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Decreasing net primary production due to drought
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from 2000 to 2012
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S. Running3

1Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources
Research, Chinese Academy of Sciences, Beijing, China, 2Key Laboratory of Land Surface Pattern and Simulation, Institute of
Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China, 3Numerical
Terradynamic Simulation Group, College of Forestry and Conservation, University of Montana, Missoula, Montana, USA,
4Department of Grassland Science, Agriculture and Animal Husbandry College, Qinghai University, Xining, China, 5School of
Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA

Abstract Terrestrial ecosystems have continued to provide the critical service of slowing the atmospheric
CO2 growth rate. Terrestrial net primary productivity (NPP) is thought to be a major contributing factor to this
trend. Yet our ability to estimate NPP at the regional scale remains limited due to large uncertainties in the
response of NPP to multiple interacting climate factors and uncertainties in the driver data sets needed to
estimate NPP. In this study, we introduced an improved NPP algorithm that used local driver data sets and
parameters in China. We found that bias decreased by 30% for gross primary production (GPP) and 17% for
NPP compared with the widely used global GPP and NPP products, respectively. From 2000 to 2012, a
pixel-level analysis of our improved NPP for the region of China showed an overall decreasing NPP trend of
4.65 Tg C a�1. Reductions in NPP were largest for the southern forests of China (�5.38 Tg C a�1), whereas
minor increases in NPP were found for North China (0.65 Tg C a�1). Surprisingly, reductions in NPP were
largely due to decreases in solar radiation (82%), rather than themore commonly expected effects of drought
(18%). This was because for southern China, the interannual variability of NPP was more sensitive to solar
radiation (R2 in 0.29–0.59) relative to precipitation (R2< 0.13). These findings update our previous knowledge
of carbon uptake responses to climate change in terrestrial ecosystems of China and highlight the
importance of shortwave radiation in driving vegetation productivity for the region, especially for
tropical forests.

1. Introduction

Determining the carbon sink or source potential of ecosystems under future climate projections is of critical
importance, and largely dependent on accurate understanding of the sensitivity of ecosystem-level photo-
synthesis to biophysical and biogeochemical change. Terrestrial gross primary production (GPP) and net pri-
mary production (NPP) quantify carbon removed from the atmosphere and converted to biomass,
respectively [Cao and Woodward, 1998; Melillo et al., 1993; Schimel et al., 1997; Tian et al., 2011], and serve
as the foundation of all life on Earth [Beer et al., 2010; Running, 2013]. However, the processes andmechanism
driving changes in GPP and NPP over time are complex and currently not well understood.

The impact of a given climate driver on GPP/NPP can be location specific and dependent on complex inter-
actions with multiple factors. For instance, meta-analysis from 85 studies found that experimental warming
and increased precipitation generally stimulated plant growth and ecosystem C fluxes [Z. Wu et al., 2011].
Yet others have found that the potential benefits of a lengthening growing season or a warming climate
could be offset by increasing vegetation water stress, frequent wildfire and insect disturbances, or enhanced
autumn respiration due to climate warming [Krishnaswamy et al., 2014; Piao et al., 2014; Yi et al., 2013; Yuan
et al., 2014a; Zhao and Running, 2010].

Substantial uncertainties in both the amplitude and spatial pattern of current NPP estimates can be attrib-
uted to the above factors. For example, global GPP estimates were found to range from 105 to 177 Pg C a�1

over the period 1986–2005 [Anav et al., 2013; Jung et al., 2009, 2011; Koffi et al., 2012; Welp et al., 2011],
whereas global NPP estimates were found to range from 37 to 83.8 Pg C a�1 in the 2000s [Ito, 2011]. To
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quantify terrestrial vegetation growth more accurately and to better understand the underlying mechan-
isms driving trends in vegetation productivity, determination of the changes in GPP and NPP based on eco-
physiological processes is required [Ogutu et al., 2013; Running, 2013]. Further regional applications of
ecosystem models are desirable to clarify recent impacts of climate change and variability on the terrestrial
carbon cycle.

Due to increasing availability and the spatially explicit coverage of remote sensing data over the last few dec-
ades, remote sensing-based GPP and NPP models have been widely developed and used for regional and
global scale monitoring [Gitelson et al., 2006; Potter, 1999; Potter et al., 1993; Prince and Goward, 1995;
Running et al., 2000; Sims et al., 2008, 2006; C. Wu et al., 2011; Wu et al., 2010a; Xiao et al., 2004; Yan et al.,
2015; Yang et al., 2013; Zhao et al., 2005; Zhao and Running, 2010]. However, assessments of multiple models
at eddy covariance flux tower sites have shown that site-level model runs performed better than region-level
runs for annual and monthly fluxes largely due to spatial scale mismatches [Raczka et al., 2013]. In addition,
none of these models were able to reproduce GPP estimates within observed uncertainties because of (1)
poor responses of the models to environmental factors and (2) large uncertainties in satellite and driver data
[Raczka et al., 2013; Schaefer et al., 2012; Schwalm et al., 2010; Yuan et al., 2014b].

The photosynthesis (PSN) algorithm based on satellite observations from the Moderate Resolution Imaging
Spectroradiometer (MODIS) instrument provided the first 1 km global data products (MOD17) and have been
widely applied in the monitoring of vegetation dynamics and ecosystem carbon flux [Running et al., 2004].
However, there are still large uncertainties in these products, including those introduced by upstream data
inputs, biome-specific physiological parameters (i.e., Biome Properties Look-Up Table (BPLUT)), and algorithm
structure [Nightingale et al., 2007; Pan et al., 2006; Turner et al., 2006]. MOD17 products were relatively recently
upgraded from Collection 4.0 to 5.1 by improvements in the upstream data inputs [Zhao et al., 2005; Zhao and
Running, 2010; Zhao et al., 2006]. Yet research suggested that the MODIS GPP and NPP products could be
further improved through employing better driver data, higher-quality satellite observations, and recali-
brated model parameters [Kanniah et al., 2009; Medlyn, 2011; Samanta et al., 2011; Sjostrom et al., 2011,
2013; Wu et al., 2014], which is especially necessary for regional applications. Yet few studies have validated
both GPP and NPP products using localized inputs and calibrated parameters at the regional level [Xin et al.,
2015; Yan et al., 2015].

