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Abstract 

As educational systems around the world attempt to reform their mathematics programs to 
increase students’ opportunities to engage in processes central to the practice of mathematics 
such as proof, it is important to understand how this mathematical act is portrayed in national 
curriculum documents that drive that change. This study examined the presence of reasoning-
and-proving (RP) in Ireland’s national reform-oriented secondary syllabi for junior cycle 
(ages 12-15) and senior cycle (ages 15-18) students. The analyses reveal that there were no 
differences among direct and indirect RP learning outcomes within each syllabus, but 
statistically significant differences did exist across syllabi in these categories. Students were 
provided with statistically different opportunities to engage in pattern identification, 
conjecture formulation, and argument construction in both syllabi. There were significantly 
fewer opportunities to engage in conjecture formulation for junior cycle students and 
significantly more opportunities to construct arguments for senior cycle students. There were 
no instances of proof as falsification across both syllabi, but students were given similar 
opportunities to experience proof as explanation, verification, and generation of new 
knowledge. Across both syllabi there were statistically significantly more RP learning 
outcomes that were divorced from content than those that were connected to content. The 
results as well as the implications of these results for the design of national curriculum 
documents are discussed. 
 
Keywords: pattern, conjecture, proof, standards, reform 
 
 

Introduction 
 

Mathematicians have argued that proof is the material with which mathematical structures 

are constructed (Schoenfeld, 2009). Proof is also becoming instantiated as an important 

component through which one learns school mathematics (Common Core State Standards 

Initiative [CCSSI], 2010; Epp, 1998; Hanna, 2000; Martin et al., 2009; National Council of 

Teachers of Mathematics [NCTM], 2000). Due to the acknowledgement of proof as 
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important in the practice and learning of mathematics researchers are beginning to analyze 

this practice (Hanna & de Bruyn, 1999) or practices related to it such as reasoning-and-

proving (RP) (Davis, Smith, Roy, & Bilgic, 2013; Stylianides, 2009) in textbooks. While 

analyses of standards at the state level in the United States for reasoning (Kim & Kasmer, 

2006) or for conjecturing and proving (Porter, McMaken, Hwang, and Yang, 2011) have 

been conducted, we know little about the standards in other countries with regard to proof or 

its related actions of pattern identification or conjecture formulation. National standards play 

an important role in shaping classroom practices in the United States (Cogan, Schmidt, & 

Houang, 2013), Ireland (National Council for Curriculum and Assessment [NCCA], 2012), 

and other countries (Eurydice, 2011). The curriculum documents at the center of this study 

are two national syllabi designed to describe the learning expectations for students ages 12-

18 studying mathematics in Ireland. These frameworks have been recently developed to drive 

a nation-wide reform of the Irish secondary mathematics system. This study introduces 

readers to a framework and methodology for examining RP in national curriculum 

documents and addresses the dearth of research of this type by enumerating the nature of RP 

within these two documents. The analysis of these documents for RP expands our knowledge 

of the nature of this important process in national curriculum documents and adds to our 

understanding of the potential effectiveness of RP in this reform. More broadly, this paper 

makes suggestions for how RP can be more interwoven into curriculum frameworks.  

Background 

Centrality of Proof-Related Constructs in Mathematics and Mathematics Education 

 Mathematicians have pointed out that the act of constructing proofs is essential to the 

practice of mathematics (Ross, 1998) or as Schoenfeld (2009) has stated, “If problem-solving 
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is the ‘heart of mathematics’, then proof is its soul (p. xii). National curriculum documents in 

the United States emphasize the centrality of proof in the learning of mathematics. 

Specifically, the Principles and Standards for School Mathematics (PSSM) (NCTM, 2000), 

which has driven reform in the United States for over a decade breaks down the instruction of 

mathematics into five content areas and five processes, one of which is reasoning and proof. 

The Common Core State Standards for Mathematics (CCSSM) (CCSSI, 2010) begins their 

document with eight standards for mathematical practice, which they argue should be present 

as students engage in the learning of mathematics. The third standard advocates for students’ 

construction of mathematical arguments or proof as well as the critiquing of arguments 

constructed by others. Other countries have also emphasized the importance of proof in the 

instruction of mathematics. For example, each of the syllabi documents produced by the 

NCCA in Ireland break mathematics content down into five different mathematics content 

strands. At the end of each of these content strands is a topic with the title: synthesis and 

problem solving skills. This topic includes the identification of patterns, formulation of 

conjectures, and explanation/justification of assertions. These three actions comprise the 

related processes of reasoning-and-proving as defined by Stylianides (2009).  

Ireland’s Secondary Educational System 

 The secondary educational system in Ireland consists of three components. The first 

component is called the junior cycle and lasts three years. At the end of the junior cycle 

mathematics students are required to complete an examination in one of three different levels 

of difficulty. The lowest level is foundation. The next highest level is ordinary and the most 

difficult level is higher. After completion of the junior cycle many schools provide students 

with an optional transition year for students. After the optional transition year students begin 
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the two-year senior cycle. At the completion of the senior cycle, students can opt to take one 

of three different levels of mathematics examinations: foundation, ordinary, or higher. 

Mathematics at both the junior and senior levels consists of five different strands: Strand 1 – 

Statistics and Probability; Strand 2 – Geometry and Trigonometry; Strand 3 – Number; 

Strand 4 – Algebra; and Strand 5 – Functions.  

 The NCCA developed the syllabus for Junior Cycle students and the syllabus for Senior 

Cycle students describing the content and methods of the Project Maths reform. Both the 

syllabus at the Junior Cycle and Senior Cycle level refer to individual standards using the 

words learning outcomes and this terminology is used to refer to them throughout the paper. 

The reform of the secondary mathematics program in Ireland, Project Maths, began with 24 

pilot schools in September 2008. These schools not only implemented the Project Maths 

curriculum, but also helped to revise the syllabi. Project Maths was designed to address high 

failure rates in mathematics for ordinary level students, low participation rates in the higher 

level Leaving Certificate program, a lack of conceptual understanding, and the difficulty 

students encountered in trying to use mathematical concepts in real-world contexts 

(Department of Education and Skills, 2010). In September 2010 the program was gradually 

implemented across Ireland beginning with the statistics/probability content strand. The last 

content strand to be implemented will be functions and will occur at the junior and senior 

levels in September 2012.  

 In the Junior Certificate Mathematics Syllabus: 2015 Examination (JC Syllabus) (NCCA, 

n.d.), students at the foundation level are expected to understand the same learning outcomes 

as ordinary level students. Higher level students are expected to understand all of the learning 

outcomes listed for ordinary and foundation level students as well as additional learning 
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outcomes identified in bold throughout the syllabus. In the Leaving Certificate Mathematics 

Syllabus: Foundation, Ordinary & Higher Level: 2014 Examination (hereafter referred to as 

the LC Syllabus) (NCCA, n.d.), learning outcomes are listed separately for foundation, 

ordinary, and higher level students. Foundation level students are expected to learn only 

those outcomes listed within this level. Ordinary level students are expected learn the 

outcomes for foundation and ordinary level. Higher level students are expected to learn the 

outcomes for foundation and ordinary as well as those listed within the higher level.  

