the mean diel pCO2 of an upstream site 

near Warm Springs is ~400 µatm (DeGrandpre et al. unpubl.). When sampling at around 11:00 

am MST, Figure 9 shows that the pCO2 level could be ~500 µatm indicating a +100 µatm 

sampling bias. In contrast, the mean diel pCO2 of a downstream site near Turah is also ~400 

µatm (Lynch et al. 2010). However, when this site is sampled around 4:00 pm MST, Figure 9 

shows that the pCO2 level could be ~200 µatm indicating a -200 µatm sampling bias. The 

examples provided here are extreme cases where sampling bias is greatest. It is important to 

note, however, that most sampling during the day (11:00 am to 2:00 pm MST) takes place near 

the mean diel pCO2 which, depending on location, can be relatively close to atmospheric levels. 

Moreover, sampling near the mean diel pCO2 value can be beneficial for long-term monitoring 

as the mean diel pCO2 will regulate air-water CO2 flux more than the diel range (i.e., minimum, 

and maximum) due to slower CO2 exchange.  

Results 

Spatiotemporal variability of inorganic carbon 

 Temperature, discharge, and inorganic carbon parameters followed consistent annual and 

seasonal trends along the UCFR (Figure 10). In situ temperature averaged 9.0 ± 6.4 °C (n = 347) 

and ranged from 0.0 to 21.0°C with minimum and maximum temperatures reported during the 

winter and summer, respectively. Generally, riverine temperature was coldest upstream near 

Warm Springs (Figure 10d). Discharge among the sites followed annual oscillations of peak flow 
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during spring snowmelt with reduced flows during late summer and winter (i.e., baseflow 

conditions), a common characteristic of snowmelt dominated catchments (Mast et al. 2006; 

Raymond et al. 2016). Discharge averaged 23 ± 33 m3 s-1 across the UCFR and ranged from 1.7 

to 260 m3 s-1. Warm Springs recorded the smallest discharge during winter and Turah recorded 

the largest discharge during spring (Figure 10a). AT and DIC concentrations decreased by as 

much as ~3-fold from baseflow to spring snowmelt conditions (Figure 10b,c) and were strongly 

connected (R2 values ranged from 0.52 to 0.82, p<0.05) with measured discharge (Figure 10a 

and Appendix B, Figures S4, S5) as is common in snowmelt-dominated systems (Mast et al. 

2006; Lynch et al. 2010).  

Figure 10. The spatiotemporal timeseries for a) discharge b) AT, c) calculated 
DIC, d) temperature, e) in situ spectrophotometric pH, and f) calculated pCO2. 
Sites are individually colored. The solid red line found in subplot f) represents 
the atmospheric pCO2 during the study period. 
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The non-conservative parameters, pH and pCO2, also correlated with discharge (R2 

ranged from 0.00 (p>0.05) to 0.75 (p<0.05)) but correlations were dependent on location and 

season. Riverine pH values along the UCFR also exhibit annual and seasonal oscillations with 

decreases >1 pH unit from baseflow conditions to spring snowmelt (Figure 10e). pH values were 

found to converge within ±0.10 pH units across the UCFR during the pH minima of each year 

(Figure 10e). Riverine pCO2 values showed increases as large as 4x that of atmospheric levels 

during spring snowmelt (Figure 10f), whereas other seasons along the UCFR showed pCO2 

values approached atmospheric levels depending on location with a river-wide median of 500 

µatm (Figure 10f). This is true for water years 2018 and 2019, however, water years 2020 and 

2021 did not illicit the same distinct snowmelt-driven peaks (Figure 10f). Deer Lodge (Figure 8, 

Table 4) had the highest average pCO2 (655 ± 193 µatm, n = 49) and Warm Springs (Figure 8, 

Table 4) had the lowest average pCO2 (375 ± 172 µatm, n = 48). Annual ranges (river-wide 

maximum – river-wide minimum) in pCO2 were similar (p>0.05) for water years 2019, 2020, 

and 2021 (859 µatm, 724 µatm, and 770 µatm, respectively). The annual range in pCO2 for water 

year 2018, however, was twice as large at 1458 µatm. Further, spring and summer had the largest 

seasonal range in pCO2 of 1339 µatm and 1137 µatm, respectively, compared to fall and winter 

with seasonal ranges of 541 µatm and 831 µatm, respectively.  

 Spatial variability of inorganic carbon along the UCFR is highly dynamic with site-wide 

averages in AT and DIC ranging as much as ~1000 µmol L-1 among sites (Figure 11a,b). Both AT 

and DIC increase steadily from Warm Springs to Garrison by ~1000 µmol L-1. These 

concentrations stay around 3000 µmol L-1 until Bear Gulch and then decrease by ~800 µmol L-1 

at Turah (due to RC influence; Figure 11, Appendix B, Figure S6). The inflow of tributaries 

along the UCFR (i.e., LBF, FC, RC; Figure 8, Table 4) were found to impact the concentrations 
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of inorganic carbon along the UCFR, especially for AT and DIC (Figure 11). Tributaries 

exhibited a wide range of conditions where tributary AT could reach >4000 µmol L-1 (i.e., FC) or 

as low as <500 µmol L-1 (i.e., RC) (Figure 11a and Appendix B, Figure S6). The pH was also 

found to be highly variable with changes along the UCFR up to 1.2 pH units but without a clear 

trend up or down in contrast to DIC and AT (Figure 11c). Tributary pH was highly dynamic (e.g., 

RC range ~7.6 to ~9.0) but did not influence downstream pH found in the mainstem (Figure 11c 

and Appendix B, Figure S6). Site-wide averages in pCO2 along the UCFR were found to nearly 

double from Warm Springs to Deer Lodge and remained elevated until quickly dropping at 

Turah (Figure 11). Like the other parameters considered above, tributary pCO2 was highly 

dynamic; LBF and RC had the greatest (860 ± 328 µatm) and least (329 ± 142 µatm) site-wide 

Figure 11. The spatial variability in a) AT, b) DIC, c) spectrophotometric pH, and d) 
pCO2 at the six sampling locations along the UCFR. The solid black line found in each 
subplot represents site-wide averages. The dashed black line in subplot d) represents 
the atmospheric pCO2 (~370 µatm) along the UCFR. 
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averages, respectively, compared to the mainstem locations (Appendix B, Figure S6). However, 

like tributary pH, it did not influence downstream pCO2 found in the mainstem (Figure 11).  

Figures 10 and 11 show pCO2 along the UCFR near (i.e., Warm Springs and Turah) or 

above atmospheric pCO2 levels with a few values found below atmospheric levels. Overall, these 

findings are comparable with previous studies where streams and rivers are found to be primarily 

sources of CO2 to the atmosphere (Richey et al. 2002; Raymond et al. 2013; Rocher-Ros et al. 

2019) however, our reported pCO2 levels are much lower than previously reported values for 

similar systems. Additionally, studies have also found instances where streams and river exhibit 

periods sink behavior (i.e., pCO2 levels below atmospheric levels) even when systems are overall 

sources of CO2 to the atmosphere (Minshall, 1978; Dodds, 2006). 

Air-water flux of CO2 

 Air-water CO2 fluxes also had large temporal and spatial variability (Figure 12) that 

appear to follow the hydrograph (Figure 10a) with peaks in efflux during spring snowmelt. Air-

water CO2 flux weakly to moderately correlated with discharge (R2 ranged from 0.12 to 0.69) 

dependent on location (p<0.05). Air-water CO2 flux was the largest during water year 2018 with 

a maximum of 1.2 mol m-2 d-1 (Figure 12a). This corresponds to the large discharge peak 

observed in water year 2018 where maximum discharge along the UCFR was twice as high 

(~300 m3 s-1) as the following years’ peaks. Water years 2019, 2020, and 2021 had considerably 

smaller peak air-water CO2 fluxes (0.3, 0.4, and 0.3 mol m-2 d-1, respectively). Further, the 

UCFR had similar minimum air-water CO2 flux values across water years of -0.1 mol m-2 d-1, -

0.09 mol m-2 d-1, -0.1 mol m-2 d-1, and -0.07 mol m-2 d-1 for the four respective water years and 

suggest periods of sink behavior along the UCFR. Air-water CO2 flux along the UCFR averaged 
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0.08 ± 0.14 mol m-2 d-1 (n = 275). Spatial dynamics of air-water CO2 flux along the UCFR 

indicate an average increase from Warm Springs to Bear Gulch and then decrease to near 
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Figure 12. a) The time series air-water CO2 flux data for each sampling site during the 
duration of study. b) The spatial variability of air-water CO2 flux along the UCFR. 
Outliers were removed to better see the downstream variability of air-water CO2 flux. 
Outliers ranged from 0.2 to 1.2 mol m-2 d-1 along the UCFR. The solid black circles 
with connecting line represent site-wide averages and the black dashed lines in a) and 
b) indicate no net exchange with the atmosphere. 
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atmospheric equilibrium at Turah (Figure 12b), following a similar trend to pCO2 (Figure 11d). 

Over the four water years the estimated air-water CO2 flux values for the UCFR were above zero 

76% of the time with periods of negative air-water CO2 flux representing 24%. Thus, over this 

time, the UCFR was found to primarily be a source of CO2 to the atmosphere with periods of 

sink behavior during the summer and winter (Figure 12a).  

Biogeochemical regulation of inorganic carbon and air-water CO2 flux 

The DIC saturation (Eq. 8) relative to the atmosphere (Figure 13) and property-property 

correlations (Figure 14) showed that DIC along the UCFR was typically in excess relative to the 

atmosphere (Figure 13) and is influenced by seasonal fluctuations in discharge and temperature 

(Figure 14). Individual sites (Figure 13a) and reaches (Figure 13b) were found to exhibit periods 

of both undersaturation and oversaturation of DIC. Most sites were supersaturated with DIC 

during spring, summer, and winter except for Warm Springs and Turah which were consistently 

undersaturated during summer (Figure 13a). Warm Springs was found to be the most 

undersaturated with respect to DIC during the summer by -111 µmol L-1, while Garrison was 

found to be the most supersaturated during spring by 79 µmol L-1 (Figure 13a). Note that Gold 

Creek and Bear Gulch are also largely supersaturated by 63 and 71 µmol L-1, respectively 

(Figure 13a). This appears to correspond with Figures 10 and 12 where Warm Springs has the 

lowest DIC concentration and air-water CO2 flux, while Garrison, Gold Creek, and Bear Gulch 

have the highest DIC concentrations and air-water CO2 flux.  

At the reach scale (ΔΔDIC, Figure 13b), a transition along the UCFR (i.e., Reach I to 

Reach V) occurs from a supersaturated system (ΔΔDIC>0) to an undersaturated system 

(ΔΔDIC<0) from upstream to downstream. Recall that Warm Springs (start member to Reach I) 

is largely undersaturated in DIC. Thus, for Reach I to become largely supersaturated downstream 
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indicates the potential for allochthonous sources of DIC to heavily influence this reach. This 

reach in the past has been suspected to have significant groundwater influences (Kyro, 2021) and 

is a potential explanation for the observed variability in DIC saturation for Reach I (Figure 13).  

 Property to property Pearson correlations (r) of inorganic carbon parameters, temperature, 

discharge, and atmospheric pCO2 show striking seasonal river-wide trends over four water years 

in the UCFR (Figure 14). Site-specific correlations were found to be moderately-strong over the 
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Figure 13. a) The difference in DIC at atmospheric saturation (ΔDIC) to DIC at calculated 
pCO2 levels using the same AT and temperature. Unique points represent individual sites 
(shape) and season (color). b) The relationship between the relative concentration of DIC 
in each reach (Cout:Cin) and the change in ΔDIC (ΔΔDIC) between sites (i.e., Reach I-V). 
Unique points represent individual reaches and are grouped by ellipses also denoted by 
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four water years for select inorganic carbon parameters (Appendix B, Figure S7). Overall, the 

Figure 14. A series of seasonal correlograms (Fall, Spring, Summer, Winter) used to depict 
the relationships among different inorganic carbon parameters, temperature, and discharge 
for four water years of data in the UCFR. Average values across the six sampling locations 
were used for this analysis. “pCO2.atm” represents the atmospheric pCO2 level (Figure 
10f), “pCO2.river” represents the riverine pCO2 level (Figure 10f), “Flux” refers 
specifically to the air-water CO2 flux (mol m-2 d-1) (Figure 11), and “Q” refers to discharge 
(m3 s-1) (Figure 10a). Circles within boxes are both colored and sized to illustrate the 
Pearson correlation (r) of each relationship. Boxes void of circles indicate a non-significant 
relationship based on an alpha level of 0.05. 
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UCFR appears to become more “homogenous” as the seasons progress from fall to spring, 

meaning that fall has the least significant correlations among all parameters (8), and spring has 

the most (25) (Figure 14). Additionally, fall shows that most of the significant correlations are 

only between inorganic carbon parameters (Figure 14). This highlights that not many other 

variables (i.e., temperature, discharge) impact inorganic carbon during this time (Figure 14).  