For China, GPP and NPP estimates have attractedmuch attention, but large uncertainties still remain and limit
the usefulness of these data to inform policy decisions. For instance, GPP and NPP estimates range widely
from 3.90 to 12.26 PgC and 1.43 to 3.30 PgC, respectively (Figure 1), due to limitations in the driver data,
satellite observations, and algorithm parameters [Gao et al., 2012; Liu et al., 2013]. Long-term NPP trend ana-
lyses over the period 1961–2005 did not exhibit a significant linear trend on the national scale but did show
regional increasing and decreasing trends [Q. Yuan et al., 2014]. Relatively short-term analyses have found a
declining trend in NPP over the recent decade due to extreme climate events, such as low-temperature freez-
ing, severe drought, and/or heat waves observed for a given year [Liu et al., 2013; Yuan et al., 2016]. An accu-
rate estimate of the spatiotemporal trends in national GPP and NPP is essential for policy decisions related to
land use and, vegetation growth, and carbon flux.

Our main objective here was twofold. The first objective was to provide improved MODIS NPP products for
China through the usage of localized BPLUT parameters, improved upstream input data, and an improved
validation methodology based on robust networks of observed GPP and NPP estimates. The second objec-
tive was to analyze spatial patterns of NPP at the national scale and to explore regional climatic controls on
NPP. The products generated in this study will be released and available online for the public, and the
electronic or online resources are expected to contribute to studies of terrestrial ecosystem responses to
climate change.

2. Data and Methods
2.1. The Satellite-Based NPP Algorithm (PSN)

Most satellite-based NPP models are based on the concept of light use efficiency and assume that primary
production is proportional to photosynthetically active radiation (PAR) absorbed by vegetation with a light
use efficiency scaling factor [Monteith, 1972; Monteith and Moss, 1977]. In this study, the satellite-based
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NPP products were based on the MOD17 algorithm (the PSN model) that was localized by using more accu-
rate data inputs and an optimized BPLUT based on ChinaFLUX observations. The localized NPP products gen-
erated are referred to as NPPCBP. In the MOD17 algorithm, NPP is GPP minus autotrophic respiration and GPP
is the product of PAR, FPAR, and actual light use efficiency (ε) (equation (1)). The ε is calculated by the biome-
level maximum light use efficiency estimate (εmax) and the environmental stress scalars of low-temperature
(TMINscalar) or limited water availability (VPDscalar) (equation (2)).

GPP ¼ PAR�FPAR�ε (1)

ε ¼ εmax�TMINscalar�VPDscalar (2)

The TMINscalar and VPDscalar are parameterized according to equations (3) and (4):

TMINscalar

1 TMIN > TMINmax

TMIN� TMINminð Þ= TMINmax � TMINminð Þ TMINmin≤TMIN≤TMINmax

0 TMIN > TMINmin

8><
>:

(3)

VPDscalar

0 VPD > VPDmax

VPDmax � VPDð Þ= VPDmax � VPDminð Þ VPDmin≤VPD≤VPDmax

1 VPD > VPDmin

8><
>:

(4)

where TMIN and VPD are the daily minimum temperature (°C) and daily mean vapor pressure deficit (Pa),
TMINmax and VPDmin are the daily minimum temperature and daily mean vapor pressure deficit at which
ε= εmax, and TMINmin and VPDmax are the daily minimum temperature and average vapor pressure deficit
at which ε= 0. These parameters were determined for each land cover type in the BPLUT.

Autotrophic respiration is separated into growth respiration and maintenance respiration (Rm). The growth
respiration is assumed approximately 25% of NPP and the maintenance respiration from living wood
(g Cm�2 a�1) is calculated as

Rm ¼ Ml�Br �Q10
Tave�20

10 (5)

whereMl is living biomass for leaves and fine roots (g Cm�2) and derived from leaf area index (LAI), Br is base
respiration at 20°C and determined by land cover, and Q10 is a respiration quotient and calculated by a
temperature-acclimated equation (equation ((7)) calculated as

Figure 1. The frequency of the (a) GPP and (b) NPP estimates from the literature and this study across the terrestrial ecosystems of China.

Journal of Geophysical Research: Biogeosciences 10.1002/2016JG003417

WANG ET AL. DECREASING NPP DUE TO SOLAR RADIATION 263



Q10 ¼ 3:22� 0:046�Tavg (6)

where Tavg is daily average air temperature (°C). Annual NPP is calculated as

NPP ¼
0:8� ∑365

i¼1
GPP� Rmð Þ ∑

365

i¼1
GPP� Rmð Þ≥0

0 ∑
365

i¼1
GPP� Rmð Þ < 0

8>><
>>:

(7)

The main data inputs into the algorithm include (1) FPAR and LAI from remote sensing; (2) daily minimum
temperature, daily total incoming solar radiation, and daily mean vapor pressure deficit; (3) land cover with
the classification of IGBP; and (4) a Biome Parameter Look-up Table (BPLUT) containing values of εmax and
other biome-specific physiological parameters for different land covers.