 Consequently, higher level students are expected to learn more content than foundation 

and ordinary level students. For example, within the LC Syllabus, students at the foundation 

level are expected to learn how to complete three geometric constructions.  Students at the 

ordinary level are expected to learn the three geometric constructions at the foundation level 

as well as three more. Students at the higher level must learn the six constructions at the 

foundation and ordinary levels as well as sixteen more constructions. There are also 

differences across the levels in terms of the complexity of the learning outcomes that students 

are expected to learn. For instance, within the LC Syllabus students at the foundation level 

are expected to be able to apply the theorem of Pythagoras. Ordinary level students are 

expected to solve problems involving sine and cosine rules in two dimensions in addition to 

using the theorem of Pythagoras. Higher level students are asked to use trigonometry to solve 

problems in three dimensions in addition to the earlier described learning outcomes at the 

foundation and ordinary levels. After completing the LC Syllabus, 22.1% (11,131) of 

students opted to take the higher level examination, 67.2% (37,506) of students opted to take 

the ordinary level examination, and 12.4% (6,249) of students opted to take the foundation 

level examination (Reilly, 2012).  
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Importance of Syllabi Documents in Irish Mathematics Classrooms 

 The State Examination Commission in Ireland creates and administers the examinations 

at both the junior certificate and leaving certificate levels. Students who elect to take the 

foundation level Junior Certificate Examination complete one assessment while students at 

the ordinary and higher levels each take two assessments. Students at the foundation, 

ordinary, and higher levels will each take two Leaving Certificate examinations.  The junior 

certificate examination has all of the characteristics of a high stakes examination as students 

report an increase in homework demands during the third year of junior cycle focusing on the 

junior certificate examination, one-quarter of students enroll in private tutoring outside of 

school to prepare them for this exam, and students’ performance on the junior certificate 

examination influences the levels of courses (e.g., ordinary vs. higher) in which they enroll 

during the senior cycle (Smyth, 2009). At the end of the senior cycle, students receive points 

based upon the score and level of the leaving certificate test that they take. These points are 

used to determine students’ eligibility to enroll in different university programs. Universities 

in Ireland publish points associated with academic programs. These values represent the 

minimum number of points needed on leaving certificate exams in order to apply to these 

programs. In high demand programs students who achieve the minimum number of points 

may not be accepted into the program. Consequently, the leaving certificate examinations 

also hold high stakes for students.  

 Both the junior certificate and leaving certificate examinations are based upon content as 

delineated within syllabi developed by the NCCA. While professional development is being 

conducted in Ireland to help teachers understand the content and teaching approach 
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associated with Project Maths and textbooks now exist which purport to contain Project 

Maths content, the high stakes exams that students take at the junior and senior cycles are 

based upon syllabi documents produced by the NCCA. Accordingly, this study examines 

these documents for the presence of RP as they have an important influence on the nature of 

instruction in secondary mathematics classrooms in Ireland. 

Proof-Related Constructs in Mathematics Textbooks 

 A variety of studies have examined what I describe as proof-related constructs. These 

constructs include the following: development or discussion of arguments that 

mathematicians would consider valid proofs (Davis et al., 2013; Stacey & Vincent, 2009; 

Stylianides, 2005, 2009; Thompson, Senk, & Johnson, 2012); identification of patterns and 

development of conjectures (Davis et al., 2013; Stylianides, 2009); modes of reasoning 

(Stacey & Vincent, 2009); and proof-related reasoning consisting of making and testing 

conjectures, developing and evaluating deductive type arguments, locating counterexamples, 

correcting mistakes in arguments, creating specific and general arguments (Thompson et al.). 

Studies conducted on secondary mathematics textbooks in different countries suggest that 

students’ opportunities to engage in proof related constructs are limited. For instance, 

Stylianides (2009) found that only 5% of 4578 tasks appearing in a secondary mathematics 

program for students ages 11-14 in the United States asked students to construct valid 

arguments. Similar to homework exercises, students are provided with infrequent 

opportunities to read about valid mathematical arguments. By way of example, Thompson et 

al. assumed that mathematical properties needed to be justified and found that less than half 

of these mathematics building blocks appearing within the topics of exponents, logarithms 

and polynomials in 22 different high school mathematics texts were justified with valid 
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proofs.  

Reasoning and Proof in U.S. State and National Standards 

 Kim and Kasmer (2006) examined reasoning in 35 state curriculum frameworks in the 

United States from kindergarten through eighth grade. They found that 22 states contained a 

reasoning section or specific statements that reasoning should appear across all content 

strands. They also found inconsistencies in messages addressing reasoning within state 

frameworks. For example, they found that reasoning appeared infrequently at the primary 

level and was not consistent across different mathematics content strands. Some curriculum 

frameworks contained reasoning in a general sense that was separated from specific 

mathematics content. They also found that state frameworks contained inappropriate 

examples. That is, examples designed to represent reasoning focused on mathematical 

procedures. Some state curriculum frameworks lacked alignment between benchmarks or 

what students were expected to know at a certain grade level and their corresponding 

performance indicators. Oftentimes one of these curriculum components contained reasoning 

while the other did not.  

 Kim and Kasmer (2006) also examined the prevalence of different words associated with 

reasoning in the state curriculum frameworks. The word “prediction” was found in many 

state frameworks but was most prevalent in data analysis and probability. “Generalization” 

appeared most frequently in the algebra content strand. “Verification” appeared primarily in 

two mathematics content strands: Geometry and Number and Operations. More of these 

states reserved “verification” to the upper elementary grades. The word “conjecture” 

appeared in a little over half of the 35 states and primarily at grades 5-8. This action was 

primarily concentrated within Geometry and Data Analysis/Probability content strands. The 
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words “develop arguments” appeared in less than half of the state curriculum frameworks 

and predominantly in the Data Analysis and Probability strand. 

 The U.S. has traditionally been a decentralized curricular system with a variety of 

curricular frameworks at the state level and textbooks selected by entities that consist of 

several K-12 schools or individual schools (Dossey, Halvorsen & McCrone, 2008). However, 

this may now change with the advent of the Common Core State Standards in English 

language arts and mathematics, which has been adopted by 45 states in the U.S. Porter et al. 

