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Analysis of COVID-19 in Rural America

Chairperson: Dr. Leonid Kalachev

The outbreak of the novel coronavirus (SARS-CoV-2) in Wuhan, China and subsequent
global pandemic illustrated the need of accurate forecasting and a greater understanding of
the underlying dynamics of infectious diseases.

In this dissertation, we examine the six most populous towns in the State of Montana
through the lens of the classic SIR model. With this, we show that the six towns in question
exhibit similar disease dynamics and population behavior within each wave. Furthermore,
we conduct analysis on the age demographics of COVID-19 cases and deaths. This analysis
corroborates the findings of the SIR model fits, in that the age demographics of cases, deaths,
and case fatality rates are remarkably similar across all six towns, lending credence to the
hypothesis that the dynamics of infectious diseases are fundamentally the same within rural
towns in America.
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Chapter 1

Introduction

In December of 2019, an outbreak of the novel coronavirus (SARS-CoV-2) in Wuhan, China

would rapidly spread and lead to a global pandemic being declared by the World Health

Organization in early 2020. This disease and its mutations have been known colloquially

as COVID-19. With the incidence of the most severe virus outbreak in around a century,

great emphasis was put on mathematical models of COVID-19 and its spread in a desire to

accurately inform policy decisions. It is important to discuss the purposes of mathematical

models of disease, how different models work both from a philosophical and a design stand-

point, why different models come to different conclusions, and how a model’s trustworthiness

is gauged. It should be noted, however, that discussions of mathematical models of disease

will be restricted to models that were used during the COVID-19 outbreak to predict the

disease dynamics.

In this paper we will be examining the dynamics of the COVID-19 disease outbreak in

rural America, in particular the state of Montana. Attention will be primarily given to the

six most populous counties of Montana, those being Yellowstone, Gallatin, Missoula, Flat-

head, Cascade, and Lewis and Clark. Through examination of both fitting of data to SIR

models and death cases data, we will show that the different large cities in Montana, in spite

1



2 CHAPTER 1. INTRODUCTION

of being disparate, exhibit similar disease dynamics. Using this, we will also show how the

disease and population dynamics from one city can be used to approximate the disease and

population dynamics of another city.



Chapter 2

Infectious Disease Modeling

2.1 Purposes of Mathematical Models of Diseases

Mathematical models of disease serve different purposes depending upon when in the rela-

tion to the occurrence of the outbreak they are being employed. During a disease outbreak,

mathematical models of disease allow us to extrapolate the state and progress of the out-

break from current information, predict the future dynamics of the disease, and to quantify

the uncertainty of these decisions. This information is incredibly important, as policymakers

need this information in order to make educated decisions. During the COVID-19 pandemic,

several different models were created for this exact purpose, the most well-known ones being

the models developed by the Imperial College of London and the University of Washing-

ton. These models were known as CovidSim [1] and IHME [2] or the ’Ferguson’ and ’Chris

Murray’ models respectively, the second names being after the heads of the programs that

developed those models.

A report to the British government (Report 9 [1]) that used the CovidSim model to make pre-

dictions was a major factor in the decision of the first UK lockdown as well as a contributing

factor to the US shutdowns. Report 9 predicted that without intervention around 500,000

3
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UK citizens would die as well as around 2.2 million Americans, and that at its peak, the

ICU and critical care bed requirement would be around 30 times greater than the maximum

of both counties combined. With this we can see how during an outbreak, extrapolation of

the (then) current state and progress of the outbreak as well as future states of the disease

were used to help make policy decisions for two nations. However, the uncertainty of these

estimates was not properly quantified [3].

The ending of an outbreak does not imply the end of the use of a mathematical disease

model, but the purpose of the model changes. Instead of trying to understand the present

and predict the direct future, mathematical models can be used to analyze what happened

over the course of the disease. Population dynamics, disease virulence, and rate of recovery

of the disease can all be inferred from models of a full outbreak. In the case of COVID-19,

such models can also be used to understand the effect of other factors, such as the mask man-

date, social distancing, and quarantining. In addition, we can also simulate different ’what

if’ scenarios for the disease such as different vaccination rates. The information gained from

this analysis can be used the next time a similar outbreak occurs in order to have a better

starting point for the model.

2.2 The Susceptible - Infected - Recovered Model

Epidemilogical modeling has several categories and classifications, the original and most

notable being the Susceptible - Infected - Recovered (SIR) model. Developed in 1927 by

A. G. McKendrick and W. O. Kermack, the SIR model is used to systematically describe

various types of epidemics such as influenza and COVID-19, as well as inform policy deci-

sions [4] [5] [6]. The SIR model is a compartmental model, in which the population is split

into different classes, or compartments, these being Susceptible, Infected, and Recovered/Re-

moved. The susceptible population would be those at risk of being infected by the disease,
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the infected population would be those infected by the disease, and the recovered/removed

population would be those no longer at risk of being infected. It has been widely assumed

that the rate at which a susceptible individual is infected is proportional to the product of

the number of susceptible (S) and number of infected (I) [4] [7] [8] [9]. This is known as the

Law of Mass Action [10] [11].

2.2.1 The Law of Mass Action

The Law of Mass Action states that the rate of a chemical reaction in a solution in dynamic

equilibrium is proportional to the concentrations of the reactants [12]. Specifically, it states

that the proportion between the reactants and products is constant once equilibrium is

achieved [13]. If we let the rate of new infections be C and α be a constant, then the Law

of Mass Action is expressed as

C = αSI. (2.1)

Use of the Law of Mass Action for the SIR model comes with the assumption of homogeneous

mixing of the susceptible and infected populations. However, it can be observed that the

rate of infection for certain diseases is higher within a household than without.

The constant α is then assumed to be an aggregate that implicitly describes the range

of contact among different groups of susceptible and infected [11].

2.2.2 Derivation of the SIR model

If we assume that for a given infection, an individual once infected stays infected, (2.1) can

be expressed as (2.2).

C =
δI

δt
= αS(t)I(t) (2.2)
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S(t) and I(t) are the susceptible and infected populations at time t. If we assume that the

new infections are coming purely from the susceptible population, then we can express the

rate of change of the susceptible population in (2.3):

δS

δt
= −αS(t)I(t) (2.3)

Along with a description of the movement from the susceptible population to the infected

population, we also need a description of the movement of the infected population to the

recovered/removed population. Several factors impact the movement of the infected pop-

ulation to the recovered/removed population. Much like with α, let the constant β be an

aggregate that expresses the range of rates at which the infected population becomes no

longer able to infect the susceptible population, whether by removal or recovery. Modifying

(2.2) to reflect this gives us (2.4).

δI

δt
= αS(t)I(t) − βI(t) (2.4)

Since βI describes the rate of recovery/removal, we can express the rate of change of the

recovered/removed population in (2.5):

δR

δt
= βI (2.5)

Combining (2.3 - 2.5), we can also add an equivalence relation for the total population N .

δS

δt
= −αS(t)I(t) (2.6)

δI

δt
= αS(t)I(t) − βI(t) (2.7)

δR

δt
= βI (2.8)

N = S(t) + I(t) + R(t) (2.9)
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Equations (2.6-2.9) are the basic SIR model. As stated previously, the variables of S(t), I(t),

and R(t) are the time-dependent values of the susceptible, infected, and recovered/removed

populations respectively. N is the total population that is being analyzed.

The parameter α represents the aggregation of several factors, such as the virulence of

the disease, as well as population interaction/dynamics. We can express these factors with

α = v · d where the parameter v is virulence, or the probability that exposure to the disease

results in infection, and the parameter d represents population dynamics, or the number of

exposures an infected individual will cause prior to removal/recovery. In a standard SIR

model, α is not separated into v and d. Several studies have been done regarding incidence

rate, however the incidence rate described is equivalent to or a slight modification of our C

from (2.2) [14] [15] [16] [17] [18] [19].

The parameter β represents the rate at which an infected person is removed from the pool of

people able to infect others (susceptibles). Furthermore, β is the reciprocal of this average

time it takes for recovery/removal.

As a system of differential equations, the SIR model represents how S, I, and R change

over time. When using these equations, different curves are formed for the Susceptible,

Infected, and Recovered/Removed populations, and any number of curve-fitting algorithms

are used to fine-tune α and β to fit the observed data.

2.3 SIR Model Assumptions

In any mathematical model of natural processes, assumptions must be made. Understand-

ing these assumptions, both implicit and explicit, aid in interpretation of and appropriate

utilization of results. As stated previously, an assumption implicit to SIR models is that
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the susceptible and infected population mix homogeneously. While we know that this is un-

true [11], as stated previously, the parameter α is taken as an average of the rate of mixing.

An explicit assumption made with the basic SIR model is that is a closed system. In

equations (2.6)-(2.9), there is no provision made for births or deaths. The assumption is

that the rate of births and deaths (sometimes referred to as ’vital dynamics’ [20] [21]) has a

negligible effect on the overall dynamics. Births and deaths can be further extrapolated to

include entry and exit from the population in question, such as via travel [22] [23].

Another assumption made is one of immunity. By the nature of (2.6)-(2.9), it can be seen

that it is assumed that once someone has become recovered/removed, they are no longer

susceptible to infection. The validity of this assumption generally depends on the disease in

question and the definition of the disease in question. For example, vaccination against polio,

measles, mumps, and chicken pox has caused a near-eradication of the diseases in the United

States [24] [25] [26]. However, influenza continues to be a seasonal disease, as evidenced by

the need for yearly vaccinations [27] [28] [29]. As a result of this, the SIR model also assumes

eventual eradication of the disease in question, since it is a closed system, and everyone will

eventually become non-susceptible to it.

There is also no provision made in the SIR model for asymptomatic patients. While this is

certainly a factor within disease dynamics, it is difficult to model for it when fitting data to

the SIR model, while still having an impact upon disease dynamics [30] [31].

2.4 SIR Model Variations

The SIR model, while being the most notable and original, has led to many variations over

time. These variations are developed to either compensate for assumptions of the SIR model,
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model more complex behavior, or utilize the data on hand, which might not work well in a

basic SIR model. We will discuss several variations of the SIR model that are used in the

modeling of COVID-19.

2.4.1 SIRS

The Susceptible - Infected - Recovered - Susceptible (SIRS) model does not assume that

immunity is permanent. This is a reasonable assumption, as diseases mutate over time,

causing immunity gained through either vaccination or infection to be ineffective. A result

of the SIRS model is a disease reaching an endemic steady-state, one in which the disease is

always present [32]. In recent times, an example of an epidemic becoming endemic was HIV,

while an older example was tuberculosis [33]. A disease can be prevented from reaching an

endemic state by vaccines, as seen with polio [34]. In the context of COVID-19, the SIRS

model was infrequently used to simulate the pandemic [35] [36].

2.4.2 SEIR

A highly popular variation of the SIR model is the Susceptible - Exposed - Infected - Recov-

ered (SEIR) model. Frank defined the SEIR model with a series of differential equations [37]:

δS

δt
= −βS(t)I(t) (2.10)

δE

δt
= βS(t)I(t) − αE(t) (2.11)

δI

δt
= αE(t) − γI(t) (2.12)

δR

δt
= γI(t) (2.13)

N = S(t) + E(t) + I(t) + R(t) (2.14)
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Here, S(t), E(t), I(t), R(t), and N represent the number of susceptible, exposed, infected,

recovered, and total population respectively. β, α, and γ represent the exposure, infection,

and recovery rates, respectively. Li and Wang examined the SEIR model and a few varia-

tions and showed the positivity, boundedness, and asymptotic smoothness of the solutions.

After this, they showed the existence and local stability of disease-free and endemic steady

states [38]. Mwalili et. al used the SEIR model with modifications for pathogen in the

environment and interventions to compute R0 and used the result to predict the persistence

of COVID-19 without strong control measures [39]. Shin uses the SEIR model to examine

”carefully distinctive stages” of COVID-19 in South Korea with an additional death com-

partment and shows the difficulty of using a single model for the three waves [40]. Wang

et. al proposed a modification of the SEIR model taking hospitalizations into account [41].

Yang et. al proposed a modified SEIR that uses move-in and move-out parameters to sim-

ulate external influences [42]. Saikia et. al used an SEIR model to predict the dynamics

of COVID-19 in India in late 2020 [43]. There are many instances of the SEIR model or

variations being used for prediction [44] [45] [46] [47] [48].

2.4.3 SIRD

The Susceptible - Infected - Recovered - Dead (SIRD) model adds in the possibility of death

as a result of infection. Calafiore et. al proposed a SIRD model to predict COVID-19 in

Italy [49]. Bailey et. al defined the SIRD model with a series of differential equations [50]:

δS

δt
= −βS(t)I(t) (2.15)

δI

δt
= βS(t)I(t) − γI(t) − µI(t) (2.16)

δR

δt
= γI(t) (2.17)
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δD

δt
= µI(t) (2.18)

N = S(t) + I(t) + R(t) + D(t) (2.19)

Here, S(t), I(t), R(t), D(t), and N represent the number of susceptible, infected, recovered,

deceased, and total population respectively. β, γ, and µ represent the infection, recovery,

and mortality rates, respectively. Haghrah et. al proposed a ”fuzzy” SIRD model as a

way to predict COVID-19 with consideration for government intervention [51]. Sebbagh and

Kechida used an SIRD model to predict parameters such that relevant information could

be given to hospital supervisors to hopefully reduce mortality rate [52]. Shringi et. al use

a modified SIRD model to predict COVID-19 in India [53]. Athayde and Alencar used a

dynamic SIRD model, in which infection, recovery, and mortality rates are allowed to vary

over time [54]. In fact, many papers that utilized the SIRD model were attempting to make

data-driven predictions of COVID-19 [55] [56] [57] [58] [59].

2.5 The Basic Reproduction Number R0

In any discussion of infectious diseases, the basic reproduction number (R0) is utilized as

a measurement of the severity of an epidemic [60]. An epidemic is defined as when the

population of infected begins to grow when an infected individual is introduced. In the SIR

model, this can be interpreted as when dI/dt > 0. Using (2.7) we can derive a formulation

for this as follows:
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dI

dt
> 0

α · S · I − β · I > 0

α · S · I > β · I

α · S > β

αS

β
> 1

When considering the beginning of an epidemic, generally we consider the addition of a

single infected individual to the overall population. Thus, we can assume that S(0) ≈ N

with N being defined in (2.9). In some papers R0 is computed as simply α/β [61] while

others compute it as αN/β [62] [63]. Olivera and Rivera as well as Manrique-Abril et. al

guess R0 and analyze the approximate fit [64] [65]. Other papers simply use the values for

R0 as generated by others for their computations [66] [67].

2.6 Agent-Based Modeling

Another popular method for mathematical disease modeling is Agent-Based Modeling (ABM).

As mentioned in Section 2.3, one of the assumptions of the SIR model is the homogeneous

mixing of susceptible and infected populations. ABM seeks to overcome this particular as-

sumption by simulating the actions and interactions of multiple autonomous ’agents.’ [68] As

a result, while the SIR model looks at the population as a single entity, ABM can separate the

population into multiple entities and simulate the disease dynamics in that manner, leading

to greater accuracy in comparison to traditional compartmental models [69]. De-Leon and

Aran utilized a Monte-Carlo ABM to model the spread of COVID-19 in Israel [70]. Cuevas

developed an ABM to model the spread of COVID-19 within facilities [71]. Dong et. al
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utilized an ABM to model the spread of COVID-19 in the Huangpu District of Shanghai [72].

A common practice is to utilize the SIR compartmental concept in the framework of ABM.

Geng et. al used a kernel-based SIR model to introduce a spatial element to the spreading

of COVID-19 to compensate for different population densities [73]. Nguyen et. al used an

agent-based SIR model that attempted to take into account mobility within an urban envi-

ronment [74]. Lima and Atman examined the effect of mobility restriction in superspreading

event via an agent-based SIR model [75]. Gunaratne et. al used a similar to examine the

efficacy of non-pharmaceutical interventions on indoor spreading [76].

The most well-known ABM is CovidSIM, developed by the Imperial College in London [77].

It was the source of the predictions used in Report 9 that lead to the lockdown of the UK and

contributed to the lockdown in the US. In addition, it is used as a tool by others to model

COVID-19 [78] [79]. Other groups have used the CovidSIM model as a base, developing

extensions for it [80] [81]. While there are concerns regarding its veracity [82], it stands as

one of the most notable ABM models for COVID-19. Other publicly available agent-based

models are OpenABM-Covid19 [83] and Covasim [84].



Chapter 3

COVID-19 in Montana

3.1 Geographical Area of Study

As stated in the introduction, the focus of this dissertation is on the dynamics of COVID-19

in rural America, with the focus being on the State of Montana. The State of Montana is lo-

cated in the northern United States and features vast geography, from the Rocky Mountains,

to the Great Plains, as well as Glacier National Park and Yellowstone National Park. In

comparison to other states, while having a population only around 8000 greater than Rhode

Island, one could fit the states of Main, Vermont, New Hampshire, Massachusetts, Rhode

Island, Connecticut, New Jersey, and New York all in Montana and still have room left over.

For this reason, the State of Montana is considered a rural state.

For the sake of study, the main work has been focused on the six most populous counties

and their corresponding largest cities. These counties are Yellowstone, Gallatin, Missoula,

Lewis and Clark, Cascade, and Flathead. These counties each contain a major population

center for Montana and all have at least 50 thousand residents in the county, not necessarily

the cities. Table 3.1 displays the relevant information regarding the different counties and

cities of interest.

14
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Yellowstone Gallatin Missoula Flathead Cascade Lewis & Clark

County Pop. 167146 122713 119533 108454 84511 72223

City Name Billings Bozeman Missoula Kalispell Great Falls Helena

City Pop. 117445 54539 74822 26110 60403 33120

City Area 43.41 19.12 27.51 11.64 21.79 16.35

City Pop. Density 2705.482 2852.458 2719.811 2243.127 2772.051 2025.688

Table 3.1: County and City information for six most populous counties and cities.

For visual reference in Figure 3.1 the counties being examined are shaded and the locations

of corresponding cities are shown.

Figure 3.1: Montana Cities and Counties of interest.

Along with the regular information, a few points are good to make about specific counties

and cities. The city of Missoula, located in Missoula county, as well as Bozeman, located in

Gallatin County, are home to the University of Montana and Montana State Universities,

respectively. As college towns, there are a high number of individuals of average age 18 to 22

residing within these towns. In addition, the existence of the universities has the possibility

of a potential influence on the dynamics of the disease that we will explore further below.
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It is important to note that the six cities being examined are all quite similar in terms of

population density. While Billings, Bozeman, Missoula, and Great Falls are closest, Kalispell

and Helena are also similar. It is the opinion of the author that in spite of the differences

in locale and population demographics, the six cities discussed retain many similarities in

terms of urban construction and general culture. While there are certainly differences, in

comparison to the wider United States, the author believes that these differences are negli-

gible.

3.2 Heuristic examination of the three waves of COVID-

19

Visual examination of any graphic of COVID-19 elucidates three separate waves of infection,

or outbreaks, caused by three different strains of COVID-19. While some debates may exist

of a wave prior to the declaration of the pandemic and current strains, the focus of this

research shall be on the three main waves. These waves are known, and shall be referred

to throughout this paper, as the Alpha, Delta, and Omicron waves. Let us now discuss the

three waves, their characteristics, and in particular how they manifested in the six counties

in Montana.

The Alpha wave, which took place between approximately 6/10/2020 and 3/17/2021, was

the first major outbreak. One thing to note is that within these counties of Montana, the

vaccines were made available and were being distributed about halfway through the wave.

Along with this, for many people the vaccine came in two doses, and while the first dose

reportedly had a high rate of effectiveness, there was still a multiple-week wait in full effec-

tiveness, as well as not everyone became fully vaccinated. In addition, the different counties
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had approximately the same wave structure throughout the Alpha wave. (Refer to appro-

priate graph here). In other words, the Alpha wave hit all 6 counties at approximately the

same time.

The Delta wave, which took place between approximately 8/6/2021 and 12/24/2021, was the

second major outbreak. Unlike the Alpha wave, in which immunization began only halfway

through and had the issue of two doses, a large part of the population was vaccinated by

this time. In addition, the vaccines seemed to be effective against the Delta variant, which

was reflected in the systematically lower total number of cases. Like the Alpha wave, all

six counties had similar timings of the waves. By this time, many practices, such as mask

wearing and social distancing, had become mostly normalized. However, travel restrictions

were gradually being lifted, and people were traveling more than during the Alpha wave.

In addition, the relationship between the Delta wave and Omicron wave cannot be ignored.

The Delta and Omicron waves overlapped slightly, as the Delta wave had yet to fully cease

before the Omicron wave began. Therefore, cases from both waves are inexorably mixed,

which will be discussed further below.

The Omicron wave, which took place between approximately 12/24/2021 and 3/4/2022,

was the last major outbreak. The Omicron wave set itself apart from the other two for a few

reasons. The first reason was that while the other two had a component of vaccination and

immunization involved, these measures appeared to be completely inert regarding Omicron.

For all intents and purposes, the prior vaccinations had no effect upon the Omicron variant.

The second point of interest was that the Delta wave had not quite finished yet. As a result,

there is a certain degree of overlap between the two in the data. Unfortunately, since infor-

mation regarding which variant a particular patient was infected with is unavailable, we can

only make rough estimation. The last point of difference with the other two variants comes

with the timing. As you can see from the dates provided, the Omicron wave hit during the
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time of year with the greatest amount of travel. As COVID-19 had been going for nearly

two years by this point, people were less concerned with travelling. While attempts at social

distancing, mask wearing, and other steps to help prevent the spread were still employed, the

holiday travel season still contributed heavily to the massive spread of the Omicron variant.



Chapter 4

Goals, Motivations, and Differences

The goal of this dissertation is to present an accurate data-driven methodology for modeling

COVID-19. There are thousands of papers regarding COVID-19, with many different models

being presented. While some models, such as the IHME model [2] and CovidSIM, are more

well known, there have been criticisms of them and their role in policymaking [85] [86]. One

issue we see with these models, and several models that are used, is the inherent complexity

in the models when compared to the data being used to fit them. Commonly this data is

the number of infected. Because of this, overfitting is common, leading to excellent model

fits but poor extrapolation. In addition, a common practice is to utilize parameters by other

for model predictions [64] [87].

The model and methodology presented in this dissertation is different from standard SIR

modelling practice in three major categories. First, the models and data fits are purely data-

driven. We do not borrow parameters from other studies, nor do we borrow any additional

information. Second, in the context of the SIR model, we fit to the recovered/removed com-

partment. Most papers fit their models to the infected compartment. We will show how this

practice is highly erroneous. Lastly, when using the SIR model, we utilize population density

instead of straight population numbers. We will now explain the reasoning and implications

19
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of these choices.