As the season progresses to winter, more significant correlations take shape (Figure 14). 

Included in this is the increase in temperature related correlations where the colder winter 

conditions (see Figure 10d) appear to be negatively correlated with ionic strength (r = -0.48), 

DIC (r = -0.50), and atmospheric pCO2 (r = -0.32); yet positively correlated with discharge (r = 

0.46) and air-water CO2 flux (r = 0.38) (Figure 14). As the seasonal progression continues, 

spring shows similar temperature correlations but now with an increase in discharge, AT, DIC, 

pH, and air-water CO2 flux related correlations (Figure 14). The increase in discharge related 

correlations support the observed trends in AT, DIC, pH and pCO2 (Figure 10 and Appendix B, 

Figures S4, S5) for when spring snowmelt effectively influences each variable. Additionally, 

discharge becomes positively correlated with air-water CO2 flux (r = 0.56). Note that discharge is 

negatively correlated with DIC (r = -0.49) and so the correlation between discharge and air-water 

CO2 flux is likely driven by increased gas transfer velocities and declining pH values during 

spring (Figure 10 and Appendix B, Figure S2) and not from increased DIC loads.  

As the UCFR transitions into the growing season (i.e., summer), more significant 

correlations appear between air-water CO2 flux and other variables (Figure 14). Importantly, DIC 

is only correlated with air-water CO2 flux (r = 0.65) and riverine pCO2 (r = 0.68) during the 

summer suggesting a biological influence on pCO2 and air-water CO2 flux not apparent in the 

other seasons (Figure 14). Further, during summer the air-water CO2 flux becomes significantly 
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correlated (p<0.05) with all parameters except for discharge (Figure 14). Additionally, the 

warmer summer conditions (see Figure 10d) appear to influence air-water CO2 flux (r = 0.37) 

similar to winter (r = 0.38) (Figure 14). This highlights the role that maximum (~20°C) and 

minimum (~0°C) riverine temperatures have on air-water CO2 flux estimates due to the solubility 

of CO2 (i.e., KH`; equation 10).    

Discussion 

 The high precision and accuracy of measured freshwater spectrophotometric pH and AT 

provided this study with high quality calculated freshwater inorganic carbon parameters. The 

increased accuracy in pCO2 allowed us to quantify air-water CO2 fluxes better than before over 

four water years along ~200 km of the UCFR. Additionally, the high precision of measured pH, 

AT, and calculated pCO2 made it possible to resolve spatial and temporal inorganic carbon 

gradients in freshwater better than before. This is especially true for freshwater pH where pH is 

typically measured electrochemically; a method that is known to provide erroneously low pH 

values (Hunt et al. 2011; Abril et al. 2015; Liu et al. 2020; Young et al. 2022). However, due to 

the accuracy of spectrophotometric pH (<0.008 pH units; Yuan and DeGrandpre, 2008; Lai et al. 

2016; Young et al. 2022) this study was able to resolve small spatial changes in pH (Figure 10) 

not captured before from discrete measurements. 

 Past studies have shown overwhelming evidence for inland waters, especially rivers, 

acting as sources of CO2 to the atmosphere (Aufdenkampe et al. 2011; Butman and Raymond, 

2011; Raymond et al. 2013; Rocher-Ros et al. 2019; Liu and Han, 2021). Raymond et al. (2013) 

found that 95% of the global streams and rivers had a median calculated pCO2 greater than 

atmospheric values where the median value was found to be ~3100 µatm. Moreover, other 

studies have reported pCO2 values ranging from ~90 µatm in the Maotiao River (Wang et al. 
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2011) to as high as 44000 µatm in the Amazon River (Richey et al. 2002; Liu and Han, 2021). 

This places the pCO2 values reported here for the UCFR at the lower end of this range and nearly 

a sixth of the global median (UCFR median of 500 µatm). In general, the UCFR was also found 

to act as a significant source of CO2 to the atmosphere (Figure 12). However, despite the UCFR 

maintaining high concentrations of AT and DIC (Figure 10), periods of sink behavior (i.e., air-

water CO2 flux<0) were observed during summer and winter months (Figure 12). From the 

literature, we know that most rivers tend to be net heterotrophic (i.e., greater respiration than 

production) (Minshall, 1978; Thorp and Delong, 2002; Dodds, 2006). However, in the UCFR we 

find that during the growing season (i.e., summer) primary production can drive pCO2 below 

atmospheric levels creating a CO2 sink dependent on location and season (Figure 10-12). In fact, 

all locations studied along the UCFR recorded several instances of negative air-water CO2 fluxes 

(Figure 12) during all seasons. Of the 67 negative air-water CO2 flux values, 73% occurred 

during summer and winter primarily at Warm Springs and Turah. 

Inorganic carbon (i.e., AT, DIC, pH, pCO2) and air-water CO2 flux were found to be 

highly dynamic with annual peaks and valleys following increased snowmelt due to increases in 

discharge. This is a common characteristic of conservative solutes in snowmelt dominated 

catchments (sulfate, chloride, calcium, alkalinity; Mast et al. 2016) and has been shown for non-

conservative parameters as well (i.e., pH, pCO2, air-water CO2 flux; Hélie et al. 2002). AT, for 

example, is highly conservative along the UCFR with a single source (i.e., groundwater) that is 

diluted or concentrated proportionally from precipitation and evaporation, respectively 

(Shangguan et al. 2021). Thus, when snowmelt enters the UCFR during spring, this brings in ~0 

AT water and effectively dilutes the river. Therefore, sharp valleys appear in the timeseries for 

AT during spring each year (Figure 10). Conversely, once snowmelt is over, AT quickly recovers 
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to pre-dilution values due to the constant supply of highly concentrated groundwater. 

Additionally, pH was also found to decrease during annual snowmelt along with AT and DIC 

(Figure 10). Modeled dilution of AT and DIC from 3000 µmol L-1 to 1000 µmol L-1 (approximate 

range taken from Figure 10) was estimated to decrease pH by only ~0.03 pH units (modeled in 

CO2SYS; Lewis and Wallace, 1998). However, pH along the UCFR could decrease by ~0.8 pH 

units during spring snowmelt (e.g., water year 2018; Figure 10) and so other biogeochemical 

processes likely contributed to the observed decrease in pH. For instance, the lower buffer 

capacity (i.e., diluted AT) and the addition of organic acids from increased dissolved organic 

carbon loads (commonly found during spring snowmelt, e.g., Hood et al. 2006; Mast et al. 2016) 

to the river during this time could also contribute to lower observed pH values (Figure 10). 

Consequently, pCO2 values were found to increase during snowmelt periods (Figure 10; ~June of 

each year) due to the inverse relationship between calculated pCO2 and pH where low pH 

generates high pCO2 values (Stumm and Morgan, 2008; Liu et al. 2020; Young et al. 2022). 

Riverine pCO2, however, is controlled by additional biogeochemical processes (e.g., gas 

exchange, respiration, primary production) and so the observed variability outside of seasonal 

snowmelt (Figure 10) is likely due to photosynthesis and respiration during the growing season. 

Accordingly, GPP and ER estimates along the UCFR during the summer of 2020 were found to 

be representative of a productive mid-order river with values of 0.25 ± 0.10 mol C m-2 d-1 and -

0.26 ± 0.08 m C m-2 d-1, respectively (DeGrandpre and Valett, unpubl.) and are comparable to 

other productive temperate rivers (Uehlinger, 2006; Appling et al. 2018a; Koenig et al. 2019). 

Additionally, estimated net ecosystem production (NEP = -0.013 mol C m-2 d-1) indicates a net 
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heterotrophic system (Lynch et al. 2010) and signifies the substantial influence of respiration on 

inorganic carbon dynamics, especially pCO2 and DIC along the UCFR as discussed above.  

Inorganic carbon along the UCFR is also highly spatially variable with large gradients 

that are both locally and tributary driven (Figure 11). The strong influence of tributaries to these 

parameters is, again, due to the conservative behavior of AT and DIC from dilution/enrichment. 

For example, RC has a much lower average AT and DIC (~1000 µmol L-1) compared to Bear 

Gulch (~3000 µmol L-1; upstream of RC) (Figure 11). Therefore, the low concentration tributary 

water dilutes the mainstem and causes the concentration of AT and DIC at Turah to be much 

lower (~2200 µmol L-1; downstream of RC) (Figure 11). In contrast, other parameters such as pH 

and pCO2 are not as influenced by tributary inputs and appear to be spatially independent (Figure 

11). Thus, localized processes such as GPP and ER along with temperature and gas exchange, 

discussed above, are likely contributing more to the spatial variability of pH and pCO2 along the 

UCFR. Air-water CO2 fluxes along the UCFR gradually increased from Warm Springs to Bear 

Gulch until returning near zero at Turah (Figure 12). Midstream sites (i.e., Deer Lodge, Garrison, 

Gold Creek, and Bear Gulch) had larger absolute air-water CO2 flux values compared to Warm 

Springs and Turah and were found to be driven by riverine pCO2 levels (Figures 10-13). 

 Most sites along the UCFR were found to be oversaturated in DIC during all seasons 

(Figure 13). Warm Springs and Turah, again, were found to be mostly undersaturated in DIC 

during the summer which corresponds with increased autochthonous production and near zero to 

negative air-water CO2 flux values observed for these sites (Figure 12). In contrast, sites such as 

Garrison, Gold Creek, and Bear Gulch were supersaturated in DIC during spring (Figure 13) due 

to the relatively high concentrations of DIC at these locations even after dilution (Figure 12). 

Reach scale dynamics of ΔDIC illustrate a transition from supersaturated (Reach I) to near 
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equilibrium (Reaches II-IV) to undersaturated (Reach V) along the UCFR (Figure 13). Recall 

that ΔΔDIC indicates changes in ΔDIC as you move downstream (Figure 13). Interestingly, 

Reach I is the only reach with such a large positive change in ΔDIC. This transition from 

undersaturation to oversaturation in DIC is likely due to allochthonous inputs of DIC-rich 

groundwater influencing Reach I (Warm Springs to Deer Lodge) year-round.    

Seasonal correlograms provided additional insight into the temporal controls on inorganic 

carbon and air-water CO2 fluxes along the UCFR (Figure 14). Springtime induced the most 

significant correlations where discharge was found to significantly correlate (p<0.05) with all 

inorganic carbon parameters including air-water CO2 flux (Figure 14). Interestingly, summer was 

the only time when DIC significantly correlated (p<0.05) with air-water CO2 flux and is likely 

due to increased respiration contributing substantially to the DIC pool and riverine pCO2. 

Additionally, an increase in significant correlations between temperature and inorganic carbon 

parameters during baseflow conditions demonstrates the cooling (winter) and heating (summer) 

effect on the solubility of CO2 (i.e., KH`) (Figure 14). This has been shown to significantly affect 

pCO2 in the UCFR in the past (Lynch et al. 2010). Appendix B (Figure S8) shows the average 

temperature-driven pCO2 of the UCFR for this study following methods outlined in Takahasi et 

al. (2002) and Lynch et al. (2010). In general, there appears to be a phase shift between 

calculated pCO2 and temperature-driven pCO2 (Appendix B, Figure S8). During the peak of 

summer when temperature is at its greatest, we generally see low pCO2 values compared to high 

temperature driven pCO2. Note that pCO2 increases with increasing temperature because of the 

decreased solubility of CO2 and the increase in aqueous CO2 from the bicarbonate equilibrium 

(Lynch et al. 2010; Middleburg, 2019). Low pCO2 values during the height of summer suggest 

that high rates of photosynthesis are depleting aqueous CO2 (Figures 10, 13, 14 and Appendix B, 
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Figure S8) as discussed above. During the winter months, however, riverine pCO2 matches well 

with the temperature-driven pCO2 indicating significant cooling effects on pCO2 dynamics and 

consequently, air-water CO2 fluxes in the UCFR (Figure 14 and Appendix B, Figure S8).  

Conclusion 

 This study characterized the temporal and spatial drivers that regulate inorganic carbon 

and air-water CO2 fluxes along the UCFR using accurate measures of spectrophotometric pH, 

AT, and accurate computations of pCO2 and air-water CO2 fluxes. We found that these drivers 

primarily included discharge, tributary influence, temperature, and metabolic processes (i.e., 

GPP and ER) and were spatially and seasonally dependent. The UCFR was mainly a source of 

CO2 to the atmosphere with an average of 0.08 ± 0.14 mol m-2 d-1 and reported increases during 

spring snowmelt as large as 1.2 mol m-2 d-1. The average air-water CO2 flux is comparable to the 

minimum stream values reported around the world (Telmer and Veizer, 1999; Abril et al. 2005; 

Zou, 2017; Li et al. 2012; Liu and Han, 2021) whereas the reported 1.2 mol m-2 d-1 value is more 

comparable to maximum values reported for much larger rivers including the Amazon River, 

Mekong River, and Xijiang River (Alin et al. 2011; Liu and Han, 2021). The UCFR also acted as 

a CO2 sink during the summer and winter months when 24% of the data reported negative air-

water CO2 flux values.  