2.2. In Situ Observation and Ground Survey Data
2.2.1. In Situ Eddy Covariance Tower Measurements
2.2.1.1. Data for Parameterization
Eddy covariance (EC)-based daily data were applied to optimize the BPLUT in GPP estimation and evaluate
the temporally filled MODIS FPAR/LAI data and surface meteorological data. ChinaFLUX provided the daily
GPP and meteorological data from 2003 to 2005 at four forest sites (CBS, QYZ, DHS, and XSF), three grassland
sites (HBS, XLG, and DXG), and one cropland site (YCH) (Figure 2, right). Continuous CO2 and H2O flux were
measured using an infrared gas analyzer, and wind speed was measured using a 3-D sonic anemometer at
a sampling frequency of 10 or 20Hz at flux sites [Yu et al., 2014]. The data were filtered and corrected with
coordinate rotation, the Webb-Pearman-Leuning correction [Webb et al., 1980], storage flux calculation, out-
lier filtering, nighttime CO2 flux correction [Reichstein et al., 2005], gap filling [Falge et al., 2001], and net eco-
system exchange flux partitioning into GPP and ecosystem respiration [Reichstein et al., 2005]. Site-specific
thresholds of friction velocity (u*) were used to filter nighttime CO2 eddy covariance flux under low atmo-
spheric turbulence conditions by individual researchers from each site [Yu et al., 2014]. Data process and qual-
ity control of the EC data were conducted through the ChinaFLUX flux data processing system [Li et al., 2008;
Liu et al., 2012]. Other processing details can be found in Yu et al. [2006], Guan et al. [2006],Wen et al. [2006],
Fu et al. [2006], and Zhang et al. [2006].
2.2.1.2. Data for GPP Validation
An additional 46 site years of observed GPP data from eddy covariance towers were used for GPP validation
in this study. These GPP data were previously collected by Yu et al. [2014, 2013]. Only sites with at least 1 year
of continuous flux measurements were selected for calculating annual GPP statistics. Overall, 10 sites were
included, covering six forest sites, three grassland sites, and one cropland site. See supporting information
Table S1 for details regarding the site data used in this study.
2.2.1.3. Data for Assessing the Accuracy of the Meteorological Surface Data
Along with the observations from ChinaFLUX, observations from eight AsiaFLUX sites (Figure 2, right) were
applied to assess the accuracy of the meteorological surface. According to Hirata et al. [2008], the eddy
CO2 flux was measured using the eddy covariance technique with 3-D sonic anemometer-thermometers
and open- or closed-path CO2/H2O analyzers. Measurement systems and calculation protocols were mostly
based on the EUROFLUX methodology [Aubinet et al., 1999; Hirata et al., 2008]. Details of the measurement
and data process can be found in Hirata et al. [2008]. See supporting information Table S1 for site years, vege-
tation, soil, and climate characteristics of the ChinaFLUX and AsiaFLUX sites used in this study.
2.2.2. Forest Inventory Data
A database of NPP from a previous study [Luo, 1996] was used to validate modeled NPP. The database con-
tained 690 NPP observations from both field and inventory plots within 17 forest types of China. Plot NPP
data were estimated from the plot live biomass based on growth rates derived from stem analysis research
and leaf life span. Live biomass from the inventory plots was estimated from measurements of tree height
and diameter at breast height using empirical allometric regressions [Luo et al., 1998, 2002].

2.3. Improvements in Model Inputs and Parameterization
2.3.1. Surface Meteorology Inputs
Meteorological inputs for MODIS GPP/NPP were interpolated with observations from 836 stations in China
and 345 stations in surrounding countries (Figure 2, left). The meteorological variables included daily
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minimum (Tmin, °C), maximum (Tmax, °C), and average (Tavg, °C) temperature, daily relative humidity (RHU, %),
and sunshine hour (SH, h). The software of ANUSPLIN version 4.2, an algorithm based on the thin plate
smoothing splines of multivariates [Gill et al., 2002; Hutchinson and McIntosh, 2000], was used to produce
meteorological data at a 1 km spatial resolution and 8 day time step. One kilometer digital elevation model
(DEM) data were resampled from 90m Shuttle Radar Topographic Mission (SRTM) database v4.1 [Farr et al.,
2007; Rabus et al., 2003] and used as input to the interpolation. The stations in surrounding countries were
used to produce the interpolated area. The interpolated area was then clipped to a smaller research area
to remove the boundary effects, especially across the Qinghai-Tibetan Plateau where there are fewer stations.
The interpolated meteorological data set was referred to as CMET thereafter.

Interpolated sunshine hour data were applied to estimate daily total downward short wave solar radiation
(SWrad) through the solar radiation model developed by Bonan [1989]. In this study the ratio of actual sun-
shine hours to daylight hours was applied to replace the cloud cover estimated from temperature
and precipitation.

Observed climate data on ChinaFLUX and AsiaFLUX flux towers were applied as independent observations to
evaluate CMET, and the coarse resolution 6-hourly NCEP/DOE II reanalysis meteorological data (NCEP2)
[Kanamitsu et al., 2002]. The latter was interpolated to 1 km spatial resolution and applied in the MOD17
C5 products [Zhao et al., 2005]. Comparing to the observations, CMET and NCEP2 data both showed average
R2 above 0.95 for the temperature data. But precipitation, RHU, and SWrad of CMET were much better than
that of NCEP2 with the average R2 of values 0.70, 0.79, and 0.92 (Table 1), respectively. This indicated that the
meteorological surface data interpolated from station observations was better than the smoothed coarse-
scale global reanalysis data, particularly with respect to RHU (used for VPD estimation in the algorithm),
and solar radiation.
2.3.2. Temporal Filling of MODIS FPAR/LAI
The latest Collection 5 1 kmMODIS FPAR/LAI from 2000 through 2012 was used to calculate 1 km GPP/NPP in
China. The 8 day FPAR/LAI product has a significant number of missing data due to unfavorable atmospheric
conditions, such as cloudiness and heavy aerosols. These data gaps were previously filled using linear inter-
polation of the nearest reliable values [Zhao et al., 2005]. However, this method, referred to as ZHAO there-
after, may remove some within seasonal changes [Wang et al., 2014].

Figure 2. The (right) carbon flux sites and the (left) meteorological stations used in this study. The surface meteorological data were interpolated using observations
at meteorological stations in China and surrounding countries, and a 1 km digital elevation model (DEM) from the 90m Shuttle Radar Topographic Mission (SRTM)
database v4.1 [Farr et al., 2007; Rabus et al., 2003]. The flux sites from ChinaFLUX and AsiaFLUX were used for parameter optimization and the assessment of the
interpolated surface meteorological data. The temperature on 13 August 2005 from the meteorological surface data is shown as an example of the interpolation
result.
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The ZHAO method and other methods were evaluated with observed GPP from ChinaFLUX sites. The other
methods included the adaptive Savitzky-Golay (SG) method in TIMESAT software [Jönsson and Eklundh, 2004],
and the locally adjusted cubic-spline capping (LACC) method [Chen et al., 2006]. Multiple correlation coeffi-
cients (R2) of linear regression were analyzed between the observed GPP and FPAR filled by the different
methods or the FPAR unfilled on the ChinaFLUX sites. Over all sites except for tropical forest, the average
R2 was 0.67 for the MOD15A2 raw data and 0.82, 0.80, and 0.76 for the filling methods of SG, ZHAO, and
LACC, respectively. Across tropical forest sites, all R2 values were lower than 0.25 (Table 2). Even though per-
formance was limited for all methods in tropical forest sites, the comparison showed that the SGmethod was
better than the others.