4.1 Data Driven Modeling

Data driven modeling is nothing new, as most models are often fit to data to understand

natural phenomena. However, many of the models used for COVID-19 attempted to account

for complex behaviors and thus made a certain number of assumptions that, while they have

a basis in data, are often not strictly data-driven. At best, these assumptions are made

based off of extrapolations of data, while at worst, parameters for other fits, such as those

derived from Wuhan in March 2020, are used as fits for other locations. The paper by Li

et. al detailing the dynamics at Wuhan is one of the most referenced sources for model

parameters [88]. For our model, we do not use any model parameters for information that

is not directly derived from data. In the next chapter, we will briefly discuss the sources of

data used. All model parameters used are purely derived from our fitting. Through this, we

will show that an accurate COVID-19 model can be purely data-driven.

While there are some assumptions that we make, which will be discussed subsequently,

we will show that those assumptions are necessary. However, beyond those assumptions, we

make no assumptions about disease dynamics, population dynamics, or vaccination rates.

All of these factors are derived from the data. Because of this, we are using the basic SIR

model (2.6)-(2.9) and thus are only fitting α and β, or the rate constant for infection and

rate constant for recovery/removal, respectively. Because we are fitting only two parameters,

we are less prone to overfitting.

4.2 Fitting to Recovered/Removed Compartment

It is a common practice with COVID-19 modeling to fit to the infected data [89] [90] and with

SIR models in particular to the infected compartment [91] [92]. This is a highly erroneous
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practice. Maronov and Marinova discuss the fact that the data reported is often the newly

infected [93]. Law et. al for their model to both the infected and recovered compartments

and noted the difficulty in fitting to the infected compartment [94]. Furthermore, Cooper et.

al propose a method of fitting data to the recovered compartment [95] that is also utilized by

Singh et. al [96]. For our examination, we are going to be fitting to the recovered/removed

compartment.

As mentioned above, most papers fit the data to the infected compartment of the SIR model.

This is an understandable mistake, as the data is often reported as simply infected, or total

cases [97]. Some places reported on newly infected instead of total infected [98] [99] [100].

However, the newly reported cases should not be considered as infected. The infected com-

partment of the SIR model represents the total number of infected individuals at the given

time point. The issue that arises is that the data collected and reported is only of newly

infected. While some smaller instances, such as the British boarding school [101], have the

data for total infected, it is usually untenable to collect the data for total infected, as that

requires not only knowledge of time of infection but also of recovery. In addition, we must

also consider population behavior.

Because of its widespread nature and attention it received both from the media and from

the public, the behavior of the average person was quite different during the COVID-19

pandemic in comparison to even the H1N1 outbreak. During the usual influenza season

and even during the H1N1 outbreak, if someone got sick they did not typically quarantine

themselves, instead continuing on with their lives, leading to schools, public transportation,

and other public places becoming superspreader locations for these diseases. However, dur-

ing the COVID-19 pandemic, when people either confirmed or believed themselves to have

COVID-19, they would generally immediately quarantine themselves. We can assume that

this is generally true for the recorded cases, as the recorded cases were gathered from official
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testing sites and medical facilities. The implication of this is that we can assume that if

someone was recorded, they very quickly quarantined themselves. This requires an adjust-

ment in consideration of our model and data. It is for this reason that we propose for the

case of COVID-19 that instead of a recovered compartment, we consider the compartment

the removed compartment. Because infected individuals quarantined themselves well before

they fully recovered, it is more appropriate to consider them removed.

Considering the removed compartment allows for a different treatment of the available data.

As stated above, generally the publicly available data records the newly infected. Since we

know that the people getting tested and coming up positive swiftly quarantine, we instead

consider the ’newly infected’ as ’newly removed’ and thus create a removed dataset by sum-

ming the number of newly removed each day/ time period. To reiterate, we can consider

recorded cases in such a manner only because it was a nearly universal practice to quarantine

upon infection confirmation. It will be shown in the data fitting later that the practice of

quarantining upon infection is supported by the data.

4.3 Population Density

The last major departure from standard COVID-19 SIR modeling practice that we employ

is examination through the lens of population density instead of straight population. If we

return to the Law of Mass Action, we can see that it states that the rate of chemical reaction

is proportional to the concentrations of the reactants. Population density is equivalent to

concentrations of reactants. Yusuf and Shesha show population density is an important factor

to consider for pandemic dynamics [102]. In addition to considering population density, we

consider the population densities of cities. Since cities are not only where the majority of

population interactions take place but also where most of the facilities that record the data

utilized are located, it seems sensible to scale the data such that the N in (2.9) is the city
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population density. Eilersen and Sneppen discuss the difference in superspreading in cities

as opposed to countrysides, showing that when modeling dynamics, it is much more useful

to model cities instead of the countryside [103]. Utilization of the city population density

also implicitly acknowledges and accounts for the fact that different population densities will

lead to different rates of infection.
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Data Processing and Methodology

5.1 Data Sources

As mentioned in the Acknowledgements, the main set of data used for this dissertation

was provided by Erin Landguth and was from the Montana Department of Public Health

and Human Services, Communicable Disease Epidemiology Section. The vaccination dataset

was acquired from the Centers for Disease Control and Prevention (CDC) dataset repository.

County age demographics, county/city area, and county/city populations was acquired from

the 2020 United States Census Bureau. The dataset containing total cases and deaths

from COVID-19 for the counties in Montana were acquired from the Montana State Library

dataset repository. None of the data or parameter values used in this dissertation were from

other papers, and all of the parameter fits are derived purely from the data.

5.2 Analysis of Data

We begin analysis of the data with the Alpha wave. The reason for this is several-fold. While

the three waves carried multiple differences, the fundamental mechanics, at least through the

lens of an SIR model, were all the same. Therefore, techniques and initial conditions used

for the Alpha wave could be carried over to the other two waves with minimal adjustment.

24
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The first item to discuss when analyzing the data is the choice of timescale used. While

many data sets and reports utilize a daily update, we have chosen to examine the data on a

week-by-week basis. The first reason for this concerns the shape of the daily data and the

inherent nature of the data collection. The primary data type used is the number of newly

infected individuals. This information was recorded in all sorts of places, whether that be

the COVID-19 testing sites that sprung up all over the place, or by hospitals, or any num-

ber of other professional medical institutions recording COVID-19 cases. As a result, any

recording of newly infected individuals comes with an inherent voluntary and convenience

bias. Infected individuals had to be willing to go and get tested in order for this information

to be available, and this was not consistently the case. That being said, the combination

of societal pressure and fear worked well to cause people to go, get tested, and then the

information being subsequently recorded. Figure 5.1 shows the daily rates of newly infected

over the course of four weeks for a single county.

Figure 5.1: Daily New Cases for COVID-19.

A weekly pattern in the data is easily seen. Because individuals had to go somewhere



26 CHAPTER 5. DATA PROCESSING AND METHODOLOGY

to both get tested and recorded, this naturally caused a weekly cycle to develop. While

this pattern in the data would be enough on its own to warrant use of a weekly timescale,

another reason comes with the vaccination data. At around six months into the vaccination

data, the choice was made to record vaccination rates on a weekly basis instead of a daily

basis. Therefore, in order to use vaccination data, a weekly timescale is necessary.

With the choice of using a weekly timescale, the data were condensed into weekly data.

Instead of dates being used, data were labelled based on how many weeks from the start of

data collection, which was 3/13/2020. By examination of Figure 5.2, we can see that the

Alpha wave took place between approximately week 10 and week 70.

Figure 5.2: Daily New Infected for COVID-19.

Another choice that must be made is the choice of which compartment to fit to data in SIR

model. As discussed in Section 4.2, we are fitting to the removed compartment. The data

used are time-series, with the column headings detailing dates, counties, regions, hospital-

ization status, daily cases, cumulative cases, and other county information. The label of the

column that we are interested in is ’Daily total cases.’ Reading just the column name might

lead one to believe that it is the total number of infected cases, however examination of the
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explanatory file and other columns shows that it is the number of newly infected. It is labels

’Daily total cases’ because of three other columns that are labeled ’Recovered,’ ’Deceased,’,

and ’Active’ which refer to the counts and statuses of the cases that were newly recorded

that day. A cumulative summation of this column gets us the number of removed cases per

week which we can fit to our SIR model.

5.3 Algorithm Methodology

The data used for the initial analysis were from the Montana Department of Public Health

and Human Services and were provided by Dr. Erin Languth of the University of Mon-

tana in the form of a .csv file. The data covered the daily cases of COVID-19 in Montana

starting from March 13, 2020 up to April 26th, 2022. Data processing and modeling code

were all done in Python by use of the various libraries. The appendices at the end of this

dissertation contain the code used. We will discuss general code strategies here, and will

leave it to the reader to examine the appendices at the end for greater details within the code.

The first major step we took in our code was creating the dataset that represented the

removed compartment, as discussed in Section 4.2. To do this, we first found the weekly

newly infected. After this, we cumulatively summed up the newly infected for each week,

creating a dataset that represented the total number of removed cases each week, as dis-

cussed in Section 4.2.

To fit the SIR model to the removed dataset, a Trust Region Reflective algorithm was

used for minimization [104]. For the Alpha wave, the best start and end weeks were unclear,

and so all possible combinations were run through, with the Mean Squared Error (MSE) of

each fit being used to determine the optimal start and end weeks.
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The Delta and Omicron waves had clearly defined start and end weeks. Because of vaccina-

tion and its proximity to the Alpha wave, the Delta wave required all the infected people in

the Alpha wave to be classified as already removed from the susceptible population. Because

of the lack of immunity and ineffectiveness of the vaccines at the time, the Omicron wave

did not require similar adjustments.

In order to scale the data properly to simulate city population density, city population

and area were utilized as well as county population figures gathered from census data. The

formulation for this is expressed in Equation 5.1.

r = r · (C/P )/A (5.1)

In Equation 5.1, r is the total number of removed cases at a given week, with r representing

the total number of removed cases in a square mile of a specific city at a given week. C

and P represent the city and county populations, respectively. (C/P ) is the ratio of city

population to county population, thus being used to take into account the relationship of the

city population to the county population. A represents the area of the city. The assumptions

necessary for this are discussed in the next section.

For analysis of the case-fatality rates based on age demographics, data about COVID-19

cases from the official data hub for the Montana State Library was downloaded. After this

the data were filtered based on county and age groups initially within appropriate time win-

dows in order to get the total number of cases. After that, the data were additionally filtered

based on whether the patients were deceased.
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5.4 Assumptions

There are many assumptions being make with our methodology that must be addressed.

The first assumption made is that unreported and asymptomatic infected individuals did

not have an appreciable effect on the data. The SIR model that we are using is modeling

the reported data. The implication of this is that there is a group of individuals who ei-

ther were never reported or were asymptomatic, and thus their data were never recorded.

In order to model this, we would need to make a second SIR model that run concurrently

to the one modeling the reported data. In addition, a number of assumptions, about the

number of asymptomatic and non-reported would have to be made. There is no data that

allows for reasonable estimations of these. However, we can think of cases such as these in

terms of underreporting. Underreporting is the phenomenon in which the number of cases

is higher than what is reported. Therefore, asymptomatic and unreported cases would be a

part of this underreporting factor. It has been shown that in the alpha wave of COVID-19

in Montana that the rate of underreporting was nearly 0%. While this does not hold for

later waves, particularly Omicron, we will show the effects of underreporting on the model

fitting and a way to account for underreporting.

We also make the assumption that every person who tested positive to COVID-19 was

swiftly quarantined, whether in a medical institution or at home. Thus, they would likely

have not further spread COVID-19 after testing positive and being recorded. As discussed

above, given public policies and public perception, it is reasonable to assume such. In addi-

tion, this assumption allows us to treat the numbers of newly infected individuals as newly

removed for the sake of the SIR model.

Another assumption that we make is that the newly infected people are homogeneously

spread throughout a given county. This is done for two reasons. First, while we are ex-
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amining a single town from each of the six most populous counties, those towns are not

the only population centers within those counties, and since the data do not specify the

town from which it was recorded, we cannot make assumptions about the distribution, and

thus assume they are spread homogeneously. In addition, while 44% of the population of

Montana is rural, it has been shown by Eilersen and Sneppen that infectious diseases spread

far more in cities than in the county [103]. It is also reasonable to assume that while there

were certainly cases of COVID-19 in the county, it is likely those infected individuals were

not tested and thus were not recorded. In addition, it would be reasonable to assume that

the number of cases of people from the county getting infected and coming to town to get

tested is low enough to not significantly affect the data. For this reason, we can simulate the

number of reported cases being in a specific town by multiplying by the ratio of that town’s

population and the county population.

5.5 Town Comparison Methodology

As discussed in the Introduction, we will be showing that the towns exhibit similar disease

dynamics. In order to do so, we need a method of showing that the dynamics between the

towns are similar. We assume that the fitted parameters α and β are normally distributed.

We acknowledge that this assumption is incredibly naive. However, as there are only six

towns with which we are working, we are making this assumption in lieu of further data.

Therefore, for a given wave, we can compute the mean and standard deviation for these

parameters and examine them. Furthermore, we can also do this with the basic reproduction

number R0. As discussed in Section 2.5, R0 is a measure of the severity of an epidemic. We

will compute R0 as follows:

R0 =
αN

β
(5.2)

We can see from (5.2) that R0 can be utilized as an expression of the combination of the
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disease and population dynamics for the disease. However, we note that while N in (2.9)

is the total population, as explained in Section 4.3, we are utilizing city population density.

Because of this, when computing R0 later, we will use the city’s population density in N .
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Data Fitting Results

6.1 Alpha Wave

Here, we present and discuss the SIR model fit for the six most populous counties in Mon-

tana for the Alpha wave. The analysis of the Alpha wave is presented for two cases, the first

being the base case in which no scaling is done. The window of data being used for this is

from week 20 to week 60. In Figure 6.1 we can see the new cases for the different counties

superimposed upon each other.
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Figure 6.1: Total Cases for Alpha Wave Without Any Scaling.

With the SIR model, we can fit the removed dataset. The results of these fits is illustrated

are Figure 6.2.

Figure 6.2: Alpha Wave Removed Fits
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Table 6.1 contains the estimated model parameter values for the different counties.

Parameters Yellowstone Gallatin Missoula Flathead Cascade Lewis and Clark

Start Week 10.0 15.0 13.0 10.0 10.0 10.0

End Week 66.0 70.0 70.0 50.0 50.0 61.0

α 0.000026 0.000032 0.000049 0.000047 0.000055 0.000089

(SE) 0.000001 0.000002 0.000004 0.000001 0.000003 0.000003

β 4.155278 3.712655 5.658801 4.862012 4.4042 5.533329

(SE) 0.104227 0.250737 0.43881 0.155649 0.28247 0.175168

Initial infected 3.24176 3.471051 1.197023 0.654905 0.895353 0.118342

(SE) 0.845416 0.422385 0.098124 0.368289 0.09965 0.039753

City Billings Bozeman Missoula Kalispell Great Falls Helena

Table 6.1: Alpha Wave Fitted Parameter Values

Let us discuss and interpret the meaning of the model parameters and the estimated pa-

rameter values in this context. The parameter α in equations (2.6)-(2.9) represents the

appearance of a newly infected individual per time unit (a week in this case) and also per

presently infected individual that is intermingling with the susceptible population (in other

words is not currently quarantining). In the case of Missoula, the characteristic time associ-

ated with the appearance of a newly infected individual during the Alpha wave, computed

via 1/(α · N), is approximately 0.23011 or 1.61 days. Now, note this is averaged over the

course of 56 weeks. The parameter β, as stated previously, is the reciprocal of the length

of time it takes for removal of an individual from the pool of infected individuals mingling

with the susceptibles, whether this be due to isolation, quarantining, or recovery.

The fitted β values exhibit an interesting pattern. As discussed in Section 4.2, we are

making an assumption that individuals when diagnosed with COVID-19 swiftly quarantine

themselves. We can see from the fitted β values that this assumption is validated. Given

that β is the reciprocal of the length of time of recovery/removal, and the fact that our

time intervals are weeks, it can be seen in the case of Missoula to be 1.237 days. While the
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numbers are different for different counties, there is a pattern of length of time for removal

being less than the average length of time of sickness from COVID-19, given that the Alpha

variant had on average around a two week lifespan for a patient [105].

We have included the standard errors (SE) for each parameter fit below the correspond-

ing fit. These standard errors are computed via the covariance matrix as generated by the

Moore-Penrose pseudoinverse [106]. The standard errors are a measure of the uncertainty of

our parameter fit, and cannot be used to contrast the parameters for separate counties with

each other. We can see that the uncertainty for our parameter fits is not unreasonable.

6.1.1 Scaled Alpha wave analysis

For the second case of Alpha wave analysis, we consider several scaling factors. As discussed

in Section 4.3, we will be utilizing city population density instead of straight population and

scaling the data to reflect that. However, for the Alpha wave, we will show other scaling

factors as contrast to city population density.

As seen in Figure 6.1, we have the new cases from the top six counties for the Alpha wave.

If we consider this in terms of population density across the county, we get Figure 6.3, part

A.
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Figure 6.3: Alpha wave newly infected scaling method comparison.

Here we have simply divided the data by the total area of each county, thus examining

the data in terms of people per square mile. However, an issue with this is that the ma-

jority of the people in most counties, and the majority of reported cases, are located in

the largest towns within each county. Thus, it is more sensible to divide by the area of the

largest city in the county instead of county area. The results are shown in Figure 6.3, part B.

The issue with this, however, is the inherent assumption that all the cases within the county

are taking place within the confines of the given city. While the majority of those being

recorded would be, we must account for the existence of other towns within the county as

well as cases that are outside the city. Therefore, as discussed in Section 5.4 we assume

that infections are distributed homogeneously across the population of a county, and thus

we scale the data by the ratio of the population of the largest city and the county. The result
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of this approach is shown in Figure 6.3 part C.

Now let us combine these ideas together. First, since the Law of Mass Action, and thus

by extension the SIR model, assume a homogeneous mixture, we need to concentrate our

focus into areas where people are going to be mixing as much as possible. These places are,

naturally, cities, and thus scaling the data by the city-county population ratio is the first

step. Second, once again, since the Law of Mass Action and SIR models assume mixing of

densities instead of just straight populations, we should also transform the data into mea-

surements of density. The result of all this is seen in Figure 6.3 part D.

This is an interesting result, as looking at population density and having been scaled by

the city-county population ratio is acting as a normalizing factor. If we look at Figure 6.3

part D, it seems to show that if we focus on purely the city population densities, the popu-

lation dynamics between the different cities follows a similar path.

As stated previously, examining the removed dataset is preferred. This can be seen in

Figure 6.4.
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Figure 6.4: Alpha Wave removed data scaled by city/county population ratio and divided
by city area.

While this may not appear as compelling as Figure ??, one can see the difference when

compared with Figure 6.5.

Figure 6.5: Alpha Wave removed data without scaling.

Now with this scaling in place, we can run the SIR model fit again. The results are presented

in Figure 6.6.
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Figure 6.6: Alpha Wave SIR models fitted to removed data scaled by city/county population
ratio and divided by city area.

While these may not look too different, the interesting part comes in the fitted parameter

values included in Table 6.2.
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Parameters Yellowstone Gallatin Missoula Flathead Cascade Lewis and Clark

Start Week 21 22 30 26 27 31

End Week 50.0 50.0 53.0 50.0 50.0 50.0

α 0.002098 0.002301 0.001707 0.002271 0.003314 0.003294

(SE) 0.00061 0.000177 0.000284 0.000158 0.000225 0.000205

β 5.382404 6.222861 4.514582 4.838584 8.770344 6.378984

(SE) 0.157993 0.482194 0.740162 0.33681 0.596111 0.395579

Initial infected 0.367672 0.194525 2.352696 1.026875 0.464807 1.067178

(SE) 0.029325 0.04816 0.558906 0.144611 0.084453 0.119168

R0 1.0547621 1.0547409 1.0283826 1.0528166 1.0474591 1.0460312

City Billings Bozeman Missoula Kalispell Great Falls Helena

Table 6.2: Alpha Wave fitted parameter values with city/county population and city area
scaling.

A visual inspection of the α’s and β’s for the 6 counties suggest a high degree of similarity

between then. However, as discussed in Section 5.5, we assume that α and β are normally

distributed. We can thus compute the mean and standard deviation for α, β, and R0 across

the six counties. We will also show the intervals that are within one and two standard

deviations of the computed mean for each of these. All of these are shown in Table 6.3.

Parameter µ σ µ± σ µ± 2σ

α 0.0024975 0.0006596 (0.0018379, 0.0031571) (0.0011783, 0.0038167)

β 6.0177932 1.5365036 (4.4812895, 7.5542968) (2.9447859, 9.0908004)

R0 1.0473654 0.0100096 (1.0373558, 1.0573750) (1.0273462, 1.0673846)

Table 6.3: Alpha wave fitted parameter values with city/county population and city area
scaling statistical analysis.

From Table 6.3 we can see that most fitted parameters are within one standard deviation of

the mean, with all of them being within two standard deviations. As a reminder, the data

used for these fits have been scaled in such a way that we are examining just the population
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densities of the infected populations in the six towns. From this, a few details can be eluci-

dated. Most importantly, in spite of demographic differences, when it comes to COVID-19,

at least during the Alpha wave, the six towns exhibited approximately the same patterns.

Now, a few caveats must be stated. These towns are all in the same state, and in the same

approximate geographic location in the United States. Thus, similarities will naturally exist

in the culture and population dynamics between the six towns. However, with the evidence

of the fitted parameters, it can be stated that in spite of the towns being disparate entities,

they exhibit similar disease propagation dynamics when it comes to COVID-19.

Rural towns having similar patterns during a disease outbreak is an important point to

make. Oftentimes when developing countermeasures to disease outbreaks, separate counties

and towns will have separate policies and measures in place to counteract the spread of

infection. In regard to the present study, this would imply six different counties and towns

independently developing different countermeasures for the outbreak. If the overall popula-

tion dynamics is similar between the towns, then separate development of countermeasures

is unnecessary. Effective countermeasures for one city will be similarly effective in another.

However, in order to properly show this, we need to look at the other waves.

6.2 Delta Wave

Let us now discuss the fitting of the data for the COVID-19 Delta wave to the SIR model.

One thing to note is that the model for the Delta wave necessitates modification. While one

might be tempted to treat the Delta wave similarly to the Alpha wave, they simply cannot.

As stated previously, the Delta wave had additional features of both vaccination and prior

immunization. Now, while neither immunization nor vaccination feature 100% removal, they

still must be taken into account in the model fitting.
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For prior immunizations, it is known that infection of COVID-19 granted a level of immunity

for several months afterward [107]. In order to account for this, the prior infected/removed

must be counted as already removed from the susceptible population. There are multiple

studies that suggest various figures for continuing immunity, anywhere from early figures of

three months to later figures of 500 days. In addition to this, several studies were done on

the effectiveness of ’hybrid immunization,’ in which people not only contracted COVID-19,

but also received the vaccine, leading to longer periods of immunization. For the sake of

simplicity, people who were either previously infected or vaccinated are removed from the

pool of susceptibles for the initial time point specified in the model. While this is done

simply via data manipulation, in order to account for vaccinations happening during the

Delta wave, we have to also adjust the model itself.