(2011) examined the alignment among 27 state frameworks, Principles and Standards for 

School Mathematics (PSSM) (National Council of Teachers of Mathematics [NCTM], 2000), 

and the Common Core State Standards for School Mathematics (CCSSM) (Common Core 

State Standards Initiative [CCSSI], 2010). This study connects with the research conducted 

here since one of the categories of cognitive demand is labeled “Conjecture, generalize, 

prove.” They found that 7.78% of the learning outcomes across the 27 state frameworks and 

5.96% of the standards appearing in the Common Core State Standards for Mathematics 

involved conjecturing, generalizing, or proving. These percentages seem low given the 

centrality of these practices to mathematics. 

Research Questions 

 In summary, previous research suggests that students are provided with infrequent 

opportunities to engage in tasks or read text involving proof-related constructs within school 

mathematics textbooks in the United States as well as other countries. This finding is echoed 

in state curriculum frameworks and in the current Common Core State Standards for 

Mathematics. In curriculum frameworks in the U.S., RP appears in a variety of different 

guises such as prediction, verification, generalization, etc. The majority of state curriculum 
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frameworks contain either a specific reasoning section or general statements that reasoning 

should appear throughout the documents. However, these state frameworks also contained 

the following negative features with regard to RP: differential attention to reasoning across 

mathematics content strands, inconsistent messages being sent to teachers in different 

components of the frameworks, and the separation of reasoning from content. The study 

described in this paper builds on these previous studies with regard to national curriculum 

documents by using similar methodology, but with a slightly different framework. A total of 

four research questions guided this study. First, are there statistically significant differences 

in the frequency of RP learning outcomes by different content strands within each syllabus or 

across syllabi by student learning level? Second, are there statistically significant differences 

in the frequencies of mathematical ideas categorized as pattern identification, conjecture 

formulation, or argument construction by student learning level within each syllabus? Third, 

are there statistically significant differences in the purposes of proof by learning level within 

each syllabus? Fourth, are there statistically significant differences in the frequency of 

content and non-content related RP by student learning level within each syllabus?  

Framework  

 As Stylianides (2005) has pointed out, while different researchers have defined reasoning 

in a variety of ways, these definitions contain a common thread, proof. Indeed, a recent 

interpretation of a U.S. national standards document (Martin et al., 2009) defines reasoning 

as encompassing “proof in which conclusions are logically deduced from assumptions and 

definitions” (p. 4). Moreover, reasoning can consist of different levels of formality (NCTM, 

2000, 2009) and be connected to different mathematics content areas such as algebra 

(Walkington, Petrosino, & Sherman, 2013) or mathematical ideas such as proportion 
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(Jitendra, Star, Dupuis, & Rodriguez, 2013). Stylianides (2005) defined the term reasoning-

and-proving to consist of four potentially interconnected actions: pattern identification; 

conjecture formulation; developing non-proof arguments; and creating proofs. Support for 

Stylianides’ decision to connect pattern identification and conjecture development to 

reasoning and proof come from national standards documents produced by NCTM (1989, 

2000). The hyphens within this terminology denote two meanings. First, they signify that 

these actions can be integrated with one another. Second, they suggest that reasoning is 

connected to the development of proofs as opposed to other types of reasoning as described 

above. Stylianides developed an analytic framework for analyzing reasoning-and-proving 

opportunities in school mathematics textbooks. Several features associated with the learning 

outcomes appearing in standards documents suggest the need for changes to Stylianides’ 

analytic framework.  

 First, learning outcomes associated with standards documents come in differing levels of 

specificity (McCallum, 2012). As a result, learning outcomes require interpretation on the part 

of users and the analyses presented in this paper indicate potential RP processes. In addition, 

this feature has been taken into account in the framework through the creation of direct and 

indirect RP processes. Direct RP processes are defined as actions involving pattern 

identification, conjecture formulation, and/or argument construction as indicated within learning 

outcomes by the appearance of words tightly connected to these processes (e.g., pattern) 

coupled with a context that an expert would recognize as indicating evidence of these processes 

within a mathematical community of practice. Direct RP processes were used for identifying 

one or more of the RP categories within fine grain or narrowly specified standards document 

learning outcomes. For example, in both the JC Syllabus and the LC Syllabus a learning 
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outcome states that students should be able to formulate conjectures. Due to the close 

connection of this learning outcome to the RP framework through the word conjecture as well 

as the fact that this phrase appears within mathematics content standards suggests the presence 

of direct RP processes. 

 Indirect RP processes are defined as actions involving pattern identification, conjecture 

formulation, and/or argument construction as indicated within learning outcomes by the 

appearance of words loosely connected to one or more of these processes (e.g., investigate) 

coupled with a context that an expert would recognize as indicating evidence of these processes 

within a mathematical community of practice. Consider the following learning outcome 

appearing in the LC Syllabus: investigate theorems 7, 8, 11, 12, 13, 16, 17, 18, 20, 21 and 

corollary 6 (NCCA, n.d., p. 22). Readers of this document could interpret the word 

“investigate” in several different ways. That is, the investigation could consist of a tightly 

scripted set of steps that students are asked complete that does not include pattern identification, 

conjecture formulation, or argument construction. However, others could interpret “investigate” 

to include one or more of these RP processes. Thus learning outcomes that contained words 

such as investigate as well as a context as described above were coded as involving indirect RP 

processes. Additionally, the lack of specificity of some learning outcomes required the creation 

of methods for determining the frequencies associated with different components of the RP 

framework as described later within the methodology section.  

 Second, as standards documents will not contain statements asking students to 

construct non-proof arguments this component of the Stylianides’ framework was removed 

for this study.  Third, as standards documents do not typically contain specific examples of 

student problems, in contrast with school mathematics textbooks, it was not possible to 
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discern plausible from definite patterns or generic examples from demonstrations. In the case 

of the former plausible and definite patterns were collapsed into pattern identification and in 

the case of the latter generic examples and demonstrated were collapsed into argument 

construction. This lack of specific mathematical problems also necessitated the removal of 

pattern purposes and conjecture purposes from Stylianides’ framework. It was posited that 

words appearing in learning outcomes associated with the development of arguments could 

be used to determine the purposes associated with a proof. The analytic framework used in 

this study is shown in Figure 1. 

 Students may engage in pattern identification, conjecture formulation, and argument 

construction separately or in conjunction with one another as noted by the dashed arrows in 

Figure 1. For instance, learning outcomes may expect students to identify a pattern without 

constructing a conjecture or developing an argument. Other learning outcomes may expect 

students to engage in two (e.g., identification of a pattern followed by the construction of a 

conjecture) or all three of the framework components. If only one of the three components of 

the framework appeared within the syllabi documents, this was still considered an instance of 

reasoning-and-proving.  

 

Figure 1. Framework for analyzing reasoning-and-proving in syllabi documents. 



Davis 
 

  

Identification of patterns was defined as the act of locating a key feature or key features in a 

set of data existing in a variety of different forms that one has not encountered before and for 

which a procedure has not been previously introduced. Conjecturing consists of the 

development of a reasoned hypothesis extending beyond a particular set of data existing in 

different representational forms and expressed with uncertainty as to its validity. Argument 

construction involved the creation of valid proofs, which consist of a set of accepted 

statements, modes of argumentation, and modes of argument representation (Stylianides, 

2007).  