Based on the above analysis, the FPAR and LAI data were reprocessed using the TIMESAT software [Jönsson
and Eklundh, 2004]. Although the quality control and assessments information is useful and considered in the
MOD17 algorithm [Zhao et al., 2005], it was not considered in the application of the SG method in this study
since the SG method is effective at removing noise from time series data. Prior to late February 2000,
FPAR/LAI is not available, and these missing gaps were filled by averaging the corresponding 8 day reliable
FPAR/LAI from 2001 to 2003, in order to calculate a complete annual MODIS GPP and NPP data set for the
year 2000.
2.3.3. Land Cover Information Improvement
The MODIS land cover product (MOD12) has changed considerably from Collections 4 to 5. The Collection 5
version of MCD12 has increased spatial resolution and differences in its input data and classification algo-
rithm relative to Collection 4. With respect to overall Collection 5 accuracy, about 75% of classifications were
correct based on a global cross-validation analysis [Keith et al., 2012]. However, an accuracy assessment of
MCD12 in China in 2005 indicated that the Kappa coefficient [Foody, 2002] was only 0.44 (Table 3).

A land use and cover product based on Landsat data in 2005 (LUC05) was used to improve the MODIS
land cover product (Figure 3a) as inputs to the NPP algorithm. The LUC05 was from China’s Land-Use/cover

Dataset (CLUDs) that was interpreted
from Landsat Thematic Mapper/
Enhanced Thematic Mapper on the
scale of 1:100,000 [Liu et al., 2014,
2003a, 2005, 2010, 2003b]. The
LUC05 has higher accuracy but the
different classification scheme with
the MODIS product. Therefore, the
method suggested by Feng et al.
[2007] was applied to improve the
accuracy of the MCD12. First, a new
data set was produced by assigning
the class codes of MCD12 according
to the land use type in LUC05.
Second, the forest type in the new
data was classified according to the

Table 2. The Multiple Correlation Coefficients (R2) of Linear Regression
Analyzed Between the Observed GPP and the FPAR unFilled (UnFilled)
and the FPAR Filled by the Methods of the Adaptive Savitzky-Golay (SG)
Method in TIMESAT Software [Jönsson and Eklundh, 2004], the Linear
Interpolation (ZHAO) of the Nearest Reliable Values [Zhao et al., 2005],
and the Locally Adjusted Cubic-Spline Capping (LACC) [Chen et al., 2006]
on the ChinaFLUX Sites

Sites Vegetation Types Unfilled SG ZHAO LACC

YCH Crop 0.60 0.80 0.78 0.75
XLG Temperate grass 0.70 0.70 0.68 0.59
HBG Alpine grass 0.86 0.91 0.89 0.91
DXG Alpine grass 0.70 0.87 0.84 0.78
CBS Temperate forest 0.66 0.95 0.93 0.90
QYZ Subtropical forest 0.52 0.68 0.66 0.63
DHS Tropical forest 0.12 0.03 0.01 0.19
XSF Tropical forest 0.01 0.00 0.25 0.01

Table 1. The Comparison of the Interpolated Meteorological Data (CMET) and the NCEP/DOE II Reanalysis Data (NCEP2)
Using Tower Based Observationsa

Variable

CMET NCEP2

R2 (Mean ± SD) Site Number R2 (Mean ± SD) Site Number

Tavg 0.91 ±0.13 14 0.97 ±0.03 14
TMIN 0.93 ±0.12 16 0.96 ±0.03 14
SWrad 0.92 ±0.06 10 0.56 ±0.26 10
VPD 0.77 ±0.22 7 0.51 ±0.22 4

aThe CMET used in this study and NCEP2 used in MOD17 C5 products were evaluated using multiple correlation coef-
ficients (R2) from linear regressions with the corresponding variables observed on the eddy covariance towers from
ChinaFLUX and AsiaFLUX.
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forest subtype in MCD12. Third, if a pixel was classified as forest in the new data but not in MCD12, the forest
type of the nearest neighbor of the pixel in MCD12 was used. The final classification was referred to as
MCD12ADJ and shown in Figure 3b.

In the new MCD12ADJ land cover classification, forest, cropland and grassland cover 19%, 25%, and 43%,
respectively, of total vegetated area in China (Figure 3b), compared to 21%, 27%, and 32% in the old version
(MCD12, Figure 3a). The old version of MCD12 data overestimated forest area and underestimated the grass-
lands with close estimation of cropland.
2.3.4. Parameter Optimization
Using in situ daily tower GPP measurements, the Markov Chain Monte Carlo (MCMC) method was applied
to optimize the five parameters in the GPP algorithm: ɛmax, TMINmin, TMINmax, VPDmin, and VPDmax, as
shown in equation 2–4. The MCMC (Bayesian analysis) method derives the data-dependent probability dis-
tribution of the parameters by using the function of the Delayed Rejection and Adaptive Metropolis
(DRAM) procedure [Haario et al., 2006, 2001]. The lower and upper bounds of the parameters were deter-
mined from parameters in Collection 5 of the MOD17 products. The 8 day mean daily minimum
temperature, daily total incoming solar radiation, and vapor pressure deficit were calculated from observa-
tions at the ChinaFLUX towers (supporting information Table S1). Remote sensed FPAR and LAI data were
extracted at each flux tower site using an average of a 3 × 3 1 km pixel window centered on the site. Both

Table 3. The Optimized Parameters Used in the Satellite-Based GPP/NPP Algorithm (MOD17CBP) Based on Localized
Data in China

Vegetation Classification
Code Vegetation Classification

TMINmin
(°C)

TMINmax
(°C)

VPDmin
(Pa)

VPDmax
(Pa)

