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Abstract: The mitochondria is an important organelle for a large assortment of metabolic 

processes. Cytochrome c (Cytc), a vital protein found in the mitochondria, is critical for life and 

death processes in eukaryotic cells. One of these functions includes shuttling electrons through 

the electron transport chain during cellular respiration. Cytc is also an essential signaling protein 

in the pathway of apoptosis, also known as programmed cell death. Yeast has similar 

components of this cell death pathway to higher eukaryotes such as humans, but does not contain 

all of the same optimized cascade processes. Additionally, the peroxidase activity, an early signal 

in the apoptotic pathway, is much lower in human Cytc when compared to wild type yeast iso-1-

Cytc. This suggests the evolution of an optimized “off” state in the peroxidase activity of human 

Cytc. In the least stable substructures of Cytc, which mediate peroxidase activity, three amino 

acid sites co-evolve between human Cytc and iso-1-Cytc. In comparison to iso-1-Cytc, human 

Cytc contains the substitutions S40T, V57I and N63T. These should stabilize this hydrophobic 

interface in human Cytc by the addition of a methyl group in each substitution when compared to 

iso-1-Cytc. All possible single, double and triple substitution variants from Hu Cytc were 

introduced into iso-1-Cytc to test the hypothesis that they would increase the stability of iso-1-

Cytc, causing the peroxidase activity of iso-1-Cytc to decrease. Bacterial protein expression of 

the single and double mutation variants in BL21 Escherichia coli cells, followed by protein 

purification were performed. Further experimentation on the individual mutant proteins, to test 

the hypothesis, included measurement of peroxidase activity, the alkaline transition, and protein 

stability. Overall we find only moderate effects on global and local stability by each of the 

variants introduced. While there are minor changes in the KM for each of the variants in 

comparison to WT, kcat shows more variation between WT and variants at increasing pH values. 

These findings suggest that these variants evolved to preserve rather than change function. 



 3 

Introduction 
 

Mitochondrial cytochrome c (Cytc) has important functions as an electron carrier in the 

electron transport chain during cellular respiration.4 Cytc has more recently been found to 

function as a signaling agent in the intrinsic pathway of apoptosis where it has an important role 

in forming the apoptosome, which activates caspase-9, ultimately initiating the point of no return 

signaling for cell death. Under apoptotic conditions, peroxidation of cardiolipin (CL) by Cytc 

may occur, causing dissociation of membrane-bound Cytc, facilitating its release into the 

cytoplasm.5 This process allows free Cytc to bind to apoptotic protease-activating factor 1 to 

form the apoptosome. 

Yeast does not contain the same components of this apoptotic pathway found in human 

Cytc.3 In comparison to human, yeast has Cytc with a 20-fold higher intrinsic peroxidase 

activity, suggesting that Cytc in higher eukaryotes has evolved an “off” switch in the intrinsic 

apoptotic pathway in order to limit its peroxidase activity. Past studies have identified naturally 

occurring variants of human Cytc related to thrombocytopenia, which have shown both higher 

intrinsic peroxidase activity as well as higher apoptotic activity.1,8,9,10 

In order for Cytc to produce higher peroxidase activity it must contain an open 

coordination site. This requires Cytc to undergo a conformational change to free the coordination 

site from its natural hexa-coordinated heme conformation. Ω-loop C and D have been implicated 

in providing access to these peroxidase conformers by the loss of Met80 ligation to the heme. 

This occurs from modest structural rearrangement of these least stable structures in Cytc. Recent 

research has directed focus to Ω-loop C as the key substructure of Cytc to provide access to the 

peroxidase competent conformer of Cytc. Naturally occurring variants located in Ω-loop C of 

human Cytc linked to thrombocytopenia and having increased peroxidase activity have been 
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identified.1,8,9,10 However, as Ω-loop C is more poorly conserved when compared to Ω-loop D,6,7 

defining which of its residues have evolved the “off” state of the peroxidase activity is not 

straightforward. S40T, V57I, and N63T substitutions occur in human Cytc relative to yeast iso-1-

Cytc.2 These co-varying residues2 have been found to form a hydrophobic cluster at the interface 

of Ω-loop C and D and the 60s helix in human Cytc (Figure 1). The human variants add a methyl 

group to the hydrophobic cluster, which is thought to stabilize this interface. 