 Learning outcomes that were coded as argument construction were later categorized in 

terms of the purposes that these proofs served. In analyzing the work of De Villiers (1990, 

1999) and others (e.g., Hanna, 1990), Stylianides (2005) described four different purposes of 

proof that can be coded in curriculum materials: explanation; verification; falsification; and 

generation of new knowledge. Explanation denotes why a particular assertion is valid. 

Verification establishes the truth of a particular assertion. Falsification shows that a particular 

assertion is false. Generation of new knowledge occurs when a proof develops knowledge 

that was not previously known by a particular group of individuals. 

Methodology 

Units of Analysis 

 Electronic copies of the JC Syllabus and the LC Syllabus were examined for instances of 

RP. These documents describe the Project Maths reform at the junior certificate and leaving 

certificate levels, respectively. The four research questions described above necessitated two 

phases of analysis. The first phase involved enumerating the number of learning outcomes 
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categorized as containing direct and indirect RP processes. The second phase involved 

identifying and categorizing learning outcomes as involving pattern identification, conjecture 

formulation, or argument construction. Electronic versions of the JC Syllabus and the LC 

Syllabus were the sources used for both phases of the analysis. Each document contains five 

different mathematics content strands with the learning outcomes in each strand appearing in a 

matrix format as seen in Figure 2. 

 

Figure 2. Excerpt from the LC Syllabus (NCCA, n.d., p. 17).  

 The first column represents a general mathematics content area with the subsequent columns 

representing learning outcomes associated with the general mathematics content area 

differentiated by student learning level. A unit of analysis needed to be defined in order to 

enumerate the RP learning outcomes appearing in both documents. Since both documents 

contained the same structure shown in Figure 2, the phrase following a dash was defined as a 

learning outcome and hence became the unit of analysis for the first phase of the study.  

 The second phase of the study involved distinguishing among different components of the 

RP framework (e.g., pattern identification) embedded within a specific learning outcome. 

Analyses of both the JC Syllabus and the LC Syllabus suggested that one or more mathematical 

ideas could appear within what was defined as a learning outcome. A mathematical idea was 
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identified as the set of words separated by commas, plural forms, or by conjunctions such as 

and. For instance, consider the following learning outcome appearing in the LC Syllabus: prove 

theorems 11, 12, 13 concerning ratios (NCCA, n.d., p. 22). While this was considered to be one 

learning outcome it was composed of three related mathematical ideas involving argument 

construction.  

Coding 

 Kim and Kasmer (2006) employed a methodology whereby words associated with 

reasoning (e.g., predict) were located and used as evidence that students were expected to 

engage in reasoning. In this study, a similar process was used to locate learning outcomes 

that indicated the potential for students to engage in RP. Table 1 lists the words that 

suggested but did not determine direct and indirect RP processes. Recall that the context 

within which these words appeared also needed to be evaluated to finally categorize learning 

outcomes as either direct or indirect RP processes.   
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Table 1 

Words Linking Potential Direct and Indirect RP Processes and RP Framework Components 

Word RP Framework 

Direct 

Pattern Pattern Identification 

Conjecture, Guess, Hypothesis, Predict Conjecture Formulation 

Explain, Argument, Prove, Proving, Proof, Justify, Show, 

Generalize, Generate Rules, Derive, Disprove, 

Counterexample 

Argument Construction 

Indirect 

Describe, Interpret Pattern Identification 

Evaluate, Verify, Analyze Argument Construction 

Explore Pattern Identification,  

Conjecture Formulation 

Investigate Pattern Identification,  

Conjecture Formulation, 

Argument Construction 

Draw Conclusions Argument Construction 

 

 As can been seen from Table 1, direct RP processes consisted of words that either 

appeared in the RP framework (pattern, conjecture, argument) or were closely connected to 

these components (e.g., predict). Table 1 also lists the words associated with indirect RP 
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processes. These words were less tightly connected to the three main RP categories and 

hence could be interpreted in a variety of different ways by teachers and students. For 

instance, the word investigate is defined in the following manner: to examine, study, or 

inquire into systematically; search or examine into the particulars of; examine in detail 

(dictionary.reference.com). 

 The words search or examine contain the potential for components of the RP framework 

such as looking at a set of data for a pattern or patterns to exist. Thus the appearance of 

words within the syllabi documents that suggested processes similar to the identification of 

patterns, formulation of conjectures, and development of arguments were also used as 

potential evidence of components of the RP framework.  

 The word explore was used to potentially indicate pattern detection and conjecture 

formulation, but not argument as the word did not necessarily denote the location and 

solidification of mathematical ideas. Similar to direct instances of RP, the context in which 

words denoting indirect RP were used was taken into consider to determine if the learning 

outcome was indeed connected to RP. Consider the following learning outcome from the JC 

Syllabus: explore the properties of points, lines and line segments including the equation of a 

line (NCCA, n.d., p. 20). This instance of the word explore in this example would account for 

pattern identification and conjecture formulation. Moreover, since explore is used with 

respect to four different mathematical ideas (properties of points, lines, line segments, and 

the equation of a line) four instances of pattern detection and four instances of conjecture 

formulation would be enumerated for this single learning outcome. However, no argument 

construction instances would be coded here as explore was not considered to encompass this 

component of the RP framework.  
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 Given the definition of the word investigate included above it held the potential to 

involve the identification of patterns and construction of conjectures. In addition, it was 

assumed that students engaged in an investigation would locate a mathematical idea. That is, 

there would be an endpoint at which the investigation would be completed. This suggested 

that students involved in an investigation would also be asked to construct a valid argument 

showing that the mathematical idea they located and conjectured actually existed.  

 The words draw conclusions held the potential to indicate argument development, but not 

pattern identification or conjecture formulation. The location of other words in the syllabi 

documents potentially indicated the presence of pattern identification and argument 

construction. The words interpret and describe were used to potentially indicate 

identification of patterns. The following words were used as potential evidence of the 

construction of valid arguments: evaluate, verify, analyze, and develop. 

 Both syllabi were examined for presence of the words appearing in Table 1. Once a word 

appearing in the table was identified, the rest of the learning outcome associated with this 

word was considered the context associated with this word. The word was potentially 

connected with one or more RP categories as indicated in Table 1. The context was examined 

to determine if there was agreement between it and the RP category definitions associated 

with that word. The learning outcome was categorized as RP-based if there was no aspect of 

the context that disagreed with the RP category definitions and the context could be 

interpreted as involving one or more of the RP categories as determined by the main coder. 