As a reminder, the SIR model contains three compartments labelled S, I, and R, which

are short for the following: Susceptible (the population who are at risk of being infected

by the disease), Infected (the population spreading the disease), and for our purposes Re-

moved (the population who is neither at risk of contracting the disease nor spreading it).

The Removed population not only includes people who either previously contracted the dis-

ease or were vaccinated, but also includes people who quarantined themselves. In order to

model this, we need to introduce a vaccination factor. Using data from the CDC vaccination

tracker, we know that the time dependent vaccinations in different counties has followed an

approximately linear path. We can see this illustrated in Figure 6.7.
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Figure 6.7: Total vaccinations throughout all waves.

We can see from Figure 6.7 that there are approximately three phases of the vaccination.

Prior to weeks 43-45 there was no vaccinations, as the vaccine had yet to be developed.

Up until around week 60 there was a rapid deployment of vaccines, after which the rate of

vaccine deployment slowed down. However, in each stage, the rate of deployment followed

an approximately linear rate, allowing them to be modeled with a linear function. Let us

introduce a rate of vaccination γ, which is measured in vaccines distributed per week. As a

result, the modified SIR model is as follows:

dS

dt
= −α · S · I − γ (6.1)

dI

dt
= +α · S · I − β · I (6.2)

R(t) = N − S(t) − I(t) (6.3)

γ is measured as number of vaccinations per time period (in our case, weeks). Since the

data to which we fit are scaled, we will also scale γ such that it represents vaccinations per

square mile per week within the town of interest. As with α and β, γ is separate for each
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city. In addition, γ is not a parameter that needs to be fit. As we have the actual data for

vaccination rates, we can directly compute γ. While it’s not a perfect fit, since the data are

approximately linear, we can approximate the rate of vaccination with a high degree of accu-

racy. In addition, certain assumptions are made here. First, we assume that the vaccinations

are homogeneously spread throughout the population, across all demographics and between

the city and rural populations. While this is a somewhat simplistic assumption, it is neces-

sary, as information regarding demographics and residence is not available for vaccinations.

In addition, we know for certainty that the distribution of vaccines was not homogeneous

across demographics, as the FDA had a rolling timeline of approval of administration to

progressively younger age groups. However, knowing what the true distribution was is an

impossibility as this naturally comes from the manner in which many vaccination clinics

were carried out, in which minimal paperwork was done, and while insurance information

was taken, the data are not available in public datasets.

In addition to the assumption of homogeneous distribution of vaccines throughout the popu-

lation, assumptions of the effectiveness of the vaccine are necessary. As is fairly well known,

three major vaccines were developed for COVID-19. Named after the companies that de-

veloped them, the Pfizer, Moderna, and Johnson and Johnson, vaccines were made widely

available to the public. While there is a fourth vaccine that is available currently, developed

by Novavax [108], it was not approved for adult use by the FDA until July 2022 [109]. A

point of interest here as well is that the Pfizer and Moderna vaccines, known as Comirnaty

and Spikevax respectively, required a series of two shots for effectiveness. Unlike these two,

the Johnson and Johnson vaccine was a single dose. In the case of modified SIR model

(6.1)-(6.3), it is assumed that the vaccine is fully effective, or that once someone has been

vaccinated, they are fully immune, and are thus removed from the susceptible population

pool. Now, there are plenty of papers and studies done to show that the vaccines were not

fully effective. However, for the sake of the model this assumption is being made. In addi-
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tion, while Comirnaty and Spikevax each require a series of two injections, weeks apart, only

the incidences of the first vaccinations are taken into account, since many people who got

the first dose also got the second dose. While there was a noticeable percentage of people

who got the first dose and chose to not get the second dose, we are making the choice to

assume that everyone who got the first dose also got the second dose (and immunity).

While not an assumption in the same manner as above, we acknowledge the fact that a

constant rate of vaccination is untenable for perpetuity, as eventually the number of suscep-

tibles will eventually be negative. We would note that in this case, we are building the model

off of existing data, rather than attempting to make predictions into the future. In addition,

we are working in a given time frame for which the number and rate of vaccinations is known.

Because of the limited time frame, we will not have to deal with a negative susceptible pop-

ulation. We should also note the fact that vaccinations are not immediately effective, as the

body takes time to develop the immunity. However, examination of Figure 6.7 shows that

this is not a concern. While common estimates for the length of time it takes for the vaccine

to be effective are around 1-2 weeks [110] even if we allow for 4 weeks before effectiveness,

we can see that the rate of vaccination is approximately linear. Therefore, we do not need to

take into account a change in vaccination rates in our model. With this new model and the

acknowledged assumptions, let us look at the data for the Delta wave as shown in Figure 6.8.
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Figure 6.8: Delta wave newly infected cases.

If we apply the same scaling procedure to the Delta wave as we did in the case of the Alpha

wave, we get the re-scaled data shown in Figure 6.9.

Figure 6.9: Data for Delta wave scaled by city/county population ratio and divided by city
area.

While not as striking of a change as the Alpha wave, as illustrated by Figures 6.1 and ??,

it can be seen that the scaling of the data shows similarities in the population dynamics

of the disease. There are a couple of additional details about the Delta wave that should

be discussed. First, it can be seen that the Delta wave was significantly shorter than the
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Alpha wave. While studies have shown that not all the people who were infected during

the Delta wave were infected with the Delta variant [111], without widespread testing it will

have to be assumed that the effect of such a group of people is negligent to the dynamics

of the larger population. As a final note of observation, the endpoint of the Delta wave is

fairly abrupt, as the Omicron wave began in the latter stages of the Delta wave. For this

reason, the newly infected in the Delta wave had not fully flattened out yet. Table 6.4 has

the SIR model parameter fits to the Delta wave without the vaccination constants being

used. From a model standpoint, we are using Equations (2.6)-(2.9) for this model fit instead

of (6.1)-(6.3).

Parameters Yellowstone Gallatin Missoula Flathead Cascade Lewis and Clark

Start Week 73 73 73 73 73 73

End Week 93 93 93 93 93 93

α 0.003673 0.004355 0.006439 0.004559 0.003213 0.008558

(SE) 0.000079 0.00013 0.000071 0.000071 0.000116 0.000121

β 9.517167 12.009187 16.874758 9.815223 8.506713 16.617304

(SE) 0.206442 0.359141 0.185376 0.15385 0.308034 0.236585

Initial infected 0.32021 0.163241 0.084976 0.295204 0.446264 0.02944

(SE) 0.056364 0.05767 0.02429 0.065652 0.175276 0.024723

City Billings Bozeman Missoula Kalispell Great Falls Helena

Table 6.4: Delta wave fitted parameter values.

As with Table 6.2, α and initial infected is measured in population per square mile, and

1/β is measured in weeks. While the values for α and β appear compelling, as stated

prior to Table 6.4, this set of fits was done without taking vaccination into account. Thus,

any statistical similarities are meaningless, as the fitted parameter values are inaccurate.

In addition, we can tell there is an issue as the values for β are a bit beyond reasonable

expectations. The results of these fits are illustrated in Figure 6.10.
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Figure 6.10: Delta Wave non-vaccination SIR models fitted to removed data scaled by city/-
county population ratio and divided by city area without.

It can be seen from Figure 6.10 that the fits are poor. While the fits from weeks 78 to 89

follow the data fairly well, outside these weeks the model tends to deviate from the data fairly

dramatically. This is to be expected, as shown in Figure 6.7, vaccinations began between

Weeks 40 and 45, implying vaccination administration for around 30 weeks prior to the Delta

wave. Since we are assuming that a single dose of the vaccine is fully effective, the vaccinated

population must be taken into account. Since the removed data we are using is based off

of newly infected, we cannot include the vaccination data into the removed data. However,

since vaccinated individuals are being treated as being no longer susceptible, Equations (6.1)-

(6.3) can be used to model this. Utilization of the modified SIR model shown in (6.1)-(6.3)

is illustrated in Figure 6.11.
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Figure 6.11: Delta Wave vaccination SIR models fitted to removed data scaled by city/county
population ratio and divided by city area without.

Parameters Yellowstone Gallatin Missoula Flathead Cascade Lewis and Clark

Start Week 73 73 73 73 73 73

End Week 93 93 93 93 93 93

α 0.001331 0.001192 0.001859 0.001171 0.000968 0.002268

(SE) 0.000042 0.0000065 0.000052 0.000035 0.00006 0.000066

β 3.316738 3.146865 4.741428 2.458812 2.472195 4.263643

(SE) 0.10342 0.171934 0.132995 0.07272 0.151178 0.124938

γ 14.503305 14.982544 12.591779 11.515052 15.889752 8.94272

Initial infected 1.758827 1.439025 1.112842 2.962869 3.44218 0.693541

(SE) 0.109974 0.147279 0.065486 0.139756 0.365281 0.045052

R0 1.0857042 1.0804817 1.0663725 1.0682808 1.0854101 1.0775434

City Billings Bozeman Missoula Kalispell Great Falls Helena

Table 6.5: Delta wave vaccination SIR model fitted parameter values.
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Figures 6.10 and 6.11 illustrate the importance of accounting for vaccinations. With the

vaccination constant γ being used, we have excellent fits. Table 6.5 has the fits with the vac-

cination rates. α and initial infected are measured in population per square mile, while 1/β

is measured in weeks. γ is computed directly from the vaccination data, and is in population

per square mile. As with the removed data, this vaccination rate is scaled by the ratio of

city and county population, then divided by the corresponding city area to get a population

density. The parameter γ, then, represents the population per square mile being vaccinated

per week within a given city.

As with the Alpha wave, we can examine α, β, and R0 via their means and standard devia-

tions. We do not include γ in this analysis as that is neither a fitted parameter value, being

directly computed from vaccination data, nor is it a natural process. The means, standard

deviations, as well as ranges one and two standard deviations from the means are shown in

Table 6.6.

Parameter µ σ µ± σ µ± 2σ

α 0.0014648 0.0004952 (0.0009697, 0.0019600) (0.0004745, 0.0024552)

β 3.3999468 0.9341280 (2.4658189, 4.3340748) (1.5316909, 5.2682027)

R0 1.0772988 0.0083348 (1.0689640, 1.0856336) (1.0606293, 1.0939683)

Table 6.6: Delta wave vaccination SIR model fitted parameter values statistical analysis.

Similarly to the Alpha wave, we can see from Table 6.6 that most fitted parameters are

within one standard deviation of the mean, with all of them being within two standard

deviations. With vaccinations being accounted for, we can see that the dynamics illustrated

by α and β show similarities across the six cities. Comparing the results shown in Table 6.5

with those in Table 6.2 shows some interesting patterns. Except for Missoula, the values

of α and β is lower for the Delta wave in comparison to the Alpha wave. From this it can

be concluded that with vaccinations, the Delta wave did not spread as readily as the Alpha
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wave, and that people did not quarantine themselves as quickly. It should be noted, however,

that if vaccinations are taken into account, the α and β values for Missoula hardly changed.

While some reasons for this might be theorized, there is a lack of data to be able to make

reasonable guesses for reasons.

6.3 Omicron Wave

Let us now discuss fitting the SIR model to the Omicron wave data. As stated previously,

while the Alpha and Delta waves both contained immunization and vaccination components,

the Omicron wave appeared to have none. Studies at that time showed that prior vaccina-

tions had little effect against the Omicron strain [112]. Therefore, the Omicron wave can be

treated much in the same manner as the Alpha wave. Since prior vaccinations and immuni-

ties were ineffective, we get something of a clean slate again.

With Figure 6.12 and Figure 6.13, we can see a similar pattern as to the previous two

waves, with scaling causing most of the counties to exhibit similar disease dynamic patterns

to each other.

Figure 6.12: Newly infected cases data for Omicron wave.
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Figure 6.13: Newly infected case data for Omicron wave scaled by city/county population
ratio and divided by city area. Units of infected are people/mi2

Once again, we can see that with scaling the data by city/county population ratio and

dividing by city area, most of the cities follow a similar pattern. The one difference is

Gallatin, or the city of Bozeman. This difference can be explained, at least in part, by the

existence of Montana State University in Bozeman. Given that the Omicron wave happened

at the beginning of the spring semester when students were returning, it is reasonable to

assume that the large boom in cases is a result of students getting infected. In fact, looking

at the chart of total cases during the Omicron wave lends credence to this hypothesis.

Figure 6.14: Omicron Wave Total Cases by Age Demographic
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From this it can be observed that a large number of the cases in Gallatin were in the 20-29

age range, thus a hypothesis of the school having an effect seems reasonable.

Out of the three waves, the Omicron wave was certainly the shortest. In comparison with

the previous two waves, Omicron had a much greater spike in new infected cases. A similar

note to the Delta wave is that while most people who were infected during the Omicron

wave were assailed with the Omicron variant, there is a certain portion of the population

that was infected with the Delta variant during this time. Like with the Delta variant,

without widespread testing, we are forced to assume that the disease dynamics are mainly

dominated by the Omicron variant as opposed to the Delta variant. To this end, we ini-

tially fit the Omicron wave data to the SIR model outlined in Equations (2.6) - (2.9). With

these assumptions, we have the model parameter value fits for the Omicron variant shown

in Table 6.7.

Parameters Yellowstone Gallatin Missoula Flathead Cascade Lewis and Clark

Start Week 93 93 93 93 93 93

End Week 106 106 106 106 106 106

α 0.010292 0.006766 0.008654 0.00558 0.00514 0.01366

(SE) 0.001018 0.000548 0.000606 0.00073 0.000339 0.000919

β 27.003324 18.55421 22.665828 12.09627 13.562876 26.749617

(SE) 2.665465 1.485763 1.583405 1.579629 0.895934 1.796784

Initial infected 0.250403 1.324331 0.378248 4.967668 0.471008 0.155178

(SE) 0.072164 0.241333 0.077189 0.168815 0.090899 0.033609

R0 1.0436562 1.0576192 1.2846941 0.8653000 1.0610880 1.0525638

City Billings Bozeman Missoula Kalispell Great Falls Helena

Table 6.7: Omicron wave fitted model parameter values.

The model used for the Omicron wave is the original SIR model given in Equations (2.6)

- (2.9). As with Tables 6.2 and 6.5, α and Initial infected are population densities, measured

in people per square mile, and 1/β is measured in weeks. The fits of the SIR model to the
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data are shown in Figure 6.15.

Figure 6.15: Omicron wave removed data scaled by city/county population ratio and divided
by city area fitted to SIR model.

While the graphical fits of the fitted model parameters to the data appear reasonable, ex-

amination of the actual fits themselves show issues. As a reminder, the reciprocal of the

fitted parameter β represents the average time that it takes for an infected individual to

be removed from interaction with the susceptible population, or in the case of COVID-19,

quarantine. Taking that into consideration, the fitted β parameter values shown in Table 6.7

suggest that individuals were quarantining themselves within hours after recording. There

was not a large enough shift in population dynamics from the Alpha and Delta waves to the

Omicron wave to support such a shift in fitted parameter values.

The issue that we see arising from this is the issue of underreporting. As discussed in Section

5.4, while the Alpha wave had little underreporting, underreporting was much higher during
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the Omicron wave [113] [114]. While vaccinations did not have a factor in the Omicron wave,

underreporting did, and thus it must be accounted for.

6.3.1 Modified SIR model for underreporting.

In order to account for underreporting, we define parameter k to represent the proportion

of infections that were reported as cases. These are people who both got infected and also

had their infections recorded and thus reported. We then consider the case in which the

disease dynamics are accurately modeled by Equations (2.6) - (2.9). Let us assume that

for the length of the Omicron wave, that the proportion of reported cases, 0 ≤ k ≤ 1, is

constant. This means that the available data represent k · R instead of R. We then rescale

our variables such that S = k ·S, I = k · I, R = k ·R. We assume here that the proportion k

of reporting is the same among the three compartments. The modified SIR model is written

as follows:

dS

dt
= −α/k · S · I (6.4)

dI

dt
= +α/k · S · I − β · I (6.5)

R(t) = k ·N − S(t) − I(t) (6.6)

S(0) = k · S(0) I(0) = k · I(0) R(0) = k ·R(0) (6.7)

As before, N here is the population density of the town we are examining. We assume that

the parameter k is the same across all counties. This is a reasonable assumption, as since

there is evidence from the Alpha and Delta waves of similarities in disease and population

dynamics between the towns, and there was no significant difference between the towns

with regard to public policy or availability of resources. To achieve this, the model given in
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Equations (6.4)-(??) is fit to the Omicron data, with the parameter k being set. We iterate

through values of k from 0.11 to 1.0 with step size of 0.01. From this, a value for k was

chosen such the cumulative MSE of the model fits was minimized. Since we assume that the

parameter k is the same across all counties, the best fit minimizes cumulative MSE. With

these assumptions, the best fit for k was found to be k = 0.16. This implies that only 0.16

(16%) of the infected individuals were reported as being sick. The fits for this are shown in

Table 6.8.

Parameters Yellowstone Gallatin Missoula Flathead Cascade Lewis and Clark

Start Week 93 93 93 93 93 93

End Week 106 106 106 106 106 106

α 0.001677 0.00117 0.001421 0.000918 0.000847 0.002217

(SE) 0.00016 0.000078 0.000102 0.00012 0.000051 0.000157

β 3.621773 2.452779 2.89265 1.58889 1.545334 3.48428

(SE) 0.341053 0.146284 0.203601 0.204642 0.095404 0.244819

Initial infected 1.7136 9.0832 2.651671 4.559771 3.387722 1.069243

(SE) 0.50248 1.452199 0.594795 1.252555 0.649445 0.25684

R0 1.252534 1.360597 1.336078 1.295873 1.51892 1.28888

MSE 15.041259 9.6067 12.716526 12.001011 14.809027 6.046455

MSE µ 15.197888 16.608643 13.195711 11.617066 16.628763 7.03363

MSE σ 0.849219 25.75724 15.933198 0.19522 0.803234 13.644741

City Billings Bozeman Missoula Kalispell Great Falls Helena

Table 6.8: Omicron wave modified SIR model fitted parameter values with k = 0.16.

It can be seen that the fits for the parameter β are far more reasonable than those in Table 6.7.

We have also included the statistics involved with the MSE values for the various choices of

k. While the fits for Yellowstone, Flathead, and Cascade appear to be fairly insensitive to

variations in k, Gallatin, Missoula, and Lewis and Clark have a high degree of variance in

regard to changes in k. With these fits that at least seem more reasonable, we can compute

the means, standard deviations, and ranges. These are shown in Table 6.9.
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Parameter µ σ µ± σ µ± 2σ

α 0.0013750 0.0005161 (0.0008589, 0.0018911) (0.0003427, 0.0024073)

β 2.5976177 0.9019888 (1.6956289, 3.4996065) (0.7936401, 4.4015953)

R0 1.3422914 0.0945989 (1.2476925, 1.4368903) (1.1530936, 1.5314891)

Table 6.9: Omicron wave vaccination modified SIR model (k=0.16) fitted parameter values
statistical analysis.

We can see much like with the Alpha and Delta waves, most fitted parameters are within one

standard deviation of the mean, with all of them being within two. With this, we can see

that the patterns of similarities between towns continues in the Omicron wave. In addition,

this supports the assumption that the value of k is relatively similar between the towns, as

if it was not, these differences would have been reflected in the fits for the other parameters.

Examination of R0 shows that the Omicron wave had a greater severity throughout. We will

discuss the results of the SIR model fits for each wave and their relationships in the next

section.

6.4 Analysis of Results of Parameter Fitting

We can draw several conclusions from the fitted SIR model parameters for the three waves.

First, despite differences in demographics and locations, the 6 towns exhibited similar pat-

terns in disease dynamics. Differences in initial infected can be explained by outside factors,

as by its very definition, the initial infected are the initial number of people infected when

the model is initialized. Factors that affect this are, generally, either travellers coming to

the area and bringing the disease with them, or people travelling away and returning with

the disease. In addition, we note that Montana has a high degree of tourism, and especially

so for the larger towns in the state, which would be expected to have an effect on initial in-

fected. This can be seen when examining new cases, as the number of new cases in Montana

sharply increased after July 4, 2020. Thus, it is unreasonable to expect the initial infected
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number or density in the different cities to be equal. It can be observed from Table 6.1 that

the initial number of infected is not an integer, while in real life the number of infected is

an integer. Since we are fitting to imperfect data and on a non-continuous time frame, the

fitted initial number of infected is necessarily a non-integer. However, we have shown, across

the three waves, that the α and β parameters, which describe the dynamics of the disease,

are similar within each wave across the six towns.

Parameters α and β represent an amalgamation of the dynamics of the disease and popula-

tion interactions and behavior. Since we can reasonably assume that not only did everyone

have the same variant but that the disease distribution between different variants was the

same, we know that any effect of disease dynamics upon α and β should be the same regard-

less of city. This means that any significant difference between α and β can be attributed

to differences in population dynamics. However, we can see that within each wave, the α

and β parameters between different cities are similar. This implies that there is not a lot

of difference between the cities when it comes to population dynamics. Now, we can see

this for both α and β, which implies that not only are population dynamics similar prior to

infection, but that the response of the populace to infection followed similar patterns.

6.5 Comparison of Waves

Let us now compare the differences between different waves. We can see from Table 6.10

that there is a pattern of severity throughout all six cities. We can see that from the Alpha

wave to the Delta wave, the severity of both the disease dynamics and the response to the

disease reduced. A simple reason for this would be vaccinations. As stated previously, by the

time of the Delta wave, vaccinations had been underway for around 30 weeks, and continued

throughout the Delta wave. It would appear that from a disease dynamics standpoint, the

vaccinations had a marked effect. Moving from Delta to Omicron, it can be seen that both
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α and β increase dramatically. These patterns of change are consistent throughout the six

cities.

Parameters Alpha Delta Omicron Alpha Delta Omicron Alpha Delta Omicron

Yellowstone Gallatin Missoula

Start Week 21 73 93 22 73 93 30 73 93

End Week 50 93 106 50 93 106 53 93 106

α 0.002098 0.001331 0.001677 0.002301 0.001192 0.00117 0.002271 0.001859 0.001421

(SE) 0.00061 0.000042 0.00016 0.000177 0.0000065 0.000078 0.000284 0.000052 0.000102

β 5.382404 3.316738 3.621773 6.222861 3.146865 2.452779 4.838584 4.741428 2.89265

(SE) 0.157993 0.10342 0.341053 0.482194 0.171934 0.146284 0.740162 0.132995 0.203601

Initial infected 0.367672 1.758827 1.7136 0.194525 1.439025 9.0832 1.026875 1.112842 2.651671

(SE) 0.029325 0.109974 0.50248 0.04816 0.147279 1.452199 0.558906 0.065486 0.594795

R0 1.0547621 1.0857042 1.252534 1.0547409 1.0804817 1.360597 1.0283826 1.0663725 1.336078

Flathead Cascade Lewis and Clark

Start Week 26 73 93 27 73 93 31 73 93

End Week 50 93 106 50 93 106 53 93 106

α 0.001707 0.001171 0.000918 0.003314 0.000968 0.000847 0.003294 0.002268 0.002217

(SE) 0.000158 0.000035 0.00012 0.000225 0.00006 0.000051 0.000205 0.000066 0.000157

β 4.514582 2.458812 1.58889 8.770344 2.472195 1.545334 6.378984 4.263643 3.48428

(SE) 0.33681 0.07272 0.204642 0.596111 0.151178 0.095404 0.395579 0.124938 0.244819

Initial infected 2.352696 2.962869 4.559771 0.464807 3.44218 3.387722 1.067178 0.693541 1.069243

(SE) 0.144611 0.139756 1.252555 0.084453 0.365281 0.649445 0.119168 0.045052 0.25684

R0 1.0528166 1.0682808 1.295873 1.0474591 1.0854101 1.51892 1.0460312 1.0775434 1.28888

Table 6.10: Comparison of fitted parameter values for all three waves of COVID-19 for all
counties.