All possible single, double and triple substitution variants from Hu Cytc were introduced 

into iso-1-Cytc to test the hypothesis that they would increase the stability of iso-1-Cytc, causing 

the peroxidase activity of iso-1-Cytc to decrease. Bacterial protein expression of the single and 

double mutation variants in BL21 Escherichia coli cells, followed by protein purification were 

performed. Further experimentation on the individual mutant proteins to test the hypothesis 

included measurement of peroxidase activity, the alkaline transition, and protein stability. 

Overall we find only moderate effects on global and local stability by each of the variants 

introduced. While there are minor changes in the KM for each of the variants in comparison to 

WT, kcat shows more variation between WT and variants at increasing pH values. These findings 

suggest that sequence positions 40, 57 and 63 evolved to preserve rather than change function.  
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Figure 1. Structure of human cytochrome c (PDB:3ZCF)1 with relevant variant residue sites highlighted at 40, 57, 
and 63 to display the hydrophobic cluster formed by the co-varying residues at the interface of W-loops C, D and the 
60s helix. 
 
Materials and Methods 
 
Mutagenesis and protein purification 
 

Variants used in this work were prepared in the laboratory course BCH 486 under the 

guidance of Professor Bowler or by Ariel Frederick using PCR-based site-directed mutagenesis. 

All mutations were confirmed by dideoxy sequencing (Eurofins Genomics). dsDNA 

(pRbs_BTR1 vector12) carrying the S40T, N63T, V57I, and S40T/N63T variants of yeast iso-1-

Cytc were transformed into competent BL21(DE3) E. coli cells. All transformants plated on L-

ampicillin agar and incubated overnight at 37°C were suspended in sterile L-broth and used to 

inoculate 6 L of YT media with 1.0 mL of 100 mg/mL ampicillin in each liter of media. Cultures 

were incubated at 37°C and with shaking at 150 rpm for approximately 30-36 hours in the shaker 

incubator. The cells were harvested by centrifugation and frozen at -80°C. Cells were suspended 

in lysis buffer (100 mM Tris, 500 mM NaCl, 1 mM EDTA pH 8.0; a few crystals of DNAse and 

N63T 

V57I 
S40T 
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RNAse and 2 mM PMSF) using 5-10 mL/mg of cells, followed by stirring for 1 hour at 0°C. The 

cells were broken using a Q700 sonicator (Qsonica, LLC), and the lysate was cleared by 

centrifugation. The supernatant was 50% saturated by ammonium sulfate, stirred overnight 

(approximately 16 hours) and precipitates were removed by centrifugation. The collected 

supernatant was placed in dialysis tubing and dialyzed against 12.5 mM sodium phosphate, pH 

7.2, 1 mM EDTA, and 2 mM b-mercaptoethanol (b-ME) buffer stirring for approximately 24 

hours at 0°C. The buffer was reprepared and replaced, dialyzing the protein a second time for 24 

hours. The protein was then absorbed to CM-Sepharose fast flow resin (100 mL) overnight, then 

placed in a glass column draining excess liquid. The resin was equilibrated in 50 mM sodium 

phosphate buffer, pH 7.2, 1 mM EDTA, 2 mM b-ME for 30 minutes and the protein eluted with 

a linear gradient of 0-0.8 M NaCl in 50 mM sodium phosphate buffer, pH 7.2, 1 mM EDTA, 2 

mM b-ME. After concentration and exchange into Milli-Q water three times by ultrafiltration the 

protein was frozen and stored at -80°C. Before experimentation, protein samples were reduced 

with sodium dithionite (Na2S2O4) and purified using a HiTrap SP HP 5.0 mL column coupled to 

an AKTAprime plus chromatography system (GE Healthcare Life Sciences). A gradient from 0 – 

60% B over a volume of 60 mL at a flow rate of 1 mL/min was used for protein elution. Protein 

samples were concentrated by ultrafiltration and oxidized with K3[Fe(CN)6]. Oxidized Cytc was 

separated from the oxidizing agent by Sephadex G25 chromatography using a running buffer 

specific to the planned experiment.  