The utility of spectrophotometric pH for freshwater application is starting to become 

clear over the past decade (Lynch et al. 2010; Lai et al. 2016; Young et al. 2022). As more 

studies begin to utilize the increased accuracy provided by spectrophotometric pH for calculating 

pCO2, monitoring freshwater pH, etc. clearer insights into biogeochemical processes that 

regulate inorganic carbon in freshwater systems can be obtained. Here, spectrophotometric pH 

was ultimately used to estimate air-water CO2 fluxes in a productive, mid-order montane river 
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with moderate levels of pCO2 (Raymond et al. 2013). Additional studies are needed, however, in 

larger systems with higher levels of pCO2 to further evaluate the utility of spectrophotometric pH 

in calculating freshwater pCO2 used to estimate air-water CO2 fluxes.
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CHAPTER 4 

Carbon Processing Domains: Seasonal and spatial controls on organic carbon 

in a montane river 

Introduction 

Riverine organic carbon (C) has been extensively studied for several decades (Montoura 

and Woodward, 1983; Mann and Wetzel, 1995; Raymond and Bauer, 2001; Baum et al. 2007; 

Hilton et al. 2008; D’Andrilli et al. 2015; Shogren et al. 2021) and studies have focused on 

organic C quality, quantity, and transport. Dissolved organic C (DOC) acts as a basal resource 

for aquatic food webs and contributes to the chemistry of aquatic systems through the acidity of 

organic acids, metal chelation, and other processes. As an energy source, the bioavailability of 

DOC has been shown to limit microbial community production and impact aquatic food webs 

from the bottom-up (Jansson et al. 2000; Finlay, 2001; Thorp and Delong, 2002; Westhorpe et al. 

2010; Baldwin et al. 2016). DOC is also a major source of C to the coastal oceans (Holmes et al. 

2008; Dai et al. 2012), can control light availability in the water column (i.e., blackwaters; 

Aldridge et al. 1998; Phlips et al. 2007), and can influence inorganic C parameters (e.g., total 

alkalinity, partial pressure of CO2) (Hunt et al. 2011; Liu et al. 2020; Young et al. 2022).  

Many studies have focused on understanding the spatial and temporal variability of DOC 

in freshwater systems (Raymond and Bauer, 2001; Bianchi et al. 2004; Jaffé et al. 2008). The 

major sources and sinks of DOC include instream biological production and respiration (Drakare 

et al. 2002; Amon and Benner, 1996; Berggren et al. 2010; Jones et al. 2016), floodplain 

connectivity (Tockner et al. 1999; Atkinson et al. 2019; Lynch et al. 2019), allochthonous inputs 

(Pagano et al. 2014; Lynch et al. 2019), precipitation (Dawson et al. 2011; Mast et al. 2016), and 

photo-degradation (Cory et al. 2014; Jones et al. 2016). These studies exemplify the complex 
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cycling of DOC in freshwater systems. Nevertheless, several conceptual models including the 

Flood Pulse Concept (Junk et al. 1989), the Riverine Productivity Model (Thorp and Delong 

1994), and the Pulse Shunt Concept (Raymond et al. 2016) have been pursued towards 

understanding the hydrologic, chemical, and biological processes that significantly alter organic 

C in lotic systems. 

The Flood Pulse and Pulse Shunt conceptual frameworks describe the effectiveness of 

interaction with the landscape in regards to transporting solutes into the river following 

inundation or precipitation, respectively (Junk et al. 1989; Raymond et al. 2016). The Flood 

Pulse Concept was derived with large, tropical rivers in mind but has been broadly applied to 

emphasize that long, predictable periods of high discharge provide organic matter (including 

DOC) from adjacent floodplains that is more labile than that derived from upstream import. 

Spring snowmelt and localized precipitation can trigger pulses of terrestrially derived DOC into 

drainage networks (Hornberger et al. 1994; Boyer et al. 1997; Raymond et al. 2016). Imported 

DOC can then be shunted (i.e., transported with minimal degradation) downstream to higher-

order rivers far removed from the point of origin where it promotes biological activity and 

influences biogeochemical processes. These frameworks have provided the basis for enhanced 

DOC watershed biogeochemical modeling and have led to a deeper understanding of linkages to 

processes like ecosystem metabolism (e.g., Ulseth et al. 2018) and C fluxes (Raymond et al. 

2016).  

Others have emphasized the progression of ecosystem function following high flows 

(Fisher et al. 1982; Kaushal and Belt, 2012) and spring snowmelt in particular (Baker et al. 2000; 

Lowery et al. 2010; Yarnell et al. 2010). While evidence suggests that biological activity is 

relevant to C form and abundance during other times (Hood et al. 2006; Lynch et al. 2010; Mast 
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et al. 2016), instream processes can significantly alter these features during baseflow growing 

seasons (Thorp and Delong; Westerhoff and Anning 2000; Stanley et al. 2012; Jones et al. 2016). 

Thorp and Delong’s (1994) riverine productivity models emphasize the influence of 

autochthonous processes on carbon production and its importance for riverine food webs 

including DOC supplied during periods not limited to flood pulses. It is pertinent to understand 

how rivers respond both to pulse events and how DOC is processed and transported during 

periods of low flow. 

Nutrient processing domains—application for DOC dynamics 

Recently, Valett et al. (2022) presented Nutrient Processing Domains (NPD) as a 

budgetary approach for assessing riverine nutrient cycling where changes in nutrient 

concentration and mass are quantified at the section (i.e., km of river distance) scale. This 

classification system utilizes changes in discharge normalized to streambed area, material loads, 

and concentration to assess nutrient dynamics longitudinally among lengths of river reflecting 

landscape dynamics. This approach provides a novel way to assess biogeochemical solute 

variability over large scales with the capacity to simultaneously address hydrologic and 

biological influences, adding to the suite of conceptual frameworks discussed above.  

Processing domains are defined in the hydrologic literature as the regions within which 

one or more geologic processes prevail in the processing and transport of mass (Montgomery, 

1999; Brardinoni and Hassan, 2006). These domains have been delineated by fundamental 

characteristics like the local slope gradient and drainage area. In applying this approach to river 

systems, Valett et al. (2022) argued that each reach or section can be organized in functional 

space by the processes controlling whether that reach functions as a net source or sink for any 

given material, changes in its relative availability, and the propensity for hydrological exchange 
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to influence material budgets (Figure 15). Based on these characteristics, Valett et al. (2022) 

described five distinct processing domains including diluter, enhancer, consumer, conduit, and 

compiler. Three of these domains (i.e., diluter, enhancer, and consumer) describe conditions 

under which material budgets are not at steady state and solute concentrations are not being 

conserved. Reaches are diluters when downstream load increases, but solute concentrations 

decrease. Additionally, reaches are either enhancers or consumers when both downstream load 

and solute concentrations either increase or decrease, respectively. Under conditions of material 

Figure 15. The processing domain conceptual framework defined by measures of net 
material balance (Feff) and the availability effect (Cdwn:up) from Valett et al. (2022). 
Dashed lines denote boundaries of functional space and do not differ from the null values 
for Cdwn:up (conserved concentration = 1) and Feff (material steady state = 0). 

Net 
Material 
Balance 
(Feff) 

Availability effect 
       (Cdwn:up) 
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steady-state and conserved concentrations, reaches reside in the conduit domain. Compilers, like 

conduits, conserve concentration but loads increase congruent with hydrologic gain.  

While the NPD approach was initially created with nutrients in mind, it may prove useful 

for describing the spatiotemporal variability of a variety of solutes that may be more 

conservative (i.e., DOC, dissolved inorganic C, metals) or equally dynamic (i.e., hydrogen ion, 

partial pressure of carbon dioxide) in character. In the current study, we apply the NPD approach 

to DOC, to describe and interpret functional carbon processing domains (CPDs) along the upper 

Clark Fork River, MT, USA. Here, we extend beyond simple classification of reaches as 

emphasized by Valett et al. (2022) and leverage the quantitative relationship between key 

measures of biogeochemical character to gain insight into the relative roles of transport and 

reaction in governing DOC dynamics across river sections in a productive, mid-order montane 

river. 

Quantifying C biogeochemical character 

 In this study, measures of C transport and processing are derived from DOC 

concentrations, discharge, and reach area. Parameters involved include changes in concentration 

(Cdwn:up; unitless), discharge (ΔQ; m3 s-1), hydraulic load (ΔHL; m d-1), and material load 

(ΔLoad; mol s-1), along with derived measures of the effective solute flux (Feff; mol m-2 d-1). 

Changes in the concentration of DOC along each section (Cdwn:up) is calculated as the ratio of 

downstream to upstream DOC concentration (Cdwn and Cup, respectively, Eq. 10).	

																																																																			C>5?:@A =	
C>5?
C@A

																																																											(10) 

Reaches with Cdwn:up values >1, =1, and <1 represents those that are enriched, conserved, or 

depleted of DOC, respectively. This relative concentration describes an ‘availability effect’ 

(Figure 15; Valett et al. 2022) as it represents the relative change in DOC abundance in the water 
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column and its availability to riverine biota using a measure that can be directly compared across 

reaches. 

 Changes in discharge (ΔQ) is calculated by the difference in flow between a downstream 

and upstream site (Eq. 11): 

																																																															∆Q	 = 	Q>5? − Q@A																																																																	(11)			 

where Qdwn and Qup represent the downstream and upstream discharge, respectively. Values for 

ΔQ>0 indicate a gaining reach, i.e., net addition to flow, whereas ΔQ<0 indicates a losing reach, 

i.e., net loss to the underlying aquifer. To track the loading of water through each reach, the 

change in hydraulic load (ΔHL) is determined by differences in discharge normalized by wetted 

reach area (Aw) (Eq. 12).	

																																																														∆HL	 = 	
ΔQ
A5

																																																								(12) 

Hydraulic load is a term frequently employed in wetland studies (Kadlec and Wallace, 2009) that 

effectively normalizes flow change by the area of a reactive surface reflecting accumulation (or 

loss) of depth along the reach. It additionally, allows for the comparison among reaches as 

lengths and absolute discharge values vary. 

 The change in load (ΔLoad) is calculated by the difference between the products of 

discharge and concentration at downstream and upstream sites (Eq. 13) 

																																										∆Load	 = 	 (C>5? × Q>5?) − JC@A ×	Q@AL																																											(13)			 

where Cdwn and Cup represent the downstream and upstream DOC concentration (µmol L-1), 

respectively. ΔLoad can then be normalized to the wetted area (Aw) to describe the areal rate of 

net DOC accumulation or loss from the water column along the reach as the effective flux of 

DOC (Feff; Eq. 14). Feff, therefore, represents the net rate of DOC gain or loss per unit wetted 

area resulting from both advective and biotic processes in each reach (Valett et al. 2022). 
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																																																																					F#!! =	
∆Load
A5

																																																														(14) 

Equations 13 and 14 indicate that Feff is controlled by changes in discharge and 

concentration along the reach. Changes in discharge are captured as ΔQ and may reflect the 

influences of tributaries or exchange with groundwater. Changes in DOC concentration can be 

due to allochthonous inputs (e.g., via tributaries, groundwater) or autochthonous biological 

processes that consume or produce DOC. Accordingly, deconstructing Feff to reflect advective 

and biological influences yields equation 15: 

																																													F#!! =	
∆L6C + ∆LD0E

A5
	= 	

∆Q × C6C
A5

+	
∆LD0E
A5

																																					(15) 

where ΔLtg is the change in DOC load due to allochthonous inputs, Ctg is the mean DOC 

concentration of tributaries and groundwater, and ΔLbio is the net change in load due to instream 

biological processing. Equation 15 can be simplified by substituting in equations 12 and 14 to 

reveal how the effective solute flux of DOC (Feff) is related to change in the hydraulic load 

(ΔHL), allochthonous inputs (Ctg), and instream biological processing (Fbio) (Eq. 16): 

																																																															F#!! = ∆HL × C6C + FD0E																																																									(16) 

It is important to note that Fbio is equivalent in magnitude (but opposite in sign) to measures of 

biological DOC uptake (i.e., respiration) provided in the literature (Bernhardt and Likens, 2002; 

Ensign and Doyle, 2006; Garnier and Billen, 2007; Valett et al. 2022). Thus, a -Fbio value 

indicates a loss of DOC from the water column due to biotic respiration and a +Fbio value 

indicates DOC added to the water column via biotic pathways such as photosynthetic exudates 

(Soares et al. 2017). Additionally, a positive or negative sign associated with Feff characterizes a 

reach as either a material source or sink, respectively. 
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 Equation (16), thus, represents a linear quantitative relationship between the propensity 

for a reach to act as a source or sink (Feff) and the change in flow normalized to reach area 

(ΔHL). The slope of the line from this quantitative relationship represents the concentration of 

DOC in waters exchanging with the reach (Ctg) and the intercept provides the magnitude of the 

net biological flux influencing DOC concentrations (Fbio). Our current analysis of CPDs in the 

upper Clark Fork River, MT, USA exploits this quantitative relationship to assess the relative 

roles of transport and reaction in dictating DOC dynamics. Here, we focus on contrasting 

behaviors associated with periods of elevated flow and baseflow conditions characteristic of the 

annual cycle of ecosystem dynamics in a snowmelt-driven river. 