This process is illustrated in the following example. Students at the leaving certificate level 

are asked to: “use the following terms related to logic and deductive reasoning: theorem, 

proof, axiom, corollary, converse, implies” (p. 22). The presence of the word proof here 
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suggests the potential for a direct RP process and subsequently an RP-based learning 

outcome, yet the context involving the words use the following terms suggests that students 

are not required to develop a proof.  

 Determining frequency of occurrences. Recall that in the first phase of the study the 

information after a dash in the learning outcomes indicated one instance. In the second phase 

of the study each learning outcome was broken down into mathematical ideas that were 

examined for one or more of the three RP categories. In some cases, the mathematical ideas 

were specifically listed within the learning outcome, resulting in a straightforward 

determination of the number of occurrences of that particular idea. For instance, in the JC 

Syllabus the following learning outcome appears: explore the properties of points, lines and 

line segments including the equation of the line (NCCA, n.d., p. 20). The word explore 

suggests the presence of indirect RP processes, but the language here illustrates that four 

different mathematical ideas are involved: points, lines, line segments, and the equation of 

the line. Other learning outcomes used plural forms. For example, the following learning 

outcome appears in the LC Syllabus: generate rules/formulae from those patterns (NCCA, 

n.d., p. 25). In this example, plural forms (rules/formulae) are used and since the exact 

number was not described in the syllabus it was counted as two instances of argument 

construction. Whenever plural forms were used in RP-based learning outcomes, these were 

counted as two mathematical ideas. 

 Identifying proof purposes. Table 2 shows how words associated with argument 

construction in analyses of the syllabi documents were connected to the four proof purpose 

categories described in the framework. The word explain indicated the construction of an 

argument, the purpose of which was coded as explanation. One definition of the word 
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analyze is as follows: To examine carefully and in detail so as to identify causes, key factors, 

possible results, etc. (www.dictionary.com). This suggests that an analysis leads to a better 

understanding of a mathematical idea, which helps to explain why something is the case. 

Consequently, the word analyze was linked to an explanation proof purpose. Words that were 

more closely associated with the development of a valid argument (e.g., prove) were coded 

as verification as these words were often used in association with some mathematical idea 

such as in the following learning outcome from the LC Syllabus document: “prove that √2 is 

not rational” (NCCA, n.d., p. 25). Since the statement assumes that √2 is not rational, the 

development of an argument would verify that this is indeed the case and hence would 

constitute a verification proof purpose. 

 The presence of words such as counterexample or disprove suggested that students were 

expected to show that some specific idea was not true in general leading to a falsification 

proof purpose. Likewise, if students were asked to determine the validity of some 

mathematical idea that was not true in general with words such as determine if ________ is 

true this was considered to be a falsification proof purpose. The proof purpose of generation 

of new knowledge was linked to the following words: generalize, generate rules, derive, 

investigate, and draw conclusions. The word, investigate, was considered to be involved in 

the generation of new knowledge as this word suggests that students working with a 

mathematical idea that they had not previously examined. In some cases there were generic 

descriptions of RP learning outcomes. For example, the learning outcome involving the 

words justify conclusions within the synthesis and problem-solving skills section in each 

mathematics content strand involved the development of an argument, but could not be coded 

for a purpose. Such instances were simply coded as unclear. In Stylianides’ work, each 
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argument could potentially be coded within multiple proof purpose categories, however, in 

this study each RP learning outcome was only placed into one category.  

Table 2 

Words Used to Identify Proof Purposes 

Words Indicating Argument Construction Proof Purpose 

Explain, Analyze Explanation 

Argument, Prove, Proving, Proof, Justify, Show, Evaluate, 

Verify 

Verification 

Counterexample, Disprove, Determine if ________ is true Falsification 

Generalize, Generate Rules, Derive, Investigate, Draw 

Conclusions, Develop 

Generation 

 

Inter-rater Reliability 

 The author was the primary coder of both syllabi documents. However, in order to 

determine the reliability of the framework and the coding system another individual 

possessing experience with the RP framework read through the framework and methodology 

descriptions and coded two content strands from the JC Syllabus and two strands from the 

LC Syllabus for RP-based learning outcomes. This individual coded the Probability and 

Statistics strand and the Number strand within the JC Syllabus as these two strands contain a 

range of RP-based learning outcomes. The inter-rater reliability using unweighted Cohen’s 

Kappa for this coding was 0.9276. Landis and Koch (1977) consider these values to represent 

almost perfect agreement. The Geometry and Trigonometry strand and the Algebra strand 

were coded within the LC Syllabus. These strands were chosen to provide information about 
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the reliability of coding RP-based learning outcomes within different mathematics content 

areas. The inter-rater reliability using unweighted Cohen’s Kappa for this strand was 0.7682. 

This lower value when compared to the JC Syllabus was due to the second coder identifying 

words associated with the framework without also attending to the context of the learning 

outcome within which the word was embedded. For instance, the second coder identified the 

word interpret in the algebra content strand to indicate the presence of RP, however, the 

context of the learning outcome is related to interpreting the results of solving equations 

considered as functions. Such an action does not indicate the pattern identification as it is 

described in the framework. While this is less than the inter-rater reliability for the strands 

coded within the JC Syllabus Landis and Koch still consider this value to denote substantial 

agreement.   

Analysis 

 For the first phase of the study, learning outcomes coded as direct and indirect RP 

processes were enumerated. The total number of learning outcomes appearing in each 

mathematics content strand was then used with the aforementioned numbers to calculate the 

number of non-RP learning outcomes. The relationship between content strand and 

direct/indirect/non-RP learning outcomes by student learning level within each syllabi was 

examined using Pearson’s Chi Square and Fisher’s Exact Test (Field, 2009).  

 In the analysis associated with the second phase of the study, direct and indirect 

processes were collapsed together as they both involved RP. The percentage of RP learning 

outcomes that contained pattern identification, conjecture formulation, and argument 

construction were calculated for each mathematics content strand across both syllabi in the 

following manner. First, the number of RP-based learning outcomes within each strand at 
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each student level was enumerated. For example, in the Statistics/Probability strand of the JC 

Syllabus there were a total of seven RP-based learning outcomes. Second, the number of 

learning outcomes associated with each RP category was counted. Using the example of the 

Statistics/Probability strand of the JC Syllabus, three of the seven RP-based learning 

outcomes involved pattern identification resulting in 3/7 * 100 or 42.9%. The total number of 

RP-based learning outcomes providing students with opportunities to identify patterns, 

formulate conjectures, and construct arguments were enumerated within each learning level 

across both syllabi. Because mathematical ideas can be coded as one or more of the three RP 

categories (pattern identification, conjecture formulation, or argument construction) a 

Cochran Q test, which takes interdependence across categories into account (Conover, 1999) 

was used to examine if the distribution of mathematical ideas across these three categories 

within a student learning level and syllabus were statistically significantly different from one 

another. It was not possible to conduct Chi Square tests on the relationship between student 

learning level and RP-based learning outcomes within either the JC Syllabus or LC syllabus 

as these learning outcomes were not independent because upper level learning outcomes 

subsumed learning outcomes at lower levels, but also included new learning outcomes 

specific to that level.  