ɛmax
(g CMJ�1)

1 ENF �6.87 4.87 241 3834 1.539
2 EBF �1.48 23.70 296 2673 2.201
3 DNF �8.00 10.44 650 2300 1.086
4 DBF �6.00 9.94 650 1650 1.165
5 MF �10.27 20.76 192 2466 1.776
6 CShrub �8.00 8.61 650 4700 1.281
7 OShrub �8.00 8.80 650 4800 0.841
8 WSavannas �8.00 11.39 650 3200 1.239
9 Savannas �8.00 11.39 650 3100 1.206
10 Grass �3.04 9.99 390 2743 0.672
12 Crop �3.97 8.48 409 4752 1.831

Figure 3. The improvements in land cover and land use classification in this study. (a) MODIS land cover (MCD12Q1) of Collection 5 with IGBP classification in 2005.
(b) The improved MCD12Q1 (MCD12ADJ) based on the land cover and use classification based on Landsat data in China in 2005 and the MCD12Q1.
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meteorological and remote sensing data were used as the inputs for the parameters optimization. The
MCMC optimization was conducted by minimizing the root-mean-square difference (RMSD) between site
observed and MOD17CBP estimated GPP.

The final optimized parameters showed that temperature and VPD thresholds on photosynthesis and ɛmax

were very different from the default values in MOD17C55 (Table 3). The optimized ɛmax values were
1.539 g CMJ�1, 2.201 g CMJ�1, 1.051 g CMJ�1, and 1.831 g CMJ�1 for evergreen needleleaf forest, evergreen
broadleaf forest, mixed forest and crop, which were more than 60% larger than the default values used in the
MOD17C55 product. The optimized ɛmax values for grassland was 0.672 g CMJ�1, which was smaller than
0.860 g CMJ�1

fixed for grassland in the MOD17C55.

2.4. Analysis
2.4.1. Results Validation
Considering the footprint issues of flux towers, many studies used a 3× 3 1 km pixel window around the flux
tower for validation to improve spatial agreement [Friend et al., 2007; C. Wu et al., 2011;Wu et al., 2010b]. We
followed that protocol here and extracted data using a 3 × 3 1 km pixel window centered on the flux tower
site for GPP and the sample plot for NPP. The averaged values of the 3 × 3 pixel window were calculated
and compared with ground data. The 1 km global MODIS GPP/NPP products (MOD17A3 Collection 5.5, here
denoted as MOD17C55) were applied to compare and assess the improvements in the MOD17CBP products.
The MOD17C55 data during 2000–2012 were produced by the Numerical Terradynamic Simulation Group
(http://www.ntsg.umt.edu/). MOD17C55 used coarse resolution meteorological daily data input from the
NCEP/DOE II reanalysis (NCEP2) [Kanamitsu et al., 2002], and linear-filling based MODIS FPAR/LAI as inputs
[Zhao et al., 2005; Zhao and Running, 2010; Zhao et al., 2006].
2.4.2. Regional Climate Control on NPP
Amultiple linear regressionmethod was applied to analyze the influence of climate variables on the interann-
ual variability of NPP as the following equation:

y ¼ bt�xt�bp�xp� þ br �xr þ ε (8)

where y was the NPP and xt, xp, and xr were climate variables including temperature, precipitation, and solar
radiation, respectively. All variables (including x and y) were normalized as below:

zi ¼ xi � x
s

(9)

where xiwas the climate variable or NPP in the ith year and x and swere the mean and the standard deviation
of the time series x, respectively. Therefore, the regression coefficients bt, bp, and br represent the contribu-
tion of each climate variable to NPP.

3. Results
3.1. Accuracy Assessment of GPP/NPP Estimation

The accuracy of MOD17CBP GPP/NPP estimates were assessed through (1) comparison of MOD17CBP GPP esti-
mates against observed GPP data across a network of eddy flux towers and (2) comparison of MOD17CBP NPP
estimates against distributed in situ NPP measurements. Compared with observed GPP data collected from
the peer-reviewed literature, MOD17CBP GPP had an R2 of 0.90 (Figure 4a), while the R2 value was 0.76 for
MOD17C55 (Figure 4b). The relative GPP RMSE values decreased to 16.2% for MOD17CBP compared to
24.7% in MOD17C55. Validation analysis suggested that the localized inputs and parameters optimization
(MOD17CBP) greatly improved the performance of GPP simulation by increasing the R2 by 18.1% and decreas-
ing the relative RMSE by 34.2% compared with that of MOD17C55.

MOD17CBP NPP was significantly correlated with in situ NPP measurements (Figures 4c and 4d). The R2 value
for MOD17CBP was 0.71 compared to 0.64 for MOD17C55. Further, the relative RMSEs for MOD17CBP and
MOD17C55 were 21.0% and 32.7%, respectively. Validation analysis demonstrated that the localized inputs
and parameters optimization (MOD17CBP) greatly improved the performance of NPP simulation by increasing
the R2 by 10.9% and decreasing the relative RMSE by 35.8% compared with that of MOD17C55.
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The national total GPP from theMOD17CBP was close to the average value (5.82 ± 0.43 PgC a�1) from 19 exist-
ing studies (Figure 1a), whereas total NPP was ~28.3% increased relative to the average NPP from 37 existing
NPP data sets (2.92 ± 0.12 PgC a�1) (Figure 1b). The MOD17CBP GPP was especially close to that of the EC-LUE
model (6.04 PgC a�1) during 2000–2009 [Li et al., 2013]. GPP was greater than that of MOD17C55
(5.10 PgC a�1) during 2000–2012 [Zhao and Running, 2010] and the predicted GPP of 5.38 PgC a�1 in
2000–2007 from Yuan et al. [2010].