 
Global stability measurements by guanidine hydrochloride denaturation 

Global stability measurements were made using GdnHCl as a denaturant. GdnHCl 

unfolding was monitored at 25°C with an Applied Photophysics Chirascan circular dichroism 
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spectrometer coupled to a Hamilton M635 automated titrator. A solution of 4 µM S40T/N63T 

variant in 20 mM Tris, pH 7.5, 40 mM NaCl was titrated with ~6 M GdnHCl containing the 

S40T/N63T variant at the same concentration in 20 mM Tris, pH 7.5, 40 mM NaCl in a 10 mm 

pathlength cuvette containing a stir bar. After each addition by the titrator, the sample was stirred 

to mix for 300 seconds, and allowed to settle for 20 seconds while data were collected at 222 (a-

helix) and 250 nm. Baseline correction was accomplished by subtracting the ellipticity at 250 nm 

from the ellipticity at 222 nm (q222corr = q222 - q250). Using SigmaPlot (Systat Software), q222corr 

was plotted against GdnHCl concentration for the S40T/N63T variant and fit to a two-state 

model using nonlinear-least squares methods, assuming a linear free energy relationship (Eq. 1) 

and a native state baseline that is independent of GdnHCl concentration (Eq. 2). 

(1) DGu = DGu°¢(H2O) – m[GdnHCl] 

(2) 		θ!!!"#$$ =
%('!))('")*"[,-./01])∙4567

#[%&'()*],∆%.°0((23)
56 89

:)456%#[%&'()*],∆%.°0((23)
56 9

 

In Eq. 1, DGu°¢(H2O) is free energy unfolding in the absence of denaturant, and m is the 

rate of change of free energy with respect to GdnHCl concentration (the m-value). DGu°¢(H2O) 

and the m-value were extracted from fits of the data to Eq. 2. In Eq. 2 𝜃; is the native baseline 

and 𝜃< and mD are the intercept and slope of the denatured state baseline. The parameters from 

fits to three independent trials were averaged, and the error was calculated based on the standard 

deviation of the average. 

Measurement of the alkaline conformational transition 

For the alkaline transition measurements, a Beckman Coulter DU 800 Spectrophotometer 

was used to monitor pH transitions at 695 nm. 200mM NaCl running buffer was used in a 

Sephadex G25 chromatography separation of the oxidized protein. The collected oxidized 
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protein was concentrated by ultrafiltration using centrifugation at 4500 rpm for approximately 5 

minutes. Concentration and degree of oxidation of the protein were evaluated by UV-Vis 

spectroscopy. The amount of dilution of the protein in the solution was determined based on the 

initial concentration.  A 1000 µL solution of 200 µM oxidized S40T/N63T variant in 200 mM 

NaCl was prepared for the 2X stock solution. The 2X S40T/N63T stock solution and Milli-Q 

water were mixed 1:1 to produce the 1X solution of 100 µM oxidized S40T/N63T in 100 mM 

NaCl. pH titrations were carried out by adding either NaOH or HCl solutions to the 1X solution 

for the appropriate pH increments with the overall data ranging from approximately pH 6 to pH 

10. Equal volumes of the 2X S40T/N63T stock solution were added to maintain a constant 

protein concentration throughout the titration. pH measurements were made with each protein 

and NaOH/HCl solution addition using a Denver Instrument UB-10 pH/mV meter and an 

Accumet double junction semi-micro pH probe. The absorbance at 750 nm was subtracted from 

the absorbance at 695 nm to correct for baseline drift (A695corr = A695 − A750). The plots of A695corr 

versus pH for S40T/N63T were fit to the modified Henderson – Hasselbalch equation, Eq. 3. 

                                                                                   

For Eq. 3, AN is the corrected absorbance for the native state with Met80 bound to the 

heme at 695 nm, Aalk is the corrected absorbance for the alkaline state at 695 nm with Lys72, 

Lys73, or Lys79 as the alkaline state heme ligand, pKapp is the apparent pKa of the alkaline 

transition, and n is the number of protons connected to the alkaline transition.  

 
 
 
 

(3) 



 9 

Guaiacol assay of peroxidase activity 
 

Peroxidase activity was measured using guaiacol and monitored with an Applied 

Photophysics SX20 stopped-flow apparatus. The formation of tetraguaiacol from guaiacol and 

H2O2 in the presence of Cytc was measured at 470 nm. Solutions of 4 µM Cytc, 100 mM H2O2, 

and 400 µM guaiacol were made using the specific pH buffer indicated for the trial. The buffers 

used were 50 mM sodium acetate (pH 5.0) MES (pH 6.0-6.5), NaH2PO4 (pH 6.75-7.5), and Tris 

(pH 7.75-8.75). Concentrations were determined using the extinction coefficient of H2O2 (e240 = 

41.5 M-1 cm-1) and guaiacol (e274 = 2150 M-1 cm-1). 4X Cytc and 4X guaiacol solutions in 50 mM 

buffer were mixed 1:1 to produce a 2X Cytc 2X guaiacol stock in 50 mM buffer. This 2X stock 

solution was mixed 1:1 with 100mM H2O2 in 50 mM buffer with the stopped flow instrument, 

yielding a final solution containing 1 µM Cytc, 50 mM H2O2 and guaiacol at the desired 

concentration in 50 mM buffer. Final concentrations of guaiacol after mixing were 0, 2, 4, 6, 8, 

10, 15, 20, 25, 30, 40, 50, 60, 80, and 100 µM. 