 Connectedness of RP learning outcomes to content. Each of the learning outcomes that 

had been coded as involving RP in the process described earlier were further examined to 

determine if they were content related or not. For instance, the following learning outcome 

from the Number strand of the JC Syllabus was considered to be content related: “investigate 

the nets of rectangular solids” (NCCA, n.d., p. 24). An RP learning outcome was judged to 

be unrelated to content if it did not mention any mathematical content or ideas as seen in the 
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following RP learning outcome from the Statistics/Probability strand of the LC Syllabus: 

“decide to what extent conclusions can be generalised [sic]” (NCCA, n.d., p. 18). The 

percentage of learning outcomes by level and strand that were content-related and not related 

to content were calculated and compared across strands and syllabi. Fisher’s Exact Test was 

used to determine if there were differences in the distribution of content and non-content 

related RP learning outcomes by strand for different student levels.  

 An ∝= 0.05 level of significance was used for the Pearson’s Chi Square, Fisher Exact, 

and omnibus Cochran’s Q test. There were a total of three different RP levels resulting in 

three different comparisons for contrasts between two different RP levels. Contrasts using 

Cochran’s Q test were examined using an ∝= 0.0167 level of significance. This value comes 

from a Bonferroni correction  to reduce type I error as there are three different comparisons 

to be made and .05/3 =.0167 (Field, 2009). 

Results 

Indirect, Direct, and Non-RP Learning Outcomes 

 The relationship between direct/indirect/non-RP learning outcomes and content strand for 

foundation/ordinary level in the JC Syllabus were not statistically significant, 𝜒2(8) =

 8.012,𝑝 = .424. Similar results were found at the higher level in the JC Syllabus between 

content strand and direct/indirect/non-RP learning outcomes, 𝜒2(8) = 9.575,𝑝 = .279. In 

the LC Syllabus the relationship between direct/indirect/non-RP learning outcomes and 

content strands for foundation level, (𝜒2[8] =  8.875, 𝑝 = .275), ordinary level, (𝜒2[8] =

5.801,𝑝 = .667), and higher level, (𝜒2[8] = 11.113,𝑝 = .164) were statistically 

nonsignificant. That is, the distribution of direct, indirect, and non-RP learning outcomes by 

student learning level was not statistically dissimilar across mathematics content strands for 
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either the JC or LC Syllabus.  

 The frequency and percentage of learning outcomes that were categorized as involving 

direct, indirect, and non-RP across the foundation/ordinary and higher level for the JC 

Syllabus and for the LC Syllabus are shown in Table 3 and 4, respectively. In order to make 

comparisons in these categories across syllabi the learning outcomes at the foundation and 

ordinary levels in the LC Syllabus were combined. There was a statistically significant 

relationship between learning outcomes categorized as direct/indirect/non-RP and 

foundation/ordinary level students within the JC Syllabus and the LC Syllabus, 𝜒2(2) =

14.796, p = .001. A similar situation existed between these categories and higher level 

students in the JC and LC Syllabi, 𝜒2(2) = 20.637, p < .001. 

Table 3 

Direct, Indirect, and Total Learning Outcomes in the JC Syllabus by Level 

 Foundation/Ordinary  Higher 

 Ta Db Ic  T D I 

 141 21 

(14.9%) 

29 

(20.6%) 

 172 22 

(12.8%) 

36 

(20.9%) 

a T represents the total number of learning outcomes in this strand and level. 

b D represents the total number of direct RP-based learning outcomes in this strand and level. 

c I represents the total number of indirect RP-based learning outcomes in this strand and 

level. 
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Table 4 

Direct and Indirect RP Learning Outcomes in the LC Syllabus by Strand and Level 

 
Foundation  Ordinary  Higher 

Ta Db Ic  T D I  T D I 

97 19 

(19.6%) 

9  

(9.3%) 

 183 21 

(11.5%) 

13 

(7.1%) 

 240 29 

(12.1%) 

15 

(6.3%) 

a T represents the total number of learning outcomes in this strand and level. 

b D represents the total number of direct RP-based learning outcomes in this strand and level. 

c I represents the total number of indirect RP-based learning outcomes in this strand and 

level. 

Mathematical Ideas Categorized as Patterns, Conjectures, and Arguments 

 Table 5 shows the breakdown in the three RP categories within the JC Syllabus when 

direct and indirect RP-based learning outcomes are combined. The differences across these 

three categories in the JC Syllabus for foundation/ordinary level students were statistically 

significant, Q(2) = 24.163, p < .001. There were statistically significant differences between 

pattern and conjecture, Q(1) = 15.000, p < .001, and between conjecture and argument, Q(1) 

= 19.282, p < .001.  There were no statistically significant differences between pattern and 

argument, Q(1) = 5.628, p = .018. The differences across these three categories in the JC 

Syllabus for higher level students were statistically significant, Q(2) = 29.163, p < .001. 

There were statistically significant differences between pattern and conjecture, Q(1) = 

15.000, p < .001, between conjecture and argument, Q(1) = 22.277, p < .001, and between 

pattern and argument Q(1) = 8.000, p = .005.  
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Table 5  

Mathematical Ideas Categorized as RP by Student Level within the JC Syllabus 

 Foundation/Ordinary   Higher  Totalsd 

 Pa Cb Ac  P C A  

 61 

(50.0%) 

46 

(34.0%) 

83 

(70.0%) 

 72 

(50.0%) 

57 

(34.5%) 

105 

(70.7%) 

239 

(100.0%) 

a P represents pattern identification. 

b C represents conjecture formulation. 

c A represents the construction of valid arguments. 

d Only the RP categories for the higher level have been added for this column as it contains 

all  

Appendix A shows the breakdown in the three RP categories within the LC Syllabus 

when direct and indirect RP-based learning outcomes are combined. The differences across 

these three categories in the LC Syllabus for foundation level students were statistically 

significant, Q(2) = 29.280, p < .001. The differences between pattern and conjecture were not 

statistically significantly different from one another, Q(1) = 2.000, p = .157. However, there 

were statistically significant differences between conjecture and argument, Q(1) = 15.000, p 

< .001, and between pattern and argument, Q(1) = 13.520, p < .001.  

The differences across these three categories in the LC Syllabus for ordinary level 

students were statistically significant Q(2) = 24.571, p < .001. The differences between 

pattern and conjecture were not statistically significantly different from one another, Q(1) = 

4.000, p = .046. However, there were statistically significant differences between conjecture 
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and argument, Q(1) = 15.077, p < .001, and between pattern and argument, Q(1) = 10.286, p 

= .001.  