To further illustrate the consistency of dynamics from one change to the next, Table 6.11

shows the percentage change in the α and β parameters. It can be seen that within each

town, the change in α and β from one wave to the next were quite similar, the notable ex-

ception being Missoula in the change from Delta to Omicron. In the change from the Alpha

wave to the Delta wave, with the exception of Cascade, the other towns had fairly similar

changes in parameters.
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Parameters Alpha to Delta Delta to Omicron Alpha to Delta Delta to Omicron

Yellowstone Gallatin

% α change 63.4413727 125.9954921 51.8035637 98.15436242

% β change 61.6218701 109.1968374 50.5694246 77.94357241

% R0 change 102.933562 115.3660454 102.4404856 125.9250388

Missoula Flathead

% α change 81.8582122 76.43894567 68.5998828 78.39453459

% β change 50.8167679 61.00799169 54.4637798 64.62023123

% R0 change 103.6941407 125.2918656 101.4688408 121.3045297

Cascade Lewis and Clark

% α change 29.2094146 87.5 68.852459 97.75132275

% β change 28.188119 62.50858043 66.8389041 81.72072568

% R0 change 103.6231486 139.9397334 103.0125488 119.6128156

Table 6.11: Comparison of fitted parameter values for all three waves of COVID-19 for all
counties.

The towns of Billings, Bozeman, Missoula, and Kalispell all exhibited similar dynamics across

the three waves, while Great Falls and Helena’s dynamics has stood out as not only being

different from the other four, but also generally different from each other as well. As men-

tioned earlier, the towns of Bozeman and Missoula are home to the two largest universities

in Montana (Montana State University and University of Montana, respectively). The town

of Kalispell is the largest town near Glacier National Park, and Billings is the largest town

in Montana, with the highest rate of population growth of any town within the state. Unlike

these four, the town of Great Falls, has multiple colleges, but none of them have the levels of

national recognition similar to those of Montana State University or University of Montana.

Because of this, external influx of students, athletes, and other visitors is lessened consider-

ably in comparison. In addition, the town of Helena is the capital of Montana. That being

said, the towns of Billings, Bozeman, Missoula, and Kalispell have a significant component of

out-of-state residents. For Bozeman and Missoula, this is related to the universities attract-
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ing a certain number of students, while Kalispell has visitors heading to Glacier National

Park, and Billings has the natural influx of people as the largest growing town in Montana.

In addition, as mentioned earlier, there is a significant tourist component that cannot be

ignored. While Montana is only the 40th in terms of total number of tourists [115], it is

44th in terms of population according to the 2022 US census. Along with tourists, Boze-

man Yellowstone International Airport (BZN) and Missoula International Airport (MSO)

should be mentioned as they are located in Bozeman and Missoula respectively, and are

often used by tourists to get to the state. In particular, BZN is the closest major airport to

the northern entrance to Yellowstone National Park. On the other hand, neither Great Falls

nor Helena have a similar common mechanism for influx of out-of-state people. Another

thing to note is that the counties that contain Billings, Bozeman, Missoula, and Kalispell,

namely Yellowstone, Gallatin, Missoula, and Flathead, respectively, all have a total popu-

lation of over 100 thousand. While Kalispell has a much smaller population compared to

Great Falls (26100 vs 60403), the total population of Flathead (Kalispell’s county) is greater

than that of Cascade (Great Fall’s county). If we were to group the counties by similar

dynamics of the cities, it would appear that we can use county population as a method of

this suggests that there might be a relation between county population and cross-correlation.

In conclusion, we can see that at least for the four most populous towns, the fitted model

parameter values are quite close, meaning that in the future, the population dynamics of the

towns can be assumed to be equitable, implying homogeneity in the efficacy of preventative

measures.



Chapter 7

Age Demographic Analysis of

COVID-19

While the number of new infected is valuable information to keep track of, and the corre-

sponding data type are most often modelled, it is not the data that people are truly interested

in. While getting sick is an unpleasant experience, we are ultimately more concerned about

the deaths as a result of the disease. The high mortality rate of COVID-19 was a main cause

for the reaction that followed. The worldwide response to the H1N1 virus, commonly known

as the swine flu, was quite a bit more tame in comparison [116].

The H1N1 virus, known as the swine flu, was the cause of the previous pandemic that

gripped the world, and yet unlike COVID-19, it is perceived as minor in comparison. The

H1N1 virus was declared a pandemic by the World Health Organization in June 2009 and

lasted officially until August 2010. During its lifetime it is estimated that there were around

60.8 million cases of H1N1 with somewhere between 151,700- 575,400 deaths [117]. In com-

parison, COVID-19 has had 753,001,888 confirmed cases, with 6.807,572 deaths [118]. From

this, we can see that COVID-19 was far more virulent and widespread than H1N1. Be-

sides this, there were several other differences. The largest difference was related to the
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general demographics affected. H1N1 mainly affected the younger demographic [116], while

COVID-19 primarily affected the elderly demographic. To examine the dynamics of deaths

in COVID-19, we need to look at the case-fatality rates.

The case-fatality rate of a disease is the chance of death if a person is infected with the

disease. This can be easily computed by simply dividing the total number of deaths by the

total number of cases. This is illustrated in Equation 7.1. Now, if we make the assumption

that the cases are spread across the population based on demographics, we would like to

compare the demographics for different counties illustrated in Figure 7.1.

Case Fatality Rate =
Total Deaths

Total Cases
(7.1)

Figure 7.1: County age demographics.

The bar graph in Figure 7.1 shows the age demographics of the 6 counties in Montana based

on the latest census data. However, a simple look at the cases shows a different picture,

contrary to a heuristic assumption on proportionality of cases and population in various age

groups; see bar graph in Figure 7.2.
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Figure 7.2: Alpha wave total cases for different age demographics.

If we adjust the numbers as to have percentages of the population that were infected instead

of the original counts, we get the situation presented in Figure 7.3.

Figure 7.3: Alpha wave cases age demographics expressed as percentages of each age popu-
lation group for various counties.

We can also look at this in a different manner, as the percentages of total cases in each age

demographic, see Figure 7.4.
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Figure 7.4: Alpha wave cases age demographics expressed as percentages of total cases.

From this we can see that for the Alpha wave there is a general pattern being followed by

the towns, however, this is most certainly not reflected in the demographics, as can be seen

from the comparison presented in Figure 7.5.

In spite of the correlation not being perfect, there are some patterns that can be observed.

For the 20-60 year old age ranges, we can see that except for the 40-60 age range in Gallatin

and the 50-60 age range in Lewis and Clark, that the percentage of COVID-19 cases in that

age range was greater than the percentage of people belonging to that age range. In other

words, the number of COVID-19 cases for those age ranges was overrepresented in those age

groups. However, it can also be observed that for the most part in the 0-20 and 60+ age

ranges, the percentage of COVID-19 cases was generally less than that of the demographic

percentage. In addition, it is important to note that in cases where this was not the case,

the differences in percentages between demographics and cases were very small. With this,

we can see some consistent patterns across the six towns.
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Figure 7.5: Comparison of percentages of each age group vs percentages of total cases in the
Alpha wave, for different counties.

Figure 7.6: Alpha wave total deaths by age demographic for different counties.

Let us next consider the number of deaths during the Alpha wave (see Figure 7.6). A simple
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visual comparison with Figure 7.2 shows an extreme disparity between the age distribution

of cases and distribution of deaths. Dividing the number of deaths by the number of cases

to get the case-fatality rates for the Alpha wave, shown in Figure 7.7.

Figure 7.7: Alpha wave case fatality rates by age demographic.

It is evident from Figure 7.7 that the case-fatality rates drastically increase in the 70+ age

range. Data scaling has no affect upon case fatality rates, as scaling would be done to both

the total cases and total deaths, resulting in cancellation of scaling terms. This is illustrated

with the equation Case Fatality Rate = (Total Deaths · S)/(Total Cases · S) in which S

represents the scaling factor used on the data. Let us now examine the other two waves.

For the Delta wave, the cases data for different age groups are shown in Figure 7.8.
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Figure 7.8: Delta wave total cases by age demographic

Figure 7.9: Comparison of age demographics of counties vs Delta wave cases.

From the bar graphs in Figure 7.8 we can see that there were fewer cases during the Delta

wave in comparison to the Alpha wave. We note that the county of Yellowstone as a whole
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has an overall higher number of cases than others. In Figure 7.9, we show another compar-

ison of the demographics of each age with the percentages of cases in each age group for

different counties.

Comparison of county age demographics with the age-based demographics of the Delta wave,

as illustrated in Figure 7.9, show a similar pattern to that displayed in the Alpha wave as

illustrated in Figure 7.5. While the county of Lewis and Clark displays further differences,

the lower county population and existence of the state capital Helena could be contributing

factors. The age-based case-fatality rates for the Delta wave are shown in Figure 7.10.

Figure 7.10: Delta wave case fatality rates by age demographic

In the bar graphs shown in Figure 7.10 we can notice several features that are different

compared to the Alpha wave. While the overall pattern is similar, we can see that in the

70+ age range, the general fatality is much lower. While in the 60-69 age range we can see

that the case-fatality rate went up slightly, is it a change from about 0.02 to 0.03. For the

Omicron wave, the total cases by age group are shown in Figure 7.11.
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Figure 7.11: Omicron wave total cases by age demographic

As shown in earlier parameter fitting, there is a dramatic increase in the number of cases

compared to the Delta wave, with the numbers being similar to the Alpha wave, particu-

larly if we compare to Figure 7.2. We can also see the large uptick in cases from the 20-29

age group in Gallatin, which corresponds with the anomalous pattern shown in Figure 6.12

and Figure 6.13. Comparison of age demographics to the percentages of cases by ages for

Omicron is shown in Figure 7.12.
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Figure 7.12: Comparison of age demographics of counties with total Omicron wave case age
demographics.

There are patterns that can still be seen here. For the 20-60 and 70+ year old age ranges, we

can see that with the exceptions of the 50-59 age ranges in Yellowstone, Gallatin, Missoula,

and Lewis and Clark, and the 20-29 age range in Missoula, that the percentage of COVID-19

cases in that age range was greater than the percentage of people belonging to that age range.

In other words, the number of COVID-19 cases for those age ranges was overrepresented in

those age groups. We can see for the 0-19 and 60-69 age ranges, the percentage of COVID-19

cases was generally less than that of the demographic percentage. This mirrors the patterns

in both the Alpha and Delta waves, although it should be noted that the pattern in the

70+ age range was the opposite of that of the Alpha wave. The case-fatality rates for the

Omicron wave is shown in Figure 7.13.
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Figure 7.13: Omicron wave case fatality rates by age demographic.

From this we can see that the case-fatality rates of the Omicron wave follow a similar

pattern to the case-fatality rates of the Alpha and Delta wave as illustrated in Figure 7.7

and Figure 7.10. However, if we compare the actual case fatality rates shown in Figure 7.13

with those shown in Figure 7.7 and Figure 7.10 we can see that the Omicron case-fatality

rates were lower than those of the Alpha and Delta counterparts.



Chapter 8

Discussion

COVID-19, in spite of the millions of deaths that resulted, has been valuable for showing sev-

eral details regarding infectious disease modeling. Prior to COVID-19, one of the best case

studies for infectious disease modeling was an outbreak of influenza at an all-boys boarding

school in England. The reasons for this were several fold. One, the residents of the board-

ing school, by the very nature of the institution, interacted with each other regularly, thus

allowing for the spread of the disease naturally. Two, consistent records were kept, with

the main data recorded being the number of boys who were sick. Three, the population in

question (boys at the boarding school) was a closed system. Combining these factors to-

gether made the boarding school example the best case study for infectious disease modeling.

COVID-19 offers us similar opportunities now as a result of the record keeping that has

been done throughout the pandemic. While there are potential concerns in regard to accu-

rate record-keeping, there is far more data for COVID-19 than any other pandemic. The

previous pandemic, the H1N1 virus or swine flu, was not as well recorded as COVID-19.

As discussed in Chapter 4, there are three major ways in which this dissertation separates

itself from the main body of work being done in this space. The first is an adherence to the
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concept of simple data-driven modeling. While many assumptions must be made in order

to accomplish this, we have shown that these assumptions are reasonable within our context

of study. Our use of data-driven modeling shows that an accurate model can be derived

directly from the data of interest, instead of needing to rely on fitted parameter values from

other locations.

The second way this dissertation separates itself is by fitting to the removed compartment

of the SIR model. As discussed before, there is a lack of clarity in both literature and data

reporting as to the nature of the data. We discussed how the data typically given is that of

newly infected, not total infected, and that there is no consistent method for determining

recovery time. In addition, we noted that the data given is that of newly infected who got

tested, and the test results were recorded. We pointed out that most people after testing

positive for COVID-19 would quarantine themselves, leading us to the conclusion that it

would be appropriate to consider these as removed instead of infected. This conclusion is at

odds with most of the current COVID-19 literature. However, the results achieved show the

merit of such an approach.

The third manner in which this dissertation separates itself is by use of the population

density. In Section 2.2 we discussed the Law of Mass Action and the subsequent derivation

of the SIR model. From this in Chapter 4 we discussed the merits of using the SIR model

within the framework of population density instead of straight population, as the Law of

Mass Action specifies concentrations of reactants. In addition, it acknowledges the fact that

differences in population densities will lead to differences in infection rates. Furthermore, we

scaled the data not only to take into account population density, but city population den-

sity, as the majority of the cases will take place within the confines of a city. After scaling

the data in order to represent city population density, it can be seen from Figures ??, 6.9,

and 6.13 that the towns have similar patterns.
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With these three changes, this dissertation has shown a different manner to utilize the SIR

model with COVID-19. First, we stick strictly to a simple data-driven SIR model, limiting

the assumptions we need to make and the issues of overfitting that arise from an overabun-

dance of parameters. Second, the data broadly available is more appropriate to fit to the

removed compartment. Third, population density is more appropriate to utilize as it reflects

the physical differences in different locations. The quality of fits that have been achieved

with these methods as well as the standard errors with our parameter estimates show the

validity of these choices.

We have also shown that the parameter fits for the 6 towns within each wave are simi-

lar to each other. With this, we can potentially use the fits from one town to approximate

the disease dynamics of another town. In addition, we can see from the fitted parameter β

that the general practice of general quarantining had an effect upon the model, and that it

is a primary factor in the rate of removal from the susceptible population.

Regarding similar dynamics, we showed in Chapter 6 the similarities in age demograph-

ics for total cases and deaths across the six counties. From this we conclude that rural

counties and towns share many similarities not only from a disease dynamics perspective,

but also from an case age structure standpoint. Because of these similarities, we suggest

that knowledge of the disease dynamics and age structure of one county/town should allow

for reasonable predictions of the disease dynamics and age structure of other towns. The

subsequent question that naturally arises from this is how much can these similarities be

used for such predictions.
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8.1 Future Research

We have shown in this dissertation a method for a data-driven simple SIR model that ac-

curately models COVID-19. In addition, we have shown that the six towns we examined

exhibited similar disease and population dynamics in response to COVID-19. A question we

have going forward is how far does this similarity extend. We acknowledge the fact that the

six towns examined were all in Montana, meaning that from a state legislature, geographic,

and cultural standpoint, they are vastly different from a similar town in a state such as New

York. To understand both the extent of this similarity and further details that might affect

it, we suggest examinations of more towns, first from Wyoming and the Dakotas, and then

further expanding outwards. We would also like to note the town of Butte in Montana, as it

was not included in this dissertation. Butte is a town of 35,411 but was not included as we

examined the most populous towns in the six most populous counties, instead of the most

populous towns. We also suggest examining the town of Butte in future studies. Fitting

of data from other towns, particularly from other states, will be useful in understanding

additional variables that may have an effect on disease dynamics.

In addition to understanding additional variables that affect disease dynamics, the simi-

larities in disease and population dynamics suggest that we can predict the parameters and

dynamics of the disease in another town. Another future research topic would be to develop

a method of predicting the model for one rural town based on the fitted model of a different

town. Like above, additional towns will need to be examined to understand more of the

variables that affect the disease dynamics.



Chapter 9

Conclusion

In this dissertation we have shown that fitting the data to the Removed compartment of a

simple data-driven SIR model, while examining the data in terms of city population density,

produces excellent results. Using these results, we have shown similarities in disease and

population dynamics among the largest cities in the six most populous counties in Montana.

The process for doing this has been outlined primarily in Chapter 5. The initial parameter

fits, as shown in Table 6.1 and illustrated in Figure 6.1 suggested parallels in disease and

population dynamics between the six counties. It was then found that scaling the data by the

ratio of the city population and county population, as well as by the area of the largest city,

resulted in very similar disease and population dynamics. This scaling was done to simulate

COVID-19 within the cities instead of the county as a whole. The results of this are shown in

Figure 6.3. Fitting this scaled data to the SIR model showed with greater certainty the par-

allels in disease dynamics and population behavior between the six cities for the Alpha wave.

This methodology was continued with the Delta and Omicron waves. While these waves

had their own separate considerations, discussed in Sections 6.2 and 6.3, parameter fitting

similar to that of the Alpha wave was done. As with the Alpha wave, scaling the data by

the ratio of the city population and county population as well as by the area of the largest

77
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city in order to simulate the dynamics of the cities themselves and then fitting the scaled

data to the SIR model showed similar parallels across cities as the Alpha wave. In addition,

with a couple of exceptions, the general change in fitted parameter values from wave to the

next was a positive growth.

From this, we can conclude that the underlying disease dynamics and population behav-

ior is similar among the six cities. A result of this conclusion, then, is that external forces

upon disease dynamics or population behavior should have similar effects upon the six cities.

In addition, if a city experiences an outbreak ahead of the other cities, it can be used as a

template of what to expect with the disease outbreak.

This similarity in disease and population dynamics is further illustrated by analysis of age

demographic data. Comparison of age demographics of total cases for each wave with the

corresponding age demographics of each county showed a pattern in the relationship between

the two that is mostly consistent among all six counties and throughout all three waves. In

addition, the overall shape of the case fatality rate bar charts as shown in Figure 7.7, Fig-

ure 7.10, and Figure 7.13 is consistent, in spite of average case fatality rates decreasing in

each subsequent wave. From this, it can be seen that the disease and population dynamics

are equitable between counties/cities, even down to age groups.

We have shown that with the proper use of data and population density instead of straight

population, COVID-19 can be accurately modeled with a simple SIR model. As every place

in the world that has COVID-19 is different, it is insensible that parameters computed from

one place are blindly used in others. We hope that with this, we can improve COVID-19

modeling. In addition, there it appears that rural towns, at least those in Montana, exhibit

parallels in disease and population dynamics in regard to COVID-19. This suggests that ex-

ternal factors, such as governmental policies and vaccinations, should have equitable effects
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on separate rural towns. We believe that with further study, the fitted model of one town

could be used to accurately predict the model of a separate town, and thus enable more

accurate modeling and informed policy decisions in the future.



Appendix A

SIR Model Code

A.1 Libraries and Data Processing

The code for this dissertation was written entirely in Python. This first section contains the

code that loads the libraries and data being used.

import numpy as np
import s c ipy as sp
from s c ipy import i n t eg ra t e , opt imize
import matp lo t l i b . pyplot as p l t
import pandas as pd
from s k l e a rn . met r i c s import mean squared error as MSE
from s k l e a rn . met r i c s import r 2 s c o r e
import datet ime

import geopandas as gpd

### RUN THIS AFTER KERNEL RELOAD ###

# read in data and crea t e l i s t s t h a t are used l a t e r

df = pd . r ead c sv ( ’ county data combined . csv ’ , low memory = True )
v d f = pd . r ead c sv ( ’COVID−19 Vacc ina t i on s in the Un i t ed S ta t e s County . csv ’ ,

low memory = False )
v df MT = v df [ v d f [ ’ Rec ip State ’ ] == ’MT’ ]
county map = gpd . r e a d f i l e ( ”MontanaCounties shp/County . shp” )
c o un t y l i s t = df [ ’ county ’ ] . unique ( )
county pop = [119533 , 122713 , 167146 , 11283 , 10821 , 84511 , 13785 ,

16179 , 1946 , 5994 , 5011 , 12957 , 10847 , 11617 , 831 , 4896 ,
9044 , 2059 , 9524 , 7288 , 9491 , 12470 , 72223 , 8917 , 1964 ,

80
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17473 , 35411 , 108454 , 32033 , 20525 , 45959 , 8124 , 11916 ,
8904 , 7537 , 768 , 3344 , 3017 , 1209 , 3527 , 6269 , 1686 ,
1718 , 1702 , 934 , 6980 , 5916 , 2044 , 3723 , 12959 , 6999 ,
4192 , 1091 , 4860 , 1428 , 519 ]

# urban pop i s ordered to be added to combined map , not wi th the
# order o f county pop

urban pop = [2294 , 0 , 0 , 4261 , 3383 + 1657 , 2039 + 1023 + 1000 ,
7784 , 28532 + 10460 + 5901 + 2053 + 1822 + 1382 , 1682 ,
34993 , 0 , 9421 , 0 , 109550 + 7195 + 6766 , 2918 + 1851 +
1267 + 1141 , 0 , 1038 , 4809 + 2025 + 1125 , 1863 , 1910 ,
2098 , 2266 + 1897 + 1823 , 0 , 8393 , 0 , 0 , 0 , 0 , 0 , 0 ,
2916 , 74428 + 5377 + 4399 + 2465 + 1958 + 1690 + 1682 +
1018 , 59701 + 1615 , 5818 , 32315 + 9168 + 8670 + 4706 +
3813 + 2089 + 1331 , 0 , 5018 + 2138 + 2088 , 0 , 1713 ,
1443 , 1394 + 1107 , 2500 , 2743 , 9715 , 1567 + 1273 , 0 ,
1915 , 3089 , 3328 , 1027 , 3022 + 2653 + 1970 + 1018 ,
23938 + 8149 + 7870 + 5575 + 5118 + 2705 + 1119 + 1049 ,
1786 , 2737 + 1118 , 4960 + 1998 , 6246 ]

# urban area has the in format ion f o r the s i x most populous towns in
# Montana

urban area = { ’ City ’ : [ ’ B i l l i n g s ’ , ’ Missoula ’ , ’ Great Fa l l s ’ ,
’Bozeman ’ , ’ Butte ’ , ’ Helena ’ , ’ K a l i s p e l l ’ ] ,

’ County ’ : [ ’ Yel lowstone ’ , ’ Missoula ’ , ’ Cascade ’ ,
’ Ga l l a t i n ’ , ’ S i l v e r Bow ’ , ’ Lewis and Clark ’ ,
’ Flathead ’ ] ,

’ Area ’ : [ 4 3 . 4 1 , 27 . 51 , 21 .79 , 19 . 12 , 716 .25 , 16 .35 ,
1 1 . 6 4 ] ,

’ Populat ions ’ : [ 117445 , 74822 , 60403 , 54539 , 35411 ,
33120 , 26110]}

ua df = pd . DataFrame ( data = urban area )

usa f dea th data = pd . r ead c sv ( ’ d a t a f i l e s / c ov i d d e a th s u s a f a c t s . csv ’ ,
low memory = True )

u s a f c a s e s d a t a = pd . r ead c sv ( ’ d a t a f i l e s / c ov i d con f i rmed u sa f a c t s . csv ’ ,
low memory = True )

### RUN THIS AFTER KERNEL RELOAD ###

# This b l o c k c r ea t e s a dataframe with the week ly new cases f o r the
whole datase t

weekly h = [ ]
weekly removed h = [ ]

for i in range ( len ( c o u n t y l i s t ) ) :
c data = DataLoad ( i )
da i ly , weekly = InfectedData ( c data )
weekly h . append ( weekly )
removed = np . z e ro s ( len ( weekly ) )
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removed [ 0 ] = weekly [ 0 ]
for j in range ( len ( weekly )−1):

removed [ j +1] = removed [ j ] + weekly [ j +1]
weekly removed h . append ( removed )

k = 111
column names = [ ]

for i in range ( 1 1 1 ) :
column names . append ( str ( i ) )

# This i s a dataframe with week ly r a t e s f o r a l l c oun t i e s
week ly h d f = pd . DataFrame ( weekly h , columns = column names )

column names = [ ]
for i in range ( 1 1 1 ) :

column names . append ( ’ r ’+ str ( i ) )

#This i s a dataframe with week ly removed ra t e s f o r a l l c oun t i e s
weekly removed h df = pd . DataFrame ( weekly removed h , columns =
column names )

# This next b i t adds in the COUNTYNUMB column to make the s e numbers
# t a l k to the geopandas data .

CN = np . z e r o s (56)

for i in range ( len ( c o u n t y l i s t ) ) :
c name = c oun t y l i s t [ i ]
CN[ np . where ( c o u n t y l i s t == c name ) [ 0 ] [ 0 ] ] =
county map [ county map [ ’NAME’ ] == c name . upper ( ) ]
[ ’COUNTYNUMB’ ] . va lue s [ 0 ]

week ly h d f . i n s e r t (0 , ”COUNTYPOP” , county pop , True )
week ly h d f . i n s e r t (0 , ”COUNTYNUMB” , CN, True )

weekly removed h df . i n s e r t (0 , ”COUNTYNUMB” , CN, True )

intermediate map = county map . merge ( weekly h df , on = ’COUNTYNUMB’ )
combined map = intermediate map . merge ( weekly removed h df , on =
’COUNTYNUMB’ )
combined map [ ’POP DENSITY ’ ] = combined map [ ’COUNTYPOP’ ] /
combined map [ ’SQMILES ’ ]

combined map . i n s e r t (0 , ”URBANPOP” , urban pop , True )
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A.2 Functions

The following are functions that are called throughout the rest of the code. Some of the

functions (DataLoad and InfectedData) are called in the previous section, but grouping was

done to keep data processing all in one section.