A470 versus time data were plotted and the segment of the plot with the greatest slope 

following the initial lag phase was used to obtain the initial velocity, v, at each guaiacol 

concentration. The data were fit to a linear equation and the slope from the five repeats was 

averaged. The slope was divided by the extinction coefficient of tetraguaiacol at 470 nm (e470 = 

26.6 mM-1 cm-1) and multiplied by 4 (4 guaiacol consumed per tetraguaiacol produced) to give 

the initial rate of guaiacol consumption, v. The initial rate, v, was divided by iso-1-Cytc 

concentration, plotted against guaiacol concentration and fit to the Michalis-Menten Eq. 4 to 

obtain Km and kcat values.  

                                                                                     

(4) 
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Results 
 

The data shown in the figures in each section is for the S40T/N63T variant, which was 

collected and analyzed by the author of this report. Thermodynamic and peroxidase activity 

parameters for other variants were collected and analyzed by graduate mentor Ariel Frederick 

and are presented to provide context for the results obtained with the S40T/N63T variant.  

 
Global stability of iso-1-Cytc variants 
 

The global unfolding thermodynamics of the S40T, N63T, V57I, S40T/N63T, 

S40T/V57I, N63T/V57I and S40T/V57I/N63T iso-1-Cytc variants was monitored by circular 

dichroism spectroscopy using GdnHCl as a denaturant. Figure 2 shows the q222corr versus 

GdnHCl concentration denaturation curve of the S40T/N63T variant. Similar data were obtained 

for each of the variants. Thermodynamic parameters for each of the variants are given in Table 1. 

As seen by the midpoint GdnHCl concentration for unfolding, Cm, the GdnHCl m-value, and ΔG 

in Table 1, each of the single and double mutation variants have moderate effects on global 

stability when compared to WT iso-1-cytochrome c.  

 
Table 1. Thermodynamic parameters for global unfolding of WT and each of the variants of iso-1-Cytc 

Variant ΔG, kcal mol-1 m, kcal mol-1 M-1 𝑪𝒎, M 
WT 5.05 ± 0.30 4.24 ± 0.13 1.19 ± 0.04 

S40T 4.99 ± 0.09 3.94 ± 0.16 1.27 ± 0.03 
N63T 5.38 ± 0.12 4.01 ± 0.10 1.34 ± 0.01 
V57I 4.22 ± 0.13 3.54 ± 0.12 1.19 ± 0.01 

N63T/V57I 5.40 ± 0.16 3.87 ± 0.12 1.40 ± 0.03 
S40T/V57I 4.23 ± 0.07 3.66 ± 0.22 1.16 ± 0.06 
S40T/N63T 4.50 ± 0.12 3.85 ± 0.07 1.17 ± 0.01 

S40T/V57I/N63T 4.197 ± 0.004 3.49 ± 0.05 1.20 ± 0.02 
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Figure 2. Denaturation curve of S40T/N63T of q222corr vs concentration of GdnHCl. Parameters obtained from the 
fits are given in Table 1. Experiments were performed at 25°C in 20mM Tris, 40mM NaCl, pH 7.5 at 4uM 
S40T/N63T protein concentration. 
 
Local unfolding via the alkaline conformational transition 
 

The local unfolding thermodynamics for the alkaline conformational transition of the 

S40T, N63T, V57I, S40T/N63T, S40T/V57I, N63T/V57I, and S40T/V57I/N63T variants were 

determined by pH titration monitored by the loss of the 695 nm band, following the loss of 

Met80-heme ligation as shown for the S40T/N63T variant in Figure 3. As shown in Table 2, the 

number of protons involved in this transition is approximately equal to 1 for WT and each of the 

iso-1-Cytc variants. The apparent pKa values, pKapp, for the N63T/V57I and S40T/N63T variants 

have small decreases of 0.2-0.4 units compared to WT, and the V57I variant has a small increase 

of 0.1-0.2 units compared to WT. The remaining single mutation variants, S40T, N63T, and 

V57I, as well as S40T/V57I and S40T/V57I/N63T are similar in value to the pKapp of WT iso-1-

Cytc (Table 2). Overall, these variants have only moderate effects on the pKapp value when 

compared to WT.  