The differences across these three categories in the LC Syllabus for higher level students 

were statistically significant Q(2) = 54.320, p < .001. The differences between pattern and 

conjecture were not statistically significantly different from one another, Q(1) = 4.000, p = 

.046. However, there were statistically significant differences between conjecture and 

argument, Q(1) = 31.113, p < .001 and between pattern and argument Q(1) = 24.653, p = 

.001.  

Argument Purposes 

 The most obvious pattern in the area of argument purposes is the omission of proof as 

falsification across both the JC and LC Syllabi as well as across different student learning levels. 

The differences for Foundation/Ordinary learning levels in proof purposes between the JC 

Syllabus and the LC Syllabus were statistically nonsignificant, 𝜒2(2) =  1.022, p = .600. A 

similar finding appeared in proof purposes at the higher level across both syllabi, 𝜒2(2) =  .327, 

p = .849.  

Connectedness of RP Learning Outcomes to Content 

 Tables 6 and 7 show the breakdown of content- and non-content related RP learning 

outcomes by strand within the JC Syllabus and LC Syllabus, respectively. The distribution of 

content and non-content RP-based learning outcomes by strand was statistically significant for 

foundation/ordinary level students as Fisher’s Exact test had a value of 13.615, p = .005. These 

differences were also statistically significant for higher level students as the value for Fisher’s 

Exact test was 16.844, p = .001. These differences also appeared at the foundation level (14.884, 

p = .001), ordinary (13.638, p = .004), and higher level within the LC Syllabus (14.679, p = 
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.003).  

 Across both syllabi the majority of RP learning outcomes were divorced from specific 

mathematics content. The only strand within the JC Syllabus where this didn’t occur was in 

number. The ratio of non-content-related to content-related RP learning outcomes decreased as 

one moved from lower levels in both syllabi. For instance, in the JC Syllabus at the 

foundation/ordinary level this ratio was 2.2:1, while at the higher level this ratio had dropped to 

1.6:1.  

Table 6 

Frequency of Content and Non-Content Related RP Learning Outcomes by Content Strand and 

Level in JC Syllabus 

Strand  Foundation/Ordinary  Higher 

  Ca NCb  C NC 

Statistics/Probability  1 6  2 7 

Geometry/Trigonometry  1 4  2 4 

Number  8 7  12 7 

Algebra  6 13  6 13 

Functions  0 5  0 5 

Total  16 35  22 36 

a Content-related RP learning outcome. 

b Non-content-related RP learning outcome. 
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Table 7 

Frequency of Content and Non-Content Related RP Learning Outcomes by Content Strand and 

Level in LC Syllabus 

Strand   Foundation  Ordinary  Higher 

   Ca NCb  C NC  C NC 

Statistics/Probability   1 5  2 5  2 6 

Geometry/Trigonometry   2 4  2 5  4 5 

Number   2 6  4 6  6 10 

Algebra   0 4  0 4  1 4 

Functions   0 4  1 4  2 4 

Total   5 23  9 24  15 29 

a Content-related RP learning outcome. 

b Non-content-related RP learning outcome 

Discussion 

 As Hiebert (2003) has pointed out, mathematics standards are value judgments that are a 

composite of society-based values, best educational practices, research, and the visions of what 

professionals would like students to learn. While research cannot choose standards, this study 

represents an effort to investigate one country’s mathematics standards using an analytic 

framework generated for research into curriculum that is grounded in how mathematicians 

engage in the practice of mathematics and is aligned with descriptions of reasoning related to 

proof in school mathematics (NCTM, 2000). The placement of the Synthesis and Problem 

Solving skills section within each of the content strands in both the Irish JC and LC syllabus 

suggests that the authors of these documents believe that RP is essential for students’ learning of 
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mathematics. Consequently, this study was designed to examine the nature of RP within the 

learning outcomes in these syllabi.  

 The two syllabi analyzed in this study are the main drivers of reform in Ireland’s centralized 

educational system as they set the learning outcomes from which students’ high stakes 

assessments at the Junior Certificate and Leaving Certificate levels are created. The designers of 

both syllabi did a good job of providing students with equitable opportunities to engage in direct 

and indirect RP learning outcomes as there were no statistically significant differences in these 

categories among different mathematics content strands in both syllabi. However, there were 

differences in the learning outcomes within these categories between the two syllabi. Thus, while 

each syllabus appeared to exhibit internal consistency in learning outcomes across these three 

categories there was less consistency across syllabi. 

 When direct and indirect learning outcomes were combined and mathematical ideas were 

categorized as pattern identification, conjecture formulation, and argument construction 

statistically significant differences appeared within each syllabus by student learning level. In the 

JC Syllabus at the foundation/ordinary level, there were statistically significantly more 

conjecture opportunities than pattern identification or argument construction. In the JC Syllabus 

at the higher level students were given different opportunities to engage in all three categories. In 

the LC Syllabus students at all learning levels were given more opportunities to develop 

arguments than identify patterns or make conjectures. The falsification purpose of proof did not 

appear in either syllabus. In addition, there were no differences across syllabi by student learning 

level within argument proof purposes. In each syllabus by student learning level, there was a 

statistically higher prevalence of non-content than content related RP learning outcomes.  

In terms of the research community, this study developed and advanced the use of indirect 
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and direct reasoning-and-proving forms for the analysis of national curriculum documents. In 

addition, it supplied researchers with a set of keywords to be used to suggest the potential for 

indirect and direct RP forms. The lack of actual tasks appearing in curriculum documents 

necessitated an adapted RP framework based upon the work of Stylianides (2009). If national 

curriculum architects in other countries value RP, the framework presented in this paper can be 

used as a tool to construct documents integrating these processes into student learning outcomes. 

The results of this study provides researchers as well as educational stakeholders in other 

countries with a baseline set of data from which similar analyses of other national curriculum 

documents can be compared. Moreover, the location of RP elements within national curriculum 

documents can be followed up with the identification of these elements within textbooks, 

classroom lessons as well as the assessed curriculum to determine the alignment of these 

components vis-à-vis RP. 

Vocabulary 

 Both direct and indirect instances of the framework were considered to be valid forms of RP 

in this study. However, indirect RP learning outcomes are more open to interpretation by readers 

and as the bandwidth of that interpretation increases there is a greater chance that interpretations 

by users of the curriculum documents may differ from those of the authors. For instance, within 

the number content strand the LC Syllabus expects ordinary and higher level students to 

“investigate the operations of addition, multiplication, subtraction and division with complex 

numbers C in rectangular for a + ib” (NCCA, n.d., p. 25). In this study, the verb investigate was 

coded as involving pattern identification, conjecture formulation, and argument construction. In 

an activity book for ordinary level leaving certificate students in Ireland (Keating, Mulvany, & 

O’Laughlin, 2012), students are asked to calculate (2 + 5i) + (3 + 4i) and later calculate (3 + 4i) 



Davis 
 

+ (2 + 5i). Students are then asked to fill in the blank in the following sentence, This illustrates 

that addition is a c________________ operation on the set of complex numbers” (p. 62). Thus 

the textbook authors’ interpretations of the word investigation appearing in the syllabus in this 

instance focus on pattern identification only and the requirement that students make an assertion 

that is based only on two examples may promote an empirical proof scheme (Harel & Sowder, 

1998).  