3.2. Spatial Pattern of NPP in China

According to MOD17CBP, terrestrial ecosystems in China had a total NPP of 3.73 Pg C a�1

(Pg C a�1 = 1015 g C yr�1) during 2000–2012. Spatial patterns of NPP are shown in Figure 5. Higher NPP values
were distributed over the South, Central, and Southwest China where evergreen forests are the dominant

Figure 4. The (a, b) GPP and (c, d) NPP from MOD17CBP (Figures 4a and 4c) and MOD17 Collection 5.5 (Figures 4b and 4d) compared with the EC tower based GPP
and NPP, respectively. The in situ GPP were multiple site year observations from ChinaFlux, and the labels are given with the combination of the site name and the
year of data acquisition. The in situ NPP was averaged for each forest type from forest inventory data.
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vegetation type with NPP values above 700 g Cm�2 a�1. Eastern Inner Mongolia, Northwest China, and
Qinghai-Tibetan plateau, characterized by grasslands and desert area, showed lower NPP under
200 g Cm�2 a�1. The NPP values over the temperate forests and croplands of Northeast and North China
were about 600 g Cm�2 a�1, respectively.

Overall, regional NPP estimates were significantly variable, with NPP in Southwest China the highest and
NPP in Qinghai-Tibetan plateau the lowest (Figure 5). Southwest China’s total NPP of 0.80 PgC a�1 repre-
sents 21.3% of China’s total NPP. Relatively high NPP in this region is likely due to a warm and wet climate
and greater forest cover. East, North, Northeast, and South China have a relatively medium level of NPP,
which ranged from 0.46 to 0.61 PgC a�1 and accounted for 12.4 to 16.3% of China’s total terrestrial NPP,
respectively. Northwest China and the Qinghai-Tibetan Plateau are at the lower level of NPP estimates with
a total NPP less than 0.18 Pg C a�1 (4.8%), due in part to the harsh climate and grassland
dominated landscape.

3.3. Temporal Trend of NPP and Climatic Controls

There were large variations in NPP temporal trends across the country from 2000 to 2012 (Figure 6a). NPP
increased by 2.02 Tg C a�1 (or 7.9 ± 7.8 g Cm�2 a�1 mean± standard deviation, significant level p< 0.05) over
9.4% of the vegetated land in China while it decreased by 6.67 TgC a�1 (or 17.4 ± 9.3 g Cm�2 a�1, p< 0.05)
over 8.1% of the vegetated land, mostly in the productive forest areas, which resulted in an overall decreasing
trend in NPP of 4.65 Tg C a�1 or 0.13%a�1.

The trend of NPP greatly varied with climate and also by region. Overall, the NPP of grasslands and croplands
increased by 0.41 Tg C a�1 and 0.32 TgC a�1, respectively, while NPP of forests decreased by 5.38 TgC a�1.
The increasing trend mainly occurred in the croplands of North China (0.52 Tg C a�1), Northwest China
(0.50 Tg C a�1), and Northeast China (0.33 Tg C a�1), and the forests of Northeast China (0.28 TgC a�1).
These areas accounted for 95.6% of the increasing trend of NPP in the whole country (Figure 7). The decreas-
ing trend was seen in almost all the forest areas in South China. Specifically, the forest NPP decreased by
1.81 Tg C a�1, 1.42 Tg C a�1, 1.02 TgC a�1, and 0.99 Tg C a�1 in South China, Central China, Southeast China,
and Southwest China, respectively. These areas accounted for 78.5% of the decreasing NPP trend for the
whole country (Figure 7). On the Qinghai-Tibetan Plateau, the grasslands and croplands showed increasing
NPP trends of 0.31 Tg C a�1 and 0.05 Tg C a�1, respectively, whereas forests in the region showed a decreas-
ing NPP trend of 0.52 Tg C a�1, resulting in a total decreasing trend in the plateau of 0.16 Tg C a�1. The results
clearly suggest that NPP in North China increased for cropland and grassland but decreased for forests in
South China over the period of this study.

Figure 5. The spatial pattern of NPP from CBP (NPPCBP) and MOD17 Collection 5.5 (NPPC55) for terrestrial ecosystems in
China.
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3.4. Impacts From Climate Change on NPP Trend

In 2000–2012, trends in temperature, precipitation, and SWRad showed remarkable regional differences
(Figure 6 and Table 4). A warming trend was found over Qinghai-Tibetan Plateau (p=0.07) and Southwest
China (p= 0.32), and a weak cool trend in other areas (p> 0.05). Meanwhile, a wetting trend was found in
Northeast China (p= 0.01), Inner Mongolia (p= 0.07), and Northeast China (p= 0.05) while a drying trend on
Qinghai-Tibetan Plateau and in Southwest China (p= 0.10). Solar shortwave radiation (SWRad) showed an
increasing trend in Southwest China (p= 0.82) and a decreasing trend in other regions (p> 0.05).

The observed trends in NPP can be well explained by changes in precipitation, temperature, and SWRad. In
fact, these three variables together were found to explain over 66% of the increasing trend of NPP in North
China and 55–73% of the decreasing trend in NPP in South China (Table 4). Over North China, vegetation is
more sensitive to changes in precipitation, and increasing NPP can be explained by a weak increase in pre-
cipitation with R2 values of 0.41 (p= 0.02), 0.69 (p< 0.01), 0.18 (p= 0.15), and 0.45 (p= 0.01) for Northwest

Figure 6. Spatial distribution of trends in (a) NPP from MOD17CBP (NPPCBP) and (b) shortwave solar radiation (SWRad), (c) annual mean temperature (AMT) ,and (d)
annual total precipitation (ATP) from 2000 to 2012.
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China, Inner Mongolia, Northeast China, and North China, respectively. On the Qinghai-Tibetan Plateau, pre-
cipitation, temperature, and SWRad together controlled the interannual variation of grassland NPP and the R2

values were 0.53, 0.51, and 0.48, respectively, with a significant level p< 0.01, while temperature played an
important role in forest NPP variation with a R2 of 0.61 (p= 0.002), which was mainly distributed in the south-
ern part of the plateau.