Material and methods  

Study sites 

This study took place along ~215 km of the upper Clark Fork River (UCFR), MT, USA 

starting at Warm Springs, MT and ending in Missoula, MT (Figure 16, Table 5). The UCFR 

drains a 57,000 km2 catchment and is a productive mid-order river but also one of the largest 

superfund sites in the United States, with a legacy of heavy metal pollution (Moore and Luoma, 

1990; Parker et al. 2007; Moore and Langner 2012). The UCFR was sampled at 13 main stem 

locations and three tributary locations (Figure 16, Table 5). This was further divided into reach 

segments I-V based on the location of U.S. Geological Survey (USGS) stream gaging stations 

(Figure 16, Table 5). This study focuses on a dataset comprised of 656 DOC measurements 
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spanning 36 months (52 sampling events) starting in October 2018 and ending in September 

2021. Discharge measurements were taken from six USGS gaging stations (Figure 16, Table 5).  

Figure 16. Descriptive map of the UCFR. Sampling sites are indicated by numbers and 
USGS gaging stations are depicted by red triangles. Smaller circles with alphanumeric 
designations indicate tributaries. Reaches I-V are defined by USGS gage station locations.  
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Reaches and reach area 

 Five river segments (Reaches I-V, Figure 16) were identified and evaluated using the 

NPD approach. Reach length averaged 39 ± 16 km. The shortest reach (Reach II) was 19.9 km in 

length. Reaches were generally longer downstream as river discharge increased where the 

longest reach (Reach IV) was 55.1 km long. Reaches I and II have no major tributaries while 

Reaches III, IV, and V include confluences with the Little Blackfoot River (LBF), Flint Creek 

(FC), and Rock Creek (RC), respectively. 

 Reach wetted area (Aw, m2) was calculated by averaging the upstream width and 

downstream width for each reach and multiplying by reach length. Stream width was estimated 

Table 5. Sample site locations with corresponding sample site number, distance downstream 
from Warm Springs, altitude, and the latitude and longitude where samples are taken. Reaches 
are designated by roman numerals to the left of the sampling location names. A sampling site 
with two reach designations indicates that it is the end member for the previous reach and start 
member for the following reach 

Reach Site Name Site 
Number 

Downstream 
Distance (km) 

Elevation 
(m) Latitude Longitude 

I Warm Springs* 001 0.0 1459 46.1874 -112.7707 
I Perkins 002 5.1 1449 46.2083 -112.7674 
I Galen 003 12.2 1436 46.2372 -112.7532 
I Racetrack 004 19.3 1426 46.2651 -112.7446 
I Sager 005 30.9 1401 46.3172 -112.7362 

I, II Deer Lodge* 006 44.9 1378 46.3831 -112.7380 
II Cattle Rd 007 60.5 1350 46.4729 -112.7279 

II, III Garrison* 008 64.8 1340 46.4984 -112.7388 
III Little Blackfoot*, t 008ad 73.6 1333 46.5187 -112.7923 

III, IV Gold Creek* 009 89.2 1276 46.5900 -112.9282 
IV Flint Creek*, t 009am 124.4 1227 46.6289 -113.1514 

IV, V Bear Gulch* 010 144.3 1155 46.7037 -113.3455 
V Bonita 011 167.8 1102 46.7220 -113.5723 
V Rock Creek*, t 011af 182.1 1096 46.6977 -113.6692 
V Turah* 012 197.0 1013 46.8264 -113.8142 
-- Missoula 013 215.8 968 46.8671 -113.9834 

*Indicates sampling sites with USGS gage stations. 
 t Indicates tributary 
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using nonlinear regression analyses derived from USGS gage specifications associated with 

historic discharge records across six locations (Figure 16) and from discrete width measurements 

(Valett et al. 2022). Lines of best fit were then established for each USGS gaged site and used to 

calculate upstream and downstream widths based on discharge during our sampling timeframes 

associated with each sampling event. The average percent error associated with this calculation 

across the six USGS gage stations was 1 ± 14%.  

Dissolved organic carbon samples 

DOC samples were collected in triplicate at each sampling location, filtered through a 0.7 

μm Whatman glass fiber filter, and put into amber borosilicate 40-mL vials. Samples were 

collected between the hours of 0800 and 1700 starting at Warm Springs and working 

downstream to Missoula (Figure 16). Additionally, ashed Teflon disks were added to vial caps to 

minimize DOC contamination. Whatman glass fiber filters were combusted at 500°C for one 

hour and glassware were combusted for 4-hrs at 425°C prior to sample collection. Samples were 

refrigerated at 4°C until analyzed using an Aurora 1030W Total Organic Carbon Analyzer 

(Xylem Inc., Rye Brook, NY). The instrument employs heated persulfate wet chemical oxidation 

coupled to a non-dispersive infrared (NDIR) detector (U.S. EPA, 2005). Each day the instrument 

is used, it is calibrated using a six-point calibration ranging from 42 μmol Carbon L-1 (hereafter 

referred to as µmol L-1) to 1665 μmol L-1. Potassium hydrogen phthalate (KHP) standards 

(Fisher Scientific, Catalog #P243-100) were used for calibration and to test the accuracy and 

precision of the instrument after calibration. Based on several measurements of 416, 583, and 

1249 µmol L-1 KHP standards, the instrument showed good agreement with an average error of 7 

± 31 µmol L-1 (n = 32). The precision of the triplicate field samples averaged 8.5 ± 14.8 µmol L-
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1. Field blanks of DOC (i.e., deionized water filtered in the field) were also collected and 

analyzed to assess sample contamination and averaged 9.8 ± 11.9 µmol L-1 (n = 24).  

Several studies have provided evidence of diel patterns of DOC in freshwater systems 

that can range from <80 to ~300 µmol L-1 depending on the system (Kaplan and Bott, 1982; 

Spencer et al. 2008; Parker et al. 2010; Johnson, 2021; Oviedo-Vargas et al. 2022). Therefore, 

sampling bias may exist for samples collected earlier in the day compared to samples collected in 

the evening. The low-resolution synoptic sampling approach (Dent and Grimm, 1999) used here 

indicates that a consistent DOC bias may exist due to diel variability in DOC. Importantly, DOC 

diel dynamics typically show increases in DOC during the day (e.g., Spencer et al. 2010; 

Johnson, 2021, Oviedo-Vargas et al. 2022) and would suggest that from Warm Springs to 

Missoula (Figure 16, Table 5), DOC would increase. Similarly, we know from preliminary 

findings that there is a distinct diel pattern in 350 nm absorbance (a commonly used proxy for 

DOC; Spencer et al. 2008) at Garrison (Figure 17, Table 5) (DeGrandpre et al. unpubl.) with 

increases in absorbance during the day. This supports the presence of DOC diel variability in the 

UCFR. However, below (see Results) we see a decrease of ~50 µmol L-1 between Warm Springs 

and Missoula. Note that this difference has the potential to be larger in the absence of DOC diel 

bias. Thus, diel DOC along the UCFR has the potential to be significant and could have biased 

our discrete sampling. However, the contrast between reported DOC diel behavior and our 

findings reported below indicates that spatial (and temporal) controls on DOC along the UCFR 

may overshadow diel variability, especially at coarse resolution (i.e., monthly, annually). 

Temporal designation for seasonal analysis 

For this study, seasons are defined by the months that best represent the seasonal 

progression in western Montana, USA. Western Montana is semi-arid with short autumnal 
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duration, long winters, and a growing season that extends into late September. Therefore, 

seasons were defined accordingly: fall (October and November), winter (December through 

March), spring (April through June), and summer (July through September).  

Statistical analyses 

 The primary statistical analyses used for this study were linear regression analysis, 

breakpoint regression analysis, Student’s T-test (α = 0.05), and analysis of variance (ANOVA). 

This suite of analyses allowed us to examine differences from zero and one as well as look at 

statistical variation among seasons for various measures. Additionally, the breakpoint regression 

analysis (e.g., Schmidt et al. 2010, Ulseth et al. 2019) provided this study with explanatory 

insight into distinct hydrologic regimes along the UCFR. 

Results 

Spatiotemporal variability 

Periods of elevated DOC concentration (i.e., peaks of interest) along the UCFR were 

observed before, during, and after periods of increased discharge (Figure 17a; peaks 1-7). DOC 

concentrations ranged from 75 to 597 µmol L-1 (n = 656) along the main stem of the UCFR 

(Figure 17a) and exhibited annual oscillations with large peaks found in May-June (i.e., spring) 

of each year (peaks 1, 4, 7; Figure 17a). Compared to DOC concentrations at baseflow, spring 

peak concentrations were up to ~5 times greater depending on location. DOC was found to be 

strongly linked to discharge with greater DOC concentrations corresponding to increased 

discharge (Figure 17; R2 from 0.32 to 0.74 for log-log regressions at gaged sites; Appendix C, 

Figure S1). In the UCFR, river-wide DOC averages (±SD) during the spring, summer, fall, and 

winter were 284 ± 95 µmol L-1 (n = 195), 193 ± 70 µmol L-1 (n = 227), 188 ± 55 µmol L-1 (n = 

91), and 138 ± 58 µmol L-1 (n = 143), respectively. River-wide DOC concentrations among all 
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seasons were found to be statistically different (p<0.001). Only DOC values from fall and 

summer were not statistically different (p>0.05) due to small hydrologic influence during these 

times (i.e., baseflow; Figure 17). Additionally, grand means of DOC concentrations were found 

to be similar among water years (2019: 232 ± 82 µmol L-1, n = 191; 2020: 223 ± 112 µmol L-1, n 

= 247; 2021: 169 ± 55 µmol L-1, n = 218).  

Four of seven peaks (2, 3, 5, 6; Figure 17a) of increased DOC concentration occurred 

outside of annual snowmelt (i.e., peaks 1, 4, 7; Figure 17a). Two (2 and 5) occurred during fall 

Figure 17. a) DOC time series (n = 656) at all sampling locations and times 
along the UCFR. Red numbers (1-7) denote DOC peaks of interest. b)  
Discharge time series at all six USGS gage stations along the main stem of 
the UCFR. 
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whereas two others (3 and 6) took place during late winter just prior to snowmelt. The pre-

snowmelt peaks in late winter (peaks 3, 6; Figure 17a) do not evidently correspond to distinct 

increases in discharge compared to peaks associated with maximum runoff (1, 4, 7) or periods of 

increased flow during fall following the cessation of summer baseflow (2, 5; Figure 17).  

DOC concentrations differed less across space than over time (Figures 17 and 18). Site-

wide average DOC concentrations for each water year differed by <50 µmol L-1 among sampling 

locations (Figure 18). The average percent change in DOC concentration from upstream (Warm 

Figure 18. Spatial variability in DOC from upstream (Warm Springs = 0 km) to downstream 
(Missoula = 215.8 km) from a) WY 2019-2021, b) WY 2019, c) WY 2020, and d) WY 2021. 
Red boxplots indicate sampling sites on the main channel of the UCFR and blue boxplots 
denote tributaries. The black line in each subplot connects site-wide averages from upstream to 
downstream. The grey dashed line in subplots b-c) represents the spatial averages across all 
water years (black solid line in subplot a).   
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Springs; Figure 16) to downstream (Missoula; Figure 16) was -15 ± 35% (n = 48) indicating 

lower DOC concentrations downstream. Additionally, spatial patterns in DOC concentration 

were consistent across water years 2019 and 2020 with grand means at each site differing by an 

average of only 4% (Figure 18). Water year 2021 had a grand mean much lower than the other 

water years (p<0.001) and differed from water years 2019 and 2020 by 21%. 

Tributaries either enriched the main stem with DOC (i.e., higher DOC concentrations in 

LBF and FC; Figure 18) or diluted the main stem (i.e., lower DOC concentrations in RC; Figure 

18). Average DOC concentrations during the study period for LBF, FC, and RC was 242 ± 137 

µmol L-1 (n = 34), 260 ± 132 µmol L-1 (n = 33), and 185 ± 109 µmol L-1 (n = 33), respectively 

(Figures 17a and 18). Further, ranges of DOC were found to be 83 to 661 µmol L-1 (n = 34), 92 

to 584 µmol L-1 (n = 34), and 62 to 417 µmol L-1 (n = 33) for the LBF, FC, and RC, respectively 

(Figure 18). Note that, like mainstem behavior, temporal variability in tributaries is driven with 

large DOC peaks associated with annual snowmelt (peaks 1, 4, 7; Figure 17a).  