 Vocabulary issues also arose in the section titled Synthesis and Problem-Solving Skills. That 

is, this section contained identification of patterns, development of conjectures, and the 

justification of conclusions yet from the title it is not obvious that this section pertains to 

reasoning-and-proving. As a result, national curriculum frameworks should carefully define 

mathematical processes such as synthesis, investigate, analyze, synthesis, etc. so that teachers, 

curriculum developers, and others interpret such words in similar ways that are aligned with the 

perspective of mathematics that policy statements are intended to promote. Another tact for 

national curriculum developers is to use direct RP forms to reduce the chances of 

misinterpretation if they wish to provide students with opportunities to engage in these 

mathematical processes.  

Presenting RP Apart from Content 

 The appearance of RP in non-content-related learning outcomes in this study was similar to 

what Kim and Kasmer (2006) found with regard to reasoning in state curriculum frameworks in 

the United States. The decision of policy architects to embed mathematical processes such as RP 

apart from content may not lead to an increase in RP in mathematics classrooms for three 

reasons. First, teachers may choose not to read non-content-related RP learning outcomes 

thereby failing to implement them in the classroom because they are in pursuit of content that 
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students need to learn and that could be assessed on high stakes assessment. Second, for teachers 

who may have little experience learning about mathematical ideas through pattern identification, 

conjecture formulation, and argument construction, it may be difficult to decide how 

mathematical ideas that they may have learned in less meaningful ways could be reimagined to 

incorporate these processes when they are not directly connected to content in the syllabi 

documents. Third, as Bieda (2010) has noted, incorporating opportunities for students to engage 

in RP opportunities during classroom lessons takes time. If teachers feel rushed to prepare 

students for high stakes examinations they may feel that they do not have the time for such 

activities as they appear to be an addendum to the syllabus by their presence in locations other 

than where content is listed.  

Writers of national curriculum documents could seek to bridge the chasm between content 

and RP in two ways. First, they could weave the presence of RP as a central act of mathematics 

into individual learning outcomes. Take for example the learning outcome related to the 

fundamental principle of counting within the JC Syllabus. Currently, this learning outcome is 

stated in the following way: “apply the fundamental principle of counting” (NCCA, n.d., p. 15). 

As written, this learning outcome may focus teachers’ work on providing students with practice 

using this mathematical idea to solve problems and less emphasis may be placed on 

understanding why this principle is valid. This learning outcome could be rewritten in the 

following way to increase the possibility that teachers would more tightly integrate RP within 

student learning opportunities related to it: “develop and apply the fundamental principle of 

counting.” The word develop could be defined up front to involve the identification of patterns, 

development of conjectures, and/or construction of arguments.  

 Second, a characteristic common to national standards documents is the listing of particular 
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learning outcomes or objectives. The words used to label this component could be altered to 

make RP a more central component of the process of learning mathematical ideas. For example, 

the column headings in the tables listing learning outcomes in the JC and LC syllabi are written 

as follows: “students should be able to” (p. 15). These headings could be changed to better 

emphasize the centrality of RP in learning outcomes through the alteration of these column 

headings to incorporate the following processes: pattern identification, conjecture formulation, 

and/or argument construction. Learning outcomes appearing in syllabi documents would then list 

mathematical ideas such as the fundamental principle of counting.  

Location of Mathematical Processes 

 The Common Core State Standards for School Mathematics (CCSSM) (CCSSI, 2010), a set 

of national standards in the United States, contain a section titled, Standards for Mathematical 

Practice. These standards include a variety of mathematical processes some of which connect to 

RP such as: Construct viable arguments and critique the reasoning of others. This section appears 

at the beginning of the document apart from where content objectives are located. Both the Irish 

JC Syllabus and the LC Syllabus include a section titled Synthesis and Problem-Solving Skills 

containing components of the RP framework used here, but it appears at the end of each content 

strand. In both cases, mathematical processes that curriculum writers believe are central to the 

act of engaging in mathematics, appear apart from content objectives. This organization choice 

may cause teachers to underplay the role of RP in engaging in and learning mathematics (Cobb 

& Jackson, 2011).  

Proof Purposes 

 The falsification purpose of proof was missing across all levels within both syllabi. 

Accordingly, students may not have an opportunity to learn about the fundamental role that 
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counterexamples play in showing the falseness of an assertion. The lack of falsification proof 

purposes in the Irish National Syllabi was also found in a set of U.S. reform-oriented 

mathematics textbooks for students ages 11-14 by Stylianides (2009). Policy statements as 

embedded within national syllabi should not only describe objectives in terms of specific 

mathematical ideas that students need to learn, but should also explicitly promote the 

development of counterexamples connected to content as specific learning outcomes. For 

example, students could be asked to show that matrix multiplication is not commutative.  

Conclusion 

 Centralized educational systems can be thought of as an interconnected web of different 

components. National curriculum documents occupy the central position within this web and are 

connected to other components within this system via radials. Thus in understanding these 

systems, it is important to begin with the national curriculum documents that hold this system 

together. In a similar vein, mathematics can be considered a web, the center of which is held 

together via reasoning-and-proving. Components of the two national curriculum documents 

examined here as well as national standards in other countries (NCTM, 2000) value RP as a 

vehicle by which school students learn mathematics. This study represents an initial foray into 

the analysis of national curriculum documents through a research-based analytic framework 

designed to examine RP in curricula. This study provides methodological contributions to future 

national curriculum analyses through the development of indirect and direct RP categories and 

the creation of a set of keywords suggesting the potential for each of these processes. While the 

analyses described in this study focus on Irish national syllabi, the results suggest ways in which 

RP can be made more central within national curriculum frameworks in general. These 

suggestions include the careful definition of terminology, the connection of RP to mathematical 
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content, and the careful attendance to the different purposes that proof can play in school 

mathematics.   
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Appendix A 

Mathematical Ideas Categorized as RP by Student Level within the LC Syllabus 

 Foundation  Ordinary  Higher Totalsd 

 Pa Cb Ac  P C A  P C A  

 19 

(32.1%) 

17 

(28.6%) 

45 

(78.6%) 

 30 

(41.2%) 

26 

(35.3%) 

54 

(76.5%) 

 34 

(36.4%) 

30 

(31.8%) 

77 

(81.8%) 

152 

(100%) 

a P denotes pattern detection. 

b C denotes conjecture formulation. 

c A denotes argument construction. 

d Only the RP categories for the higher level have been added for this column as it contains all learning outcomes at the foundation 

and ordinary levels.  
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