Over South China, the interannual variability of NPP was best explained by SWRad changes instead of
changes in precipitation. The R2 between the standardized NPP and SWRad was 0.29 (p= 0.06), 0.29
(p= 0.06), 0.59 (p< 0.01), and 0.46 (p= 0.01) for Southwest China, Central China, South China, and
Southeast China, respectively, while the R2 between NPP and precipitation was less than 0.13 (p> 0.05) for
these same regions. For Southwest China, drought years occurred in 2006, 2011, and 2009 in which precipita-
tion was 1.8, 1.5, and 1.3 times less than the standard deviation (SD) of the average from 2000 to 2012. Yet
minimum NPP (11.3 Tg C a�1), which was 1.84 times less than the SD of the average from 2000 to 2012,
occurred in 2012, not during the three drought years. NPP was better correlated with precipitation from
the previous year (R2= 0.23) compared to precipitation data from the same year (R2=0.13). Despite the
lagged response of NPP to precipitation, NPP was still more sensitive to SWRad than to precipitation. The
ratios of the standardized regression coefficient of the radiation and precipitation terms were found to range

Figure 7. NPP trend of each main vegetation type in the nine regions in China from 2000 to 2012.

Table 4. The 2000–2012 Interannual Trends of NPP and Related Climate Variables for the Dominant Vegetation in the Each Region of Chinaa

Region
Dominant
Vegetation

Areab

(%)
NPP

Trend (Tg C a�1)
TEM Trend
(°C 10a�1)

PRCP Trend
(mma�1)

SWRad Trend
(MJm�2 a�1)

NPP = bTEM + bPRCP + bSWR + ε

bTEM bPRCP bSWR R2

NW Grass 6.71 0.57 �0.17 (0.54) 3.68 (0.01) �1.26 (0.51) 0.03 0.43 0.19 0.68
IM Grass 1.62 0.16 �0.46 (0.22) 5.35 (0.07) �5.16 (0.45) �0.10 0.81 0.25 0.70
NE Forest 3.43 0.65 �0.34 (0.47) 10.21 (0.05) �16.63 (0.12) �0.06 0.41 0.58 0.66
NC Crop 7.65 0.65 �0.33 (0.22) 3.71 (0.53) �19.08 (0.07) 0.02 0.45 0.57 0.66
TP Grass 36.89 �0.16 0.60 (0.07) 3.63 (0.10) �2.90 (0.54) 0.52 0.36 0.06 0.70
SW Forest 22.69 �1.17 0.25 (0.32) �8.24 (0.10) 2.21 (0.82) 0.04 0.29 0.49 0.70
CC Forest 6.63 �1.58 �0.13 (0.62) �7.40 (0.57) �6.69 (0.51) �0.28 0.65 0.93 0.66
SC Forest 9.95 �2.05 �0.37 (0.17) �10.40 (0.56) �18.00 (0.29) �0.08 0.57 0.96 0.69
SE Forest 4.44 �1.72 �0.31 (0.18) 6.36 (0.63) �6.55 (0.60) 0.32 0.29 0.66 0.68
Total 17.5c �4.65 (0.39) 1.47 (0.40) �8.64 (0.39) 0.19 0.40 0.40 0.69

aThe interannual trends of NPP were analyzed for pixels with a significance level p< 0.05. The climate variables analyzed were temperature (TEM), precipitation
(PRCP), and solar shortwave radiation (SWRad). Linear trend significance levels are in brackets. Multiple linear regressions were applied in the impacts analysis of
climate change on NPP and given with the regression coefficient of temperature (bTEM), precipitation (bPRCP), and solar shortwave radiation (bSWR), and correla-
tion coefficient (R2).

bThe area is the total area where NPP significantly increased or decreased in vegetated area in each region.
cThis percent is the area where NPP significantly increased or decreased in the vegetated area in whole country.
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from 1.43 to 2.28 across southern China (Table 4), indicating that NPP was significantly more sensitive to
radiation relative to precipitation. Partitioning the decreasing NPP trend for Southern forests of
6.52 Tg C a�1, we find drought played a minor role decreasing NPP by 1.17 TgC or 18% of the total trend,
whereas radiation was the primary driver decreasing NPP by 5.35 Tg C or 82% of the total trend, as showed in
Table 4.

4. Discussion
4.1. Uncertainties in NPP Estimations
4.1.1. Model Improvements in This Study
We improved GPP and NPP estimates for China for the period 2000–2012 in three key ways. First, we uti-
lized high-resolution localized meteorological driver data. The MOD17C5 uses climate data from NCEP2,
while the coarse spatial resolution of these data has been shown to be a dominant factor driving uncertain-
ties in global GPP and NPP products [Betts et al., 2006; Sjostrom et al., 2013; Zhao et al., 2006]. In particular,
the SWRad data have been shown to disproportionately contribute to uncertainties due to relatively limited
observations of in situ incoming radiation [Kalnay et al., 1996; Yi et al., 2011]. Notably, SWRad data were
found to have relatively large uncertainties and errors for south China in particular [Cai et al., 2014]. In this
study, we used sunshine duration-based SWRad estimates which were suggested by [Yang et al., 2006] and
demonstrated by [Li et al., 2015] to be a more accurate method for deriving PAR. Second, we utilized
improved noise removal in the MOD15A2 FPAR/LAI data. Similar noise removal methods have been pre-
viously demonstrated effective for the improved estimation of net ecosystem production (NEP) [Wang
et al., 2011], and the performance of these methods have been verified by many previous analysis [Lin
et al., 2012; Nightingale et al., 2009; Wang et al., 2014; Zhang et al., 2009, 2012]. Third, we utilized a more
accurate representation of land cover being an important factor influencing the uncertainty in the
biome-specific parameters. A previous study showed that the uncertainty from land cover classification
can account for relatively large errors in GPP (�15.8% to 8.8%), NPP (�5.6% to 20.0%), and NEP (�14.8%
to 67%) [Quaife et al., 2008]. To achieve this, we combined the MODIS land cover products with more
detailed vegetation classifications, and the Landsat-based land cover products with higher resolution
and more accurate [Liu et al., 2014, 2003a, 2005, 2010, 2003b].
4.1.2. Parameters Optimization
The parameters in the GPP algorithm were optimized through the observed GPP from ChinaFlux, which
improved the accuracy of GPP estimation at sites. Potential light use efficiency (ɛmax) was found to be one
of most important parameters influencing GPP estimates and was considered to be underestimated by
MOD17C55 [Liu et al., 2015]. In this study, the optimized values were 1.839 g CMJ�1, 1.831 g CMJ�1, and
0.672 g CMJ�1 for forests, crops, and grass, respectively, which were in the range of 0.796–2.53 g CMJ�1,
1.056–3.864 g CMJ�1, and 0.199–1.8818 g CMJ�1 for forests, cropland, and grassland, respectively [J. Chen
et al., 2009; Zhang et al., 2008]. However, ɛmax was found to be spatially heterogeneous within biome types
[B. Chen et al., 2009; Madani et al., 2014]. But the observed GPP in cropland was available only from one site
in this study and the optimized parameter was applied to regional scale, which would be the main reason of
the overestimated NPP. Therefore, in the future, the spatial estimation of LUE using remote sensing is
expected to improve global ecosystem productivity estimation.