Reach characteristics and DOC processing domains 

Relative concentration (Cdwn:up) 

Cdwn:up along the UCFR ranged from 0.5 to 2.2 due to the large seasonal fluctuations in 

DOC along the UCFR (Figure 17). This range indicates that the UCFR exhibits periods of 

depletion (Cdwn:up<1), chemostasis (Cdwn:up = 1), and enrichment (Cdwn:up>1) depending on season 

and reach (Figure 19). Most reaches show elevated Cdwn:up values during late winter and spring 

when concentration (Figure 17a) and discharge (Figure 17b) also increase. Additionally, this 

shift in relative reach concentration from depleted to enriched back to depleted follows the nature 

of the hydrograph with Cdwn:up>1 during rising limbs and Cdwn:up<1 during the falling limb 

(Figures 17, 19 and Appendix C, Figure S2). On an annual basis only Reaches II and V display 
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availability effects statistically different from 1 (p < 0.05); Reach II was enriched in DOC 

(Cdwn:up = 1.04) and Reach V was depleted of DOC (Cdwn:up = 0.87) (Figure 19). In contrast, 

Reaches I, III, and IV display chemostatic behavior, with conserved DOC concentrations and 

Cdwn:up not different from 1 (p>0.05). Reach III showed dramatic peaks in Cdwn:up during each 

spring and winter (Figure 19) likely reflecting tributary influences. Support for this is provided 

by the elevated DOC concentrations evident in the LBF (tributary to Reach III) occurring during 

pre-snowmelt runoff (Figure 17). Seasonal dynamics in Cdwn:up along the UCFR show that given 

reaches experienced periods of enrichment, chemostasis, and depletion statistically different 

Figure 19. a) Spatiotemporal time series of Cdwn:up for Reaches I-V. Individual lines and points are 
colored by Reach (data from Figure 17). b) Seasonal averages from 2018-2021 of Cdwn:up for 
Reaches I-V. Error bars denote the standard deviation of averages from three water years. Unique 
letters designate statistical significance between bars within a reach (Tukey HSD following 
significant 1-way ANOVA). Asterisks denote individual bars are significantly different from 1 (NS, 
p>0.5; * p<0.05; ** p<0.01; *** p<0.001). Black dashed lines at 1 represent no change in the ratio 
of DOC from downstream to upstream.  
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from 1 (Figure 19b). Reaches I, III, and IV, where grand means indicated chemostatic behavior, 

exhibit significant periods of depletion or enrichment dependent on season (Figure 19b).     

Hydrologic measures, exchange potential, and effective solute flux 

ΔQ ranged from -3 to 109 m3 s-1 (n = 258) with an average of 9 ± 15 m3 s-1 (n = 258) 

(Figure 20a) and ΔHL ranged from -0.5 to 3.4 m d-1 (n = 258) with an average of 0.5 ± 0.6 m d-1 

(n = 258) along the UCFR (Figure 20b). Only 25 out of 258 data points showed reaches with 

hydraulic loss (-ΔQ). Of the 25 data points, 23 points came from Reach II and 1 point came from 

Reach I and III. -ΔQ values occurred during all seasons but were more frequent during summer 

(48%). Spring snowmelt promotes hydraulic gain among reaches (Figure 20b) but that gain 

differs with the reaches position on the landscape and the influence of tributaries. Reach V 

experiences the greatest positive values for ΔQ while the range among the four other reaches are 

more similar. Normalizing to reach area illustrates that Reaches III and V behave similarly as do 

Reaches I and IV and that those two pairs differ in the magnitude of ΔHL but their patterns of 

change over the seasons are similar (Figure 20). In contrast, Reach II responds minimally to 

snowmelt and has several negative values distributed around the seasons (Figure 20).  

The magnitude and direction of Feff followed trends reported for ΔHL with greatest Feff 

values during spring snowmelt (peaks 1, 4, 7; Figure 20c). Across all reaches and seasons, Feff 

ranged from -0.2 to 1.4 mol m-2 d-1 with an average of 0.13 ± 0.24 mol m-2 d-1 (n = 251). Values 

for Feff <0 represents sinks for DOC and comprised only 8% (21 out of 251) of all measures 

(Figure 20). As expected from their similar and elevated values for ΔHL (Figure 19b), reaches III 
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and V displayed comparable strong positive Feff values in response to all periods of elevated flow 

(peaks 1-7; Figure 20c).  

Figure 20. Spatiotemporal time series of a) ΔQ (n = 258), b) ΔHL (n = 258), and c) Feff (n 
= 251). Individual lines and points are colored by reach (see Legend) as depicted in Figure 
1 and Table 1. Black dashed lines at zero represent zero change (a,b) or flux (c). Red 
numbers (1-7) on subplot c) represent the same peaks of interest described in Figure 18a to 
track spatiotemporal variability through the processing domain framework.  
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DOC processing domains 

Reaches in the UCFR occupied CPDs reflecting the overwhelming influence of exchange 

potential and the generally non-reactive character of DOC. Increases in discharge generally 

resulted in increased loads and enhanced hydrologic exchange where more conservative behavior 

took place under baseflow conditions. Reaches along the UCFR were found to primarily occupy 

the diluter (40%), conduit (27%), or enhancer (24%) processing domains; enriched 

concentrations and increased loads associated with compilers were rarely observed (8%) as were 

conditions of declining load and decreased concentrations characteristic of consumer domains 

(1%) (Figure 21). All points within the consumer domain represented Reach II and correspond to 

negative changes in hydraulic loads (i.e., ΔHL<0; Figure 19b) indicating a losing reach (i.e., 

ΔQ<0; Figure 19a) and net export of DOC during spring 2019 and winter 2020.  

Figure 21. a) The carbon processing domains for five study reaches on UCFR. b) 
Detailed plot focusing on points with Feff<0.5 mol m-2 d-1. Note the change in scales 
of the x- and y-axes between a) and b). Reaches are presented as unique symbols 
and each symbol is colored by season. Symbol sizes reflect the magnitude of the 
change in hydraulic load (ΔHL). Black dashed lines represent the 95% null 
boundaries for Feff = 0 and Cdwn:up = 1. Points highlighted by black circles and red 
numbers (1-7) represent the peaks of interest presented in Figures 18a and 20c. 
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Snowmelt-driven increases in flow resulted in substantial hydrologic gains (i.e., strong 

positive ΔHL, Figure 20) and were accompanied by increases in DOC concentration (Figure 17) 

resulting in all but one peak of interest (i.e., peak 2) occupying the enhancer domain (Figure 21). 

Peak 2 occupied the diluter domain where increased flow increased material loads but decreased 

DOC concentration downstream (Figure 21). During the rising and falling limbs associated with 

peak flows, reaches transitioned across domains including diluter to enhancer during the rising 

limb and enhancer to diluter during the falling limb (Appendix C, Figure S2). This transition was 

reach dependent where, for example, Reaches I and II transitioned from the conduit to the 

enhancer domain during the rising limb.  

Temporal patterns of CPD occupation for individual reaches were generally congruent 

(Appendix C, Figures S3-S5) as reflected in river-wide behavior. Greatest Feff occurred during 

spring import (i.e., with +ΔHL). However, in response to spring runoff, reaches occupied diluter, 

conduit, compiler, and enhancer domains depending on reach location and water year (Appendix 

C, Figures S3, S4). In contrast, summer CPD assignment generally placed reaches in the conduit 

domain as reflected in low Feff and little hydrologic exchange (i.e., small positive values for 

ΔHL) (Appendix C, Figure S4). Data points during the fall and winter primarily occupied the 

diluter domain with few points in the enhancer domain during pre-snowmelt runoff (i.e., +ΔHL) 

(Appendix C, Figure S4). The large Feff values during the summer along the UCFR that occupy 

both the diluter and enhancer domains corresponds with the summer shoulder peak attached to 

peak 3 on Figure 17a.  

Allochthonous inputs and biological processing  

The important role for discharge in organizing the effective flux of DOC along the UCFR 

is illustrated by the robust linearity found between Feff and ΔHL (Figure 22). Distribution of 
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observations in the Feff-ΔHL space, however, suggest two system states distinguished by the 

magnitude of flow accumulation. Within these states, points follow different linear trends; a 

steeper slope characterizes periods of greater flow accumulation which are themselves associated 

with greater river discharge (Figure 22). Breakpoint analysis indicates a point of inflection at 

ΔHL = 0.42 m d-1 (p<0.05), separating low-flow behavior (line 1; slope = 0.17 ± 0.02, R2 = 0.39) 

from that of high-flow conditions (line 2; slope = 0.41 ± 0.02, R2 = 0.84). Note that for line 2, 

spring (and a few summer) high flow events in reaches I, III, and V primarily contribute to the 

correlation. Low-flow phase space (line 1) includes a range of reaches and seasons that generally 

share relatively low absolute discharge (Q) and changes in hydraulic load (ΔHL). In contrast, 

Figure 22. Effective solute flux for DOC (Feff) versus change in hydraulic load (ΔHL) 
across seasons and reaches in the UCFR (n = 251). Reaches are represented by unique 
symbols colored by season. Black dashed lines represent limits for zero values. Solid 
black lines denote best fit regressions above and below the breakpoint value (ΔHL = 
0.42 m d-1, red dashed line) determined by breakpoint analysis.  

DHL = 0.42 m d-1

0.0

0.5

1.0

0 1 2 3
DHL (m d-1)

F e
ff (

m
ol

 m
-2

 d
-1

)

Reach
I
II
III
IV
V

Season
Fall
Winter
Spring
Summer



 89 

high-flow phase space (line 2) reflects high flows during spring and summer that correspond 

with substantial flow accumulation along all reaches. These distinct phases of reach behavior 

reflect distinct combinations of import and processing that characterize contrasting realms of 

DOC dynamics. 

Values derived from analysis of river-wide or individual reach responses across seasons 

and water years illustrate the contrasting measures of import concentration (Ctg) and biological 

processing (Fbio) during low-flow and high-flow phases (Figure 23). At the whole-river scale, Ctg 

and Fbio values during low flow (i.e., line 1) were 167 ± 16 µmol L-1 (p < 0.001) and -0.002 ± 

0.004 mol m-2 d-1 (p > 0.05), respectively. During high flow (i.e., line 2), the values for Ctg were 

Figure 23. Estimates of a) allochthonous inputs (Ctg) and b) biological processing 
(Fbio) derived following equation 15 for individual reaches and seasons. Values 
are available in Table S1. Asterisks indicate values that are significantly different 
from zero (p<0.05).  
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greater (412 ± 19 µmol L-1, p < 0.001) and the magnitude of Fbio more negative (-0.11 ± 0.02 mol 

m-2 d-1) and significantly less than zero (p < 0.001). Results suggest lower import concentrations 

during periods of low flow accompanied by inconsequential rates of biological processing (i.e., 

Fbio not different from zero, p>0.05). In contrast, during high flow, Ctg was enriched more than 2-

fold and accompanied by substantial biological processing (i.e., Fbio<0).  

Analysis of individual reaches reveals the relative conservation of behavior during low-

flow conditions compared to the highly dynamic changes in the character of import and 

processing during high flow (Figure 23). When ΔHL<0.42 m d-1, little variation was observed in 

Ctg across reaches and seasons; 69% of the reported values (140 to 600 µmol L-1) were 

significantly different from zero (p<0.05). This suggests a consistent year-round source of 

allochthonous inputs along the UCFR and is supported by measured tributary DOC values in 

reaches III-V (Appendix C, Figure S6). Conversely, Ctg concentrations during high-flow phases 

across spring, summer, and winter ranged 3-fold from 435 to 1176 µmol L-1 with 64% of 

estimates significantly different from zero (p<0.05) (Figure 23 and Appendix C, Table S1).  

Similar to Ctg concentrations, Fbio values show striking differences between low and high 

flow events. River-wide Fbio average was 50-fold greater during high flow compared to low flow, 

but an even more extreme contrast was observed among individual reaches and seasons (-0.0004 

to -0.8 mol m-2 d-1; Appendix C, Table S1). Only 25% of the reported values (-0.1 to 0.01 mol m-

2 d-1) were significantly different from zero (p<0.05) during low-flow conditions. In contrast, Fbio 

values during high-flow conditions ranged from -0.5 to -0.2 mol m-2 d-1 with 46% of the reported 

values significantly different from zero (p<0.05) nearly doubling the amount of significant Fbio 

values during low-flow conditions. Therefore, biological uptake of DOC along the UCFR is 
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likely a relevant contributor to spatiotemporal variability of DOC during certain periods of peak 

discharge.  