### RUN THIS AFTER KERNEL RELOAD ###

# Run th i s to load data from a s p e c i f i c county .
de f DataLoad ( county , weekly = True ) :

county data = df [ df [ ’ county ’ ] == c oun t y l i s t [ county ] ]
# the weekly i s in the re i f a weekly por t i on i s needed f o r t h i s .
r e turn county data

# This takes the data from DataLoad and turns i t i n to da i l y and weekly
# data s e t s
de f In fectedData ( county data ) :

k = len ( county data )
d a i l y i n f e c t e d = county data [ ’ Dai ly t o t a l cases ’ ] . va lue s
we ek l y i n f e c t ed = np . add . reduceat ( d a i l y i n f e c t e d , np . arange (0 , k , 7 ) )
re turn d a i l y i n f e c t e d , we ek l y i n f e c t ed

# Basic SIR model to be used in the odesolveR1 func t i on below
de f de r i v (y , t , alpha , beta ) :

S , I ,R = y
dSdt = −alpha ∗ S ∗ I
dIdt = alpha ∗ S ∗ I − beta ∗ I
dRdt = beta ∗ I
r e turn dSdt , dIdt , dRdt

# SIR model modi f i ed to account f o r vacc ina t i on rate s , used in the
# odesolveR3 func t i on below
de f de r iv2 (y , t , alpha , beta ) :

S , I ,R = y
dSdt = −alpha ∗ S ∗ I − gamma
dIdt = alpha ∗ S ∗ I − beta ∗ I
dRdt = beta ∗ I
r e turn dSdt , dIdt , dRdt

de f odesolveR1 (x , alpha , beta , I0 ) :
S1 , I1 , R1 = in t e g r a t e . ode int ( der iv ,

( S0 , I0 , R0) ,
x ,
args=(alpha , beta ) ) .T

return R1
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de f odesolveR3 (x , alpha , beta , I0 ) :
S1 , I1 , R1 = in t e g r a t e . ode int ( der iv2 ,

( S0 , I0 , R0) ,
x ,
args=(alpha , beta ) ) .T

return R1

A.3 Infection Visualization

The following codes are used to create some of the graphs shown in the dissertation.

Figure 5.1 code.

county name = ’ Yel lowstone ’
s t a r t = 40
end = 44

# Find index f o r the county
county index = np . where ( c o u n t y l i s t == county name ) [ 0 ] [ 0 ]

# pu l l the da i l y i n f e c t e d r a t e s and trans form i t i n to a weekly
# average
county data = DataLoad ( county index )
da i ly , weekly 0 = InfectedData ( county data )

da i l y1 = da i l y [ s t a r t ∗7−1:end∗7−1]
d time = np . l i n s p a c e (0 , ( end−s t a r t )∗7 , ( end−s t a r t )∗7)

p l t . p l o t ( d time , da i ly1 , l a b e l = c o un t y l i s t [ t op coun t i e s [ i ] ] )
p l t . x t i c k s ( [ 0 , 7 , 1 4 , 2 1 , 2 8 ] )
p l t . x l ab e l ( ’ Days ’ )
p l t . y l ab e l ( ’ Dai ly Newly In f e c t ed ’ )
p l t . show ( )

Figure 5.2 code.

county name = ’ Yel lowstone ’
s t a r t = 1
end = 112

# Find index f o r the county
county index = np . where ( c o u n t y l i s t == county name ) [ 0 ] [ 0 ]

# pu l l the da i l y i n f e c t e d r a t e s and trans form i t i n to a weekly
# average
county data = DataLoad ( county index )
da i ly , weekly 0 = InfectedData ( county data )

weekly = weekly 0 [ s t a r t −1:end−1]
t t ime = np . l i n s p a c e ( s ta r t , end , end−s t a r t )
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p l t . p l o t ( t t ime , weekly , l a b e l = c o un t y l i s t [ t op coun t i e s [ i ] ] )
p l t . x t i c k s ( [ 0 , 2 0 , 40 , 6 0 , 80 , 1 00 , 120 ] )
p l t . x l ab e l ( ’Weeks ’ )
p l t . y l ab e l ( ’Weekly Newly In f e c t ed ’ )
p l t . show ( )

Figure 6.1, ??, ??, ??, ??, 6.8, 6.9, 6.12, 6.13 code.

The following code specifically creates Figure ??, however it can be easily reconfigured to
produce the other figures.

# number o f c ount i e s to look at
n = 6

# These are s t a r t and end weeks to examine .
s t a r t = 20
end = 60

top coun t i e s = np . a r g s o r t ( county pop ) [ : : − 1 ] [ : n ]
f o r i in range (n ) :

c data = DataLoad ( t op coun t i e s [ i ] )
da i ly , weekly n = InfectedData ( c data )
county name = c oun t y l i s t [ t op coun t i e s [ i ] ]
c i t y a r e a = ua df [ ua df [ ’ County ’ ] == county name ] [ ’ Area ’ ] . i l o c [ 0 ]
c i ty pop = ua df [ ua df [ ’ County ’ ] == county name ]

[ ’ Populat ions ’ ] . i l o c [ 0 ]

county area = combined map [ combined map [ ’NAME’ ] ==
county name . upper ( ) ] [ ’ SQMILES ’ ] . i l o c [ 0 ]

ru ra l pop = combined map [ combined map [ ’NAME’ ] ==
county name . upper ( ) ] [ ’COUNTYPOP’ ] . i l o c [ 0 ]

pop ra t i o = c i ty pop / rura l pop
weekly = weekly n [ s t a r t −1:end−1] ∗ pop ra t i o / c i t y a r e a

t t ime = np . l i n s p a c e ( s ta r t , end , end−s t a r t )

p l t . p l o t ( t t ime , weekly , l a b e l = c o un t y l i s t [ t op coun t i e s [ i ] ] )
p l t . l egend ( )
p l t . show ( )

A.4 SIR Model Fitting

The following codes are for the different waves. While a single function could be made for

this, in the operating code different instances of this were utilized for different waves. The
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goal of these codes is to produce the dataframe results df that contains the fitted parameters

and other relavent information, some of which is not referenced in the dissertation but is

useful when modelling.

Alpha Wave Fitting

The Alpha wave fitting code here is designed to find a starting week by targeting a starting
infection density.

# number o f c ount i e s to look at
n = 6

s t a r t d e n s i t y = 20
end weeks = [50 , 70 ]

# F i t t i n g to Su s c ep t i b l e Data in s t ead o f Removed
s u s c e p t i b l e = False

# I n i t i a l Parameters [ alpha , beta ]
ip = [ 3 . 7 1 4 e −05 ,6 .5 ]

### Set t ing codes :
#
# 0 : No s c a l i n g whatsoever
# 1 : Sca l i ng by COUNTY area ( county dens i ty )
# 2 : Sca l i ng by CITY area ( c i t y dens i ty v ia area o f l a r g e s t c i t y )
# 3 : Sca l i ng by CITY/COUNTY ra t i o ( l a r g e s t c i t y pop / county pop )
# 4 : Sca l i ng by URBAN/COUNTY ra t i o ( urban populat ion / county pop )
# 5 : Sca l i ng by CITY/COUNTY ra t i o and c i t y area ( l a r g e s t c i t y pop
# / county pop / c i t y area )
# 6 : Sca l i ng by URBAN/COUNTY ra t i o and c i t y area ( urban populat ion
# / county pop / c i t y area )
#
###

se t t i n g = 5

r e s u l t s d f = pd . DataFrame ( [ ’ S ta r t Week ’ ,
’End Week ’ ,
’ alpha ’ ,
’ beta ’ ,
’ I n i t i a l In f e c t ed ’ ,
’ City ’ ,
’ City Population ’ ,
’Urban Population ’ ,
’ County Population ’ ,
’ City Area ’ ,
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’ County Area ’ ,
’ City /Rural Populat ion Ratio ’ ,
’Urban/Rural Populat ion Ratio ’ ,
’ City Pop Density ’ ,
’ Rural Pop Density ’ ,
’ City /Rural Ratio d iv ided by c i t y area ’ ,
’MSE’ ] , columns = [ ’ Parameters ’ ] )

t op coun t i e s = np . a r g s o r t ( county pop ) [ : : − 1 ] [ : n ]

end array = np . l i n s p a c e ( end weeks [ 0 ] ,
end weeks [ 1 ] ,
end weeks [1]− end weeks [0 ]+1)

s c o r e s = np . z e r o s ( l en ( end array ) )

f o r h in range (n ) :
# Find name o f county
county name = c oun t y l i s t [ t op coun t i e s [ h ] ]
c ounty in f o = combined map . l o c [ combined map [ ’NAME’ ] ==

county name . upper ( ) ]

# Sp e c i f i c c i t y populat ion and area , not the o v e r a l l urban one .
c i ty pop = ua df [ ua df [ ’ County ’ ]

== county name ] [ ’ Populat ions ’ ] . i l o c [ 0 ]
c i t y a r e a = ua df [ ua df [ ’ County ’ ]

== county name ] [ ’ Area ’ ] . i l o c [ 0 ]

# County ( r u r a l ) area
r u r a l a r e a = combined map [ combined map [ ’NAME’ ]

== county name . upper ( ) ] [ ’ SQMILES ’ ] . i l o c [ 0 ]

# Find index f o r the county
county index = np . where ( c o u n t y l i s t == county name ) [ 0 ] [ 0 ]

# pu l l the da i l y i n f e c t e d r a t e s and trans form i t i n to a weekly
# average
county data = DataLoad ( county index )
da i ly , weekly 0 = InfectedData ( county data )

weekly 1 = weekly 0 [ 1 0 : 7 0 ]

### This c r e a t e s the removed datase t
removed = np . z e ro s ( l en ( weekly 1 ) )
removed [ 0 ] = weekly 1 [ 0 ]
f o r k in range ( l en ( weekly 1 )−1):

removed [ k+1] = removed [ k]+weekly 1 [ k+1]
###

# county TOTAL populat ion
rura l pop = county pop [ county index ]
# county URBAN populat ion
urban p = combined map [ combined map [ ’NAME’ ]

== county name . upper ( ) ] [ ’URBANPOP’ ] . i l o c [ 0 ]
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u r pop ra t i o = urban p/ rura l pop # urban/ ru r a l pop r a t i o
c r p op r a t i o = c i ty pop / rura l pop # c i t y / ru r a l pop r a t i o

i f s e t t i n g == 0 :
# th i s i s f o r ab s o l u t e l y no s c a l i n g whatsoever
removed sca led = removed ∗ 1
s ta r t , i n i t d e n s i t y = min ( enumerate ( removed sca led ) ,

key=lambda x : abs (x [1]− s t a r t d e n s i t y ) )
i n i t i a l i = weekly 0 [ s t a r t ]
populat ion = rura l pop

e l i f s e t t i n g == 1 :
# th i s i s f o r s c a l i n g only by county area ( county dens i ty )
removed sca led = removed / r u r a l a r e a
s ta r t , i n i t d e n s i t y = min ( enumerate ( removed sca led ) ,

key=lambda x : abs (x [1]− s t a r t d e n s i t y ) )
i n i t i a l i = weekly 0 [ s t a r t ] / r u r a l a r e a
populat ion = rura l pop / rura l pop

e l i f s e t t i n g == 2 :
# th i s i s f o r s c a l i n g by c i t y area only
removed sca led = removed / c i t y a r e a
s ta r t , i n i t d e n s i t y = min ( enumerate ( removed sca led ) ,

key=lambda x : abs (x [1]− s t a r t d e n s i t y ) )
i n i t i a l i = weekly 0 [ s t a r t ] / c i t y a r e a
populat ion = rura l pop / c i t y a r e a

e l i f s e t t i n g == 3 :
# th i s i s f o r s c a l i n g by c i t y populat ion
# ( r a t i o o f CITY to county )
removed sca led = removed ∗ c r p op r a t i o
s ta r t , i n i t d e n s i t y = min ( enumerate ( removed sca led ) ,

key=lambda x : abs (x [1]− s t a r t d e n s i t y ) )
i n i t i a l i = weekly 0 [ s t a r t ]
populat ion = c i ty pop

e l i f s e t t i n g == 4 :
# th i s i s f o r s c a l i n g by URBAN populat ion
# ( r a t i o o f URBAN to county )
removed sca led = removed ∗ u r pop ra t i o
s ta r t , i n i t d e n s i t y = min ( enumerate ( removed sca led ) ,

key=lambda x : abs (x [1]− s t a r t d e n s i t y ) )
i n i t i a l i = weekly 0 [ s t a r t ]
populat ion = urban p

e l i f s e t t i n g == 5 :
# th i s i s f o r s c a l i n g by c i t y populat ion
# then by area o f c i t y
removed sca led = removed ∗ c r p op r a t i o / c i t y a r e a
s ta r t , i n i t d e n s i t y = min ( enumerate ( removed sca led ) ,

key=lambda x : abs (x [1]− s t a r t d e n s i t y ) )
i n i t i a l i = weekly 0 [ s t a r t ] / c i t y a r e a
populat ion = c i ty pop / c i t y a r e a

e l i f s e t t i n g == 6 :
# th i s i s f o r s c a l i n g by URBAN populat ion
# then by area o f l a r g e s t c i t y
removed sca led = removed ∗ u r pop ra t i o / c i t y a r e a
s ta r t , i n i t d e n s i t y = min ( enumerate ( removed sca led ) ,
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key=lambda x : abs (x [1]− s t a r t d e n s i t y ) )
i n i t i a l i = weekly 0 [ s t a r t ] / c i t y a r e a
populat ion = urban p / c i t y a r e a

i f s u s c e p t i b l e == True :

# th i s i s to c r e a t e the s u s c e p t i b l e data
removed sca led = populat ion − removed sca led

## This runs through the d i f f e r e n t p o s s i b l e endpoint to
## show the MSEs f o r each in order to f i nd the best f i t
f o r j in range ( l en ( end array ) ) :

end = end array [ j ]
removed new = removed sca led [ s t a r t : i n t ( end )−10]

time = np . l i n s p a c e (0 , l en ( removed new)−1 , l en ( removed new ) )

I0 ,R0 = i n i t i a l i , i n i t d e n s i t y
S0 = removed new [ 0 ] − I0 − R0

in i t i a lPa r ame t e r s = [ ip [ 0 ] , ip [ 1 ] , I0 ]

f i t t edParameter s , pcov = opt imize . c u r v e f i t ( odesolveS1 ,
time ,
removed new ,
p0=tup l e ( i n i t i a l
Parameters ) )

y0 = S0 , f i t t edParamete r s [ 2 ] , R0
r e t = i n t e g r a t e . ode int ( der iv , y0 , time ,

args=tup l e ( f i t t edParamete r s [ : 2 ] ) )
S , I , R = re t .T

s c o r e s [ j ] = MSE( removed new , R)

min index = s co r e s . argmin ( )

end = end array [ min index ]

## This s e c t i o n redoes the f i t us ing the min index to
## output to the r e s u l t s dataframe

removed new = removed sca led [ s t a r t : i n t ( end )−10]

time = np . l i n s p a c e (0 , l en ( removed new)−1 , l en ( removed new ) )

I0 ,R0 = i n i t i a l i , i n i t d e n s i t y
S0 = removed new [ 0 ] − I0 − R0

in i t i a lPa r ame t e r s = [ ip [ 0 ] , ip [ 1 ] , I0 ]

f i t t edParameter s , pcov = opt imize . c u r v e f i t ( odesolveS1 ,
time ,
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removed new ,
p0=tup l e ( i n i t i a l
Parameters ) )

e l s e :

## This runs through the d i f f e r e n t p o s s i b l e endpoint to
## show the MSEs f o r each in order to f i nd the best f i t
f o r j in range ( l en ( end array ) ) :

end = end array [ j ]
removed new = removed sca led [ s t a r t : i n t ( end )−10]

time = np . l i n s p a c e (0 , l en ( removed new)−1 , l en ( removed new ) )

I0 ,R0 = i n i t i a l i , i n i t d e n s i t y
S0 = populat ion − I0 − R0

in i t i a lPa r ame t e r s = [ ip [ 0 ] , ip [ 1 ] , I0 ]

f i t t edParameter s , pcov = opt imize . c u r v e f i t ( odesolveR1 ,
time ,
removed new ,
p0=tup l e ( i n i t i a l
Parameters ) )

y0 = S0 , f i t t edParamete r s [ 2 ] , R0
r e t = i n t e g r a t e . ode int ( der iv , y0 , time ,

args=tup l e ( f i t t edParamete r s [ : 2 ] ) )
S , I , R = re t .T

s c o r e s [ j ] = MSE( removed new , R)

min index = s co r e s . argmin ( )

end = end array [ min index ]

## This s e c t i o n redoes the f i t us ing the min index to
## output to the r e s u l t s dataframe

removed new = removed sca led [ s t a r t : i n t ( end )−10]

time = np . l i n s p a c e (0 , l en ( removed new)−1 , l en ( removed new ) )

I0 ,R0 = i n i t i a l i , i n i t d e n s i t y
S0 = populat ion − I0 − R0

in i t i a lPa r ame t e r s = [ ip [ 0 ] , ip [ 1 ] , I0 ]

f i t t edParameter s , pcov = opt imize . c u r v e f i t ( odesolveR1 ,
time ,
removed new ,
p0=tup l e ( i n i t i a l
Parameters ) )
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r e s u l t s d f [ county name ] = [ s t a r t + 10 ,
end ,
f i t t edParamete r s [ 0 ] ,
f i t t edParamete r s [ 1 ] ,
f i t t edParamete r s [ 2 ] ,
ua df [ ua df [ ’ County ’ ]

== county name ] [ ’ City ’ ] . i l o c [ 0 ] ,
c i ty pop ,
urban p ,
rura l pop ,
c i t y a r e a ,
r u r a l a r e a ,
c r pop ra t i o ,
u r pop ra t i o ,
c i ty pop / c i t y a r e a ,
ru ra l pop / ru ra l a r e a ,
c r p op r a t i o / c i t y a r e a ,
s c o r e s . min ( ) ]

Delta Wave

The code shown here is for the fitting the modified SIR model outlined in Equations (5.1)-
(5.3). The code that does not account for vaccination is not included here. In addition, it
should be noted that while the majority of the code is the same, there are some changes
to take into account the Delta wave’s location in the timeline as well as the vaccination
constant.