 
 
 

θ 22
2c
or
r, m

de
g 
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Table 2: Thermodynamic parameters for the alkaline transition of WT and iso-1-Cytc c variants. 
Variant pKapp n 

WT 8.00 ± 0.05 0.98 ± 0.01 
V57I 8.17 ± 0.06 1.13 ± 0.12 
S40T 7.99 ± 0.06 0.98 ± 0.17 
N63T 8.01 ± 0.05 0.95 ± 0.06 

N63T/V57I 7.64 ± 0.04 0.96 ± 0.05 
S40T/V57I 7.94 ± 0.16 1.05 ± 0.13 
S40T/N63T 7.84 ± 0.11 0.98 ± 0.12 

S40T/V57I/N63T 7.96 ± 0.10 0.89 ± 0.08 
 

 
Figure 3. Plot of A695corr vs pH for the alkaline transition of S40T/N63T iso-1-Cytc. Equation 1 from the Methods 
section was fit to the plot in order to determine the thermodynamic parameters pKapp and n of the alkaline transition 
in Table 1.  
 
Peroxidase activity of WT and iso-1-Cytc variants 
 

Peroxidase activity of WT and the iso-1-Cytc variants S40T, N63T, V57I, S40T/N63T, 

N63T/V57I, S40T/V57I, and S40T/V57I/N63T was measured by monitoring the formation of 

tetraguaiacol from guaiacol in the presence of H2O2. The Michaelis-Menten equation fit to the 

guaiacol concentration plots was used to determine the kcat and Km for pH 5, 6, 7, and 8. An 

example plot for S40T/N63T at pH 7 is shown in Figure 4. As shown in Figure 5, peroxidase 

assays indicate minimal effects of all variants on Km compared to WT iso-1-Cytc. Figure 6 shows 

that at pH 5 the kcat for each variant is similar to the kcat value for WT. As pH increases from 5 to 

8, the kcat value for each variant appears to decrease in comparison to WT.  



 13 

 

 
 
 
Figure 4. Peroxidase assay guaiacol concentration plot of S40T/N63T iso-1-Cytc variant at pH 7 fit to the 
Michaelis-Menten equation to determine KM and kcat values. 
 

 
Figure 5. Km values at pH 5-8 for WT and all iso-1-Cytc variants. 
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Figure 6. kcat values at pH 5-8 for WT and all iso-1-Cytc variants. 
 
 
Discussion 
 

The effects of each of the variants on global stability of iso-1-Cytc are relatively modest 

(Table 1). All variants have reduced m-values compared to WT. The triple mutant variant has an 

m-value similar in value to human Cytc (3.5-3.7 kcal mol-1 M-1).11 This indicates that the 

variants, specifically V57I, may control cooperativity of unfolding. The local stability, was 

measured by the alkaline conformational transition, pKapp. The local stability of V57I, 

N63T/V57I, and S40T/N63T show the most variation from yeast iso-1-Cytc WT, with a 0.1-0.2 

unit increase in value for V57I and 0.2-0.4 decrease in value for the N63T/V57I and S40T/N63T. 

The remaining single, double, and triple mutation variant effects on local stability are relatively 

modest and within error limits of yeast iso-1-Cytc WT. Given that pKapp is believed to reflect the 

local stability of W-loop D, the variants are compensatory overall, suggesting that the variants 

have evolved to maintain the local stability of W-loops C and D. 

The implication of each of the variants for the intrinsic peroxidase of Cytc as it relates to 

apoptosis was also determined. Peroxidase assays indicate minimal effects of all variants on KM 

compared to WT iso-1-Cytc (Figure 5). Overall, the single mutations appear to have the greatest 
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variation, bringing KM values up or down compared to WT, but the double and triple mutant 

variants seem to compensate, in comparison, bringing the values within range of WT. A similar 

trend appears in the kcat values of the peroxidase assays. However, as pH increases, the kcat values 

of all variants appear to decrease overall compared to WT. There is, however, only a moderate 

change in peroxidase activity, about 2-fold, when compared to human Cytc which has a 20-40-

fold decrease in peroxidase activity.11 There does not appear to be a trend between the local 

stability, pKapp, and the peroxidase activity of the variants. 