Discussion 

Through the NPD approach, peaks of biogeochemical interest (i.e., peaks 1-7; Figures 

17a, 19c, 21) were placed into functional processing domains along the UCFR to better interpret 

spatial and temporal trends in DOC. DOC concentrations along the UCFR were found to 

increase drastically during periods of increased discharge (i.e., spring snowmelt) compared to 

baseflow conditions. During spring, snowmelt saturates the floodplain and transports DOC-rich 

water to the river and effectively reconnects the floodplain to the river and increases discharge 

where small changes in ΔHL result in significant DOC loading to the river (Figure 22). This is a 

common characteristic of snowmelt dominated systems and has been shown extensively in the 

literature (Hood et al. 2006; Godsey et al. 2009; Dawson et al. 2011; Mast et al. 2016; Tunaley et 

al. 2016). The magnitude of DOC concentrations reported here also matches values found in 

other temperate rivers (Hood et al. 2006; Jeong et al. 2012; Cook et al. 2015). 

The majority (~70%) of Feff values were positive indicating a net loading of material 

(Figure 15) to the system. This suggests that the UCFR is transport limited where sufficient flow 

is needed (i.e., spring snowmelt) to transport DOC from the terrestrial landscape to the river 

(Tunaley et al. 2016; Valett et al. 2022). A source limited system, on the other hand, suggests a 

relatively small DOC source pool that flow events can deplete quickly (Tunaley et al. 2016; 

Shogren et al. 2021). The idea of transport limitation is further supported by elevated Feff values 

arising during high flows in spring (Figure 21) where the floodplain is effectively reconnected to 

the river as discussed above. In previous studies, transport (or source) limitation is commonly 

assessed through log-transformed concentration-discharge plots (Godsey et al. 2009; Shogren et 
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al. 2021). Using the NPD approach, similar conclusions can be made based on the sign of the 

effective solute flux (Feff; Figure 15). There were, however, instances of Feff <0 (1% of data) in 

reach II that occupied the consumer domain (Figure 21) and suggests a sink of DOC indicative of 

source limitation during these times. 

Increases in discharge along the UCFR correspond to elevated material loads (+Feff) and 

changes in concentrations that placed reaches primarily into diluter and enhancer domains 

(Figure 21). Occupation of these domains indicates an overall source of DOC to the river (+Feff), 

however, based on differences in reach scale hydrology the availability of DOC in the water 

column became depleted (i.e., diluter domain) or enriched (i.e., enhancer domain) (Figure 21; 

Appendix C, Figure S7). Additionally, reaches along the UCFR often occupied the conduit 

domain (27%) during low-flow conditions. This indicates that the UCFR shunts DOC loads 

downstream with minimal processing or changes during periods of low flow (i.e., summer and 

fall; Figure 21). In contrast, high-flow conditions illicit elevated Feff values and a range of 

relative DOC concentrations (Cdwn:up) suggesting enhanced biogeochemical influences (i.e., 

allochthonous inputs, biological processing). 

The quantitative relationship between Feff and ΔHL (equation 16; Figure 22) assessed 

here provided critical insight into biogeochemical processes that influence DOC dynamics along 

the UCFR. Our results found statistically significant contributions from both allochthonous 

inputs (Ctg) and biological uptake of DOC (Fbio) (Figure 23) dependent on reach, season, and 

ΔHL (Figures 21, 22, 23). Additionally, Fbio values reported here (Appendix C, Table S1) are 

similar to respiration values reported in the literature (e.g., Bernhardt and Likens, 2002; Ensign 

and Doyle, 2006; Garnier and Billen, 2007; Dodds et al. 2017).  
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Based on breakpoint analysis (Figure 22) differences in ΔHL created two phase spaces: 

one at low-flow and the other at high-flow. This highlights a biogeochemical shift in how DOC 

is transported and processed along the UCFR and explains why reaches transitioned into diluter 

and enhancer domains during periods of high-flow (i.e., increased biogeochemical influence) but 

behaved conservatively during periods of low-flow (i.e., shunted downstream; Raymond et al. 

2016) (Appendix C, Figure S2). Both Ctg and Fbio values significantly increased during high 

flows compared to low flows (Figure 23). Increases in both Ctg and Fbio suggests an inflow of 

exogenous source water with labile, terrestrially sourced DOC (Raymond et al. 2016; Tunaley et 

al. 2016; Bernal et al. 2019). Interestingly, the relationship between estimated Ctg and Fbio values 

were found to be negatively correlated where increases in estimated allochthonous inputs 

corresponded to larger rates of biological processing (Appendix C, Figure S8). Moreover, this 

correlation became stronger during periods of high flow (Appendix C, Figure S8) reiterating the 

idea that during high flow allochthonous inputs are supplying labile DOC to the UCFR which 

could be increasing instream biological production (i.e., more negative Fbio). 

To assess estimates of Ctg a comparison was done between measured tributary DOC and 

Ctg estimates to better understand allochthonous inputs in reaches III-V, the reaches with major 

tributaries (Appendix C, Figure S6). Recall that Ctg is an estimate of all allochthonous inputs, not 

just tributary influence. Thus, any discrepancies between estimated Ctg and measured tributary 

surface water may be explained by other allochthonous inputs (i.e., groundwater, overland flow, 

etc.). Overall, we found that tributaries are likely the major source of allochthonous inputs 

(Appendix C, Figure S6). Estimated Ctg matched reasonably well with measured tributary DOC 

values during low flow but consistently overestimated measured tributary DOC values during 

high flows in winter, spring, and summer (Appendix C, Figure S6). The overestimation during 
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high flows could largely stem from error associated with the Ctg estimate as well as other sources 

that are not accounted for including smaller tributaries, groundwater, etc. Thus, these other 

sources may help explain the observed deviation of up to ~800 µmol L-1 (Appendix C, Figure 

S6). Further, a recent study from Kyro (2021) indicates that measured groundwater DOC near 

the headwaters of the UCFR ranged from 25 to 3350 µmol L-1. Note that reaches I and II do not 

have large tributaries and so groundwater may significantly contribute to Ctg values in these 

reaches (Figure 23 and Appendix C, Table S1). Thus, the reported values from Kyro (2021) 

provide a potential source for the relatively large, significant Ctg values estimated for these 

reaches (Appendix C, Table S1). 

The CPD approach provided critical insight into the spatiotemporal dynamics of DOC 

along the UCFR for a variety of biogeochemical processes. Although ΔHL primarily controlled 

DOC dynamics (Figures 21 and 22), biogeochemical processes related to dilution, enhancement, 

and biological processing of DOC did not operate independently. This is apparent in Figures 21-

23 where elevated values of Feff, Ctg, and Fbio are reported during periods of high flow. Thus, 

even when Fbio is significant (Figure 23 and Appendix C, Table S1), Feff will often be positive 

due to the magnitude of DOC loads in the UCFR. Only when concentration and/or discharge 

decreases enough will Fbio significantly impact Feff and produce values in the consumer domain 

(-Feff).  

Conclusion 

The processing domain provides a conceptual framework to systematically examine 

observed variability of aquatic solutes in time series plots that are by nature complex. The CPD 

uses a budgetary approach based on discharge, concentration, and reach wetted area to 

understand how river reaches process and transport solutes. This approach could be examined for 
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metals, pollutants, and biogeochemically relevant solutes. The overall novelty of the processing 

domains conceptual framework is that it provides insights into the physical and chemical drivers 

(i.e., discharge, load, and concentration) as well as allochthonous inputs and biological activity 

of a system; all of which are important to fully understand the spatial and temporal variability of 

the processing of DOC in different river reaches. A caveat to using the CPD framework is that a 

lot of data and effort are needed to obtain the relevant measurements for this assessment. 

Additionally, the CPD framework should be integrated with independent measurements of Fbio 

(e.g., with in situ sensors or incubations) to validate the Fbio estimates shown in Figure 23.   

 A snowmelt dominated system such as the UCFR is a model system with repeatable 

annual and seasonal trends in precipitation and discharge. Because of this, monthly sampling was 

sufficient to capture DOC variability during the three water years of our study. In more 

hydrologically dynamic systems such as ones subject to intense short-term rain events (e.g., 

Spencer et al. 2008; Ågren et al. 2010; Abril et al. 2015; Mast et al. 2016), high resolution 

sampling may be needed to appropriately capture DOC variability as systems can vary widely in 

their response to precipitation events (Tunaley et al. 2016). This framework should prove robust 

enough to be applied to high frequency datasets to elucidate the variability of solutes on a diel, 

weekly, or monthly basis, providing added explanatory value to these highly dynamic systems. 

 This framework creates a path for a variety of future studies to assess its broad utility for 

any biogeochemically relevant solute or material (Appendix C, Figures S9, S10). For example, 

biomass standing stocks or chlorophyll a concentration could be tracked to understand how 

discharge may impact primary production signals. Additionally, this framework could be used at 

the regional level to functionally categorize different rivers, catchments, or regions as primarily 

diluters or enhancers, for example. Since the processing domain parameters are normalized by 
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wetted area all streams and rivers would be able to be compared across landscapes and biomes, 

provided there are measurements of the processing domain parameters at this scale.
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Chapter 5 

Conclusions 

 The work presented in the preceding chapters outlined an effective method for calculating 

freshwater pCO2 from pH and AT (Chapter 2) and characterized the spatial and temporal 

variability of inorganic and organic carbon along the UCFR (Chapters 3, 4). The methodological 

advancement provided in Chapter 2 showed that spectrophotometric pH can significantly 

improve freshwater pH measurements compared to electrochemical pH. This improvement in pH 

resulted in a 4-fold reduction in calculated pCO2 error compared to a reference measurement. To 

further show the utility of this approach, spectrophotometric pH and calculated pCO2 were 

monitored for 4 water years along the UCFR described in Chapter 3 to estimate air-water CO2 

fluxes. Because this method was employed, and spectrophotometric pH provides more accurate 

calculated pCO2 than electrochemical pH (Young et al. 2022), higher quality air-water CO2 flux 

estimates were made. If the observed percent improvement in calculated pCO2 from Chapter 2, 

corresponds to a similar improvement in estimated air-water CO2 fluxes then the efflux of 

riverine systems could be reduced by ~40% (assuming calculated pCO2 from electrochemical 

pH) from 1.8 Pg C yr-1 (Raymond et al. 2013) to 1.1 Pg C yr-1, reducing its significance in the 

global carbon budget. 

 In addition to the novel methodological approach to calculating freshwater pCO2, this 

research also displays the first ever account of using spectrophotometric pH for long-term (>1 yr) 

monitoring of freshwater pH. Lynch et al. (2010) also measured spectrophotometric pH, but this 

was at a single site in the UCFR and only lasted a year. In contrast, this study measured 

spectrophotometric pH along a ~200 km gradient of the UCFR for over 4 years. Additionally, the 

estimates of air-water CO2 flux made along this ~200 km gradient of the UCFR (Chapter 3) are 
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also a first where previous estimates were made at a single location in the UCFR (Lynch et al. 

2010). We estimated riverine air-water CO2 flux values as high as 1.2 mol m-2 d-1 (comparable to 

maximum reported values for larger rivers like the Amazon and Mekong Rivers; Liu and Han, 

2021) and as low as -0.1 mol m-2 d-1 both at Gold Creek. As discussed above in Chapter 3, rivers 

are typically sources of CO2 to the atmosphere. However, the productive nature of the UCFR, 

especially during summer, drove pCO2 below atmospheric levels causing air-water CO2 flux 

values to become negative and the UCFR to act as a sink for CO2. The average estimates of air-

water CO2 flux were much less than those found in other temperate rivers (Chen et al. 2012; 

Hotchkiss et al. 2015; Duvert et al. 2018; Rocher-Ros et al. 2019). The river-wide average air-

water CO2 flux value of 0.08 mol m-2 d-1 presented in Chapter 3 is four times higher than the 

average air-water CO2 flux presented in Lynch et al. (2010) of 0.02 mol m-2 d-1. This difference 

in air-water CO2 flux could be due to differences in the gas transfer velocities used in Lynch et 

al. (2010) since their reported pCO2 values are similar to those we report along the UCFR. Note 

that averaging the air-water CO2 flux of all sites along the UCFR minimizes the importance of 

episodic large flux estimates as shown in Chapter 3 (e.g., GC, Figure 12). Thus, monitoring 

riverine carbon dynamics along a longitudinal gradient (i.e., sampling several sites) is critical to 

better understand how the biogeochemical character may change along a river reaches to 

ultimately assess carbon processing, transport, and transformation. 