A vapor pressure deficit (VPD)-based stressor was a widely criticized problem in the MOD17 algorithm and
previous studies suggested that a soil moisture based water stress should be included in the algorithm
[Kanniah et al., 2009; Leuning et al., 2005; Mu et al., 2007; Pan et al., 2006; Yan et al., 2015]. However, analyses
have shown that models that do not directly consider soil moisture can still capture the impacts of drought
on GPP [He et al., 2013; Wagle et al., 2014]. We may infer that the VPD based water stressor is applicable in
this study.
4.1.3. Model Improvements in the Future
To decrease uncertainties from inputs and model structure, a fundamental improvement relies on the devel-
opments of next generation satellite sensors. The Soil Moisture Active Passive (SMAP) mission, for example,
could provide accurate global mapping of freeze-thaw state and surface soil moisture with 2–3 day temporal
fidelity and enhanced (≤9 km) spatial resolution [Yi et al., 2011]. New space-based observations of chlorophyll
fluorescence have been demonstrated to enable an accurate, global, and time-resolvedmeasurement of crop
photosynthesis and ecosystem light use efficiency [Guanter et al., 2014].
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4.2. The Trend of NPP and Climate Impact
4.2.1. The Trend of NPP
We found an overall decrease of NPP of 4.65 Tg C a�1 or 0.13%a�1 for China from 2000 to 2012, with
increases in NPP over North China more than offset by decreases in NPP over the more productive forested
regions of South China. These findings are consistent with long-term trend analyses, which have suggested
that the NPP for the whole region of China increased over the past two decades, but switched to a decreasing
trend this decade [Cao et al., 2003]. Further, these findings are consistent with emerging evidence that the
potential benefits from a lengthening growing season and warming climate could be offset by increasing
vegetation water stress, frequent wildfire and insect disturbances, or enhanced autumn respiration due to
climate warming [Krishnaswamy et al., 2014; Piao et al., 2014; Yi et al., 2013; Yuan et al., 2014a; Zhao and
Running, 2010]. For China, the impacts of climate changes on terrestrial ecosystems seem to have switched
from positive to negative effects at the national scale, although variability by region is significant.
4.2.2. Impacts From Climate Change
Dominant drivers of NPP include the fertilization effects of rising atmospheric CO2 concentration, atmo-
spheric nitrogen deposition, damaging ozone concentrations, land cover and land use changes, and cli-
mate changes [Piao et al., 2015; Smith et al., 2016; Tian et al., 2011; Xiao et al., 2015]. In this study, we
focused on the influence of climate drivers and found that climate was a dominant factor driving NPP
across China from 2000 to 2012 (R2= 0.66–0.70) (Table 4). This finding in turn suggests that about 30%
of the trend in NPP could be attributed to others factors, such as land use changes including of afforesta-
tion and reforestation, which should be included in future research efforts [Piao et al., 2015; Tian et al., 2011;
Zhang et al., 2014].

Across South China, a region affected by the East Asian monsoon, the growth of vegetation can be con-
strained by solar radiation due to the frequent presence of heavy clouds [Zhang et al., 2014; Zhao et al.,
2001]. In this study, the effects of solar radiation and precipitation were both positive; however, NPP was
more sensitive to radiation relative to precipitation. Thus, the decreasing trend in NPP over South China
was most likely driven by a decreasing trend in shortwave radiation (SWRad). These findings are supported
by recent model simulation experiments, and the provincial statistics approach indicated solar radiation as
the leading climate factor in the trend of vegetation growth on the regional scale in China [Xiao et al.,
2015; Zhang et al., 2014]. Over the recent 30 years, increasing air pollution and atmospheric concentrations
of aerosols have potentially resulted in reductions in direct radiation across China, whereas diffuse radiation
may have increased [Fu et al., 2015; Ren et al., 2014]. Our results indicate that these changes could have con-
tributed to observed reductions in vegetation productivity over South China. Conversely, the effects of
increasing diffuse radiation on NPP remain relatively unknown and a source of uncertainty in our analysis.
Models have been recently developed to account for such effects, including the cloudiness index light use
efficiency (CI-LUE) model [Wang et al., 2015], and a two-leaf light use efficiency (TL-LUE) model [He et al.,
2013]. However, the photosynthesis mechanism under diffuse radiation conditions, especially in tropical for-
ests, requires further investigation and should be a priority focus of future research efforts.

5. Conclusions

In this study, we introduce an improved NPP algorithm for the region of China that used regional parameter-
ization, high-resolution meteorological data, and Landsat-based land cover products. We found our
improved NPP algorithm significantly reduced bias in NPP estimates, suggesting researches should exercise
caution with regional application of global products. We found an overall reduction in NPP of 4.65 TgC a�1

for the region of China from 2000 to 2012, with increases in NPP over North China more than offset by
decreases in NPP over the more productive forested regions of South China. Climate, precipitation, tempera-
ture, and solar radiation, together, play a dominant role (> 70%) in the interannual variability of NPP.
Moreover, our findings suggest that reductions in NPP were largely due to decreases in solar radiation
(82%), rather than the commonly expected effects of drought (18%). These findings update our previous
knowledge of carbon uptake responses to climate change in terrestrial ecosystems and highlight the poten-
tial importance of shortwave radiation in driving vegetation productivity for the region, especially for tropical
forests. Further clarification of the effects of precipitation and radiation, particularly the impacts of diffuse
radiation, on vegetation photosynthesis should be a future research priority.
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