The S40T, N63T, V57I, S40T/N63T, V57I/N63T, S40T/V57I and S40T/V57I/N63T 

variants appear to maintain the local stability of the least stable structures of iso-1-Cytc as 

indicated by the modest change in pKapp. While there is a general decrease in kcat for peroxidase 

activity for all variants at pH 6 and above, nothing approaching the 20 – 40 fold decrease in 

peroxidase activity of human Cytc is observed. This observation indicates that there could be 

interactions of the least stable substructures (W-loops C and D) with other more stable 

substructures of Cytc that modulate the dynamics of these loops that control the kcat of yeast iso-

1-Cytc. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 16 

References 
 

1. Rajagopal, B., Edzuma, A., Hough, M., et al. (2013) The hydrogen-peroxide-induced 
radical behaviour in human cytochrome c – phospholipid complexes: implications for the 
enhanced pro-apoptotic activity of the G41S mutant. Biochemical Journal 456(3), 441-
452. 

2. Hopf, T. A., Ingraham, J. B., Poelwijk, F. J., et al. (2017) Mutation effects predicted from 
sequence co-variation. Nature Biotechnology 35(2), 128-135.  

3. Laun, P., Buttner, S., Rinnerthaler, M., Burhans, W. C., and Breitenbach, M., (2012) 
Aging research in yeast. Subcellular Biochemistry 57, 207-232.  

4. Huttemann, M., Pecina, P., Rainbolt, M., Sanderson, T. H., Kagan, V. E., Samavati, L., 
Doan, J. W., Lee, I. (2011) The multiple functions of cytochrome c and their regulation in 
life and death decisions of the mammalian cell: from respiration to apoptosis. 
Mitochondrion 11(3), 369-381. 

5. Kagan, V. E., Tyurin, V. A., Jiang, J., Tyurina, Y. Y., Ritov, V. B., Amscato, A. A., 
Osipov, A. N., Belikova, N. A., Kapralov, A. A., Kini, V., Vlasova, I. I., Zhao, Q., Zou, 
M., Di, P., Svitunenko, D. A., Kurnikov, I. V., Borisenko, G. G. (2005) Nature Chemical 
Biology 1, 223-232. 

6. Moore, G. R., and Pettigrew, G. W. (1990) Cytochromes c: Evolutionary, Structural and 
Physicochemical Aspects, Springer-Verlag, New York.  

7. Banci, L., Bertini, I., Rosato, A., and Varani, G. (1999) Mitochondrial cytochromes c: a 
comparative analysis. JBIC, J. Biol. Inorg. Chem. 4, 824−837.  

8. Alvarez-Paggi, D., Hannibal, L., Castro, M. A., Oviedo-Rouco, S., Demicheli, V., 
Tortora, V., Tomasina, F., Radi, R., and Murgida, D. H. (2017) Chem. Rev. 117(21), 
13382-13460 

9. Josephs, T. M., Morison, I. M., Day, C. L., Wilbanks, S. M., and Ledgerwood, E. C. 
(2014) Enhancing the peroxidase activity of cytochrome c by mutation of residue 41: 
implications for the peroxidase mechanism and cytochrome c release. Biochem. J. 458, 
259−265.  

10. Deacon, O. M., Karsisiotis, A. I., Moreno-Chicano, T., Hough, M. A., Macdonald, C., 
Blumenschein, T. M. A., Wilson, M. T., Moore, G. R., and Worrall, J. A. R. (2017) 
Biochemistry 56(46), 6111-6124.  

11. Nold, S. M., Lei, H., Mou, T., Bowler, B. E. (2017) Effect of a K72A mutation on the 
structure, stability, dynamics, and peroxidase activity of human cytochrome c. 
Biochemistry 56, 3358-3368. 

12. Duncan, M. G., Williams, M. D., and Bowler, B. E. (2009) Compressing the free energy 
range of substructure stabilities in iso-1-cytochrome c. Protein Sci. 18, 1155-1164. 


	Introducing human-like mutations in yeast iso-1-cytochrome c to decrease peroxidase activity in apoptosis
	Let us know how access to this document benefits you.
	Recommended Citation

	Microsoft Word - Bowler Scientific Paper Draft.docx