     As shown in Chapter 4, the CPD framework can be a valuable tool for quantitatively 

assessing DOC variability along river reaches. The utility of this approach stems from its ability 

to functional classify river reaches by hydraulic loading (ΔHL), solute fluxes (Feff), and solute 

availability (Cdwn:up) (see Chapter 4, Figure 15). This functional classification can further 

decipher whether a reach acts a diluter, enhancer, consumer, compiler, and/or conduit based on 
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reach values of Feff and Cdwn:up (see Chapter 4, Figure 21). These “domains” therefore describe 

the functionality of a reach. Importantly, reaches can occupy several domains and show a 

“domain progression” dependent on season, reach, and hydraulic load. We showcase reach III as 

an example of this domain progression in Appendix C (Figure S2) where reach III moves from 

the diluter domain to the enhancer domain at the onset of spring snowmelt (i.e., increased symbol 

size indicates increased hydraulic load). Once spring snowmelt ceases, reach III transitions back 

to the diluter domain by summer (Appendix C, Figure S2). Additionally, peaks of interest (see 

Chapter 4, Figure 17) were able to be tracked through the NPD framework to further explain 

observed spatiotemporal variability in DOC. Being able to track certain points of interest found 

in a timeseries to specific biogeochemical domains highlights the underlying utility of this 

approach. For example, a peak in DOC during the fall could be caused by several processes. 

These could include episodic rainfall (Mast et al. 2016), algal senescence (Jones et al. 2016), 

increased allochthonous DOC loading (Lynch et al. 2019), etc. From only looking at time-series 

and property-property correlations, it may be difficult to conclude which process has caused a 

peak in DOC during the fall. However, through the NPD approach, the calculated parameters 

(i.e., ΔHL, Fbio, Ctg) within, and the placement of those data in respective domains (i.e., 

consumer domain would suggest biological activity whereas diluter domain suggest hydraulic 

loading), you could conclude what process(es) likely controlled this peak.  

The NPD approach could prove useful for both conservative (i.e., AT, DIC) and 

nonconservative (i.e., pH, pCO2) inorganic carbon parameters in addition to other viable solutes 

(i.e., metals, pollutants, etc.). The only caveat being that a gas exchange term (i.e., Fex) would 

need to be added to equations 15 and 16 (see Chapter 4). Right now, only biological processing 

(Fbio) and allochthonous inputs (Ctg) are accounted for in these equations as they were derived 
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initially for nitrate and phosphate (Valett et al. 2022). A potential solution to this issue is to add 

the air-water CO2 flux equation (Eq. 6) to equation 15. However, to get equation 6 to be relevant 

at the reach scale the difference between air-water CO2 flux estimates at the downstream and 

upstream sites would need to be taken. Therefore, equation 15 would transform into equation 17 

below.	

																																						F#!! =	
∆Q × C6C
A5

+	
∆LD0E
A5

	+ ∆CO&=0"(5$6#"																																															(17) 

Where ΔCO2Air-water is the change in air-water CO2 flux (see equation 6; Chapter 3) from 

downstream to upstream. Once simplified, equation 16 would look like equation 18. 

																																															F#!! = (∆HL × C6C) + (FD0E + F#F)																																																									(18) 

Where Fex is equivalent to ΔCO2Air-water but formatted to match CPD notation. Note that Fbio and 

Fex have the same units and so when solving for these variables through linear regression (see 

Chapter 4), the y-intercept value will be a combination of these two parameters (Fbio and Fex). 

Thus, it is critical to have independent measurements of either Fbio or Fex to be able to determine 

the relative contribution of each parameter to Feff. 

Summary 

The aim of this research was to 1) be able to accurately characterize inorganic carbon and 

air-water CO2 fluxes for freshwater systems and 2) be able to provide better interpretations of 

complex spatial and temporal patterns in DOC compared to previous approaches. In addition to 

each chapter satisfying these aims, this research also provides ideas regarding future research. 

This is important to note because more research is needed to further show the utility of the ideas 

discussed above. Our research only focuses on the UCFR, a productive, snowmelt dominated, 

mid-order river in a temperate biome. Thus, studies in other systems with different 
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biogeochemical character will be needed to support and build off the methods, findings, and 

frameworks discussed here. 

Future research needed to support and build from the information provided in Chapters 2-

4 include laboratory experiments and field campaigns to test the approaches used here in diverse 

freshwater systems. The methodological approach for calculating freshwater pCO2 (Chapter 2) 

should be assessed at much higher levels of pCO2 (e.g., 2000-10000 µatm) as well as in systems 

with low AT and high DOC to explore the utility of spectrophotometric pH in these systems. 

Additionally, using spectrophotometric pH to ultimately estimate air-water CO2 fluxes (Chapter 

3) should also be done in systems with higher levels of pCO2 to better understand the utility of 

spectrophotometric pH in a variety of freshwater systems. Lastly, the NPD approach created a 

path for a variety of studies to better interpret the spatiotemporal variability of biogeochemically 

relevant riverine solutes including conservative (e.g., AT, DIC, metals, etc.) (Appendix C, 

Figures S9, S10) and nonconservative (e.g., pH, pCO2) (Appendix C, Figures S9, S10) 

parameters at local or regional scales.    
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Appendices 

Appendix A 

Supplemental Information for Chapter 2: Comparison of spectrophotometric and electrochemical 

pH measurements for calculating freshwater pCO2 

 

 

Figure S1. The AT quality control chart representing the differences between known 
AT standard values and measured AT values. ΔAT represents the average error between 
the known and measured AT values (measured – known). The average ΔAT is -1.0 ± 4.3 
µmol L-1 (n = 13). The UCL and LCL represent the upper and lower 99% control 
limits, respectively, calculated from three times the average measurement standard 
deviation. Error bars represent the standard deviation of replicates. A total of 13 
measurements were made covering the duration of the tank study experiment as 
outlined in the main text. 
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Figure S2. The relationship between total alkalinity (AT) and specific conductivity at all main stem 
sampling locations along the upper Clark Fork River, MT, USA from September 2017 to 
September 2021. For a descriptive map of these locations refer to Chapter 4, Figure 16 of the main 
text. The line of best fit and the R2 for each relationship is provided in the upper left of each 
subplot. Each data point is colored by pH collected at the same time and location as AT and specific 
conductivity. For the entire time series record of AT refer to Chapter 3, Figure 10. 
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Figure S3. A 19-d time series from the CFR of (a) measured specific conductivity and (b) 
calculated ionic strength. Ionic strength was calculated using the conductivity-derived AT 
obtained from Figure 1 in the main text along with eq. 5 (Nagorski 2020). The date and 
time are UTC during the year 2019. 
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Figure S4. A time series record of discrete spectrophotometric pH (black line) and YSI electrochemical pH (red line) from 
September 2017 to September 2021 along the upper Clark Fork River, MT, USA. For a descriptive map of these locations refer to 
Chapter 4, Figure 16 of the main text.   
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Figure S5. Measured (solid black line) pCO2 time series compared to calculated pCO2 
using conductivity-derived AT with ±130 µmol L-1 uncertainty limits (orange ribbon) and 
calculated pCO2 using a constant AT (3050 µmol L-1) (green line). This plot examines the 
uncertainty in the conductivity derived AT relationship and how it can help explain the 
observed difference between measured and calculated pCO2 in Figure 6d of the main text. 
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Sample 
Temp 
(oC) 

εa434 
(L mol-1 

cm-1) 

εa578 
(L mol-1 

cm-1) 

εb434 
(L mol-1 

cm-1) 

εb578 
(L mol-1 

cm-1) A434 A578 HI- (M) I2- (M) 

Total 
Indicator 

Concentration 
(M) pKa pH 

Perturbation 
Free pH 

1A 14.88 18000 103 2078 41845 0.0981 0.4917 4.06E-06 1.17E-05 1.58E-05 8.7612 9.0621 9.0641 
1B 14.87 18000 103 2078 41846 0.1962 0.9857 8.19E-06 2.35E-05 3.17E-05 8.7613 9.0600  
1C 14.86 18001 103 2078 41847 0.2951 1.4740 1.23E-05 3.52E-05 4.75E-05 8.7614 9.0580   
2A 15.37 17984 103 2081 41790 0.2243 0.1417 1.21E-05 3.35E-06 1.54E-05 8.7561 8.0397 8.0413 
2B 15.35 17984 103 2081 41792 0.4530 0.2847 2.44E-05 6.74E-06 3.11E-05 8.7563 8.0378  
2C 15.32 17985 103 2081 41796 0.6855 0.4293 3.69E-05 1.01E-05 4.70E-05 8.7566 8.0363   

Table S1. Example spectrophotometric pHfree measurements with molar absorptivity (ε), absorbances (A), and indicator 
concentrations used in the pHfree calculation (Eq. 1 of the main text). Samples 1 and 2 were measured at similar temperatures but 
different pCO2 levels (~100 and ~1600 µatm, respectively). Each molar absorptivity is distinguished by wavelength (434 or 
578) and form of the indicator species (i.e., a = acidic form (HI-) and b = basic form (I2-)). The perturbation free pH was 
determined by the y-intercept of the regression between total indicator concentration and pH, as outlined in the main text.    
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Specific 

Conductivity 
(µS cm-1) 

AT 
(µmol L-1) 

Calcium 
(mg L-1) 

Magnesium 
(mg L-1) 

Chloride 
(mg L-1) 

Sulfate 
(mg L-1) 

Ionic Strength 
(mmol L-1) 

Average 334 2806 57 19 28 21 7.5 

SD 54 395 8 3 4 3 1.1 

n 35 34 35 35 35 35 35 

Table S2. The average, standard deviation, and sample sizes for specific conductivity, total alkalinity (AT), several ions used to calculate 
ionic strength (i.e., calcium, magnesium, chloride, and sulfate) (Eq. 4 of the main text), and the resulting estimated ionic strength during 
the duration of the tank study. Averages and standard deviations represent all treatments for the duration of the tank study experiment, as 
outlined in the main text. A counterion (Na+) at a concentration of 0.07 mmol L-1 was used to achieve charge balance. 
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Below is the code used in the main text for calculating freshwater pCO2 from pHfree, AT, 
temperature, and ionic strength. In the main text this program is referred to as 
“CalcCO2_frompH”. Commented throughout the code are references and descriptions for how to 
use the code.    
 
% ****************pCO2_Equilibrium_Model_TA_pH_freshwater.M******************* 
% **********ORIGINALLY WRITTEN BY T.MARTZ FOR SEAWATER*************** 
% *******************MODIFIED FOR FRESHWATER BY C.LAI******************* 
% ****************MODIFIED FOR READING DATASETS BY F. YOUNG************ 
% *******PROGRAM FOR CALCULATING pCO2 from pH and TA for freshwater******** 
% ******** Copyright 2022 - Martz, Lai, Young, and DeGrandpre.  MIT License *********** 
 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%Brief Description of Program 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% This program is used to calculate the partial pressure of carbon dioxide 
% (pCO2) from pH and total alkalinity (TA). Ionic strength (I) is used for 
% both the pH measurement and apparent equilibrium constants (K1a, K2a, KWa, 
% and KHa). pH measurements are made on the Free Hydrogen Ion Scale and the  
% hydrogen ion activity is determined using the Davies equation. 
 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%Example of how to use Program 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Upload input parameters ('Temp','spCond' or 'IS, 'TA', and 'pH') as column  
% vectors. Note: make sure that the units are correct as described below in 
% 'INPUT VALUES'. Once input parameters are loaded and labeled properly, 'RUN' 
% the script. The program will automatically generate the calculated pCO2 
% under the column vector labeled 'pCO2_correction'. This will be the final  
% pCO2 value. Note that this program also generates calculated values for  
% dissolved inorganic carbon (DIC), bicarbonate ion (HCO3), carbonate ion (CO3), 
% and dissolved CO2 (CO2). 
 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% START SCRIPT 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%Global Environment 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
global CT TA KWa K1a K2a KHa alpha1 alpha2 
 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%Input Values 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
TC = Temp; %temperature in degrees celsius 
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TK = TC + 273.15; %temperature in Kelvin 
EC = spCond ./ 1000; %electrical conductivity. EC must is in mS/cm so use uS/cm with the  
%'./1000' 
TA = TA ./ 1000000; %measured total alkalinity in mol/kg so make sure input TA is in umol/kg  
pH = pH; %determined pH on the Free Hydrogen Ion Scale 
I = 0.0127 .* EC; %ionic strength calculated from electrical conductivity in mol/L using Griffin  
%and Jurinak 1973 relationship 
%I = IS; %if ionic strength is known comment out 'EC' and 'I' calculation to use ionic strength  
%estimates directly and uncomment this line. 
 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%Calculating activity coefficients 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%Calculations of concentrations for different ions are based on the equilibrium 
%with the inclusion of activity coefficients and Davies equation      
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
A = 0.5092 + (TC - 25) .* 0.00085; % temperature-related coefficient in Davies equation 
gamma = -A.*(I .^ 0.5 ./ (1 + I .^ 0.5) - 0.3 .* I); % part of Davies equation  
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Therefore, the activity coefficient to different ions are relevant to gamma*(charge of ion)^2 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
ACH = 10 .^ gamma; % activity coefficient for H+ 
ACOH = 10 .^ gamma; % activity coefficient for OH- 
ACHCO3 = 10 .^ gamma; % activity coefficient for HCO3- 
ACCO3 = 10 .^ (4 .* gamma); % activity coefficient for CO32- 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
%Calculating freshwater apparent equilibrium constants K1K2 (Source: Millero et al. 1979) 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
K1 = exp(290.9097 - 14554.21./TK - 45.0575.*log(TK)); 
K1a = K1 ./ (ACH .* ACHCO3); % apparent dissociation coefficient  
 