# number o f c ount i e s to look at
n = 6

s u s c e p t i b l e = False
ove r r i d e = False
s ta r t week = 73
end week = 93

# I n i t i a l Parameter Guesses
ip = [ 3 . 7 1 4 e−05 ,7] # alpha , beta

### Set t ing codes :
#
# 0 : No s c a l i n g whatsoever
# 1 : Sca l i ng by COUNTY area ( county dens i ty )
# 2 : Sca l i ng by CITY area ( c i t y dens i ty v ia area o f l a r g e s t c i t y )
# 3 : Sca l i ng by CITY/COUNTY ra t i o ( l a r g e s t c i t y pop / county pop )
# 4 : Sca l i ng by URBAN/COUNTY ra t i o ( urban populat ion / county pop )
# 5 : Sca l i ng by CITY/COUNTY ra t i o and c i t y area ( l a r g e s t c i t y pop
# / county pop / c i t y area )
# 6 : Sca l i ng by URBAN/COUNTY ra t i o and c i t y area ( urban populat ion
# / county pop / c i t y area )
#
###
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s e t t i n g = 5

r e s u l t s d f = pd . DataFrame ( [ ’ S ta r t Week ’ ,
’End Week ’ ,
’ alpha ’ ,
’ beta ’ ,
’gamma’ ,
’ I n i t i a l In f e c t ed ’ ,
’ City ’ ,
’ City Population ’ ,
’Urban Population ’ ,
’ County Population ’ ,
’ City Area ’ ,
’ County Area ’ ,
’ City /Rural Populat ion Ratio ’ ,
’Urban/Rural Populat ion Ratio ’ ,
’ City Pop Density ’ ,
’ Rural Pop Density ’ ,
’ City /Rural Ratio d iv ided by c i t y area ’ ,
’MSE’ ] , columns = [ ’ Parameters ’ ] )

t op coun t i e s = np . a r g s o r t ( county pop ) [ : : − 1 ] [ : n ]

f o r h in range (n ) :
# Find name o f county
county name = c oun t y l i s t [ t op coun t i e s [ h ] ]
c ounty in f o = combined map . l o c [ combined map [ ’NAME’ ]

== county name . upper ( ) ]

# Sp e c i f i c c i t y populat ion and area , not the o v e r a l l urban one .
c i ty pop = ua df [ ua df [ ’ County ’ ]

== county name ] [ ’ Populat ions ’ ] . i l o c [ 0 ]
c i t y a r e a = ua df [ ua df [ ’ County ’ ]

== county name ] [ ’ Area ’ ] . i l o c [ 0 ]

# County ( r u r a l ) area
r u r a l a r e a = combined map [ combined map [ ’NAME’ ]

== county name . upper ( ) ] [ ’ SQMILES ’ ] . i l o c [ 0 ]

# Find index f o r the county
county index = np . where ( c o u n t y l i s t == county name ) [ 0 ] [ 0 ]

# pu l l the da i l y i n f e c t e d r a t e s and trans form
# i t in to a weekly average
county data = DataLoad ( county index )
da i ly , weekly 0 = InfectedData ( county data )

weekly 1 = weekly 0 [ 1 0 : ]

# Vacc inat ion Rates
v df MT county = v df MT [ v df MT [ ’ Recip County ’ ]
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== county name + s t r ( ’ County ’ ) ] . r e s e t i n d e x ( drop = True )
county vac da i l y = v df MT county [ ’ Administered Dose1 Recip ’ ]

. i l o c [ 2 0 : ] . va lue s
county vac weekly = np . add . reduceat ( county vac da i ly ,

np . arange (0 , l en ( county vac da i l y ) , 7 ) ) /7
county vac weekly = np . concatenate ( ( v df MT county

[ ’ Administered Dose1 Recip ’ ] . i l o c [ : 2 0 ] . va lue s . astype ( i n t ) ,
county vac weekly . astype ( i n t ) ,
np . z e r o s ( 4 0 ) . astype ( i n t ) ) )

county vac weekly = county vac weekly [ : : − 1 ]

### This c r e a t e s the removed datase t
removed = np . z e ro s ( l en ( weekly 1 ) )
removed [ 0 ] = weekly 1 [ 0 ]
f o r k in range ( l en ( weekly 1 )−1):

removed [ k+1] = removed [ k]+weekly 1 [ k+1]
###

# th i s takes in to account that we arn ’ t doing the f i r s t wave

removed −= removed [ s tart week −10]

# county TOTAL populat ion
rura l pop = county pop [ county index ]
# county URBAN populat ion
urban p = combined map [ combined map [ ’NAME’ ]

== county name . upper ( ) ] [ ’URBANPOP’ ] . i l o c [ 0 ]

u r pop ra t i o = urban p/ rura l pop # urban/ ru r a l pop r a t i o
c r p op r a t i o = c i ty pop / rura l pop # c i t y / ru r a l pop r a t i o

i f s e t t i n g == 0 :
# th i s i s f o r ab s o l u t e l y no s c a l i n g whatsoever
removed sca led = removed ∗ 1
i n i t i a l i = weekly 0 [ s ta r t week ]
populat ion = rura l pop

e l i f s e t t i n g == 1 :
# th i s i s f o r s c a l i n g only by county area ( county dens i ty )
removed sca led = removed / r u r a l a r e a
i n i t i a l i = weekly 0 [ s ta r t week ] / r u r a l a r e a
populat ion = rura l pop / rura l pop

e l i f s e t t i n g == 2 :
# th i s i s f o r s c a l i n g by c i t y area only
removed sca led = removed / c i t y a r e a
i n i t i a l i = weekly 0 [ s ta r t week ] / c i t y a r e a
populat ion = rura l pop / c i t y a r e a

e l i f s e t t i n g == 3 :
# th i s i s f o r s c a l i n g by c i t y populat ion
# ( r a t i o o f CITY to county )
removed sca led = removed ∗ c r p op r a t i o
i n i t i a l i = weekly 0 [ s ta r t week ]
populat ion = c i ty pop

e l i f s e t t i n g == 4 :
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# th i s i s f o r s c a l i n g by URBAN populat ion
# ( ra t i on o f URBAN to county )
removed sca led = removed ∗ u r pop ra t i o
i n i t i a l i = weekly 0 [ s ta r t week ]
populat ion = urban p

e l i f s e t t i n g == 5 :
# th i s i s f o r s c a l i n g by c i t y populat ion
# then by area o f c i t y
removed sca led = removed ∗ c r p op r a t i o / c i t y a r e a
i n i t i a l i = weekly 0 [ s tart week −10] ∗ c r p op r a t i o / c i t y a r e a
populat ion = c i ty pop / c i t y a r e a

e l i f s e t t i n g == 6 :
# th i s i s f o r s c a l i n g by URBAN populat ion
# then by area o f l a r g e s t c i t y
removed sca led = removed ∗ u r pop ra t i o / c i t y a r e a
i n i t i a l i = weekly 0 [ s ta r t week ] / c i t y a r e a
populat ion = urban p / c i t y a r e a

i f s u s c e p t i b l e == True :
# th i s i s to c r e a t e the s u s c e p t i b l e data
removed sca led = populat ion − removed sca led

end = end week
removed new = removed sca led [ s ta r t week : i n t ( end )−10]

time = np . l i n s p a c e (0 , l en ( removed new)−1 , l en ( removed new ) )

I0 ,R0 = i n i t i a l i , i n i t d e n s i t y
S0 = removed new [ 0 ] − I0 − R0

in i t i a lPa r ame t e r s = [ ip [ 0 ] , ip [ 1 ] , I0 ]

f i t t edParameter s , pcov = opt imize . c u r v e f i t ( odesolveS1 ,
time ,
removed new ,
p0=tup l e ( i n i t i a lPa r ame t e r s ) )

s co r e = MSE( removed new , R)

e l s e :

end = end week
c vac new = county vac weekly [ 1 0 : 1 1 1 ]

− county vac weekly [ s tart week −10]

removed new = removed sca led [ s tart week −10: i n t ( end )−10]

time = np . l i n s p a c e (0 , l en ( removed new)−1 , l en ( removed new ) )

va c r a t e s = county vac weekly [ s tart week −10: i n t ( end )−10]
s lope , i n t e r c e p t = np . p o l y f i t ( time , vac ra t e s , 1)
gamma = s l ope ∗ c r p op r a t i o / c i t y a r e a
gamma = 0 i f ov e r r i d e == True e l s e s l ope ∗

c r p op r a t i o / c i t y a r e a
I0 ,R0 = i n i t i a l i , removed new [ 0 ]
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S0 = populat ion − I0 − R0

in i t i a lPa r ame t e r s = [ ip [ 0 ] , ip [ 1 ] , I0 ]

f i t t edParameter s , pcov = opt imize . c u r v e f i t ( odesolveR3 ,
time ,
removed new ,
p0=tup l e ( i n i t i a lPa r ame t e r s ) )

y0 = S0 , f i t t edParamete r s [ 2 ] , R0
r e t = i n t e g r a t e . ode int ( der iv2 ,

y0 ,
time ,
args=tup l e ( f i t t edParamete r s [ : 2 ] ) )

S , I , R = re t .T

s co r e = MSE( removed new , R)

r e s u l t s d f [ county name ] = [ start week ,
end ,
f i t t edParamete r s [ 0 ] ,
f i t t edParamete r s [ 1 ] ,
gamma,
f i t t edParamete r s [ 2 ] ,
ua df [ ua df [ ’ County ’ ]

== county name ] [ ’ City ’ ] . i l o c [ 0 ] ,
c i ty pop ,
urban p ,
rura l pop ,
c i t y a r e a ,
r u r a l a r e a ,
c r pop ra t i o ,
u r pop ra t i o ,
c i ty pop / c i t y a r e a ,
ru ra l pop / ru ra l a r e a ,
c r p op r a t i o / c i t y a r e a ,
s co r e ]

Omicron Wave

The code for the Omicron wave is nearly identical to that of the Alpha wave with a couple
of exceptions. Much like with the Delta wave, since it was not the first wave, because of
how the removed dataset was computed, we only want to look at the removed cases for the
current wave.

n = 6 #number o f c ount i e s to look at
s u s c e p t i b l e = False
s ta r t week = 93
end week = 106

# I n t i a l Parameter Guesses
ip = [ 3 . 7 1 4 e−04 ,7]
### Set t ing codes :
#
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# 0: No s c a l i n g whatsoever
# 1 : Sca l i ng by COUNTY area ( county dens i ty )
# 2 : Sca l i ng by CITY area ( c i t y dens i ty v ia area o f l a r g e s t c i t y )
# 3 : Sca l i ng by CITY/COUNTY ra t i o ( l a r g e s t c i t y pop / county pop )
# 4 : Sca l i ng by URBAN/COUNTY ra t i o ( urban populat ion / county pop )
# 5 : Sca l i ng by CITY/COUNTY ra t i o and c i t y area
# ( l a r g e s t c i t y pop / county pop / c i t y area )
# 6 : Sca l i ng by URBAN/COUNTY ra t i o and c i t y area
# ( urban populat ion / county pop / c i t y area )
#
###

se t t i n g = 5

r e s u l t s d f = pd . DataFrame ( [ ’ S ta r t Week ’ ,
’End Week ’ ,
’ alpha ’ ,
’ beta ’ ,
’ I n i t i a l In f e c t ed ’ ,
’ City ’ ,
’ City Population ’ ,
’Urban Population ’ ,
’ County Population ’ ,
’ City Area ’ ,
’ County Area ’ ,
’ City /Rural Populat ion Ratio ’ ,
’Urban/Rural Populat ion Ratio ’ ,
’ City Pop Density ’ ,
’ Rural Pop Density ’ ,
’ City /Rural Ratio d iv ided by c i t y area ’ ,
’MSE’ ] , columns = [ ’ Parameters ’ ] )

t op coun t i e s = np . a r g s o r t ( county pop ) [ : : − 1 ] [ : n ]
s c o r e s = np . z e r o s ( l en ( end array ) )

f o r h in range (n ) :
# Find name o f county
county name = c oun t y l i s t [ t op coun t i e s [ h ] ]
c ounty in f o = combined map . l o c [ combined map [ ’NAME’ ]

== county name . upper ( ) ]

# Sp e c i f i c c i t y populat ion and area , not the o v e r a l l urban one .
c i ty pop = ua df [ ua df [ ’ County ’ ]

== county name ] [ ’ Populat ions ’ ] . i l o c [ 0 ]
c i t y a r e a = ua df [ ua df [ ’ County ’ ]

== county name ] [ ’ Area ’ ] . i l o c [ 0 ]

# County ( r u r a l ) area
r u r a l a r e a = combined map [ combined map [ ’NAME’ ]

== county name . upper ( ) ] [ ’ SQMILES ’ ] . i l o c [ 0 ]

# Find index f o r the county
county index = np . where ( c o u n t y l i s t == county name ) [ 0 ] [ 0 ]
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# pu l l the da i l y i n f e c t e d r a t e s and
# transform i t i n to a weekly average
county data = DataLoad ( county index )
da i ly , weekly 0 = InfectedData ( county data )

weekly 1 = weekly 0 [ 1 0 : ]

### This c r e a t e s the removed datase t
removed = np . z e ro s ( l en ( weekly 1 ) )
removed [ 0 ] = weekly 1 [ 0 ]
f o r k in range ( l en ( weekly 1 )−1):

removed [ k+1] = removed [ k]+weekly 1 [ k+1]
###
# th i s takes in to account that we are not doing the f i r s t wave

removed −= removed [ s tart week −10]

# county TOTAL populat ion
rura l pop = county pop [ county index ]
# county URBAN populat ion
urban p = combined map [ combined map [ ’NAME’ ]

== county name . upper ( ) ] [ ’URBANPOP’ ] . i l o c [ 0 ]

u r pop ra t i o = urban p/ rura l pop # urban/ ru r a l pop r a t i o
c r p op r a t i o = c i ty pop / rura l pop # c i t y / ru r a l pop r a t i o

i f s e t t i n g == 0 :
# th i s i s f o r ab s o l u t e l y no s c a l i n g whatsoever
removed sca led = removed ∗ 1
i n i t i a l i = weekly 0 [ s ta r t week +10]
populat ion = rura l pop

e l i f s e t t i n g == 1 :
# th i s i s f o r s c a l i n g only by county area ( county dens i ty )
removed sca led = removed / r u r a l a r e a
i n i t i a l i = weekly 0 [ s ta r t week +10] / r u r a l a r e a
populat ion = rura l pop / rura l pop

e l i f s e t t i n g == 2 :
# th i s i s f o r s c a l i n g by c i t y area only
removed sca led = removed / c i t y a r e a
i n i t i a l i = weekly 0 [ s ta r t week +10] / c i t y a r e a
populat ion = rura l pop / c i t y a r e a

e l i f s e t t i n g == 3 :
# th i s i s f o r s c a l i n g by c i t y populat ion
# ( r a t i o o f CITY to county )
removed sca led = removed ∗ c r p op r a t i o
i n i t i a l i = weekly 0 [ s ta r t week +10]
populat ion = c i ty pop

e l i f s e t t i n g == 4 :
# th i s i s f o r s c a l i n g by URBAN populat ion
# ( ra t i on o f URBAN to county )
removed sca led = removed ∗ u r pop ra t i o
i n i t i a l i = weekly 0 [ s ta r t week +10]
populat ion = urban p
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e l i f s e t t i n g == 5 :
# th i s i s f o r s c a l i n g by c i t y populat ion
# then by area o f c i t y
removed sca led = removed ∗ c r p op r a t i o / c i t y a r e a
i n i t i a l i = weekly 0 [ s ta r t week +10] / c i t y a r e a
populat ion = c i ty pop / c i t y a r e a

e l i f s e t t i n g == 6 :
# th i s i s f o r s c a l i n g by URBAN populat ion
# then by area o f l a r g e s t c i t y
removed sca led = removed ∗ u r pop ra t i o / c i t y a r e a
i n i t i a l i = weekly 0 [ s ta r t week +10] / c i t y a r e a
populat ion = urban p / c i t y a r e a

i f s u s c e p t i b l e == True :
# th i s i s to c r e a t e the s u s c e p t i b l e data
removed sca led = populat ion − removed sca led

end = end week
removed new = removed sca led [ s ta r t week : i n t ( end )−10]
time = np . l i n s p a c e (0 , l en ( removed new)−1 , l en ( removed new ) )
I0 ,R0 = i n i t i a l i , i n i t d e n s i t y
S0 = removed new [ 0 ] − I0 − R0

in i t i a lPa r ame t e r s = [ ip [ 0 ] , ip [ 1 ] , I0 ]

f i t t edParameter s , pcov = opt imize . c u r v e f i t ( odesolveS1 ,
time ,
removed new ,
p0=tup l e ( i n i t i a lPa r ame t e r s ) )

y0 = S0 , f i t t edParamete r s [ 2 ] , R0
r e t = i n t e g r a t e . ode int ( der iv ,

y0 ,
time , args=tup l e ( f i t t edParamete r s [ : 2 ] ) )

S , I , R = re t .T

s co r e = MSE( removed new , R)

e l s e :

end = end week
removed new = removed sca led [ s tart week −10: i n t ( end )−10]

time = np . l i n s p a c e (0 , l en ( removed new)−1 , l en ( removed new ) )

I0 ,R0 = i n i t i a l i , removed new [ 0 ]
S0 = populat ion − I0 − R0

in i t i a lPa r ame t e r s = [ ip [ 0 ] , ip [ 1 ] , I0 ]

f i t t edParameter s , pcov = opt imize . c u r v e f i t ( odesolveR1 ,
time ,
removed new ,
p0=tup l e ( i n i t i a lPa r ame t e r s ) )
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y0 = S0 , f i t t edParamete r s [ 2 ] , R0
r e t = i n t e g r a t e . ode int ( der iv ,

y0 ,
time ,
args=tup l e ( f i t t edParamete r s [ : 2 ] ) )

S , I , R = re t .T

s co r e = MSE( removed new , R)

r e s u l t s d f [ county name ] = [ start week ,
end ,
f i t t edParamete r s [ 0 ] ,
f i t t edParamete r s [ 1 ] ,
f i t t edParamete r s [ 2 ] ,
ua df [ ua df [ ’ County ’ ]

== county name ] [ ’ City ’ ] . i l o c [ 0 ] ,
c i ty pop ,
urban p ,
rura l pop ,
c i t y a r e a ,
r u r a l a r e a ,
c r pop ra t i o ,
u r pop ra t i o ,
c i ty pop / c i t y a r e a ,
ru ra l pop / ru ra l a r e a ,
c r p op r a t i o / c i t y a r e a ,
s co r e ]

A.5 SIR Model Fitted Parameter Visualization

The following codes are used specifically to create the multigraphs that overlay the SIR

models with the fitted parameters with the data.

Alpha Wave Fitted Parameter Visualization Code

This code is used to generate Figure 6.6

c o l s = r e s u l t s d f . columns [ 1 : ] . t o l i s t ( )
f i g , axes = p l t . subp lo t s ( nrows=2, nco l s =3, f i g s i z e = (24 , 15 ) )
count = 0
f o r c o l in c o l s :

s t a r t , end = r e s u l t s d f [ c o l ] [ 0 ] , r e s u l t s d f [ c o l ] [ 1 ]
county name = co l
county in f o = combined map . l o c [ combined map [ ’NAME’ ]

== county name . upper ( ) ]
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# Sp e c i f i c c i t y populat ion and area , not the o v e r a l l urban one .
c i ty pop = ua df [ ua df [ ’ County ’ ]

== county name ] [ ’ Populat ions ’ ] . i l o c [ 0 ]
c i t y a r e a = ua df [ ua df [ ’ County ’ ]

== county name ] [ ’ Area ’ ] . i l o c [ 0 ]

# County ( r u r a l ) area
r u r a l a r e a = combined map [ combined map [ ’NAME’ ]

== county name . upper ( ) ] [ ’ SQMILES ’ ] . i l o c [ 0 ]

# Find index f o r the county
county index = np . where ( c o u n t y l i s t == county name ) [ 0 ] [ 0 ]

# pu l l the da i l y i n f e c t e d r a t e s and
# transform i t i n to a weekly average
county data = DataLoad ( county index )
da i ly , weekly 0 = InfectedData ( county data )

weekly 1 = weekly 0 [ 1 0 : 7 0 ]

### This c r e a t e s the removed datase t
removed = np . z e ro s ( l en ( weekly 1 ) )
removed [ 0 ] = weekly 1 [ 0 ]
f o r k in range ( l en ( weekly 1 )−1):

removed [ k+1] = removed [ k]+weekly 1 [ k+1]
###

# county TOTAL populat ion
rura l pop = county pop [ county index ]
# county URBAN populat ion
urban p = combined map [ combined map [ ’NAME’ ]

== county name . upper ( ) ] [ ’URBANPOP’ ] . i l o c [ 0 ]

u r pop ra t i o = urban p/ rura l pop # urban/ ru r a l pop r a t i o
c r p op r a t i o = c i ty pop / rura l pop # c i t y / ru r a l pop r a t i o

removed sca led = removed ∗ c r p op r a t i o / c i t y a r e a
s ta r t , i n i t d e n s i t y = min ( enumerate ( removed sca led ) ,

key=lambda x : abs (x [1]− s t a r t d e n s i t y ) )
i n i t i a l i = weekly 0 [ s t a r t ] / c i t y a r e a
populat ion = c i ty pop / c i t y a r e a
removed new = removed sca led [ s t a r t : i n t ( end )−10]

time = np . l i n s p a c e ( i n t ( s t a r t )+10 ,
i n t ( end)−1 ,
i n t ( end)− i n t ( s t a r t )−10)

I0 ,R0 = r e s u l t s d f [ c o l ] [ 4 ] , i n i t d e n s i t y
S0 = populat ion − I0 − R0
y0 = S0 , r e s u l t s d f [ c o l ] [ 4 ] , R0
r e t = i n t e g r a t e . ode int ( der iv ,

y0 ,
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time ,
args=tup l e ( r e s u l t s d f [ c o l ] [ 2 : 4 ] . t o l i s t ( ) ) )

S , I , R = re t .T

axes [ i n t ( count /3) , count %3]. p l o t ( time ,
removed new ,
l a b e l = ’Data ’ )

axes [ i n t ( count /3) , count %3]. p l o t ( time ,
R,
l a b e l = ’ F i t t ed Model

Parameters ’ )
axes [ i n t ( count /3) , count %3]. s e t t i t l e ( county name )
axes [ i n t ( count /3) , count %3]. s e t x l a b e l ( ’Weeks ’ )
axes [ i n t ( count /3) , count %3]. s e t y l a b e l ( ’Removed Density ’ )
count += 1

p l t . l egend ( )

Delta Wave with Vaccination Fitted Parameter Visualization Code

This code is used to generate Figure 6.11

c o l s = r e s u l t s d f . columns [ 1 : ] . t o l i s t ( )
f i g , axes = p l t . subp lo t s ( nrows=2, nco l s =3, f i g s i z e = (24 , 15 ) )
count = 0
f o r c o l in c o l s :

s t a r t , end = r e s u l t s d f [ c o l ] [ 0 ] , r e s u l t s d f [ c o l ] [ 1 ]
county name = co l
county in f o = combined map . l o c [ combined map [ ’NAME’ ]

== county name . upper ( ) ]

# Sp e c i f i c c i t y populat ion and area , not the o v e r a l l urban one .
c i ty pop = ua df [ ua df [ ’ County ’ ]

== county name ] [ ’ Populat ions ’ ] . i l o c [ 0 ]
c i t y a r e a = ua df [ ua df [ ’ County ’ ]

== county name ] [ ’ Area ’ ] . i l o c [ 0 ]

# County ( r u r a l ) area
r u r a l a r e a = combined map [ combined map [ ’NAME’ ]

== county name . upper ( ) ] [ ’ SQMILES ’ ] . i l o c [ 0 ]

# Find index f o r the county
county index = np . where ( c o u n t y l i s t == county name ) [ 0 ] [ 0 ]

# pu l l the da i l y i n f e c t e d r a t e s and
# transform i t i n to a weekly average
county data = DataLoad ( county index )
da i ly , weekly 0 = InfectedData ( county data )

weekly 1 = weekly 0 [ 1 0 : ]

### This c r e a t e s the removed datase t
removed = np . z e ro s ( l en ( weekly 1 ) )
removed [ 0 ] = weekly 1 [ 0 ]
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f o r k in range ( l en ( weekly 1 )−1):
removed [ k+1] = removed [ k]+weekly 1 [ k+1]