K2 = exp(207.6548 - 11843.79./TK - 33.6485.*log(TK)); 
K2a = K2./(ACH .* ACCO3./ACHCO3); % apparent dissociation coefficient  
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%Calculating freshwater apparent equilibrium constants KW (Source: Millero 1995) 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
KW = exp(-13847.26 ./ TK + 148.9802 - 23.6521 .* log(TK)); 
KWa = KW./(ACH .* ACOH); % apparent dissociation coefficient  
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%Calculating freshwater apparent equilibrium constants KH (Source: Weiss 1974) 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
KH = exp(93.4517 .* 100 ./ TK - 60.2409 + 23.3585 .* log(TK ./ 100)); 
 
 % Convert ionic strength to salinity 
  S = 53.974*I; 
   



 111 

KHa = KH + (0.023517 - 0.023656 * TK./100 + 0.0047036 .* TK./100 .* TK./100).*S; 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%Calculation of each ion concentration 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
    H = 10.^(-pH); 
    OH = KWa ./ H; 
    alpha1 = (H .* K1a)./(H.^2 + K1a .* H + K1a .* K2a);  
    alpha2 = (K1a .* K2a) ./ (H.^2 + K1a .* H + K1a .* K2a); 
    CT  = (TA- OH + H) ./ (alpha1 + 2.*alpha2); 
    CO2 = CT .* (H .^ 2) ./ (H .^ 2 + K1a .* H + K1a .* K2a); 
    HCO3 = CO2 .* K1a ./ H; 
    CO3 = HCO3 .* K2a ./ H; 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%DIC calculation 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
DIC = CT .* 1000000; 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%pCO2 calculation 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
CO2 = (CT .* (H.^2) .* 10.^ (6.*gamma)) ./ ((H.^2 .* 10.^(6.*gamma))+ (K1 .* H .* 
10.^(4.*gamma))+ (K1 .* K2)); 
  
  %Uses Henry's Law constant and converts from atm to uatm (KH in fugacity (mol-atm / kg- 
  %soln)) 
    pCO2 = (CO2 ./ KH) .* 1000000; 
  %Uses the apparent Henry's Law constant and converts from atm to uatm (KHa in fugacity  
  %(mol-atm / kg-soln)) 
    pCO2_correction = (CO2 ./ KHa) .* 1000000; 
  
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%END SCRIPT 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Appendix B 
Supplemental Information for Chapter 3: The temporal and spatial regulation of air-water CO2 

fluxes along a montane river 
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Figure S1. The timeseries of atmospheric pCO2 obtained from a 
meteorological tall tower in Wisconsin, USA (Andrews et al. 2017). 
Points are colored by site and correspond to sites with USGS gaging 
stations (Figure 8, Table 4). 
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Figure S2. The a) depth, b) discharge, and c) k600 values for each sampling 
location used to calculate the CO2 flux. k600 values were obtained through the 
Bayesian model, StreamMetabolizer in R. Individual data points are jittered on 
top of each boxplot and colored by season to display the variability of values.  
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Figure S3. The relationship between estimates of k600 and discharge from the 
six USGS gage stations described in Figure 8 and Table 4. Both the x- and y-
axis are log transformed and individual points are colored by season. 
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coefficient of determination (R2), and linear equation are presented in the bottom-left of 
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with a USGS gaging station. Individual points are colored by season and the coefficient of 
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Figure S7. Pearson correlation (r) heatmaps of spectrophotometric pH, total alkalinity, and pCO2 of all sites and water years along the UCFR. 
Blue represents strong positive r values and red represents moderately weak positive r values. Grey boxes indicate weak Pearson correlations 
with r < 0.50.   
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Figure S8. a) Timeseries of Riverine pCO2 (solid black line) and temperature-driven pCO2 (dashed 
red line) following Lynch et al. (2010). Data points are site-wide averages of the data presented in 
Figure 10 of the main text. The solid red line represents the atmospheric pCO2. b) The average in 
situ temperature along the UCFR.  
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Appendix C 
Supplemental Information for Chapter 4: Carbon Processing Domains: Seasonal and spatial 

controls on organic carbon in a montane river 

 

Figure S1. Log-log relationship of DOC as a function of discharge for each sampling 
site with a USGS gaging station. Individual points are colored by season and the 
coefficient of determination (R2), and linear equation are presented in the top-left of 
each panel.    
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Figure S2. The processing domains for DOC in Reach III during water year 2019 as an example 
used to follow the progression of processing domains through seasons. The red text and lines 
labelled “Rising Limb” and “Falling Limb” refer to the nature of the hydrograph during this time 
and correspond to Figure 3b. Black numbers next to each point indicate order of data (i.e., 1 = 
October 2018, 10 = June 2019, 16 = September 2019). These data are taken from Figure 7 of the 
main text. Reaches are organized by unique symbols and each symbol is colored by season. 
Symbols are sized by the change in hydraulic load (ΔHL) presented in Figure 5 of the main text 
to depict changes in discharge. A complete list of processing domain labels can be found in 
Figure 7 of the main text. Black dashed lines represent the 95% null boundaries for Feff = 0 and 
Cdwn:up = 1. 
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Figure S3. The processing domains for DOC for each reach in the UCFR. Note the change in scales of 
the x- and y-axes for each reach. Reaches are organized by unique symbols and each symbol is colored 
by season. Symbols are sized by the change in hydraulic load (ΔHL) presented in Figure 20 of the 
main text to depict changes in discharge for each reach. A complete list of processing domain labels 
can be found in Figure 21 of the main text. Black dashed lines represent the 95% null boundaries for 
Feff = 0 and Cdwn:up = 1. 
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Figure S4. The processing domains for DOC for each season in the UCFR. Note the change in 
scales of the x- and y-axes for each season. Reaches are organized by unique symbols and each 
symbol is colored by season. Symbols are sized by the change in hydraulic load (ΔHL) presented 
in Figure 20 of the main text to depict changes in discharge for each reach. A complete list of 
processing domain labels can be found in Figure 21 of the main text. Black dashed lines 
represent the 95% null boundaries for Feff = 0 and Cdwn:up = 1. 
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Figure S5. The processing domains for DOC in the UCFR for each water year. Reaches are 
organized by unique symbols and each symbol is colored by season. Symbols are sized by the 
change in hydraulic load (ΔHL) presented in Figure 20 of the main text to depict changes in 
discharge for each reach. A complete list of processing domain labels can be found in Figure 21 
of the main text. Black dashed lines represent the 95% null boundaries for Feff = 0 and Cdwn:up = 
1. One point for Reach III (i.e., Δ) during water year 2020 is not plotted here because it 
dominates the x-axis scale. Its (x,y) coordinate is given in the 2020 subplot and colored purple to 
correspond to the season (i.e., winter) it represents. 
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Figure S6. a) Comparison plots of Ctg and measured surface water samples of 
tributary DOC. Individual points are delineated by reach and season. The black 
dashed line is the 1:1 line and vertical and horizontal error bars represent the standard 
deviation of Ctg and measured tributary DOC samples, respectively. b) The error of 
estimated Ctg compared to measured tributary DOC. The black dashed line indicates 
zero error. Average Ctg error (estimated – measured) at ΔHL<0.42 m d-1 is 95 ± 164 
µmol L-1 while at ΔHL>0.42 m d-1 it is 270 ± 304 µmol L-1. 
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Figure S8. The relationship between derived measures of Ctg and Fbio along the UCFR separated 
by the breakpoint of ΔHL = 0.42 m d-1. Individual points are delineated by reach and season. 
The lines of best fit are denoted by the solid black lines and the R2 values are supplied in the 
upper right corner of each subplot. Vertical and horizontal error bars indicate the standard 
deviations of Ctg and Fbio for each point. Values are taken from Appendix C, Table S1. 
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Figure S9. Effective solute flux (Feff) for a) alkalinity (Alk), b) DIC, and c) 
hydrogen ion (Hyd) versus change in hydraulic load (ΔHL) across seasons and 
reaches in the UCFR. Reaches are represented by unique symbols colored by 
season. Black dashed lines represent limits for zero values. Data is for WY 2018-
2020. 
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Figure S10. The processing domains for a) alkalinity (Alk), b) DIC, and c) hydrogen 
ion (Hyd) along the UCFR and include data from WY 2018-2020. Note the change in 
scales of the x- and y-axes for each parameter. Reaches are organized by unique 
symbols and each symbol is colored by season. Symbols are sized by the change in 
hydraulic load (ΔHL) presented in Figure 20 of the main text to depict changes in 
discharge for each reach. A complete list of processing domain labels can be found in 
Figure 21 of the main text. Black dashed lines represent the 95% null boundaries for 
Feff = 0 and Cdwn:up = 1. 
 

0.0

2.5

5.0

7.5

10.0

0.6 0.8 1.0 1.2 1.4
Cdwn:up Alk

F e
ff_

Al
k (

m
ol

 m
-2

 d
-1

)

a)

0.0

2.5

5.0

7.5

10.0

0.6 0.8 1.0 1.2 1.4
Cdwn:up DIC

F e
ff_

D
IC

 (m
ol

 m
-2

 d
-1

)

b)

0.00

0.02

0.04

0.06

0.08

2 4 6
Cdwn:up Hyd

F e
ff_

H
yd

 (m
ol

 m
-2

 d
-1

)

c)

Reach
I
II
III
IV
V

DHL (m d-1)
0
2
4
6

Season
Fall
Spring
Summer
Winter



 
130 
 

Table S1. Estimated Ctg and Fbio values based on linear regression analysis and organized by 
reach, season, and breakpoint (ΔHL = 0.42 m d-1). NA indicates a value is not available. 

Reach Ctg (µmol L-1) Fbio (mol m-2 d-1) Season ΔHL (m d-1) 

I NA NA Fall <0.42 
I 239 ± 77NS -0.04 ± 0.03NS Winter <0.42 
I 203 ± 120NS  -0.0004 ± 0.03NS Spring <0.42 
I 179 ± 44*  0.004 ± 0.009NS Summer <0.42 
II 160 ± 21* 0.006 ± 0.006NS Fall <0.42 
II 117 ± 209NS -0.02 ± 0.02NS Winter <0.42 
II 380 ± 68* 0.02 ± 0.01NS Spring <0.42 
II 409 ± 44* 0.01 ± 0.004* Summer <0.42 
III NA NA Fall <0.42 
III 296 ± 41* -0.06 ± 0.01* Winter <0.42 
III NA NA Spring <0.42 
III 140 ± 44* 0.006 ± 0.02NS Summer <0.42 
IV 173 ± 41* -0.01 ± 0.01NS Fall <0.42 
IV 600 ± 131* -0.1 ± 0.03* Winter <0.42 
IV 374 ± 125* -0.05 ± 0.03NS Spring <0.42 
IV 230 ± 30* -0.009 ± 0.006NS Summer <0.42 
V 320 ± 358NS -0.08 ± 0.1NS Fall <0.42 
V 196 ± 41* -0.03 ± 0.01* Winter <0.42 
V NA NA Spring <0.42 
V -2 ± 103NS 0.03 ± 0.03NS Summer <0.42 
I 117 ± 59NS 0.04 ± 0.04NS Fall >0.42 
I 52 ± 66NS 0.03 ± 0.03NS Winter >0.42 
I 734 ± 94* -0.32 ± 0.09* Spring >0.42 
I NA NA Summer >0.42 
II NA NA Fall >0.42 
II NA NA Winter >0.42 
II 1932 ± 2720NS -0.8 ± 1.9NS Spring >0.42 
II NA NA Summer >0.42 
III 88 ± 84NS 0.04 ± 0.05NS Fall >0.42 
III 1176 ± 225* -0.5 ± 0.1* Winter >0.42 
III 451 ± 34* -0.17 ± 0.06* Spring >0.42 
III 435 ± 117* -0.2 ± 0.1NS Summer >0.42 
IV NA NA Fall >0.42 
IV NA NA Winter >0.42 
IV 882 ± 219* -0.3 ± 0.1NS Spring >0.42 
IV NA NA Summer >0.42 
V NA NA Fall >0.42 
V NA NA Winter >0.42 
V 446 ± 39* -0.25 ± 0.08* Spring >0.42 
V 465 ± 36* -0.20 ± 0.03* Summer >0.42 
NSNot statistically different from zero *Statistically different from zero (p<0.05) 
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