###

removed −= removed [ s tart week −10]
# county TOTAL populat ion
rura l pop = county pop [ county index ]
# county URBAN populat ion
urban p = combined map [ combined map [ ’NAME’ ]

== county name . upper ( ) ] [ ’URBANPOP’ ] . i l o c [ 0 ]

u r pop ra t i o = urban p/ rura l pop # urban/ ru r a l pop r a t i o
c r p op r a t i o = c i ty pop / rura l pop # c i t y / ru r a l pop r a t i o

removed sca led = removed ∗ c r p op r a t i o / c i t y a r e a
s ta r t , i n i t d e n s i t y = min ( enumerate ( removed sca led ) ,

key=lambda x : abs (x [1]− s t a r t d e n s i t y ) )
i n i t i a l i = weekly 0 [ s t a r t ] / c i t y a r e a
populat ion = c i ty pop / c i t y a r e a

removed new = removed sca led [ s tart week −10: i n t ( end )−10]

time = np . l i n s p a c e (0 , l en ( removed new)−1 , l en ( removed new ) )

va c r a t e s = county vac weekly [ s tart week −10: i n t ( end )−10]
s lope , i n t e r c e p t = np . p o l y f i t ( time , vac ra t e s , 1)
gamma = s l ope ∗ c r p op r a t i o / c i t y a r e a
gamma = 0 i f ov e r r i d e == True e l s e s l ope

∗ c r p op r a t i o / c i t y a r e a
i n i t i a l i n f e c t e d = weekly 1 [ s ta r t week ]

∗ c r p op r a t i o / c i t y a r e a

I0 ,R0 = weekly 0 [ s tart week −10] ∗ c r p op r a t i o / c i t y a r e a ,
removed new [ 0 ]

S0 = populat ion − I0 − R0

in i t i a lPa r ame t e r s = [ ip [ 0 ] , ip [ 1 ] , I0 ]

f i t t edParameter s , pcov = opt imize . c u r v e f i t ( odesolveR3 ,
time ,
removed new ,
p0=tup l e ( i n i t i a lPa r ame t e r s ) )

y0 = S0 , f i t t edParamete r s [ 2 ] , R0
r e t = i n t e g r a t e . ode int ( der iv2 ,

y0 ,
time ,
args=tup l e ( f i t t edParamete r s [ : 2 ] ) )

S , I , R = re t .T
time = np . l i n s p a c e ( s tart week , i n t ( end ) , i n t ( end)− s ta r t week )
axes [ i n t ( count /3) , count %3]. p l o t ( time ,

removed new ,
l a b e l = ’Data ’ )

axes [ i n t ( count /3) , count %3]. p l o t ( time ,
R,
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l a b e l = ’ F i t t ed SIR model ’ )
axes [ i n t ( count /3) , count %3]. s e t t i t l e ( county name )
axes [ i n t ( count /3) , count %3]. s e t x t i c k s ( (75 , 80 , 85 , 90) )
axes [ i n t ( count /3) , count %3]. s e t x l a b e l ( ’Weeks ’ )
axes [ i n t ( count /3) , count %3]. s e t y l a b e l ( ’Removed Density ’ )
count += 1

p l t . l egend ( )

Omicron Wave Fitted Parameter Visualization Code

This code is used to generate Figure 6.15

c o l s = r e s u l t s d f . columns [ 1 : ] . t o l i s t ( )
f i g , axes = p l t . subp lo t s ( nrows=2, nco l s =3, f i g s i z e = (24 , 15 ) )
count = 0
f o r c o l in c o l s :

s t a r t , end = r e s u l t s d f [ c o l ] [ 0 ] , r e s u l t s d f [ c o l ] [ 1 ]
county name = co l
county in f o = combined map . l o c [ combined map [ ’NAME’ ]

== county name . upper ( ) ]

# Sp e c i f i c c i t y populat ion and area , not the o v e r a l l urban one .
c i ty pop = ua df [ ua df [ ’ County ’ ]

== county name ] [ ’ Populat ions ’ ] . i l o c [ 0 ]
c i t y a r e a = ua df [ ua df [ ’ County ’ ]

== county name ] [ ’ Area ’ ] . i l o c [ 0 ]

# County ( r u r a l ) area
r u r a l a r e a = combined map [ combined map [ ’NAME’ ]

== county name . upper ( ) ] [ ’ SQMILES ’ ] . i l o c [ 0 ]

# Find index f o r the county
county index = np . where ( c o u n t y l i s t == county name ) [ 0 ] [ 0 ]

# pu l l the da i l y i n f e c t e d r a t e s and
# transform i t i n to a weekly average
county data = DataLoad ( county index )
da i ly , weekly 0 = InfectedData ( county data )

weekly 1 = weekly 0 [ 1 0 : ]

### This c r e a t e s the removed datase t
removed = np . z e ro s ( l en ( weekly 1 ) )
removed [ 0 ] = weekly 1 [ 0 ]
f o r k in range ( l en ( weekly 1 )−1):

removed [ k+1] = removed [ k]+weekly 1 [ k+1]
###

removed −= removed [ s ta r t −10]

# county TOTAL populat ion
rura l pop = county pop [ county index ]
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# county URBAN populat ion
urban p = combined map [ combined map [ ’NAME’ ]

== county name . upper ( ) ] [ ’URBANPOP’ ] . i l o c [ 0 ]

u r pop ra t i o = urban p/ rura l pop # urban/ ru r a l pop r a t i o
c r p op r a t i o = c i ty pop / rura l pop # c i t y / ru r a l pop r a t i o

removed sca led = removed ∗ c r p op r a t i o / c i t y a r e a
populat ion = c i ty pop / c i t y a r e a
removed new = removed sca led [ s t a r t −10: i n t ( end )−10]

# time = np . l i n s p a c e (0 , l en ( removed new)−1 , l en ( removed new ) )
time = np . l i n s p a c e ( i n t ( s t a r t ) , i n t ( end)−1 , i n t ( end)− i n t ( s t a r t ) )
I0 ,R0 = r e s u l t s d f [ c o l ] [ 4 ] , removed new [ 0 ]
S0 = populat ion − I0 − R0
y0 = S0 , r e s u l t s d f [ c o l ] [ 4 ] , R0
r e t = i n t e g r a t e . ode int ( der iv ,

y0 ,
time ,
args=tup l e ( r e s u l t s d f [ c o l ] [ 2 : 4 ] . t o l i s t ( ) ) )

S , I , R = re t .T

axes [ i n t ( count /3) , count %3]. p l o t ( time ,
removed new ,
l a b e l = ’Data ’ )

axes [ i n t ( count /3) , count %3]. p l o t ( time ,
R,
l a b e l = ’ F i t t ed SIR model ’ )

axes [ i n t ( count /3) , count %3]. s e t t i t l e ( county name )
axes [ i n t ( count /3) , count %3]. s e t x l a b e l ( ’Weeks ’ )
axes [ i n t ( count /3) , count %3]. s e t y l a b e l ( ’Removed Density ’ )
count += 1

p l t . l egend ( )
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Age Demographic Analysis Code

The following sections of code were used to create all of the figures used in Chapter 6. Not all of the figures

produced were used in the dissertation, as they were used to explore certain aspects of the data that were

not discussed.

Data Loading and Processing

The figures in Chapter 6 used separate datasets from those of previous chapters, and thus required their own
import and processing.

# This l oads the case and death data as we l l as
# census propor t i ons f o r Montana

f u l l d a t a = pd . r ead c sv ( ’ d a t a f i l e s / a r c g i s d a t a . csv ’ ,
low memory = True )

f u l l d a t a . rename ( columns =
{ ’ Date Reported to CDEpi ’ : ’ Date Reported ’} ,
i np l a c e = True )

dea th s d f = pd . r ead c sv ( ’ Provisional COVID−
19 Deaths by Sex and Age . csv ’ ,
low memory = True )

census data = { ’ Labels ’ : [ ’ Total Population ’ , ’<5 ’ , ’5−9 ’ , ’10−14 ’ ,
’15−19 ’ , ’20−24 ’ , ’25−29 ’ , ’30−34 ’ , ’35−39 ’ ,
’40−44 ’ , ’45−49 ’ , ’50−54 ’ , ’55−59 ’ , ’60−64 ’ ,
’65−69 ’ , ’70−74 ’ , ’75−79 ’ , ’80−84 ’ , ’>85 ’ ] ,

’ United States ’ : [331893745 , 18661245 , 20010813 ,
21821492 , 21824088 , 21382643 , 22100453 , 22978685 ,
22371398 , 21362163 , 19782325 , 20891392 , 21141152 ,
21673882 , 18351785 , 15426419 , 9872768 , 6278369 ,
5962673]}

cd d f = pd . DataFrame ( data = census data )
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c en su s d f = pd . r ead c sv ( ’ c ensus age data . csv ’ , low memory = False )
c en su s d f 1 = cen su s d f [ c en su s d f . GeographicAreaName . s t r

. conta in s ( ’ | ’ . j o i n ( [ ”Montana ” ] ) ) ]
c en su s d f 2 = census d f 1 [ c en su s d f 1 . columns . drop (

l i s t ( c en su s d f 1 . f i l t e r ( regex=’Margin ’ ) ) ) ]
c en su s d f 3 = census d f 2 [ c en su s d f 2 . columns . drop (

l i s t ( c en su s d f 2 . f i l t e r ( regex=’Annotation ’ ) ) ) ]
census MT dict = { c en su s d f 3 . i l o c [ x ] [ 1 ] :

c en su s d f 3 . i l o c [ x ] [ 2 : 2 1 ] . t o l i s t ( ) f o r x in range (7)}
census MT df = pd . DataFrame ( data = census MT dict )

demo df = pd . concat ( [ cd df , census MT df ] , ax i s=1)

l a b e l d i c t = { ’ Labels ’ : [ ’<5 ’ , ’5−9 ’ , ’10−14 ’ , ’15−19 ’ , ’20−24 ’ ,
’25−29 ’ , ’30−34 ’ , ’35−39 ’ , ’40−44 ’ ,
’45−49 ’ , ’50−54 ’ , ’55−59 ’ , ’60−64 ’ ,
’65−69 ’ , ’70−74 ’ , ’75−79 ’ , ’80−84 ’ , ’>85 ’]}

l d f = pd . DataFrame ( data = l a b e l d i c t )
p rop d i c t = { c o l : demo df [ c o l ] [ 1 : ] . t o l i s t ( )/ demo df [ c o l ] [ 0 ]

f o r c o l in demo df . columns [ 1 : ] }
prop1 df = pd . DataFrame ( data = prop d i c t )

# PROPORTION DATAFRAME fo r demographics
prop df = pd . concat ( [ l d f , prop1 df ] , a x i s=1)

deaths d f1 = deaths d f [ d ea th s d f [ ’ State ’ ] == ’ United States ’ ]
dea ths d f1 = deaths d f1 [ dea ths d f1 [ ’ Sex ’ ] == ’ Al l Sexes ’ ]
d e a t h s d f t o t a l s = deaths d f1 [ dea ths d f1 [ ’ Group ’ ] == ’By Total ’ ]

ca s e data = { ’ Labels ’ : [ ’ Total ’ , ’ <5 ’ , ’5−17 ’ , ’18−29 ’ , ’30−39 ’ ,
’40−49 ’ , ’50−64 ’ , ’65−74 ’ , ’75−84 ’ , ’>85 ’ ] ,

’ Total US Cases ’ : [ 9 6599571 , 3488372 ,
6191919+4289218+2500564 ,19428602 ,
15871170 , 13509412 ,17745282 , 7062119 ,
3728044 , 1834789 ] ,
’ Total US Deaths ’ : [ 1105405 , 424+235 ,
1471−424−235, 6820 , 19403 , 45410 , 198955 ,
249280 , 287768 , 296298]}

c a s e d f = pd . DataFrame ( data = case data )

c a s e d f [ ’ Case−Fata l i t y Rates ’ ] = c a s e d f [ ’ Total US Deaths ’ ] /
c a s e d f [ ’ Total US Cases ’ ]

prop df new = pd . DataFrame ( index = [ ’0−9 ’ , ’10−19 ’ , ’20−29 ’ ,
’30−39 ’ , ’40−49 ’ , ’50−59 ’ ,
’60 −69 ’ , ’70+ ’ ] ,
columns = prop df . columns )

prop df new . i l o c [ 0 ] [ 0 ] = ’0−9 ’
prop df new . i l o c [ 0 ] [ 1 : ] = sum( prop df . i l o c [ i ] [ 1 : ] f o r i in [ 0 , 1 ] )
prop df new . i l o c [ 1 ] [ 0 ] = ’10−19 ’
prop df new . i l o c [ 1 ] [ 1 : ] = sum( prop df . i l o c [ i ] [ 1 : ] f o r i in [ 2 , 3 ] )
prop df new . i l o c [ 2 ] [ 0 ] = ’20−29 ’
prop df new . i l o c [ 2 ] [ 1 : ] = sum( prop df . i l o c [ i ] [ 1 : ] f o r i in [ 4 , 5 ] )
prop df new . i l o c [ 3 ] [ 0 ] = ’30−39 ’
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prop df new . i l o c [ 3 ] [ 1 : ] = sum( prop df . i l o c [ i ] [ 1 : ] f o r i in [ 6 , 7 ] )
prop df new . i l o c [ 4 ] [ 0 ] = ’40−49 ’
prop df new . i l o c [ 4 ] [ 1 : ] = sum( prop df . i l o c [ i ] [ 1 : ] f o r i in [ 8 , 9 ] )
prop df new . i l o c [ 5 ] [ 0 ] = ’50−59 ’
prop df new . i l o c [ 5 ] [ 1 : ] = sum( prop df . i l o c [ i ] [ 1 : ] f o r i in [ 1 0 , 1 1 ] )
prop df new . i l o c [ 6 ] [ 0 ] = ’60−69 ’
prop df new . i l o c [ 6 ] [ 1 : ] = sum( prop df . i l o c [ i ] [ 1 : ] f o r i in [ 1 2 , 1 3 ] )
prop df new . i l o c [ 7 ] [ 0 ] = ’70+ ’
prop df new . i l o c [ 7 ] [ 1 : ] = sum( prop df . i l o c [ i ] [ 1 : ]

f o r i in [ 1 4 , 1 5 , 1 6 , 1 7 ] )

prop df new = prop df new . drop ( columns = [ ’ United States ’ ,
’Montana ’ ,
’ Labels ’ ] )

prop df new . rename ( columns = { ’ Cascade County , Montana ’ : ’ Cascade ’ ,
’ Flathead County , Montana ’ : ’ Flathead ’ ,
’ Ga l l a t i n County , Montana ’ : ’ Ga l la t in ’ ,
’ Lewis and Clark County , Montana ’ :
’ Lewis and Clark ’ , ’ Missoula County ,
Montana ’ : ’ Missoula ’ , ’ Yel lowstone
County , Montana ’ : ’ Yel lowstone ’} ,
i np l a c e = True )

prop df new = prop df new [ [ ’ Yel lowstone ’ , ’ Ga l la t in ’ , ’ Missoula ’ ,
’ Flathead ’ , ’ Cascade ’ , ’ Lewis and Clark ’ ] ]

prop df new . p l o t . bar ( ro t=0)
p l t . x l ab e l ( ’ Ages ’ )
p l t . y l ab e l ( ’ Percentage o f Population ’ )

Alpha wave

# Alpha wave case and death v i s u a l i z a t i o n

s t a r t d a t e = ’2020/06/10 12:00 :00+00 ’
end date = ’2021/03/17 12:00 :00+00 ’
s e t t i n g = 2 # deaths
s e t t i n g 2 = 2 # cas e s
n = 6

s t a r t i n d e x = f u l l d a t a . Date Reported . va lue s . s e a r ch so r t ed ( s t a r t da t e ,
s i d e = ’ l e f t ’ )

end index = f u l l d a t a . Date Reported . va lue s . s e a r ch so r t ed ( end date ,
s i d e = ’ r ight ’ )

t runc data = f u l l d a t a [ s t a r t i n d e x : end index ]

t ime range data deaths = pd . DataFrame ( index = [ ’ Total Cases ’ ,
’0−9 ’ , ’10−19 ’ , ’20−29 ’ , ’30−39 ’ ,
’40−49 ’ , ’50−59 ’ , ’60−69 ’ , ’70+ ’] )

t op coun t i e s = np . a r g s o r t ( county pop ) [ : : − 1 ] [ : n ]
f o r h in range (n ) :
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county name = c oun t y l i s t [ t op coun t i e s [ h ] ]

c i t y a r e a = ua df [ ua df [ ’ County ’ ]
== county name ] [ ’ Area ’ ] . i l o c [ 0 ]

c i ty pop = ua df [ ua df [ ’ County ’ ]
== county name ] [ ’ Populat ions ’ ] . i l o c [ 0 ]

ru ra l pop = combined map [ combined map [ ’NAME’ ]
== county name . upper ( ) ] [ ’COUNTYPOP’ ] . i l o c [ 0 ]

pop ra t i o = c i ty pop / rura l pop
i f s e t t i n g == 0 :

mult = 1
e l i f s e t t i n g == 1 :

mult = 1/ c i ty pop
e l i f s e t t i n g == 2 :

mult = 1/ rura l pop
e l i f s e t t i n g == 3 :

mult = pop ra t i o
e l i f s e t t i n g == 4 :

mult = pop ra t i o / c i t y a r e a

c o l e n t r y = np . z e ro s (9 )
temp data = trunc data [ t runc data [ ’ County ’ ] == county name ]
c o l e n t r y [ 0 ] = temp data . shape [ 0 ]
c o l e n t r y [ 1 ] = temp data [ temp data [ ’ Age Group ’ ] == ’0−9 ’]

[ temp data [ temp data [ ’ Age Group ’ ] == ’0−9 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ]

c o l e n t r y [ 2 ] = temp data [ temp data [ ’ Age Group ’ ] == ’10−19 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’10−19 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ]

c o l e n t r y [ 3 ] = temp data [ temp data [ ’ Age Group ’ ] == ’20−29 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’20−29 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ]

c o l e n t r y [ 4 ] = temp data [ temp data [ ’ Age Group ’ ] == ’30−39 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’30−39 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ]

c o l e n t r y [ 5 ] = temp data [ temp data [ ’ Age Group ’ ] == ’40−49 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’40−49 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ]

c o l e n t r y [ 6 ] = temp data [ temp data [ ’ Age Group ’ ] == ’50−59 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’50−59 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ]

c o l e n t r y [ 7 ] = temp data [ temp data [ ’ Age Group ’ ] == ’60−69 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’60−69 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ]

c o l e n t r y [ 8 ] = temp data [ temp data [ ’ Age Group ’ ] == ’70−79 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’70−79 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ] +
temp data [ temp data [ ’ Age Group ’ ] == ’80−89 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’80−89 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ] +
temp data [ temp data [ ’ Age Group ’ ] == ’90−99 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’90−99 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ] +
temp data [ temp data [ ’ Age Group ’ ] == ’100 ’ ]
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[ temp data [ temp data [ ’ Age Group ’ ] == ’100 ’ ]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ]

t ime range data deaths [ county name ] = co l e n t r y ∗ mult

t ime range da ta ca s e s = pd . DataFrame ( index = [ ’ Total Cases ’ ,
’0−9 ’ , ’10−19 ’ , ’20−29 ’ , ’30−39 ’ ,
’40−49 ’ , ’50−59 ’ , ’60−69 ’ , ’70+ ’] )

t op coun t i e s = np . a r g s o r t ( county pop ) [ : : − 1 ] [ : n ]
f o r h in range (n ) :

county name = c oun t y l i s t [ t op coun t i e s [ h ] ]

c i t y a r e a = ua df [ ua df [ ’ County ’ ]
== county name ] [ ’ Area ’ ] . i l o c [ 0 ]

c i ty pop = ua df [ ua df [ ’ County ’ ]
== county name ] [ ’ Populat ions ’ ] . i l o c [ 0 ]

ru ra l pop = combined map [ combined map [ ’NAME’ ]
== county name . upper ( ) ] [ ’COUNTYPOP’ ] . i l o c [ 0 ]

pop ra t i o = c i ty pop / rura l pop
i f s e t t i n g 2 == 0 :

mult = 1
e l i f s e t t i n g 2 == 1 :

mult = 1/ c i ty pop
e l i f s e t t i n g 2 == 2 :

mult = 1/ rura l pop
e l i f s e t t i n g 2 == 3 :

mult = pop ra t i o
e l i f s e t t i n g 2 == 4 :

mult = pop ra t i o / c i t y a r e a

c o l e n t r y = np . z e ro s (9 )
temp data = trunc data [ t runc data [ ’ County ’ ] == county name ]
c o l e n t r y [ 0 ] = temp data . shape [ 0 ]
c o l e n t r y [ 1 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’0 −9 ’ ] . shape [ 0 ]
c o l e n t r y [ 2 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’10 −19 ’ ] . shape [ 0 ]
c o l e n t r y [ 3 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’20 −29 ’ ] . shape [ 0 ]
c o l e n t r y [ 4 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’30 −39 ’ ] . shape [ 0 ]
c o l e n t r y [ 5 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’40 −49 ’ ] . shape [ 0 ]
c o l e n t r y [ 6 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’50 −59 ’ ] . shape [ 0 ]
c o l e n t r y [ 7 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’60 −69 ’ ] . shape [ 0 ]
c o l e n t r y [ 8 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’70 −79 ’ ] . shape [ 0 ] + temp data [ temp data [ ’ Age Group ’ ]
== ’80 −89 ’ ] . shape [ 0 ] + temp data [ temp data [ ’ Age Group ’ ]
== ’90 −99 ’ ] . shape [ 0 ] + temp data [ temp data [ ’ Age Group ’ ]
== ’ 1 0 0 ’ ] . shape [ 0 ]
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t ime range da ta ca s e s [ county name ] = co l e n t r y ∗ mult

t ime range da t a ca s e s p e r c en t = pd . DataFrame ( index =
[ ’ Total Cases ’ , ’0 −9 ’ , ’10−19 ’ , ’20−29 ’ , ’30−39 ’ ,
’40−49 ’ , ’50−59 ’ , ’60−69 ’ , ’70+ ’] )

t op coun t i e s = np . a r g s o r t ( county pop ) [ : : − 1 ] [ : n ]
f o r h in range (n ) :

county name = c oun t y l i s t [ t op coun t i e s [ h ] ]
c o l e n t r y = np . z e ro s (9 )
temp data = trunc data [ t runc data [ ’ County ’ ] == county name ]
c o l t o t a l = temp data . shape [ 0 ]
c o l e n t r y [ 0 ] = c o l t o t a l
c o l e n t r y [ 1 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’0 −9 ’ ] . shape [ 0 ] / c o l t o t a l
c o l e n t r y [ 2 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’10 −19 ’ ] . shape [ 0 ] / c o l t o t a l
c o l e n t r y [ 3 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’20 −29 ’ ] . shape [ 0 ] / c o l t o t a l
c o l e n t r y [ 4 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’30 −39 ’ ] . shape [ 0 ] / c o l t o t a l
c o l e n t r y [ 5 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’40 −49 ’ ] . shape [ 0 ] / c o l t o t a l
c o l e n t r y [ 6 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’50 −59 ’ ] . shape [ 0 ] / c o l t o t a l
c o l e n t r y [ 7 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’60 −69 ’ ] . shape [ 0 ] / c o l t o t a l
c o l e n t r y [ 8 ] = ( temp data [ temp data [ ’ Age Group ’ ]

== ’70 −79 ’ ] . shape [ 0 ] + temp data [ temp data [ ’ Age Group ’ ]
== ’80 −89 ’ ] . shape [ 0 ] + temp data [ temp data [ ’ Age Group ’ ]
== ’90 −99 ’ ] . shape [ 0 ] + temp data [ temp data [ ’ Age Group ’ ]
== ’ 1 0 0 ’ ] . shape [ 0 ] ) / c o l t o t a l

t ime range da t a ca s e s p e r c en t [ county name ] = co l e n t r y

t rdc = t ime range da ta ca s e s . copy ( ) . drop ( ’ Total Cases ’ )
trdcp = t ime range da t a ca s e s p e r c en t . copy ( ) . drop ( ’ Total Cases ’ )
trdd = t ime range data deaths . copy ( ) . drop ( ’ Total Cases ’ )

r a t i o s = trdd/ trdc

t rdc . p l o t . bar ( ro t=0)
p l t . x l ab e l ( ’ Ages ’ )
p l t . y l ab e l ( ’ Percentage o f County Population ’ )
trdcp . p l o t . bar ( ro t=0)
p l t . x l ab e l ( ’ Ages ’ )
p l t . y l ab e l ( ’ Percent o f Total Cases ’ )
trdd . p l o t . bar ( ro t=0)
p l t . x l ab e l ( ’ Ages ’ )
p l t . y l ab e l ( ’Number o f Deaths ’ )
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r a t i o s . p l o t . bar ( ro t=0)
p l t . x l ab e l ( ’ Ages ’ )
p l t . y l ab e l ( ’ Case Fa ta l i t y Rate ’ )

Delta wave

s t a r t d a t e = ’2021/08/06 12:00 :00+00 ’
end date = ’2021/12/24 12:00 :00+00 ’
s e t t i n g = 0 # deaths
s e t t i n g 2 = 0 # cas e s
n = 6

s t a r t i n d e x = f u l l d a t a . Date Reported . va lue s .
s e a r ch so r t ed ( s t a r t da t e , s i d e = ’ l e f t ’ )

end index = f u l l d a t a . Date Reported . va lue s .
s e a r ch so r t ed ( end date , s i d e = ’ r ight ’ )

t runc data = f u l l d a t a [ s t a r t i n d e x : end index ]

t ime range data deaths = pd . DataFrame ( index = [ ’ Total Cases ’ ,
’0−9 ’ , ’10−19 ’ , ’20−29 ’ , ’30−39 ’ , ’40−49 ’ ,
’50−59 ’ , ’60−69 ’ , ’70+ ’] )

t op coun t i e s = np . a r g s o r t ( county pop ) [ : : − 1 ] [ : n ]
f o r h in range (n ) :

county name = c oun t y l i s t [ t op coun t i e s [ h ] ]

c i t y a r e a = ua df [ ua df [ ’ County ’ ]
== county name ] [ ’ Area ’ ] . i l o c [ 0 ]

c i ty pop = ua df [ ua df [ ’ County ’ ]
== county name ] [ ’ Populat ions ’ ] . i l o c [ 0 ]

ru ra l pop = combined map [ combined map [ ’NAME’ ]
== county name . upper ( ) ] [ ’COUNTYPOP’ ] . i l o c [ 0 ]

pop ra t i o = c i ty pop / rura l pop
i f s e t t i n g == 0 :

mult = 1
e l i f s e t t i n g == 1 :

mult = 1/ c i ty pop
e l i f s e t t i n g == 2 :

mult = 1/ rura l pop
e l i f s e t t i n g == 3 :

mult = pop ra t i o
e l i f s e t t i n g == 4 :

mult = pop ra t i o / c i t y a r e a

c o l e n t r y = np . z e ro s (9 )
temp data = trunc data [ t runc data [ ’ County ’ ] == county name ]
c o l e n t r y [ 0 ] = temp data . shape [ 0 ]
c o l e n t r y [ 1 ] = temp data [ temp data [ ’ Age Group ’ ] == ’0−9 ’]

[ temp data [ temp data [ ’ Age Group ’ ] == ’0−9 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ]

c o l e n t r y [ 2 ] = temp data [ temp data [ ’ Age Group ’ ] == ’10−19 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’10−19 ’]
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[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ]
c o l e n t r y [ 3 ] = temp data [ temp data [ ’ Age Group ’ ] == ’20−29 ’]

[ temp data [ temp data [ ’ Age Group ’ ] == ’20−29 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ]

c o l e n t r y [ 4 ] = temp data [ temp data [ ’ Age Group ’ ] == ’30−39 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’30−39 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ]

c o l e n t r y [ 5 ] = temp data [ temp data [ ’ Age Group ’ ] == ’40−49 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’40−49 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ]

c o l e n t r y [ 6 ] = temp data [ temp data [ ’ Age Group ’ ] == ’50−59 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’50−59 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ]

c o l e n t r y [ 7 ] = temp data [ temp data [ ’ Age Group ’ ] == ’60−69 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’60−69 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ]

c o l e n t r y [ 8 ] = temp data [ temp data [ ’ Age Group ’ ] == ’70−79 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’70−79 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ] +
temp data [ temp data [ ’ Age Group ’ ] == ’80−89 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’80−89 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ] +
temp data [ temp data [ ’ Age Group ’ ] == ’90−99 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’90−99 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ] +
temp data [ temp data [ ’ Age Group ’ ] == ’100 ’ ]
[ temp data [ temp data [ ’ Age Group ’ ] == ’ 1 0 0 ’ ] [ ’ Outcome ’ ]
== ’ Deceased ’ ] . shape [ 0 ]

t ime range data deaths [ county name ] = co l e n t r y ∗ mult

t ime range da ta ca s e s = pd . DataFrame ( index = [ ’ Total Cases ’ ,
’0−9 ’ , ’10−19 ’ , ’20−29 ’ , ’30−39 ’ , ’40−49 ’ ,
’50−59 ’ , ’60−69 ’ , ’70+ ’] )

t op coun t i e s = np . a r g s o r t ( county pop ) [ : : − 1 ] [ : n ]
f o r h in range (n ) :

county name = c oun t y l i s t [ t op coun t i e s [ h ] ]

c i t y a r e a = ua df [ ua df [ ’ County ’ ]
== county name ] [ ’ Area ’ ] . i l o c [ 0 ]

c i ty pop = ua df [ ua df [ ’ County ’ ]
== county name ] [ ’ Populat ions ’ ] . i l o c [ 0 ]

ru ra l pop = combined map [ combined map [ ’NAME’ ]
== county name . upper ( ) ] [ ’COUNTYPOP’ ] . i l o c [ 0 ]

pop ra t i o = c i ty pop / rura l pop
i f s e t t i n g 2 == 0 :

mult = 1
e l i f s e t t i n g 2 == 1 :

mult = 1/ c i ty pop
e l i f s e t t i n g 2 == 2 :

mult = 1/ rura l pop
e l i f s e t t i n g 2 == 3 :
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mult = pop ra t i o
e l i f s e t t i n g 2 == 4 :

mult = pop ra t i o / c i t y a r e a

c o l e n t r y = np . z e ro s (9 )
temp data = trunc data [ t runc data [ ’ County ’ ] == county name ]
c o l e n t r y [ 0 ] = temp data . shape [ 0 ]
c o l e n t r y [ 1 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’0 −9 ’ ] . shape [ 0 ]
c o l e n t r y [ 2 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’10 −19 ’ ] . shape [ 0 ]
c o l e n t r y [ 3 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’20 −29 ’ ] . shape [ 0 ]
c o l e n t r y [ 4 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’30 −39 ’ ] . shape [ 0 ]
c o l e n t r y [ 5 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’40 −49 ’ ] . shape [ 0 ]
c o l e n t r y [ 6 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’50 −59 ’ ] . shape [ 0 ]
c o l e n t r y [ 7 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’60 −69 ’ ] . shape [ 0 ]
c o l e n t r y [ 8 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’70 −79 ’ ] . shape [ 0 ] + temp data [ temp data [ ’ Age Group ’ ]
== ’80 −89 ’ ] . shape [ 0 ] + temp data [ temp data [ ’ Age Group ’ ]
== ’90 −99 ’ ] . shape [ 0 ] + temp data [ temp data [ ’ Age Group ’ ]
== ’ 1 0 0 ’ ] . shape [ 0 ]

t ime range da ta ca s e s [ county name ] = co l e n t r y ∗ mult

t ime range da t a ca s e s p e r c en t = pd . DataFrame ( index =
[ ’ Total Cases ’ , ’0 −9 ’ , ’10−19 ’ , ’20−29 ’ , ’30−39 ’ ,
’40−49 ’ , ’50−59 ’ , ’60−69 ’ , ’70+ ’] )

t op coun t i e s = np . a r g s o r t ( county pop ) [ : : − 1 ] [ : n ]
f o r h in range (n ) :

county name = c oun t y l i s t [ t op coun t i e s [ h ] ]
c o l e n t r y = np . z e ro s (9 )
temp data = trunc data [ t runc data [ ’ County ’ ] == county name ]
c o l t o t a l = temp data . shape [ 0 ]
c o l e n t r y [ 0 ] = c o l t o t a l
c o l e n t r y [ 1 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’0 −9 ’ ] . shape [ 0 ] / c o l t o t a l
c o l e n t r y [ 2 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’10 −19 ’ ] . shape [ 0 ] / c o l t o t a l
c o l e n t r y [ 3 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’20 −29 ’ ] . shape [ 0 ] / c o l t o t a l
c o l e n t r y [ 4 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’30 −39 ’ ] . shape [ 0 ] / c o l t o t a l
c o l e n t r y [ 5 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’40 −49 ’ ] . shape [ 0 ] / c o l t o t a l
c o l e n t r y [ 6 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’50 −59 ’ ] . shape [ 0 ] / c o l t o t a l
c o l e n t r y [ 7 ] = temp data [ temp data [ ’ Age Group ’ ]
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== ’60 −69 ’ ] . shape [ 0 ] / c o l t o t a l
c o l e n t r y [ 8 ] = ( temp data [ temp data [ ’ Age Group ’ ]

== ’70 −79 ’ ] . shape [ 0 ] + temp data [ temp data [ ’ Age Group ’ ]
== ’80 −89 ’ ] . shape [ 0 ] + temp data [ temp data [ ’ Age Group ’ ]
== ’90 −99 ’ ] . shape [ 0 ] + temp data [ temp data [ ’ Age Group ’ ]
== ’ 1 0 0 ’ ] . shape [ 0 ] ) / c o l t o t a l

t ime range da t a ca s e s p e r c en t [ county name ] = co l e n t r y

t rdc = t ime range da ta ca s e s . copy ( ) . drop ( ’ Total Cases ’ )
trdcp = t ime range da t a ca s e s p e r c en t . copy ( ) . drop ( ’ Total Cases ’ )
trdd = t ime range data deaths . copy ( ) . drop ( ’ Total Cases ’ )

r a t i o s = trdd/ trdc

t rdc . p l o t . bar ( ro t=0)
p l t . x l ab e l ( ’ Ages ’ )
p l t . y l ab e l ( ’Number o f Cases ’ )
trdcp . p l o t . bar ( ro t=0)
p l t . x l ab e l ( ’ Ages ’ )
p l t . y l ab e l ( ’ Percent o f Total Cases ’ )
trdd . p l o t . bar ( ro t=0)
p l t . x l ab e l ( ’ Ages ’ )
p l t . y l ab e l ( ’Number o f Deaths ’ )
r a t i o s . p l o t . bar ( ro t=0)
p l t . x l ab e l ( ’ Ages ’ )
p l t . y l ab e l ( ’ Case Fa ta l i t y Rate ’ )

Omicron wave

s t a r t d a t e = ’2021/12/24 12:00 :00+00 ’
end date = ’2022/3/25 12:00 :00+00 ’
s e t t i n g = 0 # deaths
s e t t i n g 2 = 0 # cas e s
n = 6

s t a r t i n d e x = f u l l d a t a . Date Reported . va lue s . s e a r ch so r t ed ( s t a r t da t e ,
s i d e = ’ l e f t ’ )

end index = f u l l d a t a . Date Reported . va lue s . s e a r ch so r t ed ( end date ,
s i d e = ’ r ight ’ )

t runc data = f u l l d a t a [ s t a r t i n d e x : end index ]

t ime range data deaths = pd . DataFrame ( index =
[ ’ Total Cases ’ , ’0 −9 ’ , ’10−19 ’ , ’20−29 ’ , ’30−39 ’ ,
’40−49 ’ , ’50−59 ’ , ’60−69 ’ , ’70+ ’] )

t op coun t i e s = np . a r g s o r t ( county pop ) [ : : − 1 ] [ : n ]
f o r h in range (n ) :

county name = c oun t y l i s t [ t op coun t i e s [ h ] ]
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c i t y a r e a = ua df [ ua df [ ’ County ’ ]
== county name ] [ ’ Area ’ ] . i l o c [ 0 ]

c i ty pop = ua df [ ua df [ ’ County ’ ]
== county name ] [ ’ Populat ions ’ ] . i l o c [ 0 ]

ru ra l pop = combined map [ combined map [ ’NAME’ ]
== county name . upper ( ) ] [ ’COUNTYPOP’ ] . i l o c [ 0 ]

pop ra t i o = c i ty pop / rura l pop
i f s e t t i n g == 0 :

mult = 1
e l i f s e t t i n g == 1 :

mult = 1/ c i ty pop
e l i f s e t t i n g == 2 :

mult = 1/ rura l pop
e l i f s e t t i n g == 3 :

mult = pop ra t i o
e l i f s e t t i n g == 4 :

mult = pop ra t i o / c i t y a r e a

c o l e n t r y = np . z e ro s (9 )
temp data = trunc data [ t runc data [ ’ County ’ ] == county name ]
c o l e n t r y [ 0 ] = temp data . shape [ 0 ]
c o l e n t r y [ 1 ] = temp data [ temp data [ ’ Age Group ’ ] == ’0−9 ’]

[ temp data [ temp data [ ’ Age Group ’ ] == ’0−9 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ]

c o l e n t r y [ 2 ] = temp data [ temp data [ ’ Age Group ’ ] == ’10−19 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’10−19 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ]

c o l e n t r y [ 3 ] = temp data [ temp data [ ’ Age Group ’ ] == ’20−29 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’20−29 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ]

c o l e n t r y [ 4 ] = temp data [ temp data [ ’ Age Group ’ ] == ’30−39 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’30−39 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ]

c o l e n t r y [ 5 ] = temp data [ temp data [ ’ Age Group ’ ] == ’40−49 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’40−49 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ]

c o l e n t r y [ 6 ] = temp data [ temp data [ ’ Age Group ’ ] == ’50−59 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’50−59 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ]

c o l e n t r y [ 7 ] = temp data [ temp data [ ’ Age Group ’ ] == ’60−69 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’60−69 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ]

c o l e n t r y [ 8 ] = temp data [ temp data [ ’ Age Group ’ ] == ’70−79 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’70−79 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ] +
temp data [ temp data [ ’ Age Group ’ ] == ’80−89 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’80−89 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ] +
temp data [ temp data [ ’ Age Group ’ ] == ’90−99 ’]
[ temp data [ temp data [ ’ Age Group ’ ] == ’90−99 ’]
[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ] +
temp data [ temp data [ ’ Age Group ’ ] == ’100 ’ ]
[ temp data [ temp data [ ’ Age Group ’ ] == ’100 ’ ]
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[ ’ Outcome ’ ] == ’ Deceased ’ ] . shape [ 0 ]

t ime range data deaths [ county name ] = co l e n t r y ∗ mult

t ime range da ta ca s e s = pd . DataFrame ( index =
[ ’ Total Cases ’ , ’0 −9 ’ , ’10 −19 ’ , ’20 −29 ’ ,
’30−39 ’ , ’40−49 ’ , ’50−59 ’ , ’60−69 ’ , ’70+ ’] )

t op coun t i e s = np . a r g s o r t ( county pop ) [ : : − 1 ] [ : n ]
f o r h in range (n ) :

county name = c oun t y l i s t [ t op coun t i e s [ h ] ]

c i t y a r e a = ua df [ ua df [ ’ County ’ ]
== county name ] [ ’ Area ’ ] . i l o c [ 0 ]

c i ty pop = ua df [ ua df [ ’ County ’ ]
== county name ] [ ’ Populat ions ’ ] . i l o c [ 0 ]

ru ra l pop = combined map [ combined map [ ’NAME’ ]
== county name . upper ( ) ] [ ’COUNTYPOP’ ] . i l o c [ 0 ]

pop ra t i o = c i ty pop / rura l pop
i f s e t t i n g 2 == 0 :

mult = 1
e l i f s e t t i n g 2 == 1 :

mult = 1/ c i ty pop
e l i f s e t t i n g 2 == 2 :

mult = 1/ rura l pop
e l i f s e t t i n g 2 == 3 :

mult = pop ra t i o
e l i f s e t t i n g 2 == 4 :

mult = pop ra t i o / c i t y a r e a

c o l e n t r y = np . z e ro s (9 )
temp data = trunc data [ t runc data [ ’ County ’ ] == county name ]
c o l e n t r y [ 0 ] = temp data . shape [ 0 ]
c o l e n t r y [ 1 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’0 −9 ’ ] . shape [ 0 ]
c o l e n t r y [ 2 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’10 −19 ’ ] . shape [ 0 ]
c o l e n t r y [ 3 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’20 −29 ’ ] . shape [ 0 ]
c o l e n t r y [ 4 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’30 −39 ’ ] . shape [ 0 ]
c o l e n t r y [ 5 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’40 −49 ’ ] . shape [ 0 ]
c o l e n t r y [ 6 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’50 −59 ’ ] . shape [ 0 ]
c o l e n t r y [ 7 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’60 −69 ’ ] . shape [ 0 ]
c o l e n t r y [ 8 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’70 −79 ’ ] . shape [ 0 ] + temp data [ temp data [ ’ Age Group ’ ]
== ’80 −89 ’ ] . shape [ 0 ] + temp data [ temp data [ ’ Age Group ’ ]
== ’90 −99 ’ ] . shape [ 0 ] + temp data [ temp data [ ’ Age Group ’ ]
== ’ 1 0 0 ’ ] . shape [ 0 ]
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t ime range da ta ca s e s [ county name ] = co l e n t r y ∗ mult

t ime range da t a ca s e s p e r c en t = pd . DataFrame ( index =
[ ’ Total Cases ’ , ’0 −9 ’ , ’10−19 ’ , ’20−29 ’ , ’30−39 ’ ,
’40−49 ’ , ’50−59 ’ , ’60−69 ’ , ’70+ ’] )

t op coun t i e s = np . a r g s o r t ( county pop ) [ : : − 1 ] [ : n ]
f o r h in range (n ) :

county name = c oun t y l i s t [ t op coun t i e s [ h ] ]
c o l e n t r y = np . z e ro s (9 )
temp data = trunc data [ t runc data [ ’ County ’ ] == county name ]
c o l t o t a l = temp data . shape [ 0 ]
c o l e n t r y [ 0 ] = c o l t o t a l
c o l e n t r y [ 1 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’0 −9 ’ ] . shape [ 0 ] / c o l t o t a l
c o l e n t r y [ 2 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’10 −19 ’ ] . shape [ 0 ] / c o l t o t a l
c o l e n t r y [ 3 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’20 −29 ’ ] . shape [ 0 ] / c o l t o t a l
c o l e n t r y [ 4 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’30 −39 ’ ] . shape [ 0 ] / c o l t o t a l
c o l e n t r y [ 5 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’40 −49 ’ ] . shape [ 0 ] / c o l t o t a l
c o l e n t r y [ 6 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’50 −59 ’ ] . shape [ 0 ] / c o l t o t a l
c o l e n t r y [ 7 ] = temp data [ temp data [ ’ Age Group ’ ]

== ’60 −69 ’ ] . shape [ 0 ] / c o l t o t a l
c o l e n t r y [ 8 ] = ( temp data [ temp data [ ’ Age Group ’ ]

== ’70 −79 ’ ] . shape [ 0 ] + temp data [ temp data [ ’ Age Group ’ ]
== ’80 −89 ’ ] . shape [ 0 ] + temp data [ temp data [ ’ Age Group ’ ]
== ’90 −99 ’ ] . shape [ 0 ] + temp data [ temp data [ ’ Age Group ’ ]
== ’ 1 0 0 ’ ] . shape [ 0 ] ) / c o l t o t a l

t ime range da t a ca s e s p e r c en t [ county name ] = co l e n t r y

t rdc = t ime range da ta ca s e s . copy ( ) . drop ( ’ Total Cases ’ )
trdcp = t ime range da t a ca s e s p e r c en t . copy ( ) . drop ( ’ Total Cases ’ )
trdd = t ime range data deaths . copy ( ) . drop ( ’ Total Cases ’ )

r a t i o s = trdd/ trdc

t rdc . p l o t . bar ( ro t=0)
p l t . x l ab e l ( ’ Ages ’ )
p l t . y l ab e l ( ’Number o f Cases ’ )
trdcp . p l o t . bar ( ro t=0)
p l t . x l ab e l ( ’ Ages ’ )
p l t . y l ab e l ( ’ Percent o f Total Cases ’ )
trdd . p l o t . bar ( ro t=0)
p l t . x l ab e l ( ’ Ages ’ )
p l t . y l ab e l ( ’Number o f Deaths ’ )
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r a t i o s . p l o t . bar ( ro t=0)
p l t . x l ab e l ( ’ Ages ’ )
p l t . y l ab e l ( ’ Case Fa ta l i t y Rate ’ )

Comparison Visualization Code

This code is used three times to produce Figures 7.5, 7.9, and 7.12. To produce each one
some adjustments to the y-axis scale were made, but other than that the codes used were
all the same, so a single instance will be shown here.

t op coun t i e s = np . a r g s o r t ( county pop ) [ : : − 1 ] [ : n ]
f i g , axes = p l t . subp lo t s ( nrows=2, nco l s=3)
f o r h in range (n ) :

county name = c oun t y l i s t [ t op coun t i e s [ h ] ]
county demos = pd . DataFrame ( index = trdd . index ,

columns = [ ’ Census ’ , ’ Cases ’ ] )
county demos [ ’ Census ’ ] = prop df new [ county name ]
county demos [ ’ Cases ’ ] = trdcp [ county name ]
county demos . p l o t . bar ( ax = axes [ i n t (h/3) , h%3] ,

l egend = False ,
f i g s i z e = (24 ,15 ) ,
t i t l e = county name ,
ylim = [ 0 , 0 . 2 5 ] ,
x l ab e l = ’Age ’ ,
y l ab e l = ’ Percentage ’ )

p l t . l egend ( )
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